]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
da59e081 | 2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000 |
c906108c SS |
3 | Free Software Foundation, Inc. |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "symfile.h" | |
28 | #include "gdb_string.h" | |
29 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
e8b09175 | 30 | #include "dis-asm.h" /* For register flavors. */ |
c906108c | 31 | |
ed9a39eb JM |
32 | extern void _initialize_arm_tdep (void); |
33 | ||
bc90b915 FN |
34 | /* Number of different reg name sets (options). */ |
35 | static int num_flavor_options; | |
36 | ||
37 | /* We have more registers than the disassembler as gdb can print the value | |
38 | of special registers as well. | |
39 | The general register names are overwritten by whatever is being used by | |
40 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ | |
41 | ||
42 | /* Initial value: Register names used in ARM's ISA documentation. */ | |
43 | static char * arm_register_name_strings[] = | |
da59e081 JM |
44 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
45 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
46 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
47 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
48 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
49 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
bc90b915 FN |
50 | "fps", "cpsr" }; /* 24 25 */ |
51 | char **arm_register_names = arm_register_name_strings; | |
ed9a39eb | 52 | |
bc90b915 FN |
53 | /* Valid register name flavors. */ |
54 | static char **valid_flavors; | |
ed9a39eb | 55 | |
bc90b915 FN |
56 | /* Disassembly flavor to use. Default to "std" register names. */ |
57 | static char *disassembly_flavor; | |
58 | static int current_option; /* Index to that option in the opcodes table. */ | |
96baa820 | 59 | |
ed9a39eb JM |
60 | /* This is used to keep the bfd arch_info in sync with the disassembly |
61 | flavor. */ | |
62 | static void set_disassembly_flavor_sfunc(char *, int, | |
63 | struct cmd_list_element *); | |
64 | static void set_disassembly_flavor (void); | |
65 | ||
66 | static void convert_from_extended (void *ptr, void *dbl); | |
67 | ||
68 | /* Define other aspects of the stack frame. We keep the offsets of | |
69 | all saved registers, 'cause we need 'em a lot! We also keep the | |
70 | current size of the stack frame, and the offset of the frame | |
71 | pointer from the stack pointer (for frameless functions, and when | |
72 | we're still in the prologue of a function with a frame) */ | |
73 | ||
74 | struct frame_extra_info | |
75 | { | |
76 | struct frame_saved_regs fsr; | |
77 | int framesize; | |
78 | int frameoffset; | |
79 | int framereg; | |
80 | }; | |
81 | ||
bc90b915 FN |
82 | /* Addresses for calling Thumb functions have the bit 0 set. |
83 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
84 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
85 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
86 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
87 | ||
8b93c638 JM |
88 | #define SWAP_TARGET_AND_HOST(buffer,len) \ |
89 | do \ | |
90 | { \ | |
91 | if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \ | |
92 | { \ | |
93 | char tmp; \ | |
94 | char *p = (char *)(buffer); \ | |
95 | char *q = ((char *)(buffer)) + len - 1; \ | |
96 | for (; p < q; p++, q--) \ | |
97 | { \ | |
98 | tmp = *q; \ | |
99 | *q = *p; \ | |
100 | *p = tmp; \ | |
101 | } \ | |
102 | } \ | |
103 | } \ | |
104 | while (0) | |
105 | ||
ed9a39eb JM |
106 | /* Will a function return an aggregate type in memory or in a |
107 | register? Return 0 if an aggregate type can be returned in a | |
108 | register, 1 if it must be returned in memory. */ | |
085dd6e6 | 109 | |
c906108c | 110 | int |
ed9a39eb | 111 | arm_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 112 | { |
ed9a39eb JM |
113 | int nRc; |
114 | register enum type_code code; | |
115 | ||
116 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
117 | registers. For an aggregate type to be integer like, its size | |
118 | must be less than or equal to REGISTER_SIZE and the offset of | |
119 | each addressable subfield must be zero. Note that bit fields are | |
120 | not addressable, and all addressable subfields of unions always | |
121 | start at offset zero. | |
122 | ||
123 | This function is based on the behaviour of GCC 2.95.1. | |
124 | See: gcc/arm.c: arm_return_in_memory() for details. | |
125 | ||
126 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
127 | parameters correctly for a function returning the following | |
128 | structure: struct { float f;}; This should be returned in memory, | |
129 | not a register. Richard Earnshaw sent me a patch, but I do not | |
130 | know of any way to detect if a function like the above has been | |
131 | compiled with the correct calling convention. */ | |
132 | ||
133 | /* All aggregate types that won't fit in a register must be returned | |
134 | in memory. */ | |
135 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
136 | { | |
137 | return 1; | |
138 | } | |
139 | ||
140 | /* The only aggregate types that can be returned in a register are | |
141 | structs and unions. Arrays must be returned in memory. */ | |
142 | code = TYPE_CODE (type); | |
143 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
144 | { | |
145 | return 1; | |
146 | } | |
147 | ||
148 | /* Assume all other aggregate types can be returned in a register. | |
149 | Run a check for structures, unions and arrays. */ | |
150 | nRc = 0; | |
151 | ||
152 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
153 | { | |
154 | int i; | |
155 | /* Need to check if this struct/union is "integer" like. For | |
156 | this to be true, its size must be less than or equal to | |
157 | REGISTER_SIZE and the offset of each addressable subfield | |
158 | must be zero. Note that bit fields are not addressable, and | |
159 | unions always start at offset zero. If any of the subfields | |
160 | is a floating point type, the struct/union cannot be an | |
161 | integer type. */ | |
162 | ||
163 | /* For each field in the object, check: | |
164 | 1) Is it FP? --> yes, nRc = 1; | |
165 | 2) Is it addressable (bitpos != 0) and | |
166 | not packed (bitsize == 0)? | |
167 | --> yes, nRc = 1 | |
168 | */ | |
169 | ||
170 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
171 | { | |
172 | enum type_code field_type_code; | |
173 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
174 | ||
175 | /* Is it a floating point type field? */ | |
176 | if (field_type_code == TYPE_CODE_FLT) | |
177 | { | |
178 | nRc = 1; | |
179 | break; | |
180 | } | |
181 | ||
182 | /* If bitpos != 0, then we have to care about it. */ | |
183 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
184 | { | |
185 | /* Bitfields are not addressable. If the field bitsize is | |
186 | zero, then the field is not packed. Hence it cannot be | |
187 | a bitfield or any other packed type. */ | |
188 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
189 | { | |
190 | nRc = 1; | |
191 | break; | |
192 | } | |
193 | } | |
194 | } | |
195 | } | |
196 | ||
197 | return nRc; | |
c906108c SS |
198 | } |
199 | ||
200 | int | |
ed9a39eb | 201 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 202 | { |
c906108c SS |
203 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
204 | } | |
205 | ||
206 | /* Set to true if the 32-bit mode is in use. */ | |
207 | ||
208 | int arm_apcs_32 = 1; | |
209 | ||
ed9a39eb JM |
210 | /* Flag set by arm_fix_call_dummy that tells whether the target |
211 | function is a Thumb function. This flag is checked by | |
212 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
213 | its use in valops.c) to pass the function address as an additional | |
214 | parameter. */ | |
c906108c SS |
215 | |
216 | static int target_is_thumb; | |
217 | ||
ed9a39eb JM |
218 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
219 | function is a Thumb function. This flag is checked by | |
220 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
221 | |
222 | static int caller_is_thumb; | |
223 | ||
ed9a39eb JM |
224 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
225 | function. */ | |
c906108c SS |
226 | |
227 | int | |
ed9a39eb | 228 | arm_pc_is_thumb (bfd_vma memaddr) |
c906108c | 229 | { |
c5aa993b | 230 | struct minimal_symbol *sym; |
c906108c | 231 | |
ed9a39eb | 232 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
233 | if (IS_THUMB_ADDR (memaddr)) |
234 | return 1; | |
235 | ||
ed9a39eb | 236 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
237 | sym = lookup_minimal_symbol_by_pc (memaddr); |
238 | if (sym) | |
239 | { | |
c5aa993b | 240 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
241 | } |
242 | else | |
ed9a39eb JM |
243 | { |
244 | return 0; | |
245 | } | |
c906108c SS |
246 | } |
247 | ||
ed9a39eb JM |
248 | /* Determine if the program counter specified in MEMADDR is in a call |
249 | dummy being called from a Thumb function. */ | |
c906108c SS |
250 | |
251 | int | |
ed9a39eb | 252 | arm_pc_is_thumb_dummy (bfd_vma memaddr) |
c906108c | 253 | { |
c5aa993b | 254 | CORE_ADDR sp = read_sp (); |
c906108c | 255 | |
dfcd3bfb JM |
256 | /* FIXME: Until we switch for the new call dummy macros, this heuristic |
257 | is the best we can do. We are trying to determine if the pc is on | |
258 | the stack, which (hopefully) will only happen in a call dummy. | |
259 | We hope the current stack pointer is not so far alway from the dummy | |
260 | frame location (true if we have not pushed large data structures or | |
261 | gone too many levels deep) and that our 1024 is not enough to consider | |
262 | code regions as part of the stack (true for most practical purposes) */ | |
263 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) | |
c906108c SS |
264 | return caller_is_thumb; |
265 | else | |
266 | return 0; | |
267 | } | |
268 | ||
269 | CORE_ADDR | |
ed9a39eb | 270 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
