]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
6aba47ca | 3 | Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
0fb0cc75 | 4 | 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
9b254dd1 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 21 | |
34e8f22d RE |
22 | #include <ctype.h> /* XXX for isupper () */ |
23 | ||
c906108c SS |
24 | #include "defs.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
c906108c | 29 | #include "gdb_string.h" |
afd7eef0 | 30 | #include "dis-asm.h" /* For register styles. */ |
4e052eda | 31 | #include "regcache.h" |
d16aafd8 | 32 | #include "doublest.h" |
fd0407d6 | 33 | #include "value.h" |
34e8f22d | 34 | #include "arch-utils.h" |
4be87837 | 35 | #include "osabi.h" |
eb5492fa DJ |
36 | #include "frame-unwind.h" |
37 | #include "frame-base.h" | |
38 | #include "trad-frame.h" | |
842e1f1e DJ |
39 | #include "objfiles.h" |
40 | #include "dwarf2-frame.h" | |
e4c16157 | 41 | #include "gdbtypes.h" |
29d73ae4 | 42 | #include "prologue-value.h" |
123dc839 DJ |
43 | #include "target-descriptions.h" |
44 | #include "user-regs.h" | |
34e8f22d RE |
45 | |
46 | #include "arm-tdep.h" | |
26216b98 | 47 | #include "gdb/sim-arm.h" |
34e8f22d | 48 | |
082fc60d RE |
49 | #include "elf-bfd.h" |
50 | #include "coff/internal.h" | |
97e03143 | 51 | #include "elf/arm.h" |
c906108c | 52 | |
26216b98 | 53 | #include "gdb_assert.h" |
60c5725c | 54 | #include "vec.h" |
26216b98 | 55 | |
6529d2dd AC |
56 | static int arm_debug; |
57 | ||
082fc60d RE |
58 | /* Macros for setting and testing a bit in a minimal symbol that marks |
59 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 60 | is used for this purpose. |
082fc60d RE |
61 | |
62 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 63 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d RE |
64 | |
65 | #define MSYMBOL_SET_SPECIAL(msym) \ | |
b887350f | 66 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
67 | |
68 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 69 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 70 | |
60c5725c DJ |
71 | /* Per-objfile data used for mapping symbols. */ |
72 | static const struct objfile_data *arm_objfile_data_key; | |
73 | ||
74 | struct arm_mapping_symbol | |
75 | { | |
76 | bfd_vma value; | |
77 | char type; | |
78 | }; | |
79 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
80 | DEF_VEC_O(arm_mapping_symbol_s); | |
81 | ||
82 | struct arm_per_objfile | |
83 | { | |
84 | VEC(arm_mapping_symbol_s) **section_maps; | |
85 | }; | |
86 | ||
afd7eef0 RE |
87 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
88 | static struct cmd_list_element *setarmcmdlist = NULL; | |
89 | static struct cmd_list_element *showarmcmdlist = NULL; | |
90 | ||
fd50bc42 RE |
91 | /* The type of floating-point to use. Keep this in sync with enum |
92 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
93 | static const char *fp_model_strings[] = | |
94 | { | |
95 | "auto", | |
96 | "softfpa", | |
97 | "fpa", | |
98 | "softvfp", | |
28e97307 DJ |
99 | "vfp", |
100 | NULL | |
fd50bc42 RE |
101 | }; |
102 | ||
103 | /* A variable that can be configured by the user. */ | |
104 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
105 | static const char *current_fp_model = "auto"; | |
106 | ||
28e97307 DJ |
107 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
108 | static const char *arm_abi_strings[] = | |
109 | { | |
110 | "auto", | |
111 | "APCS", | |
112 | "AAPCS", | |
113 | NULL | |
114 | }; | |
115 | ||
116 | /* A variable that can be configured by the user. */ | |
117 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
118 | static const char *arm_abi_string = "auto"; | |
119 | ||
0428b8f5 DJ |
120 | /* The execution mode to assume. */ |
121 | static const char *arm_mode_strings[] = | |
122 | { | |
123 | "auto", | |
124 | "arm", | |
125 | "thumb" | |
126 | }; | |
127 | ||
128 | static const char *arm_fallback_mode_string = "auto"; | |
129 | static const char *arm_force_mode_string = "auto"; | |
130 | ||
94c30b78 | 131 | /* Number of different reg name sets (options). */ |
afd7eef0 | 132 | static int num_disassembly_options; |
bc90b915 | 133 | |
123dc839 DJ |
134 | /* The standard register names, and all the valid aliases for them. */ |
135 | static const struct | |
136 | { | |
137 | const char *name; | |
138 | int regnum; | |
139 | } arm_register_aliases[] = { | |
140 | /* Basic register numbers. */ | |
141 | { "r0", 0 }, | |
142 | { "r1", 1 }, | |
143 | { "r2", 2 }, | |
144 | { "r3", 3 }, | |
145 | { "r4", 4 }, | |
146 | { "r5", 5 }, | |
147 | { "r6", 6 }, | |
148 | { "r7", 7 }, | |
149 | { "r8", 8 }, | |
150 | { "r9", 9 }, | |
151 | { "r10", 10 }, | |
152 | { "r11", 11 }, | |
153 | { "r12", 12 }, | |
154 | { "r13", 13 }, | |
155 | { "r14", 14 }, | |
156 | { "r15", 15 }, | |
157 | /* Synonyms (argument and variable registers). */ | |
158 | { "a1", 0 }, | |
159 | { "a2", 1 }, | |
160 | { "a3", 2 }, | |
161 | { "a4", 3 }, | |
162 | { "v1", 4 }, | |
163 | { "v2", 5 }, | |
164 | { "v3", 6 }, | |
165 | { "v4", 7 }, | |
166 | { "v5", 8 }, | |
167 | { "v6", 9 }, | |
168 | { "v7", 10 }, | |
169 | { "v8", 11 }, | |
170 | /* Other platform-specific names for r9. */ | |
171 | { "sb", 9 }, | |
172 | { "tr", 9 }, | |
173 | /* Special names. */ | |
174 | { "ip", 12 }, | |
175 | { "sp", 13 }, | |
176 | { "lr", 14 }, | |
177 | { "pc", 15 }, | |
178 | /* Names used by GCC (not listed in the ARM EABI). */ | |
179 | { "sl", 10 }, | |
180 | { "fp", 11 }, | |
181 | /* A special name from the older ATPCS. */ | |
182 | { "wr", 7 }, | |
183 | }; | |
bc90b915 | 184 | |
123dc839 | 185 | static const char *const arm_register_names[] = |
da59e081 JM |
186 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
187 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
188 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
189 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
190 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
191 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 192 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 193 | |
afd7eef0 RE |
194 | /* Valid register name styles. */ |
195 | static const char **valid_disassembly_styles; | |
ed9a39eb | 196 | |
afd7eef0 RE |
197 | /* Disassembly style to use. Default to "std" register names. */ |
198 | static const char *disassembly_style; | |
96baa820 | 199 | |
ed9a39eb | 200 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
201 | style. */ |
202 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 203 | struct cmd_list_element *); |
afd7eef0 | 204 | static void set_disassembly_style (void); |
ed9a39eb | 205 | |
b508a996 | 206 | static void convert_from_extended (const struct floatformat *, const void *, |
be8626e0 | 207 | void *, int); |
b508a996 | 208 | static void convert_to_extended (const struct floatformat *, void *, |
be8626e0 | 209 | const void *, int); |
ed9a39eb | 210 | |
58d6951d DJ |
211 | static void arm_neon_quad_read (struct gdbarch *gdbarch, |
212 | struct regcache *regcache, | |
213 | int regnum, gdb_byte *buf); | |
214 | static void arm_neon_quad_write (struct gdbarch *gdbarch, | |
215 | struct regcache *regcache, | |
216 | int regnum, const gdb_byte *buf); | |
217 | ||
9b8d791a | 218 | struct arm_prologue_cache |
c3b4394c | 219 | { |
eb5492fa DJ |
220 | /* The stack pointer at the time this frame was created; i.e. the |
221 | caller's stack pointer when this function was called. It is used | |
222 | to identify this frame. */ | |
223 | CORE_ADDR prev_sp; | |
224 | ||
4be43953 DJ |
225 | /* The frame base for this frame is just prev_sp - frame size. |
226 | FRAMESIZE is the distance from the frame pointer to the | |
227 | initial stack pointer. */ | |
eb5492fa | 228 | |
c3b4394c | 229 | int framesize; |
eb5492fa DJ |
230 | |
231 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 232 | int framereg; |
eb5492fa DJ |
233 | |
234 | /* Saved register offsets. */ | |
235 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 236 | }; |
ed9a39eb | 237 | |
cca44b1b JB |
238 | /* Architecture version for displaced stepping. This effects the behaviour of |
239 | certain instructions, and really should not be hard-wired. */ | |
240 | ||
241 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
242 | ||
bc90b915 FN |
243 | /* Addresses for calling Thumb functions have the bit 0 set. |
244 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
245 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
246 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
247 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
248 | ||
94c30b78 | 249 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
250 | |
251 | int arm_apcs_32 = 1; | |
252 | ||
b39cc962 DJ |
253 | /* Determine if FRAME is executing in Thumb mode. */ |
254 | ||
255 | static int | |
256 | arm_frame_is_thumb (struct frame_info *frame) | |
257 | { | |
258 | CORE_ADDR cpsr; | |
259 | ||
260 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
261 | directly (from a signal frame or dummy frame) or by interpreting | |
262 | the saved LR (from a prologue or DWARF frame). So consult it and | |
263 | trust the unwinders. */ | |
264 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
265 | ||
266 | return (cpsr & CPSR_T) != 0; | |
267 | } | |
268 | ||
60c5725c DJ |
269 | /* Callback for VEC_lower_bound. */ |
270 | ||
271 | static inline int | |
272 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
273 | const struct arm_mapping_symbol *rhs) | |
274 | { | |
275 | return lhs->value < rhs->value; | |
276 | } | |
277 | ||