271 | { |
272 | if (arm_pc_is_thumb (val)) | |
273 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
274 | else | |
275 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
276 | } | |
277 | ||
278 | CORE_ADDR | |
ed9a39eb | 279 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
280 | { |
281 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); | |
282 | } | |
283 | ||
392a587b | 284 | int |
ed9a39eb | 285 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 286 | { |
392a587b | 287 | CORE_ADDR func_start, after_prologue; |
96baa820 | 288 | int frameless; |
ed9a39eb | 289 | |
392a587b | 290 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 291 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 292 | |
96baa820 | 293 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
294 | follow the standard APCS form, in which case after_prologue will |
295 | be func_start + 8. */ | |
296 | ||
96baa820 | 297 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
298 | return frameless; |
299 | } | |
300 | ||
c906108c | 301 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
302 | push {r7, lr} |
303 | add sp, sp, #-28 | |
304 | add r7, sp, #12 | |
c906108c | 305 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
306 | mov r7, sp |
307 | ||
308 | or like this: | |
309 | push {r7, lr} | |
310 | mov r7, sp | |
311 | sub sp, #12 | |
312 | ||
313 | or, on tpcs, like this: | |
314 | sub sp,#16 | |
315 | push {r7, lr} | |
316 | (many instructions) | |
317 | mov r7, sp | |
318 | sub sp, #12 | |
319 | ||
320 | There is always one instruction of three classes: | |
321 | 1 - push | |
322 | 2 - setting of r7 | |
323 | 3 - adjusting of sp | |
324 | ||
325 | When we have found at least one of each class we are done with the prolog. | |
326 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 327 | */ |
c906108c SS |
328 | |
329 | static CORE_ADDR | |
ed9a39eb | 330 | thumb_skip_prologue (CORE_ADDR pc) |
c906108c SS |
331 | { |
332 | CORE_ADDR current_pc; | |
da59e081 JM |
333 | int findmask = 0; /* findmask: |
334 | bit 0 - push { rlist } | |
335 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
336 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
337 | */ | |
c906108c | 338 | |
da59e081 | 339 | for (current_pc = pc; current_pc < pc + 40; current_pc += 2) |
c906108c SS |
340 | { |
341 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
342 | ||
da59e081 JM |
343 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
344 | { | |
345 | findmask |= 1; /* push found */ | |
346 | } | |
347 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
348 | { | |
349 | if ((findmask & 1) == 0) /* before push ? */ | |
350 | continue; | |
351 | else | |
352 | findmask |= 4; /* add/sub sp found */ | |
353 | } | |
354 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
355 | { | |
356 | findmask |= 2; /* setting of r7 found */ | |
357 | } | |
358 | else if (insn == 0x466f) /* mov r7, sp */ | |
359 | { | |
360 | findmask |= 2; /* setting of r7 found */ | |
361 | } | |
362 | else | |
363 | continue; /* something in the prolog that we don't care about or some | |
364 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
365 | } |
366 | ||
367 | return current_pc; | |
368 | } | |
369 | ||
ed9a39eb JM |
370 | /* The APCS (ARM Procedure Call Standard) defines the following |
371 | prologue: | |
c906108c | 372 | |
c5aa993b JM |
373 | mov ip, sp |
374 | [stmfd sp!, {a1,a2,a3,a4}] | |
375 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
376 | [stfe f7, [sp, #-12]!] |
377 | [stfe f6, [sp, #-12]!] | |
378 | [stfe f5, [sp, #-12]!] | |
379 | [stfe f4, [sp, #-12]!] | |
380 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c SS |
381 | |
382 | CORE_ADDR | |
ed9a39eb | 383 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
384 | { |
385 | unsigned long inst; | |
386 | CORE_ADDR skip_pc; | |
387 | CORE_ADDR func_addr, func_end; | |
388 | struct symtab_and_line sal; | |
389 | ||
96baa820 | 390 | /* See what the symbol table says. */ |
ed9a39eb | 391 | |
c5aa993b | 392 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c906108c SS |
393 | { |
394 | sal = find_pc_line (func_addr, 0); | |
96baa820 | 395 | if ((sal.line != 0) && (sal.end < func_end)) |
c906108c SS |
396 | return sal.end; |
397 | } | |
398 | ||
399 | /* Check if this is Thumb code. */ | |
400 | if (arm_pc_is_thumb (pc)) | |
401 | return thumb_skip_prologue (pc); | |
402 | ||
403 | /* Can't find the prologue end in the symbol table, try it the hard way | |
404 | by disassembling the instructions. */ | |
405 | skip_pc = pc; | |
406 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 407 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
408 | return pc; |
409 | ||
410 | skip_pc += 4; | |
411 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 412 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
413 | { |
414 | skip_pc += 4; | |
415 | inst = read_memory_integer (skip_pc, 4); | |
416 | } | |
417 | ||
c5aa993b | 418 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
419 | return pc; |
420 | ||
421 | skip_pc += 4; | |
422 | inst = read_memory_integer (skip_pc, 4); | |
423 | ||
424 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
425 | for better instruction scheduling, so we skip them only if we |
426 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 427 | |
ed9a39eb JM |
428 | /* We may have either one sfmfd instruction here, or several stfe |
429 | insns, depending on the version of floating point code we | |
430 | support. */ | |
c5aa993b | 431 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
432 | { |
433 | skip_pc += 4; | |
434 | inst = read_memory_integer (skip_pc, 4); | |
435 | } | |
436 | else | |
437 | { | |
c5aa993b JM |
438 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
439 | { | |
440 | skip_pc += 4; | |
441 | inst = read_memory_integer (skip_pc, 4); | |
442 | } | |
c906108c SS |
443 | } |
444 | ||
c5aa993b | 445 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
446 | skip_pc += 4; |
447 | ||
448 | return skip_pc; | |
449 | } | |
c5aa993b | 450 | /* *INDENT-OFF* */ |
c906108c SS |
451 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
452 | This function decodes a Thumb function prologue to determine: | |
453 | 1) the size of the stack frame | |
454 | 2) which registers are saved on it | |
455 | 3) the offsets of saved regs | |
456 | 4) the offset from the stack pointer to the frame pointer | |
457 | This information is stored in the "extra" fields of the frame_info. | |
458 | ||
da59e081 JM |
459 | A typical Thumb function prologue would create this stack frame |
460 | (offsets relative to FP) | |
c906108c SS |
461 | old SP -> 24 stack parameters |
462 | 20 LR | |
463 | 16 R7 | |
464 | R7 -> 0 local variables (16 bytes) | |
465 | SP -> -12 additional stack space (12 bytes) | |
466 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
467 | 12 bytes. The frame register is R7. |
468 | ||
469 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
470 | the end of the prolog */ | |
c5aa993b JM |
471 | /* *INDENT-ON* */ |
472 | ||
c906108c | 473 | static void |
ed9a39eb | 474 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
475 | { |
476 | CORE_ADDR prologue_start; | |
477 | CORE_ADDR prologue_end; | |
478 | CORE_ADDR current_pc; | |
c5aa993b | 479 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
480 | int findmask = 0; /* findmask: |
481 | bit 0 - push { rlist } | |
482 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
483 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
484 | */ | |
c5aa993b | 485 | int i; |
c906108c | 486 | |
c5aa993b | 487 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
488 | { |
489 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
490 | ||
c5aa993b | 491 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
492 | prologue_end = fi->pc; |
493 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 494 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
495 | } |
496 | else | |
c5aa993b JM |
497 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
498 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
499 | |
500 | prologue_end = min (prologue_end, fi->pc); | |
501 | ||
502 | /* Initialize the saved register map. When register H is copied to | |
503 | register L, we will put H in saved_reg[L]. */ | |
504 | for (i = 0; i < 16; i++) | |
505 | saved_reg[i] = i; | |
506 | ||
507 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
508 | frame pointer, adjust the stack pointer, and save registers. |
509 | Do this until all basic prolog instructions are found. */ | |
c906108c SS |
510 | |
511 | fi->framesize = 0; | |
da59e081 JM |
512 | for (current_pc = prologue_start; |
513 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
514 | current_pc += 2) | |
c906108c SS |
515 | { |
516 | unsigned short insn; | |
517 | int regno; | |
518 | int offset; | |
519 | ||
520 | insn = read_memory_unsigned_integer (current_pc, 2); | |
521 | ||
c5aa993b | 522 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 523 | { |
da59e081 JM |
524 | int mask; |
525 | findmask |= 1; /* push found */ | |
c906108c SS |
526 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
527 | whether to save LR (R14). */ | |
da59e081 | 528 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
529 | |
530 | /* Calculate offsets of saved R0-R7 and LR. */ | |
531 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
532 | if (mask & (1 << regno)) | |
c5aa993b | 533 | { |
c906108c SS |
534 | fi->framesize += 4; |
535 | fi->fsr.regs[saved_reg[regno]] = -(fi->framesize); | |
536 | saved_reg[regno] = regno; /* reset saved register map */ | |
537 | } | |
538 | } | |
da59e081 | 539 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 540 | { |
da59e081 JM |
541 | if ((findmask & 1) == 0) /* before push ? */ |
542 | continue; | |
543 | else | |
544 | findmask |= 4; /* add/sub sp found */ | |
545 | ||
c5aa993b | 546 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
547 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