ed9a39eb | 278 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
b39cc962 DJ |
279 | function. This function should be called for addresses unrelated to |
280 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
c906108c | 281 | |
ad527d2e | 282 | static int |
2a451106 | 283 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 284 | { |
60c5725c | 285 | struct obj_section *sec; |
c5aa993b | 286 | struct minimal_symbol *sym; |
c906108c | 287 | |
ed9a39eb | 288 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
289 | if (IS_THUMB_ADDR (memaddr)) |
290 | return 1; | |
291 | ||
0428b8f5 DJ |
292 | /* If the user wants to override the symbol table, let him. */ |
293 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
294 | return 0; | |
295 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
296 | return 1; | |
297 | ||
60c5725c DJ |
298 | /* If there are mapping symbols, consult them. */ |
299 | sec = find_pc_section (memaddr); | |
300 | if (sec != NULL) | |
301 | { | |
302 | struct arm_per_objfile *data; | |
303 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
304 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
305 | 0 }; | |
60c5725c DJ |
306 | unsigned int idx; |
307 | ||
308 | data = objfile_data (sec->objfile, arm_objfile_data_key); | |
309 | if (data != NULL) | |
310 | { | |
311 | map = data->section_maps[sec->the_bfd_section->index]; | |
312 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
313 | { | |
314 | struct arm_mapping_symbol *map_sym; | |
315 | ||
316 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
317 | arm_compare_mapping_symbols); | |
318 | ||
319 | /* VEC_lower_bound finds the earliest ordered insertion | |
320 | point. If the following symbol starts at this exact | |
321 | address, we use that; otherwise, the preceding | |
322 | mapping symbol covers this address. */ | |
323 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
324 | { | |
325 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
326 | if (map_sym->value == map_key.value) | |
327 | return map_sym->type == 't'; | |
328 | } | |
329 | ||
330 | if (idx > 0) | |
331 | { | |
332 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
333 | return map_sym->type == 't'; | |
334 | } | |
335 | } | |
336 | } | |
337 | } | |
338 | ||
ed9a39eb | 339 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
340 | sym = lookup_minimal_symbol_by_pc (memaddr); |
341 | if (sym) | |
0428b8f5 DJ |
342 | return (MSYMBOL_IS_SPECIAL (sym)); |
343 | ||
344 | /* If the user wants to override the fallback mode, let them. */ | |
345 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
346 | return 0; | |
347 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
348 | return 1; | |
349 | ||
350 | /* If we couldn't find any symbol, but we're talking to a running | |
351 | target, then trust the current value of $cpsr. This lets | |
352 | "display/i $pc" always show the correct mode (though if there is | |
353 | a symbol table we will not reach here, so it still may not be | |
354 | displayed in the mode it will be executed). */ | |
355 | if (target_has_registers) | |
356 | return arm_frame_is_thumb (get_current_frame ()); | |
357 | ||
358 | /* Otherwise we're out of luck; we assume ARM. */ | |
359 | return 0; | |
c906108c SS |
360 | } |
361 | ||
181c1381 | 362 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 363 | static CORE_ADDR |
24568a2c | 364 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 365 | { |
a3a2ee65 | 366 | if (arm_apcs_32) |
dd6be234 | 367 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 368 | else |
a3a2ee65 | 369 | return (val & 0x03fffffc); |
c906108c SS |
370 | } |
371 | ||
181c1381 RE |
372 | /* When reading symbols, we need to zap the low bit of the address, |
373 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 374 | static CORE_ADDR |
24568a2c | 375 | arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val) |
181c1381 RE |
376 | { |
377 | return val & ~1; | |
378 | } | |
379 | ||
29d73ae4 DJ |
380 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
381 | and frame pointer. Scan until we encounter a store that could | |
382 | clobber the stack frame unexpectedly, or an unknown instruction. */ | |
c906108c SS |
383 | |
384 | static CORE_ADDR | |
29d73ae4 DJ |
385 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
386 | CORE_ADDR start, CORE_ADDR limit, | |
387 | struct arm_prologue_cache *cache) | |
c906108c | 388 | { |
e17a4113 | 389 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
390 | int i; |
391 | pv_t regs[16]; | |
392 | struct pv_area *stack; | |
393 | struct cleanup *back_to; | |
394 | CORE_ADDR offset; | |
da3c6d4a | 395 | |
29d73ae4 DJ |
396 | for (i = 0; i < 16; i++) |
397 | regs[i] = pv_register (i, 0); | |
55f960e1 | 398 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 DJ |
399 | back_to = make_cleanup_free_pv_area (stack); |
400 | ||
29d73ae4 | 401 | while (start < limit) |
c906108c | 402 | { |
29d73ae4 DJ |
403 | unsigned short insn; |
404 | ||
e17a4113 | 405 | insn = read_memory_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 406 | |
94c30b78 | 407 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 408 | { |
29d73ae4 DJ |
409 | int regno; |
410 | int mask; | |
4be43953 DJ |
411 | |
412 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) | |
413 | break; | |
29d73ae4 DJ |
414 | |
415 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
416 | whether to save LR (R14). */ | |
417 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
418 | ||
419 | /* Calculate offsets of saved R0-R7 and LR. */ | |
420 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
421 | if (mask & (1 << regno)) | |
422 | { | |
29d73ae4 DJ |
423 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
424 | -4); | |
425 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
426 | } | |
da59e081 | 427 | } |
da3c6d4a MS |
428 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
429 | sub sp, #simm */ | |
da59e081 | 430 | { |
29d73ae4 DJ |
431 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
432 | if (insn & 0x80) /* Check for SUB. */ | |
433 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | |
434 | -offset); | |
da59e081 | 435 | else |
29d73ae4 DJ |
436 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
437 | offset); | |
da59e081 JM |
438 | } |
439 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
29d73ae4 DJ |
440 | regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
441 | (insn & 0xff) << 2); | |
442 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ | |
da59e081 | 443 | { |
29d73ae4 DJ |
444 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
445 | int src_reg = (insn & 0x78) >> 3; | |
446 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 447 | } |
29d73ae4 | 448 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 449 | { |
29d73ae4 DJ |
450 | /* Handle stores to the stack. Normally pushes are used, |
451 | but with GCC -mtpcs-frame, there may be other stores | |
452 | in the prologue to create the frame. */ | |
453 | int regno = (insn >> 8) & 0x7; | |
454 | pv_t addr; | |
455 | ||
456 | offset = (insn & 0xff) << 2; | |
457 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
458 | ||
459 | if (pv_area_store_would_trash (stack, addr)) | |
460 | break; | |
461 | ||
462 | pv_area_store (stack, addr, 4, regs[regno]); | |
da59e081 | 463 | } |
29d73ae4 | 464 | else |
3d74b771 | 465 | { |
29d73ae4 DJ |
466 | /* We don't know what this instruction is. We're finished |
467 | scanning. NOTE: Recognizing more safe-to-ignore | |
468 | instructions here will improve support for optimized | |
469 | code. */ | |
da3c6d4a | 470 | break; |
3d74b771 | 471 | } |
29d73ae4 DJ |
472 | |
473 | start += 2; | |
c906108c SS |
474 | } |
475 | ||
29d73ae4 DJ |
476 | if (cache == NULL) |
477 | { | |
478 | do_cleanups (back_to); | |
479 | return start; | |
480 | } | |
481 | ||
29d73ae4 DJ |
482 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
483 | { | |
484 | /* Frame pointer is fp. Frame size is constant. */ | |
485 | cache->framereg = ARM_FP_REGNUM; | |
486 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
487 | } | |
488 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
489 | { | |
490 | /* Frame pointer is r7. Frame size is constant. */ | |
491 | cache->framereg = THUMB_FP_REGNUM; | |
492 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
493 | } | |
494 | else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM)) | |
495 | { | |
496 | /* Try the stack pointer... this is a bit desperate. */ | |
497 | cache->framereg = ARM_SP_REGNUM; | |
498 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
499 | } | |
500 | else | |
501 | { | |
502 | /* We're just out of luck. We don't know where the frame is. */ | |
503 | cache->framereg = -1; | |
504 | cache->framesize = 0; | |
505 | } | |
506 | ||
507 | for (i = 0; i < 16; i++) | |
508 | if (pv_area_find_reg (stack, gdbarch, i, &offset)) | |
509 | cache->saved_regs[i].addr = offset; | |
510 | ||
511 | do_cleanups (back_to); | |
512 | return start; | |
c906108c SS |
513 | } |
514 | ||
da3c6d4a MS |
515 | /* Advance the PC across any function entry prologue instructions to |
516 | reach some "real" code. | |
34e8f22d RE |
517 | |
518 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 519 | prologue: |
c906108c | 520 | |
c5aa993b JM |
521 | mov ip, sp |
522 | [stmfd sp!, {a1,a2,a3,a4}] | |
523 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
524 | [stfe f7, [sp, #-12]!] |
525 | [stfe f6, [sp, #-12]!] | |
526 | [stfe f5, [sp, #-12]!] | |
527 | [stfe f4, [sp, #-12]!] | |