548 | { | |
549 | fi->frameoffset += offset; | |
550 | offset = -offset; | |
551 | } | |
c906108c SS |
552 | fi->framesize -= offset; |
553 | } | |
554 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
555 | { | |
da59e081 | 556 | findmask |= 2; /* setting of r7 found */ |
c906108c | 557 | fi->framereg = THUMB_FP_REGNUM; |
c5aa993b | 558 | fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */ |
c906108c | 559 | } |
da59e081 | 560 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 561 | { |
da59e081 | 562 | findmask |= 2; /* setting of r7 found */ |
c906108c SS |
563 | fi->framereg = THUMB_FP_REGNUM; |
564 | fi->frameoffset = 0; | |
565 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; | |
566 | } | |
567 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
568 | { | |
c5aa993b | 569 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 570 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 571 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
572 | } |
573 | else | |
da59e081 JM |
574 | continue; /* something in the prolog that we don't care about or some |
575 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
576 | } |
577 | } | |
578 | ||
ed9a39eb JM |
579 | /* Check if prologue for this frame's PC has already been scanned. If |
580 | it has, copy the relevant information about that prologue and | |
c906108c SS |
581 | return non-zero. Otherwise do not copy anything and return zero. |
582 | ||
583 | The information saved in the cache includes: | |
c5aa993b JM |
584 | * the frame register number; |
585 | * the size of the stack frame; | |
586 | * the offsets of saved regs (relative to the old SP); and | |
587 | * the offset from the stack pointer to the frame pointer | |
c906108c | 588 | |
ed9a39eb JM |
589 | The cache contains only one entry, since this is adequate for the |
590 | typical sequence of prologue scan requests we get. When performing | |
591 | a backtrace, GDB will usually ask to scan the same function twice | |
592 | in a row (once to get the frame chain, and once to fill in the | |
593 | extra frame information). */ | |
c906108c SS |
594 | |
595 | static struct frame_info prologue_cache; | |
596 | ||
597 | static int | |
ed9a39eb | 598 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
599 | { |
600 | int i; | |
601 | ||
602 | if (fi->pc == prologue_cache.pc) | |
603 | { | |
604 | fi->framereg = prologue_cache.framereg; | |
605 | fi->framesize = prologue_cache.framesize; | |
606 | fi->frameoffset = prologue_cache.frameoffset; | |
607 | for (i = 0; i <= NUM_REGS; i++) | |
608 | fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; | |
609 | return 1; | |
610 | } | |
611 | else | |
612 | return 0; | |
613 | } | |
614 | ||
615 | ||
ed9a39eb | 616 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
617 | |
618 | static void | |
ed9a39eb | 619 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
620 | { |
621 | int i; | |
622 | ||
c5aa993b JM |
623 | prologue_cache.pc = fi->pc; |
624 | prologue_cache.framereg = fi->framereg; | |
625 | prologue_cache.framesize = fi->framesize; | |
c906108c | 626 | prologue_cache.frameoffset = fi->frameoffset; |
c5aa993b | 627 | |
c906108c SS |
628 | for (i = 0; i <= NUM_REGS; i++) |
629 | prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; | |
630 | } | |
631 | ||
632 | ||
ed9a39eb | 633 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
634 | 1) the size of the stack frame |
635 | 2) which registers are saved on it | |
636 | 3) the offsets of saved regs | |
637 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
638 | This information is stored in the "extra" fields of the frame_info. |
639 | ||
96baa820 JM |
640 | There are two basic forms for the ARM prologue. The fixed argument |
641 | function call will look like: | |
ed9a39eb JM |
642 | |
643 | mov ip, sp | |
644 | stmfd sp!, {fp, ip, lr, pc} | |
645 | sub fp, ip, #4 | |
646 | [sub sp, sp, #4] | |
96baa820 | 647 | |
c906108c | 648 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
649 | IP -> 4 (caller's stack) |
650 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
651 | -4 LR (return address in caller) | |
652 | -8 IP (copy of caller's SP) | |
653 | -12 FP (caller's FP) | |
654 | SP -> -28 Local variables | |
655 | ||
c906108c | 656 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
657 | 28 bytes. The stmfd call can also save any of the vN registers it |
658 | plans to use, which increases the frame size accordingly. | |
659 | ||
660 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
661 | because the ARM Store instructions always store PC + 8 when you read | |
662 | the PC register. | |
ed9a39eb | 663 | |
96baa820 JM |
664 | A variable argument function call will look like: |
665 | ||
ed9a39eb JM |
666 | mov ip, sp |
667 | stmfd sp!, {a1, a2, a3, a4} | |
668 | stmfd sp!, {fp, ip, lr, pc} | |
669 | sub fp, ip, #20 | |
670 | ||
96baa820 | 671 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
672 | IP -> 20 (caller's stack) |
673 | 16 A4 | |
674 | 12 A3 | |
675 | 8 A2 | |
676 | 4 A1 | |
677 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
678 | -4 LR (return address in caller) | |
679 | -8 IP (copy of caller's SP) | |
680 | -12 FP (caller's FP) | |
681 | SP -> -28 Local variables | |
96baa820 JM |
682 | |
683 | The frame size would thus be 48 bytes, and the frame offset would be | |
684 | 28 bytes. | |
685 | ||
686 | There is another potential complication, which is that the optimizer | |
687 | will try to separate the store of fp in the "stmfd" instruction from | |
688 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
689 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
690 | ||
691 | Also, note, the original version of the ARM toolchain claimed that there | |
692 | should be an | |
693 | ||
694 | instruction at the end of the prologue. I have never seen GCC produce | |
695 | this, and the ARM docs don't mention it. We still test for it below in | |
696 | case it happens... | |
ed9a39eb JM |
697 | |
698 | */ | |
c906108c SS |
699 | |
700 | static void | |
ed9a39eb | 701 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
702 | { |
703 | int regno, sp_offset, fp_offset; | |
704 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
705 | ||
706 | /* Check if this function is already in the cache of frame information. */ | |
707 | if (check_prologue_cache (fi)) | |
708 | return; | |
709 | ||
710 | /* Assume there is no frame until proven otherwise. */ | |
c5aa993b JM |
711 | fi->framereg = SP_REGNUM; |
712 | fi->framesize = 0; | |
c906108c SS |
713 | fi->frameoffset = 0; |
714 | ||
715 | /* Check for Thumb prologue. */ | |
716 | if (arm_pc_is_thumb (fi->pc)) | |
717 | { | |
718 | thumb_scan_prologue (fi); | |
719 | save_prologue_cache (fi); | |
720 | return; | |
721 | } | |
722 | ||
723 | /* Find the function prologue. If we can't find the function in | |
724 | the symbol table, peek in the stack frame to find the PC. */ | |
725 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
726 | { | |
727 | /* Assume the prologue is everything between the first instruction | |
728 | in the function and the first source line. */ | |
729 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
730 | ||
c5aa993b | 731 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
732 | prologue_end = fi->pc; |
733 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 734 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
735 | } |
736 | else | |
737 | { | |
738 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 739 | PC is the address of the stmfd + 8. */ |
ed9a39eb | 740 | prologue_start = ADDR_BITS_REMOVE (read_memory_integer (fi->frame, 4)) |
96baa820 | 741 | - 8; |
ed9a39eb JM |
742 | prologue_end = prologue_start + 64; /* This is all the insn's |
743 | that could be in the prologue, | |
744 | plus room for 5 insn's inserted | |
745 | by the scheduler. */ | |
c906108c SS |
746 | } |
747 | ||
748 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 749 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 750 | |
96baa820 JM |
751 | Be careful, however, and if it doesn't look like a prologue, |
752 | don't try to scan it. If, for instance, a frameless function | |
753 | begins with stmfd sp!, then we will tell ourselves there is | |
754 | a frame, which will confuse stack traceback, as well ad"finish" | |
755 | and other operations that rely on a knowledge of the stack | |
756 | traceback. | |
757 | ||
758 | In the APCS, the prologue should start with "mov ip, sp" so | |
759 | if we don't see this as the first insn, we will stop. */ | |
c906108c SS |
760 | |
761 | sp_offset = fp_offset = 0; | |
c906108c | 762 | |
ed9a39eb JM |
763 | if (read_memory_unsigned_integer (prologue_start, 4) |
764 | == 0xe1a0c00d) /* mov ip, sp */ | |
96baa820 | 765 | { |
ed9a39eb | 766 | for (current_pc = prologue_start + 4; current_pc < prologue_end; |
96baa820 | 767 | current_pc += 4) |
c906108c | 768 | { |
96baa820 | 769 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
ed9a39eb | 770 | |
96baa820 JM |
771 | if ((insn & 0xffff0000) == 0xe92d0000) |
772 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
773 | or | |
774 | stmfd sp!, {a1, a2, a3, a4} */ | |
775 | { | |
776 | int mask = insn & 0xffff; | |
ed9a39eb | 777 | |
96baa820 JM |
778 | /* Calculate offsets of saved registers. */ |
779 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
780 | if (mask & (1 << regno)) | |
781 | { | |
782 | sp_offset -= 4; | |
783 | fi->fsr.regs[regno] = sp_offset; | |
784 | } | |
785 | } | |
ed9a39eb | 786 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
96baa820 | 787 | { |
ed9a39eb JM |
788 | unsigned imm = insn & 0xff; /* immediate value */ |
789 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
790 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
791 | fp_offset = -imm; |
792 | fi->framereg = FP_REGNUM; | |
793 | } | |
ed9a39eb | 794 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ |
96baa820 | 795 | { |
ed9a39eb JM |
796 | unsigned imm = insn & 0xff; /* immediate value */ |
797 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
798 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
799 | sp_offset -= imm; |
800 | } | |
ed9a39eb | 801 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ |
96baa820 JM |
802 | { |
803 | sp_offset -= 12; | |
804 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
805 | fi->fsr.regs[regno] = sp_offset; | |
806 | } | |
ed9a39eb | 807 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ |
96baa820 | 808 | { |
ed9a39eb | 809 | int n_saved_fp_regs; |
96baa820 | 810 | unsigned int fp_start_reg, fp_bound_reg; |
ed9a39eb JM |
811 | |
812 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
813 | { | |
814 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
815 | n_saved_fp_regs = 3; |
816 | else | |
817 | n_saved_fp_regs = 1; | |
818 | } | |
819 | else | |
ed9a39eb JM |
820 | { |
821 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
822 | n_saved_fp_regs = 2; |
823 | else | |
824 | n_saved_fp_regs = 4; | |
825 | } | |
ed9a39eb | 826 | |
96baa820 JM |
827 | fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); |
828 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | |
829 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
830 | { | |
831 | sp_offset -= 12; | |
832 | fi->fsr.regs[fp_start_reg++] = sp_offset; | |
833 | } | |
834 | } | |
835 | else | |
ed9a39eb JM |
836 | /* The optimizer might shove anything into the prologue, |
837 | so we just skip what we don't recognize. */ | |
838 | continue; | |
c906108c | 839 | } |
c906108c SS |
840 | } |
841 | ||
842 | /* The frame size is just the negative of the offset (from the original SP) | |
843 | of the last thing thing we pushed on the stack. The frame offset is | |
844 | [new FP] - [new SP]. */ | |
845 | fi->framesize = -sp_offset; | |
846 | fi->frameoffset = fp_offset - sp_offset; | |
ed9a39eb | 847 | |
c906108c SS |
848 | save_prologue_cache (fi); |
849 | } | |
850 | ||
ed9a39eb JM |
851 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
852 | One thing we might want to do here is to check REGNUM against the | |
853 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
854 | the stack somewhere. This would provide a graceful failure mode | |
855 | when trying to get the value of caller-saves registers for an inner | |
856 | frame. */ | |
c906108c SS |
857 | |
858 | static CORE_ADDR | |
ed9a39eb | 859 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
860 | { |
861 | for (; fi; fi = fi->next) | |
c5aa993b JM |
862 | |
863 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
864 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
865 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
866 | else | |
867 | #endif | |
c5aa993b JM |
868 | if (fi->fsr.regs[regnum] != 0) |
869 | return read_memory_integer (fi->fsr.regs[regnum], | |
870 | REGISTER_RAW_SIZE (regnum)); | |
c906108c SS |
871 | return read_register (regnum); |
872 | } | |
c5aa993b | 873 | /* *INDENT-OFF* */ |
c906108c SS |
874 | /* Function: frame_chain |
875 | Given a GDB frame, determine the address of the calling function's frame. | |
876 | This will be used to create a new GDB frame struct, and then | |
877 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
878 | For ARM, we save the frame size when we initialize the frame_info. | |
879 | ||
880 | The original definition of this function was a macro in tm-arm.h: | |
881 | { In the case of the ARM, the frame's nominal address is the FP value, | |
882 | and 12 bytes before comes the saved previous FP value as a 4-byte word. } | |
883 | ||
884 | #define FRAME_CHAIN(thisframe) \ | |
885 | ((thisframe)->pc >= LOWEST_PC ? \ | |
886 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
887 | 0) | |
888 | */ | |
c5aa993b JM |
889 | /* *INDENT-ON* */ |
890 | ||
c906108c | 891 | CORE_ADDR |
ed9a39eb | 892 | arm_frame_chain (struct frame_info *fi) |
c906108c | 893 | { |
c5aa993b | 894 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
895 | CORE_ADDR fn_start, callers_pc, fp; |
896 | ||
897 | /* is this a dummy frame? */ | |
898 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 899 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
900 | |
901 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 902 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
c906108c | 903 | fp = arm_find_callers_reg (fi, FP_REGNUM); |
c5aa993b JM |
904 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
905 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
906 | |
907 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
908 | if (fn_start == entry_point_address ()) | |
c5aa993b | 909 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
910 | #endif |
911 | CORE_ADDR caller_pc, fn_start; | |
912 | struct frame_info caller_fi; | |
913 | int framereg = fi->framereg; | |
914 | ||
915 | if (fi->pc < LOWEST_PC) | |
916 | return 0; | |
917 | ||
918 | /* If the caller is the startup code, we're at the end of the chain. */ | |
919 | caller_pc = FRAME_SAVED_PC (fi); | |
920 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
921 | if (fn_start == entry_point_address ()) | |
922 | return 0; | |
923 | ||
924 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
925 | the frame register of the caller is different from ours. | |
926 | So we must scan the prologue of the caller to determine its | |
927 | frame register number. */ | |
928 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) | |
929 | { | |
c5aa993b | 930 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c906108c | 931 | caller_fi.pc = caller_pc; |
c5aa993b | 932 | arm_scan_prologue (&caller_fi); |
c906108c SS |
933 | framereg = caller_fi.framereg; |
934 | } | |
935 | ||
936 | /* If the caller used a frame register, return its value. | |
937 | Otherwise, return the caller's stack pointer. */ | |
938 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
939 | return arm_find_callers_reg (fi, framereg); | |
940 | else | |
941 | return fi->frame + fi->framesize; | |
942 | } | |
943 | ||
ed9a39eb JM |
944 | /* This function actually figures out the frame address for a given pc |
945 | and sp. This is tricky because we sometimes don't use an explicit | |
946 | frame pointer, and the previous stack pointer isn't necessarily | |
947 | recorded on the stack. The only reliable way to get this info is | |
948 | to examine the prologue. FROMLEAF is a little confusing, it means | |
949 | this is the next frame up the chain AFTER a frameless function. If | |
950 | this is true, then the frame value for this frame is still in the | |
951 | fp register. */ | |
c906108c SS |
952 | |
953 | void | |
ed9a39eb | 954 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
955 | { |
956 | int reg; | |
957 | ||
958 | if (fi->next) | |
959 | fi->pc = FRAME_SAVED_PC (fi->next); | |
960 | ||
961 | memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); | |
962 | ||
c5aa993b | 963 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
964 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
965 | { | |
966 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b JM |
967 | by assuming it's always FP. */ |
968 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
969 | fi->framesize = 0; | |
c906108c SS |
970 | fi->frameoffset = 0; |
971 | return; | |
972 | } | |
c5aa993b | 973 | else |
c906108c SS |
974 | #endif |
975 | { | |
976 | arm_scan_prologue (fi); | |
977 | ||
104c1213 JM |
978 | if (!fi->next) |
979 | /* this is the innermost frame? */ | |
c906108c | 980 | fi->frame = read_register (fi->framereg); |
ed9a39eb JM |
981 | else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM) |
982 | { | |
983 | /* not the innermost frame */ | |
984 | /* If we have an FP, the callee saved it. */ | |
985 | if (fi->next->fsr.regs[fi->framereg] != 0) | |
986 | fi->frame = | |
987 | read_memory_integer (fi->next->fsr.regs[fi->framereg], 4); | |
988 | else if (fromleaf) | |
989 | /* If we were called by a frameless fn. then our frame is | |
990 | still in the frame pointer register on the board... */ | |
991 | fi->frame = read_fp (); | |
992 | } | |
c906108c | 993 | |
ed9a39eb JM |
994 | /* Calculate actual addresses of saved registers using offsets |
995 | determined by arm_scan_prologue. */ | |
c906108c SS |
996 | for (reg = 0; reg < NUM_REGS; reg++) |
997 | if (fi->fsr.regs[reg] != 0) | |
998 | fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; | |
999 | } | |
1000 | } | |
1001 | ||
1002 | ||
ed9a39eb JM |
1003 | /* Find the caller of this frame. We do this by seeing if LR_REGNUM |
1004 | is saved in the stack anywhere, otherwise we get it from the | |
1005 | registers. | |
c906108c SS |
1006 | |
1007 | The old definition of this function was a macro: | |
c5aa993b | 1008 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1009 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c SS |
1010 | |
1011 | CORE_ADDR | |
ed9a39eb | 1012 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1013 | { |
c5aa993b | 1014 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1015 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1016 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
1017 | else | |
1018 | #endif | |
1019 | { | |
1020 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
1021 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
1022 | } | |
1023 | } | |
1024 | ||
c906108c SS |
1025 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1026 | Examine the Program Status Register to decide which state we're in. */ | |
1027 | ||
1028 | CORE_ADDR | |
ed9a39eb | 1029 | arm_target_read_fp (void) |
c906108c SS |
1030 | { |
1031 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
1032 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
1033 | else | |
c5aa993b | 1034 | return read_register (FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1035 | } |
1036 | ||
ed9a39eb | 1037 | /* Calculate the frame offsets of the saved registers (ARM version). */ |
c906108c | 1038 | |
c906108c | 1039 | void |