528 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c | 529 | |
34e8f22d | 530 | static CORE_ADDR |
6093d2eb | 531 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 532 | { |
e17a4113 | 533 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
c906108c SS |
534 | unsigned long inst; |
535 | CORE_ADDR skip_pc; | |
a89fea3c | 536 | CORE_ADDR func_addr, limit_pc; |
c906108c SS |
537 | struct symtab_and_line sal; |
538 | ||
848cfffb | 539 | /* If we're in a dummy frame, don't even try to skip the prologue. */ |
d80b854b | 540 | if (deprecated_pc_in_call_dummy (gdbarch, pc)) |
848cfffb AC |
541 | return pc; |
542 | ||
a89fea3c JL |
543 | /* See if we can determine the end of the prologue via the symbol table. |
544 | If so, then return either PC, or the PC after the prologue, whichever | |
545 | is greater. */ | |
546 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 547 | { |
d80b854b UW |
548 | CORE_ADDR post_prologue_pc |
549 | = skip_prologue_using_sal (gdbarch, func_addr); | |
a89fea3c JL |
550 | if (post_prologue_pc != 0) |
551 | return max (pc, post_prologue_pc); | |
c906108c SS |
552 | } |
553 | ||
a89fea3c JL |
554 | /* Can't determine prologue from the symbol table, need to examine |
555 | instructions. */ | |
c906108c | 556 | |
a89fea3c JL |
557 | /* Find an upper limit on the function prologue using the debug |
558 | information. If the debug information could not be used to provide | |
559 | that bound, then use an arbitrary large number as the upper bound. */ | |
b8d5e71d | 560 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 561 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
562 | if (limit_pc == 0) |
563 | limit_pc = pc + 64; /* Magic. */ | |
564 | ||
c906108c | 565 | |
29d73ae4 DJ |
566 | /* Check if this is Thumb code. */ |
567 | if (arm_pc_is_thumb (pc)) | |
a89fea3c | 568 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
29d73ae4 | 569 | |
a89fea3c | 570 | for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4) |
f43845b3 | 571 | { |
e17a4113 | 572 | inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code); |
9d4fde75 | 573 | |
b8d5e71d MS |
574 | /* "mov ip, sp" is no longer a required part of the prologue. */ |
575 | if (inst == 0xe1a0c00d) /* mov ip, sp */ | |
576 | continue; | |
c906108c | 577 | |
28cd8767 JG |
578 | if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ |
579 | continue; | |
580 | ||
581 | if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
582 | continue; | |
583 | ||
b8d5e71d MS |
584 | /* Some prologues begin with "str lr, [sp, #-4]!". */ |
585 | if (inst == 0xe52de004) /* str lr, [sp, #-4]! */ | |
586 | continue; | |
c906108c | 587 | |
b8d5e71d MS |
588 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
589 | continue; | |
c906108c | 590 | |
b8d5e71d MS |
591 | if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */ |
592 | continue; | |
11d3b27d | 593 | |
b8d5e71d MS |
594 | /* Any insns after this point may float into the code, if it makes |
595 | for better instruction scheduling, so we skip them only if we | |
596 | find them, but still consider the function to be frame-ful. */ | |
f43845b3 | 597 | |
b8d5e71d MS |
598 | /* We may have either one sfmfd instruction here, or several stfe |
599 | insns, depending on the version of floating point code we | |
600 | support. */ | |
601 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
602 | continue; | |
603 | ||
604 | if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
605 | continue; | |
606 | ||
607 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
608 | continue; | |
609 | ||
610 | if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */ | |
611 | continue; | |
612 | ||
f8bf5763 PM |
613 | if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */ |
614 | || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */ | |
615 | || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */ | |
b8d5e71d MS |
616 | continue; |
617 | ||
f8bf5763 PM |
618 | if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */ |
619 | || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */ | |
620 | || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */ | |
b8d5e71d MS |
621 | continue; |
622 | ||
623 | /* Un-recognized instruction; stop scanning. */ | |
624 | break; | |
f43845b3 | 625 | } |
c906108c | 626 | |
b8d5e71d | 627 | return skip_pc; /* End of prologue */ |
c906108c | 628 | } |
94c30b78 | 629 | |
c5aa993b | 630 | /* *INDENT-OFF* */ |
c906108c SS |
631 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
632 | This function decodes a Thumb function prologue to determine: | |
633 | 1) the size of the stack frame | |
634 | 2) which registers are saved on it | |
635 | 3) the offsets of saved regs | |
636 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 637 | |
da59e081 JM |
638 | A typical Thumb function prologue would create this stack frame |
639 | (offsets relative to FP) | |
c906108c SS |
640 | old SP -> 24 stack parameters |
641 | 20 LR | |
642 | 16 R7 | |
643 | R7 -> 0 local variables (16 bytes) | |
644 | SP -> -12 additional stack space (12 bytes) | |
645 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
646 | 12 bytes. The frame register is R7. |
647 | ||
da3c6d4a MS |
648 | The comments for thumb_skip_prolog() describe the algorithm we use |
649 | to detect the end of the prolog. */ | |
c5aa993b JM |
650 | /* *INDENT-ON* */ |
651 | ||
c906108c | 652 | static void |
be8626e0 | 653 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 654 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
655 | { |
656 | CORE_ADDR prologue_start; | |
657 | CORE_ADDR prologue_end; | |
658 | CORE_ADDR current_pc; | |
c906108c | 659 | |
b39cc962 DJ |
660 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
661 | &prologue_end)) | |
c906108c SS |
662 | { |
663 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
664 | ||
94c30b78 | 665 | if (sal.line == 0) /* no line info, use current PC */ |
eb5492fa | 666 | prologue_end = prev_pc; |
c906108c | 667 | else if (sal.end < prologue_end) /* next line begins after fn end */ |
94c30b78 | 668 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
669 | } |
670 | else | |
f7060f85 DJ |
671 | /* We're in the boondocks: we have no idea where the start of the |
672 | function is. */ | |
673 | return; | |
c906108c | 674 | |
eb5492fa | 675 | prologue_end = min (prologue_end, prev_pc); |
c906108c | 676 | |
be8626e0 | 677 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
678 | } |
679 | ||
ed9a39eb | 680 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
681 | 1) the size of the stack frame |
682 | 2) which registers are saved on it | |
683 | 3) the offsets of saved regs | |
684 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
685 | This information is stored in the "extra" fields of the frame_info. |
686 | ||
96baa820 JM |
687 | There are two basic forms for the ARM prologue. The fixed argument |
688 | function call will look like: | |
ed9a39eb JM |
689 | |
690 | mov ip, sp | |
691 | stmfd sp!, {fp, ip, lr, pc} | |
692 | sub fp, ip, #4 | |
693 | [sub sp, sp, #4] | |
96baa820 | 694 | |
c906108c | 695 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
696 | IP -> 4 (caller's stack) |
697 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
698 | -4 LR (return address in caller) | |
699 | -8 IP (copy of caller's SP) | |
700 | -12 FP (caller's FP) | |
701 | SP -> -28 Local variables | |
702 | ||
c906108c | 703 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
704 | 28 bytes. The stmfd call can also save any of the vN registers it |
705 | plans to use, which increases the frame size accordingly. | |
706 | ||
707 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
708 | because the ARM Store instructions always store PC + 8 when you read | |
709 | the PC register. | |
ed9a39eb | 710 | |
96baa820 JM |
711 | A variable argument function call will look like: |
712 | ||
ed9a39eb JM |
713 | mov ip, sp |
714 | stmfd sp!, {a1, a2, a3, a4} | |
715 | stmfd sp!, {fp, ip, lr, pc} | |
716 | sub fp, ip, #20 | |
717 | ||
96baa820 | 718 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
719 | IP -> 20 (caller's stack) |
720 | 16 A4 | |
721 | 12 A3 | |
722 | 8 A2 | |
723 | 4 A1 | |
724 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
725 | -4 LR (return address in caller) | |
726 | -8 IP (copy of caller's SP) | |
727 | -12 FP (caller's FP) | |
728 | SP -> -28 Local variables | |
96baa820 JM |
729 | |
730 | The frame size would thus be 48 bytes, and the frame offset would be | |
731 | 28 bytes. | |
732 | ||
733 | There is another potential complication, which is that the optimizer | |
734 | will try to separate the store of fp in the "stmfd" instruction from | |
735 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
736 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
737 | ||
738 | Also, note, the original version of the ARM toolchain claimed that there | |
739 | should be an | |
740 | ||
741 | instruction at the end of the prologue. I have never seen GCC produce | |
742 | this, and the ARM docs don't mention it. We still test for it below in | |
743 | case it happens... | |
ed9a39eb JM |
744 | |
745 | */ | |
c906108c SS |
746 | |
747 | static void | |
a262aec2 | 748 | arm_scan_prologue (struct frame_info *this_frame, |
2af46ca0 | 749 | struct arm_prologue_cache *cache) |
c906108c | 750 | { |
a262aec2 | 751 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 UW |
752 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
753 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
4be43953 | 754 | int regno; |