ed9a39eb JM |
1040 | arm_frame_find_saved_regs (struct frame_info *fi, |
1041 | struct frame_saved_regs *regaddr) | |
c906108c SS |
1042 | { |
1043 | memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); | |
1044 | } | |
1045 | ||
c906108c | 1046 | void |
ed9a39eb | 1047 | arm_push_dummy_frame (void) |
c906108c SS |
1048 | { |
1049 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
1050 | CORE_ADDR sp = old_sp; | |
1051 | CORE_ADDR fp, prologue_start; | |
1052 | int regnum; | |
1053 | ||
1054 | /* Push the two dummy prologue instructions in reverse order, | |
1055 | so that they'll be in the correct low-to-high order in memory. */ | |
1056 | /* sub fp, ip, #4 */ | |
1057 | sp = push_word (sp, 0xe24cb004); | |
1058 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1059 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1060 | ||
ed9a39eb JM |
1061 | /* Push a pointer to the dummy prologue + 12, because when stm |
1062 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1063 | instruction itself plus 12. */ |
1064 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1065 | sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */ |
c906108c SS |
1066 | sp = push_word (sp, old_sp); |
1067 | sp = push_word (sp, read_register (FP_REGNUM)); | |
c5aa993b JM |
1068 | |
1069 | for (regnum = 10; regnum >= 0; regnum--) | |
c906108c | 1070 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1071 | |
c906108c SS |
1072 | write_register (FP_REGNUM, fp); |
1073 | write_register (THUMB_FP_REGNUM, fp); | |
1074 | write_register (SP_REGNUM, sp); | |
1075 | } | |
1076 | ||
1077 | /* Fix up the call dummy, based on whether the processor is currently | |
ed9a39eb JM |
1078 | in Thumb or ARM mode, and whether the target function is Thumb or |
1079 | ARM. There are three different situations requiring three | |
c906108c SS |
1080 | different dummies: |
1081 | ||
1082 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1083 | been copied into the dummy parameter to this function. |
c906108c | 1084 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1085 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1086 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1087 | works for calling both ARM and Thumb functions. |
c906108c | 1088 | |
ed9a39eb JM |
1089 | All three call dummies expect to receive the target function |
1090 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c SS |
1091 | |
1092 | void | |
ed9a39eb JM |
1093 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
1094 | value_ptr *args, struct type *type, int gcc_p) | |
c906108c SS |
1095 | { |
1096 | static short thumb_dummy[4] = | |
1097 | { | |
c5aa993b JM |
1098 | 0xf000, 0xf801, /* bl label */ |
1099 | 0xdf18, /* swi 24 */ | |
1100 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1101 | }; |
1102 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1103 | ||
1104 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1105 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c | 1106 | |
ed9a39eb JM |
1107 | /* If the target function is Thumb, set the low bit of the function |
1108 | address. And if the CPU is currently in ARM mode, patch the | |
1109 | second instruction of call dummy to use a BX instruction to | |
1110 | switch to Thumb mode. */ | |
c906108c SS |
1111 | target_is_thumb = arm_pc_is_thumb (fun); |
1112 | if (target_is_thumb) | |
1113 | { | |
1114 | fun |= 1; | |
1115 | if (!caller_is_thumb) | |
1116 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1117 | } | |
1118 | ||
1119 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1120 | instead of the ARM one that's already been copied. This will | |
1121 | work for both Thumb and ARM target functions. */ | |
1122 | if (caller_is_thumb) | |
1123 | { | |
1124 | int i; | |
1125 | char *p = dummy; | |
1126 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1127 | ||
1128 | for (i = 0; i < len; i++) | |
1129 | { | |
1130 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1131 | p += sizeof (thumb_dummy[0]); | |
1132 | } | |
1133 | } | |
1134 | ||
ed9a39eb JM |
1135 | /* Put the target address in r4; the call dummy will copy this to |
1136 | the PC. */ | |
c906108c SS |
1137 | write_register (4, fun); |
1138 | } | |
1139 | ||
c906108c | 1140 | /* Return the offset in the call dummy of the instruction that needs |
ed9a39eb JM |
1141 | to have a breakpoint placed on it. This is the offset of the 'swi |
1142 | 24' instruction, which is no longer actually used, but simply acts | |
c906108c SS |
1143 | as a place-holder now. |
1144 | ||
ed9a39eb | 1145 | This implements the CALL_DUMMY_BREAK_OFFSET macro. */ |
c906108c SS |
1146 | |
1147 | int | |
ed9a39eb | 1148 | arm_call_dummy_breakpoint_offset (void) |
c906108c SS |
1149 | { |
1150 | if (caller_is_thumb) | |
1151 | return 4; | |
1152 | else | |
1153 | return 8; | |
1154 | } | |
1155 | ||
ed9a39eb JM |
1156 | /* Note: ScottB |
1157 | ||
1158 | This function does not support passing parameters using the FPA | |
1159 | variant of the APCS. It passes any floating point arguments in the | |
1160 | general registers and/or on the stack. */ | |
c906108c SS |
1161 | |
1162 | CORE_ADDR | |
ed9a39eb JM |
1163 | arm_push_arguments (int nargs, value_ptr * args, CORE_ADDR sp, |
1164 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1165 | { |
ed9a39eb JM |
1166 | char *fp; |
1167 | int argnum, argreg, nstack_size; | |
1168 | ||
1169 | /* Walk through the list of args and determine how large a temporary | |
1170 | stack is required. Need to take care here as structs may be | |
1171 | passed on the stack, and we have to to push them. */ | |
1172 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1173 | if (struct_return) /* The struct address goes in A1. */ | |
1174 | nstack_size += REGISTER_SIZE; | |
1175 | ||
1176 | /* Walk through the arguments and add their size to nstack_size. */ | |
1177 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1178 | { |
c906108c | 1179 | int len; |
ed9a39eb JM |
1180 | struct type *arg_type; |
1181 | ||
1182 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1183 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1184 | |
ed9a39eb JM |
1185 | /* ANSI C code passes float arguments as integers, K&R code |
1186 | passes float arguments as doubles. Correct for this here. */ | |
1187 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) | |
1188 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; | |
1189 | else | |
1190 | nstack_size += len; | |
1191 | } | |
c906108c | 1192 | |
ed9a39eb JM |
1193 | /* Allocate room on the stack, and initialize our stack frame |
1194 | pointer. */ | |
1195 | fp = NULL; | |
1196 | if (nstack_size > 0) | |
1197 | { | |
1198 | sp -= nstack_size; | |
1199 | fp = (char *) sp; | |
1200 | } | |
1201 | ||
1202 | /* Initialize the integer argument register pointer. */ | |
c906108c | 1203 | argreg = A1_REGNUM; |
c906108c | 1204 | |
ed9a39eb JM |
1205 | /* The struct_return pointer occupies the first parameter passing |
1206 | register. */ | |
c906108c | 1207 | if (struct_return) |
c5aa993b | 1208 | write_register (argreg++, struct_addr); |
c906108c | 1209 | |
ed9a39eb JM |
1210 | /* Process arguments from left to right. Store as many as allowed |
1211 | in the parameter passing registers (A1-A4), and save the rest on | |
1212 | the temporary stack. */ | |
c5aa993b | 1213 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1214 | { |
ed9a39eb | 1215 | int len; |
c5aa993b | 1216 | char *val; |
ed9a39eb | 1217 | double dbl_arg; |
c5aa993b | 1218 | CORE_ADDR regval; |
ed9a39eb JM |
1219 | enum type_code typecode; |
1220 | struct type *arg_type, *target_type; | |
1221 | ||
1222 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1223 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1224 | len = TYPE_LENGTH (arg_type); | |
1225 | typecode = TYPE_CODE (arg_type); | |
1226 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1227 | ||
1228 | /* ANSI C code passes float arguments as integers, K&R code | |
1229 | passes float arguments as doubles. The .stabs record for | |
1230 | for ANSI prototype floating point arguments records the | |
1231 | type as FP_INTEGER, while a K&R style (no prototype) | |
1232 | .stabs records the type as FP_FLOAT. In this latter case | |
1233 | the compiler converts the float arguments to double before | |
1234 | calling the function. */ | |
1235 | if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) | |
1236 | { | |
8b93c638 JM |
1237 | float f; |
1238 | double d; | |
1239 | char * bufo = (char *) &d; | |
1240 | char * bufd = (char *) &dbl_arg; | |
1241 | ||
ed9a39eb | 1242 | len = sizeof (double); |
8b93c638 JM |
1243 | f = *(float *) val; |
1244 | SWAP_TARGET_AND_HOST (&f, sizeof (float)); /* adjust endianess */ | |
1245 | d = f; | |
1246 | /* We must revert the longwords so they get loaded into the | |
1247 | the right registers. */ | |
1248 | memcpy (bufd, bufo + len / 2, len / 2); | |
1249 | SWAP_TARGET_AND_HOST (bufd, len / 2); /* adjust endianess */ | |
1250 | memcpy (bufd + len / 2, bufo, len / 2); | |
1251 | SWAP_TARGET_AND_HOST (bufd + len / 2, len / 2); /* adjust endianess */ | |
1252 | val = (char *) &dbl_arg; | |
ed9a39eb | 1253 | } |
da59e081 JM |
1254 | #if 1 |
1255 | /* I don't know why this code was disable. The only logical use | |
1256 | for a function pointer is to call that function, so setting | |
1257 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1258 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1259 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1260 | if (TYPE_CODE_PTR == typecode |
1261 | && NULL != target_type | |
1262 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1263 | { |
ed9a39eb | 1264 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1265 | if (arm_pc_is_thumb (regval)) |
1266 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1267 | } | |
c906108c | 1268 | #endif |
ed9a39eb JM |
1269 | /* Copy the argument to general registers or the stack in |
1270 | register-sized pieces. Large arguments are split between | |