c906108c | 755 | CORE_ADDR prologue_start, prologue_end, current_pc; |
a262aec2 | 756 | CORE_ADDR prev_pc = get_frame_pc (this_frame); |
b39cc962 | 757 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
4be43953 DJ |
758 | pv_t regs[ARM_FPS_REGNUM]; |
759 | struct pv_area *stack; | |
760 | struct cleanup *back_to; | |
761 | CORE_ADDR offset; | |
c906108c | 762 | |
c906108c | 763 | /* Assume there is no frame until proven otherwise. */ |
9b8d791a DJ |
764 | cache->framereg = ARM_SP_REGNUM; |
765 | cache->framesize = 0; | |
c906108c SS |
766 | |
767 | /* Check for Thumb prologue. */ | |
b39cc962 | 768 | if (arm_frame_is_thumb (this_frame)) |
c906108c | 769 | { |
b39cc962 | 770 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); |
c906108c SS |
771 | return; |
772 | } | |
773 | ||
774 | /* Find the function prologue. If we can't find the function in | |
775 | the symbol table, peek in the stack frame to find the PC. */ | |
b39cc962 DJ |
776 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
777 | &prologue_end)) | |
c906108c | 778 | { |
2a451106 KB |
779 | /* One way to find the end of the prologue (which works well |
780 | for unoptimized code) is to do the following: | |
781 | ||
782 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
783 | ||
784 | if (sal.line == 0) | |
eb5492fa | 785 | prologue_end = prev_pc; |
2a451106 KB |
786 | else if (sal.end < prologue_end) |
787 | prologue_end = sal.end; | |
788 | ||
789 | This mechanism is very accurate so long as the optimizer | |
790 | doesn't move any instructions from the function body into the | |
791 | prologue. If this happens, sal.end will be the last | |
792 | instruction in the first hunk of prologue code just before | |
793 | the first instruction that the scheduler has moved from | |
794 | the body to the prologue. | |
795 | ||
796 | In order to make sure that we scan all of the prologue | |
797 | instructions, we use a slightly less accurate mechanism which | |
798 | may scan more than necessary. To help compensate for this | |
799 | lack of accuracy, the prologue scanning loop below contains | |
800 | several clauses which'll cause the loop to terminate early if | |
801 | an implausible prologue instruction is encountered. | |
802 | ||
803 | The expression | |
804 | ||
805 | prologue_start + 64 | |
806 | ||
807 | is a suitable endpoint since it accounts for the largest | |
808 | possible prologue plus up to five instructions inserted by | |
94c30b78 | 809 | the scheduler. */ |
2a451106 KB |
810 | |
811 | if (prologue_end > prologue_start + 64) | |
812 | { | |
94c30b78 | 813 | prologue_end = prologue_start + 64; /* See above. */ |
2a451106 | 814 | } |
c906108c SS |
815 | } |
816 | else | |
817 | { | |
eb5492fa DJ |
818 | /* We have no symbol information. Our only option is to assume this |
819 | function has a standard stack frame and the normal frame register. | |
820 | Then, we can find the value of our frame pointer on entrance to | |
821 | the callee (or at the present moment if this is the innermost frame). | |
822 | The value stored there should be the address of the stmfd + 8. */ | |
823 | CORE_ADDR frame_loc; | |
824 | LONGEST return_value; | |
825 | ||
a262aec2 | 826 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); |
e17a4113 | 827 | if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value)) |
16a0f3e7 EZ |
828 | return; |
829 | else | |
830 | { | |
bf6ae464 | 831 | prologue_start = gdbarch_addr_bits_remove |
2af46ca0 | 832 | (gdbarch, return_value) - 8; |
94c30b78 | 833 | prologue_end = prologue_start + 64; /* See above. */ |
16a0f3e7 | 834 | } |
c906108c SS |
835 | } |
836 | ||
eb5492fa DJ |
837 | if (prev_pc < prologue_end) |
838 | prologue_end = prev_pc; | |
839 | ||
c906108c | 840 | /* Now search the prologue looking for instructions that set up the |
96baa820 | 841 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 842 | |
96baa820 JM |
843 | Be careful, however, and if it doesn't look like a prologue, |
844 | don't try to scan it. If, for instance, a frameless function | |
845 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 846 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 JM |
847 | and other operations that rely on a knowledge of the stack |
848 | traceback. | |
849 | ||
850 | In the APCS, the prologue should start with "mov ip, sp" so | |
f43845b3 | 851 | if we don't see this as the first insn, we will stop. |
c906108c | 852 | |
f43845b3 MS |
853 | [Note: This doesn't seem to be true any longer, so it's now an |
854 | optional part of the prologue. - Kevin Buettner, 2001-11-20] | |
c906108c | 855 | |
f43845b3 MS |
856 | [Note further: The "mov ip,sp" only seems to be missing in |
857 | frameless functions at optimization level "-O2" or above, | |
858 | in which case it is often (but not always) replaced by | |