1271 | registers and stack. */ | |
1272 | while (len > 0) | |
c906108c | 1273 | { |
ed9a39eb JM |
1274 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1275 | ||
1276 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1277 | { |
ed9a39eb JM |
1278 | /* It's an argument being passed in a general register. */ |
1279 | regval = extract_address (val, partial_len); | |
1280 | write_register (argreg++, regval); | |
c906108c | 1281 | } |
ed9a39eb JM |
1282 | else |
1283 | { | |
1284 | /* Push the arguments onto the stack. */ | |
1285 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1286 | fp += REGISTER_SIZE; | |
1287 | } | |
1288 | ||
1289 | len -= partial_len; | |
1290 | val += partial_len; | |
c906108c SS |
1291 | } |
1292 | } | |
c906108c SS |
1293 | |
1294 | /* Return adjusted stack pointer. */ | |
1295 | return sp; | |
1296 | } | |
1297 | ||
1298 | void | |
ed9a39eb | 1299 | arm_pop_frame (void) |
c906108c | 1300 | { |
c906108c | 1301 | int regnum; |
8b93c638 | 1302 | struct frame_info *frame = get_current_frame (); |
c906108c | 1303 | |
8b93c638 JM |
1304 | if (!PC_IN_CALL_DUMMY(frame->pc, frame->frame, read_fp())) |
1305 | { | |
1306 | CORE_ADDR old_SP; | |
1307 | ||
1308 | old_SP = read_register (frame->framereg); | |
1309 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
1310 | if (frame->fsr.regs[regnum] != 0) | |
1311 | write_register (regnum, | |
c906108c SS |
1312 | read_memory_integer (frame->fsr.regs[regnum], 4)); |
1313 | ||
8b93c638 JM |
1314 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); |
1315 | write_register (SP_REGNUM, old_SP); | |
1316 | } | |
1317 | else | |
1318 | { | |
1319 | CORE_ADDR sp; | |
1320 | ||
1321 | sp = read_register (FP_REGNUM); | |
1322 | sp -= sizeof(CORE_ADDR); /* we don't care about this first word */ | |
1323 | ||
1324 | write_register (PC_REGNUM, read_memory_integer (sp, 4)); | |
1325 | sp -= sizeof(CORE_ADDR); | |
1326 | write_register (SP_REGNUM, read_memory_integer (sp, 4)); | |
1327 | sp -= sizeof(CORE_ADDR); | |
1328 | write_register (FP_REGNUM, read_memory_integer (sp, 4)); | |
1329 | sp -= sizeof(CORE_ADDR); | |
1330 | ||
1331 | for (regnum = 10; regnum >= 0; regnum--) | |
1332 | { | |
1333 | write_register (regnum, read_memory_integer (sp, 4)); | |
1334 | sp -= sizeof(CORE_ADDR); | |
1335 | } | |
1336 | } | |
c906108c SS |
1337 | |
1338 | flush_cached_frames (); | |
1339 | } | |
1340 | ||
1341 | static void | |
ed9a39eb | 1342 | print_fpu_flags (int flags) |
c906108c | 1343 | { |
c5aa993b JM |
1344 | if (flags & (1 << 0)) |
1345 | fputs ("IVO ", stdout); | |
1346 | if (flags & (1 << 1)) | |
1347 | fputs ("DVZ ", stdout); | |
1348 | if (flags & (1 << 2)) | |
1349 | fputs ("OFL ", stdout); | |
1350 | if (flags & (1 << 3)) | |
1351 | fputs ("UFL ", stdout); | |
1352 | if (flags & (1 << 4)) | |
1353 | fputs ("INX ", stdout); | |
1354 | putchar ('\n'); | |
c906108c SS |
1355 | } |
1356 | ||
1357 | void | |
ed9a39eb | 1358 | arm_float_info (void) |
c906108c | 1359 | { |
c5aa993b JM |
1360 | register unsigned long status = read_register (FPS_REGNUM); |
1361 | int type; | |
1362 | ||
1363 | type = (status >> 24) & 127; | |
1364 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1365 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1366 | type); |
1367 | fputs ("mask: ", stdout); | |
1368 | print_fpu_flags (status >> 16); | |
1369 | fputs ("flags: ", stdout); | |
1370 | print_fpu_flags (status); | |
c906108c SS |
1371 | } |
1372 | ||
ed9a39eb JM |
1373 | #if 0 |
1374 | /* FIXME: The generated assembler works but sucks. Instead of using | |
1375 | r0, r1 it pushes them on the stack, then loads them into r3, r4 and | |
1376 | uses those registers. I must be missing something. ScottB */ | |
c906108c | 1377 | |
c5aa993b | 1378 | void |
ed9a39eb JM |
1379 | convert_from_extended (void *ptr, void *dbl) |
1380 | { | |
1381 | __asm__ (" | |
1382 | ldfe f0,[%0] | |
1383 | stfd f0,[%1] " | |
1384 | : /* no output */ | |
1385 | : "r" (ptr), "r" (dbl)); | |
1386 | } | |
1387 | ||
1388 | void | |
1389 | convert_to_extended (void *dbl, void *ptr) | |
1390 | { | |
1391 | __asm__ (" | |
1392 | ldfd f0,[%0] | |
1393 | stfe f0,[%1] " | |
1394 | : /* no output */ | |
1395 | : "r" (dbl), "r" (ptr)); | |
1396 | } | |
1397 | #else | |
1398 | static void | |
1399 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1400 | { |
104c1213 | 1401 | *(double *) dbl = *(double *) ptr; |
c906108c SS |
1402 | } |
1403 | ||
c5aa993b | 1404 | void |
ed9a39eb | 1405 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1406 | { |
104c1213 | 1407 | *(double *) ptr = *(double *) dbl; |
c906108c | 1408 | } |
ed9a39eb JM |
1409 | #endif |
1410 | ||
1411 | /* Nonzero if register N requires conversion from raw format to | |
1412 | virtual format. */ | |
1413 | ||
1414 | int | |
1415 | arm_register_convertible (unsigned int regnum) | |
1416 | { | |
1417 | return ((regnum - F0_REGNUM) < 8); | |
1418 | } | |
1419 | ||
1420 | /* Convert data from raw format for register REGNUM in buffer FROM to | |
1421 | virtual format with type TYPE in buffer TO. */ | |
1422 | ||
1423 | void | |
1424 | arm_register_convert_to_virtual (unsigned int regnum, struct type *type, | |
1425 | void *from, void *to) | |
1426 | { | |
1427 | double val; | |
1428 | ||
1429 | convert_from_extended (from, &val); | |
1430 | store_floating (to, TYPE_LENGTH (type), val); | |
1431 | } | |
1432 | ||
1433 | /* Convert data from virtual format with type TYPE in buffer FROM to | |
1434 | raw format for register REGNUM in buffer TO. */ | |
1435 | ||
1436 | void | |
1437 | arm_register_convert_to_raw (unsigned int regnum, struct type *type, | |
1438 | void *from, void *to) | |
1439 | { | |
1440 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1441 | ||
1442 | convert_to_extended (&val, to); | |
1443 | } | |
c906108c SS |
1444 | |
1445 | static int | |
ed9a39eb | 1446 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1447 | { |
1448 | if (cond == INST_AL || cond == INST_NV) | |
1449 | return 1; | |
1450 | ||
1451 | switch (cond) | |
1452 | { | |
1453 | case INST_EQ: | |
1454 | return ((status_reg & FLAG_Z) != 0); | |
1455 | case INST_NE: | |
1456 | return ((status_reg & FLAG_Z) == 0); | |
1457 | case INST_CS: | |
1458 | return ((status_reg & FLAG_C) != 0); | |
1459 | case INST_CC: | |
1460 | return ((status_reg & FLAG_C) == 0); | |
1461 | case INST_MI: | |
1462 | return ((status_reg & FLAG_N) != 0); | |
1463 | case INST_PL: | |
1464 | return ((status_reg & FLAG_N) == 0); | |
1465 | case INST_VS: | |
1466 | return ((status_reg & FLAG_V) != 0); | |
1467 | case INST_VC: | |
1468 | return ((status_reg & FLAG_V) == 0); | |
1469 | case INST_HI: | |
1470 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1471 | case INST_LS: | |
1472 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1473 | case INST_GE: | |
1474 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1475 | case INST_LT: | |
1476 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1477 | case INST_GT: | |
1478 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1479 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1480 | case INST_LE: |
1481 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1482 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1483 | } |
1484 | return 1; | |
1485 | } | |
1486 | ||
1487 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
1488 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1489 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1490 | #define sbits(obj,st,fn) \ | |
1491 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1492 | #define BranchDest(addr,instr) \ | |
1493 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1494 | #define ARM_PC_32 1 | |
1495 | ||
1496 | static unsigned long | |
ed9a39eb JM |
1497 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1498 | unsigned long status_reg) | |
c906108c SS |
1499 | { |
1500 | unsigned long res, shift; | |
1501 | int rm = bits (inst, 0, 3); | |
1502 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1503 | |
1504 | if (bit (inst, 4)) | |
c906108c SS |
1505 | { |
1506 | int rs = bits (inst, 8, 11); | |
1507 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1508 | } | |
1509 | else | |
1510 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1511 | |
1512 | res = (rm == 15 | |
c906108c | 1513 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1514 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1515 | : read_register (rm)); |
1516 | ||
1517 | switch (shifttype) | |
1518 | { | |
c5aa993b | 1519 | case 0: /* LSL */ |
c906108c SS |
1520 | res = shift >= 32 ? 0 : res << shift; |
1521 | break; | |
c5aa993b JM |
1522 | |
1523 | case 1: /* LSR */ | |
c906108c SS |
1524 | res = shift >= 32 ? 0 : res >> shift; |
1525 | break; | |
1526 | ||
c5aa993b JM |
1527 | case 2: /* ASR */ |
1528 | if (shift >= 32) | |
1529 | shift = 31; | |
c906108c SS |
1530 | res = ((res & 0x80000000L) |
1531 | ? ~((~res) >> shift) : res >> shift); | |
1532 | break; | |
1533 | ||
c5aa993b | 1534 | case 3: /* ROR/RRX */ |
c906108c SS |
1535 | shift &= 31; |
1536 | if (shift == 0) | |
1537 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1538 | else | |
c5aa993b | 1539 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1540 | break; |
1541 | } | |
1542 | ||
1543 | return res & 0xffffffff; | |
1544 | } | |
1545 | ||
c906108c SS |
1546 | /* Return number of 1-bits in VAL. */ |
1547 | ||
1548 | static int | |
ed9a39eb | 1549 | bitcount (unsigned long val) |
c906108c SS |
1550 | { |
1551 | int nbits; | |
1552 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1553 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1554 | return nbits; |
1555 | } | |
1556 | ||
c906108c | 1557 | static CORE_ADDR |
ed9a39eb | 1558 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1559 | { |
c5aa993b | 1560 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1561 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1562 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1563 | unsigned long offset; |
1564 | ||
1565 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1566 | { | |
1567 | CORE_ADDR sp; | |
1568 | ||
1569 | /* Fetch the saved PC from the stack. It's stored above | |
1570 | all of the other registers. */ | |
1571 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1572 | sp = read_register (SP_REGNUM); | |
1573 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1574 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1575 | if (nextpc == pc) | |
1576 | error ("Infinite loop detected"); | |
1577 | } | |
1578 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1579 | { | |
1580 | unsigned long status = read_register (PS_REGNUM); | |
c5aa993b | 1581 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1582 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1583 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1584 | } | |
1585 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1586 | { | |
1587 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1588 | } | |
1589 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1590 | { | |
1591 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1592 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1593 | nextpc = pc_val + offset; |
1594 | } | |
1595 | ||
1596 | return nextpc; | |
1597 | } | |
1598 | ||
c906108c | 1599 | CORE_ADDR |
ed9a39eb | 1600 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1601 | { |
1602 | unsigned long pc_val; | |
1603 | unsigned long this_instr; | |
1604 | unsigned long status; | |
1605 | CORE_ADDR nextpc; | |
1606 | ||
1607 | if (arm_pc_is_thumb (pc)) | |
1608 | return thumb_get_next_pc (pc); | |
1609 | ||
1610 | pc_val = (unsigned long) pc; | |
1611 | this_instr = read_memory_integer (pc, 4); | |
1612 | status = read_register (PS_REGNUM); | |
c5aa993b | 1613 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1614 | |
1615 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1616 | { | |
1617 | switch (bits (this_instr, 24, 27)) | |
1618 | { | |
c5aa993b JM |
1619 | case 0x0: |
1620 | case 0x1: /* data processing */ | |
1621 | case 0x2: | |
1622 | case 0x3: | |
c906108c SS |
1623 | { |
1624 | unsigned long operand1, operand2, result = 0; | |
1625 | unsigned long rn; | |
1626 | int c; | |
c5aa993b | 1627 | |
c906108c SS |
1628 | if (bits (this_instr, 12, 15) != 15) |
1629 | break; | |
1630 | ||
1631 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1632 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1633 | error ("Illegal update to pc in instruction"); |
1634 | ||
1635 | /* Multiply into PC */ | |
1636 | c = (status & FLAG_C) ? 1 : 0; | |
1637 | rn = bits (this_instr, 16, 19); | |
1638 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1639 | |
c906108c SS |
1640 | if (bit (this_instr, 25)) |
1641 | { | |
1642 | unsigned long immval = bits (this_instr, 0, 7); | |
1643 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1644 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1645 | & 0xffffffff; | |
c906108c | 1646 | } |
c5aa993b | 1647 | else /* operand 2 is a shifted register */ |
c906108c | 1648 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1649 | |
c906108c SS |
1650 | switch (bits (this_instr, 21, 24)) |
1651 | { | |
c5aa993b | 1652 | case 0x0: /*and */ |
c906108c SS |
1653 | result = operand1 & operand2; |
1654 | break; | |
1655 | ||
c5aa993b | 1656 | case 0x1: /*eor */ |
c906108c SS |
1657 | result = operand1 ^ operand2; |
1658 | break; | |
1659 | ||
c5aa993b | 1660 | case 0x2: /*sub */ |
c906108c SS |
1661 | result = operand1 - operand2; |
1662 | break; | |
1663 | ||
c5aa993b | 1664 | case 0x3: /*rsb */ |
c906108c SS |
1665 | result = operand2 - operand1; |
1666 | break; | |
1667 | ||
c5aa993b | 1668 | case 0x4: /*add */ |
c906108c SS |
1669 | result = operand1 + operand2; |
1670 | break; | |
1671 | ||
c5aa993b | 1672 | case 0x5: /*adc */ |
c906108c SS |
1673 | result = operand1 + operand2 + c; |
1674 | break; | |
1675 | ||
c5aa993b | 1676 | case 0x6: /*sbc */ |
c906108c SS |
1677 | result = operand1 - operand2 + c; |
1678 | break; | |
1679 | ||
c5aa993b | 1680 | case 0x7: /*rsc */ |
c906108c SS |
1681 | result = operand2 - operand1 + c; |
1682 | break; | |
1683 | ||
c5aa993b JM |
1684 | case 0x8: |
1685 | case 0x9: | |
1686 | case 0xa: | |
1687 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1688 | result = (unsigned long) nextpc; |
1689 | break; | |
1690 | ||
c5aa993b | 1691 | case 0xc: /*orr */ |
c906108c SS |
1692 | result = operand1 | operand2; |
1693 | break; | |
1694 | ||
c5aa993b | 1695 | case 0xd: /*mov */ |
c906108c SS |
1696 | /* Always step into a function. */ |
1697 | result = operand2; | |
c5aa993b | 1698 | break; |
c906108c | 1699 | |
c5aa993b | 1700 | case 0xe: /*bic */ |
c906108c SS |
1701 | result = operand1 & ~operand2; |
1702 | break; | |
1703 | ||
c5aa993b | 1704 | case 0xf: /*mvn */ |
c906108c SS |
1705 | result = ~operand2; |
1706 | break; | |
1707 | } | |
1708 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1709 | ||
1710 | if (nextpc == pc) | |
1711 | error ("Infinite loop detected"); | |
1712 | break; | |
1713 | } | |
c5aa993b JM |
1714 | |
1715 | case 0x4: | |
1716 | case 0x5: /* data transfer */ | |
1717 | case 0x6: | |
1718 | case 0x7: | |
c906108c SS |
1719 | if (bit (this_instr, 20)) |
1720 | { | |
1721 | /* load */ | |
1722 | if (bits (this_instr, 12, 15) == 15) | |
1723 | { | |
1724 | /* rd == pc */ | |
c5aa993b | 1725 | unsigned long rn; |
c906108c | 1726 | unsigned long base; |
c5aa993b | 1727 | |
c906108c SS |
1728 | if (bit (this_instr, 22)) |
1729 | error ("Illegal update to pc in instruction"); | |
1730 | ||
1731 | /* byte write to PC */ | |
1732 | rn = bits (this_instr, 16, 19); | |
1733 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1734 | if (bit (this_instr, 24)) | |
1735 | { | |
1736 | /* pre-indexed */ | |
1737 | int c = (status & FLAG_C) ? 1 : 0; | |
1738 | unsigned long offset = | |
c5aa993b | 1739 | (bit (this_instr, 25) |
ed9a39eb | 1740 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1741 | : bits (this_instr, 0, 11)); |
c906108c SS |
1742 | |
1743 | if (bit (this_instr, 23)) | |
1744 | base += offset; | |
1745 | else | |
1746 | base -= offset; | |
1747 | } | |
c5aa993b | 1748 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1749 | 4); |
c5aa993b | 1750 | |
c906108c SS |
1751 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1752 | ||
1753 | if (nextpc == pc) | |
1754 | error ("Infinite loop detected"); | |
1755 | } | |
1756 | } | |
1757 | break; | |
c5aa993b JM |
1758 | |
1759 | case 0x8: | |
1760 | case 0x9: /* block transfer */ | |
c906108c SS |
1761 | if (bit (this_instr, 20)) |
1762 | { | |
1763 | /* LDM */ | |
1764 | if (bit (this_instr, 15)) | |
1765 | { | |
1766 | /* loading pc */ | |
1767 | int offset = 0; | |
1768 | ||
1769 | if (bit (this_instr, 23)) | |
1770 | { | |
1771 | /* up */ | |
1772 | unsigned long reglist = bits (this_instr, 0, 14); | |
1773 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1774 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1775 | offset += 4; |
1776 | } | |
1777 | else if (bit (this_instr, 24)) | |
1778 | offset = -4; | |
c5aa993b | 1779 | |
c906108c | 1780 | { |
c5aa993b JM |
1781 | unsigned long rn_val = |
1782 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1783 | nextpc = |
1784 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1785 | + offset), |
c906108c SS |
1786 | 4); |
1787 | } | |
1788 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1789 | if (nextpc == pc) | |
1790 | error ("Infinite loop detected"); | |
1791 | } | |
1792 | } | |
1793 | break; | |
c5aa993b JM |
1794 | |
1795 | case 0xb: /* branch & link */ | |
1796 | case 0xa: /* branch */ | |
c906108c SS |
1797 | { |
1798 | nextpc = BranchDest (pc, this_instr); | |
1799 | ||
1800 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1801 | if (nextpc == pc) | |
1802 | error ("Infinite loop detected"); | |
1803 | break; | |
1804 | } | |
c5aa993b JM |
1805 | |
1806 | case 0xc: | |
1807 | case 0xd: | |
1808 | case 0xe: /* coproc ops */ | |
1809 | case 0xf: /* SWI */ | |
c906108c SS |
1810 | break; |
1811 | ||
1812 | default: | |
1813 | fprintf (stderr, "Bad bit-field extraction\n"); | |
1814 | return (pc); | |
1815 | } | |
1816 | } | |
1817 | ||
1818 | return nextpc; | |
1819 | } | |
1820 | ||
1821 | #include "bfd-in2.h" | |
1822 | #include "libcoff.h" | |
1823 | ||
1824 | static int | |
ed9a39eb | 1825 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
1826 | { |
1827 | if (arm_pc_is_thumb (memaddr)) | |
1828 | { | |
c5aa993b JM |
1829 | static asymbol *asym; |
1830 | static combined_entry_type ce; | |
1831 | static struct coff_symbol_struct csym; | |
1832 | static struct _bfd fake_bfd; | |
1833 | static bfd_target fake_target; | |
c906108c SS |
1834 | |
1835 | if (csym.native == NULL) | |
1836 | { | |
1837 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
1838 | solely so that the code in print_insn_little_arm() and | |
1839 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
1840 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
1841 | |
1842 | fake_target.flavour = bfd_target_coff_flavour; | |
1843 | fake_bfd.xvec = &fake_target; | |
c906108c | 1844 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
1845 | csym.native = &ce; |
1846 | csym.symbol.the_bfd = &fake_bfd; | |
1847 | csym.symbol.name = "fake"; | |
1848 | asym = (asymbol *) & csym; | |
c906108c | 1849 | } |
c5aa993b | 1850 | |
c906108c | 1851 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 1852 | info->symbols = &asym; |
c906108c SS |
1853 | } |
1854 | else | |
1855 | info->symbols = NULL; | |
c5aa993b | 1856 | |
c906108c SS |
1857 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
1858 | return print_insn_big_arm (memaddr, info); | |
1859 | else | |
1860 | return print_insn_little_arm (memaddr, info); | |
1861 | } | |
1862 | ||
ed9a39eb JM |
1863 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the |
1864 | program counter value to determine whether a 16-bit or 32-bit | |
1865 | breakpoint should be used. It returns a pointer to a string of | |
1866 | bytes that encode a breakpoint instruction, stores the length of | |
1867 | the string to *lenptr, and adjusts the program counter (if | |
1868 | necessary) to point to the actual memory location where the | |
c906108c SS |
1869 | breakpoint should be inserted. */ |
1870 | ||
1871 | unsigned char * | |
ed9a39eb | 1872 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c SS |
1873 | { |
1874 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
1875 | { | |
1876 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1877 | { |
1878 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
1879 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1880 | *lenptr = sizeof (thumb_breakpoint); | |
1881 | return thumb_breakpoint; | |
1882 | } | |
c906108c | 1883 | else |
c5aa993b JM |
1884 | { |
1885 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
1886 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1887 | *lenptr = sizeof (thumb_breakpoint); | |
1888 | return thumb_breakpoint; | |
1889 | } | |
c906108c SS |
1890 | } |
1891 | else | |
1892 | { | |
1893 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1894 | { |
1895 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
1896 | *lenptr = sizeof (arm_breakpoint); | |
1897 | return arm_breakpoint; | |
1898 | } | |
c906108c | 1899 | else |
c5aa993b JM |
1900 | { |
1901 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
1902 | *lenptr = sizeof (arm_breakpoint); | |
1903 | return arm_breakpoint; | |
1904 | } | |
c906108c SS |
1905 | } |
1906 | } | |
ed9a39eb JM |
1907 | |
1908 | /* Extract from an array REGBUF containing the (raw) register state a | |
1909 | function return value of type TYPE, and copy that, in virtual | |
1910 | format, into VALBUF. */ | |
1911 | ||
1912 | void | |
1913 | arm_extract_return_value (struct type *type, | |
1914 | char regbuf[REGISTER_BYTES], | |
1915 | char *valbuf) | |
1916 | { | |
1917 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
1918 | convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf); | |
1919 | else | |
1920 | memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type)); | |
1921 | } | |
1922 | ||
1923 | /* Return non-zero if the PC is inside a thumb call thunk. */ | |
c906108c SS |
1924 | |
1925 | int | |
ed9a39eb | 1926 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
1927 | { |
1928 | CORE_ADDR start_addr; | |
1929 | ||
ed9a39eb JM |
1930 | /* Find the starting address of the function containing the PC. If |
1931 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
1932 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
1933 | return 0; | |
1934 | ||
1935 | return strncmp (name, "_call_via_r", 11) == 0; | |
1936 | } | |
1937 | ||
ed9a39eb JM |
1938 | /* If PC is in a Thumb call or return stub, return the address of the |
1939 | target PC, which is in a register. The thunk functions are called | |
1940 | _called_via_xx, where x is the register name. The possible names | |
1941 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
1942 | |
1943 | CORE_ADDR | |
ed9a39eb | 1944 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 1945 | { |
c5aa993b | 1946 | char *name; |
c906108c SS |
1947 | CORE_ADDR start_addr; |
1948 | ||
1949 | /* Find the starting address and name of the function containing the PC. */ | |
1950 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
1951 | return 0; | |
1952 | ||
1953 | /* Call thunks always start with "_call_via_". */ | |
1954 | if (strncmp (name, "_call_via_", 10) == 0) | |
1955 | { | |
ed9a39eb JM |
1956 | /* Use the name suffix to determine which register contains the |
1957 | target PC. */ | |
c5aa993b JM |
1958 | static char *table[15] = |
1959 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
1960 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
1961 | }; | |
c906108c SS |
1962 | int regno; |
1963 | ||
1964 | for (regno = 0; regno <= 14; regno++) | |
1965 | if (strcmp (&name[10], table[regno]) == 0) | |
1966 | return read_register (regno); | |
1967 | } | |
ed9a39eb | 1968 | |
c5aa993b | 1969 | return 0; /* not a stub */ |
c906108c SS |
1970 | } |
1971 | ||
bc90b915 FN |
1972 | /* If the user changes the register disassembly flavor used for info register |
1973 | and other commands, we have to also switch the flavor used in opcodes | |
1974 | for disassembly output. | |
1975 | This function is run in the set disassembly_flavor command, and does that. */ | |
1976 | ||
1977 | static void | |
1978 | set_disassembly_flavor_sfunc (char *args, int from_tty, | |
1979 | struct cmd_list_element *c) | |
1980 | { | |
1981 | set_disassembly_flavor (); | |
1982 | } | |
1983 | \f | |
1984 | static void | |
1985 | set_disassembly_flavor (void) | |
1986 | { | |
1987 | const char *setname, *setdesc, **regnames; | |
1988 | int numregs, j; | |
1989 | ||
1990 | /* Find the flavor that the user wants in the opcodes table. */ | |
1991 | int current = 0; | |
1992 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
1993 | while ((disassembly_flavor != setname) | |
1994 | && (current < num_flavor_options)) | |
1995 | get_arm_regnames (++current, &setname, &setdesc, ®names); | |
1996 | current_option = current; | |
1997 | ||
1998 | /* Fill our copy. */ | |
1999 | for (j = 0; j < numregs; j++) | |
2000 | arm_register_names[j] = (char *) regnames[j]; | |
2001 | ||
2002 | /* Adjust case. */ | |
2003 | if (isupper (*regnames[PC_REGNUM])) | |
2004 | { | |
2005 | arm_register_names[FPS_REGNUM] = "FPS"; | |
2006 | arm_register_names[PS_REGNUM] = "CPSR"; | |
2007 | } | |
2008 | else | |
2009 | { | |
2010 | arm_register_names[FPS_REGNUM] = "fps"; | |
2011 | arm_register_names[PS_REGNUM] = "cpsr"; | |
2012 | } | |
2013 | ||
2014 | /* Synchronize the disassembler. */ | |
2015 | set_arm_regname_option (current); | |
2016 | } | |
2017 | ||
2018 | /* arm_othernames implements the "othernames" command. This is kind | |
2019 | of hacky, and I prefer the set-show disassembly-flavor which is | |
2020 | also used for the x86 gdb. I will keep this around, however, in | |
2021 | case anyone is actually using it. */ | |
2022 | ||
2023 | static void | |
2024 | arm_othernames (char *names, int n) | |
2025 | { | |
2026 | /* Circle through the various flavors. */ | |
2027 | current_option = (current_option + 1) % num_flavor_options; | |
2028 | ||
2029 | disassembly_flavor = valid_flavors[current_option]; | |
2030 | set_disassembly_flavor (); | |
2031 | } | |
2032 | ||
c906108c | 2033 | void |
ed9a39eb | 2034 | _initialize_arm_tdep (void) |
c906108c | 2035 | { |
bc90b915 FN |
2036 | struct ui_file *stb; |
2037 | long length; | |
96baa820 | 2038 | struct cmd_list_element *new_cmd; |
bc90b915 FN |
2039 | const char *setname, *setdesc, **regnames; |
2040 | int numregs, i, j; | |
2041 | static char *helptext; | |
085dd6e6 | 2042 | |
c906108c | 2043 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 2044 | |
bc90b915 FN |
2045 | /* Get the number of possible sets of register names defined in opcodes. */ |
2046 | num_flavor_options = get_arm_regname_num_options (); | |
2047 | ||
085dd6e6 | 2048 | /* Sync the opcode insn printer with our register viewer: */ |
bc90b915 | 2049 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 2050 | |
bc90b915 FN |
2051 | /* Begin creating the help text. */ |
2052 | stb = mem_fileopen (); | |
2053 | fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ | |
2054 | The valid values are:\n"); | |
ed9a39eb | 2055 | |
bc90b915 FN |
2056 | /* Initialize the array that will be passed to add_set_enum_cmd(). */ |
2057 | valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); | |
2058 | for (i = 0; i < num_flavor_options; i++) | |
2059 | { | |
2060 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
2061 | valid_flavors[i] = (char *) setname; | |
2062 | fprintf_unfiltered (stb, "%s - %s\n", setname, | |
2063 | setdesc); | |
2064 | /* Copy the default names (if found) and synchronize disassembler. */ | |
2065 | if (!strcmp (setname, "std")) | |
2066 | { | |
2067 | disassembly_flavor = (char *) setname; | |
2068 | current_option = i; | |
2069 | for (j = 0; j < numregs; j++) | |
2070 | arm_register_names[j] = (char *) regnames[j]; | |
2071 | set_arm_regname_option (i); | |
2072 | } | |
2073 | } | |
2074 | /* Mark the end of valid options. */ | |
2075 | valid_flavors[num_flavor_options] = NULL; | |
c906108c | 2076 | |
bc90b915 FN |
2077 | /* Finish the creation of the help text. */ |
2078 | fprintf_unfiltered (stb, "The default is \"std\"."); | |
2079 | helptext = ui_file_xstrdup (stb, &length); | |
2080 | ui_file_delete (stb); | |
ed9a39eb | 2081 | |
bc90b915 | 2082 | /* Add the disassembly-flavor command */ |
96baa820 | 2083 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb JM |
2084 | valid_flavors, |
2085 | (char *) &disassembly_flavor, | |
bc90b915 | 2086 | helptext, |
ed9a39eb | 2087 | &setlist); |
96baa820 | 2088 | new_cmd->function.sfunc = set_disassembly_flavor_sfunc; |
ed9a39eb JM |
2089 | add_show_from_set (new_cmd, &showlist); |
2090 | ||
c906108c SS |
2091 | /* ??? Maybe this should be a boolean. */ |
2092 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 2093 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 2094 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 2095 | &showlist); |
c906108c | 2096 | |
bc90b915 FN |
2097 | /* Add the deprecated "othernames" command */ |
2098 | ||
2099 | add_com ("othernames", class_obscure, arm_othernames, | |
2100 | "Switch to the next set of register names."); | |
c906108c SS |
2101 | } |
2102 | ||
ed9a39eb JM |
2103 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2104 | function. */ | |
2105 | ||
c906108c | 2106 | int |
c5aa993b | 2107 | coff_sym_is_thumb (int val) |
c906108c | 2108 | { |
c5aa993b JM |
2109 | return (val == C_THUMBEXT || |
2110 | val == C_THUMBSTAT || | |
2111 | val == C_THUMBEXTFUNC || | |
2112 | val == C_THUMBSTATFUNC || | |
2113 | val == C_THUMBLABEL); | |
c906108c | 2114 | } |