b8d5e71d | 859 | "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */ |
d4473757 | 860 | |
4be43953 DJ |
861 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
862 | regs[regno] = pv_register (regno, 0); | |
55f960e1 | 863 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 DJ |
864 | back_to = make_cleanup_free_pv_area (stack); |
865 | ||
94c30b78 MS |
866 | for (current_pc = prologue_start; |
867 | current_pc < prologue_end; | |
f43845b3 | 868 | current_pc += 4) |
96baa820 | 869 | { |
e17a4113 UW |
870 | unsigned int insn |
871 | = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code); | |
9d4fde75 | 872 | |
94c30b78 | 873 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 874 | { |
4be43953 | 875 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
876 | continue; |
877 | } | |
878 | else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ | |
879 | { | |
880 | unsigned imm = insn & 0xff; /* immediate value */ | |
881 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
882 | imm = (imm >> rot) | (imm << (32 - rot)); | |
4be43953 | 883 | regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm); |
28cd8767 JG |
884 | continue; |
885 | } | |
886 | else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
887 | { | |
888 | unsigned imm = insn & 0xff; /* immediate value */ | |
889 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
890 | imm = (imm >> rot) | (imm << (32 - rot)); | |
4be43953 | 891 | regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
f43845b3 MS |
892 | continue; |
893 | } | |
94c30b78 | 894 | else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */ |
f43845b3 | 895 | { |
4be43953 DJ |
896 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
897 | break; | |
898 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
899 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]); | |
f43845b3 MS |
900 | continue; |
901 | } | |
902 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
903 | /* stmfd sp!, {..., fp, ip, lr, pc} |
904 | or | |
905 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 906 | { |
d4473757 | 907 | int mask = insn & 0xffff; |
ed9a39eb | 908 | |
4be43953 DJ |
909 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
910 | break; | |
911 | ||
94c30b78 | 912 | /* Calculate offsets of saved registers. */ |
34e8f22d | 913 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
914 | if (mask & (1 << regno)) |
915 | { | |
4be43953 DJ |
916 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); |
917 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
d4473757 KB |
918 | } |
919 | } | |
f8bf5763 PM |
920 | else if ((insn & 0xffffc000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
921 | || (insn & 0xffffc0f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
922 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ | |
b8d5e71d MS |
923 | { |
924 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
925 | continue; | |
926 | } | |
f8bf5763 PM |
927 | else if ((insn & 0xffffc000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
928 | || (insn & 0xffffc0f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
929 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ | |
f43845b3 MS |
930 | { |
931 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
932 | continue; | |
933 | } | |
d4473757 KB |
934 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
935 | { | |
94c30b78 MS |
936 | unsigned imm = insn & 0xff; /* immediate value */ |
937 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 938 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 939 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
940 | } |
941 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
942 | { | |
94c30b78 MS |
943 | unsigned imm = insn & 0xff; /* immediate value */ |
944 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 945 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 946 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 947 | } |
ff6f572f | 948 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */ |
2af46ca0 | 949 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 950 | { |
4be43953 DJ |
951 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
952 | break; | |
953 | ||
954 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 955 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
4be43953 | 956 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 957 | } |
ff6f572f | 958 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */ |
2af46ca0 | 959 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
960 | { |
961 | int n_saved_fp_regs; | |
962 | unsigned int fp_start_reg, fp_bound_reg; | |
963 | ||
4be43953 DJ |
964 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
965 | break; | |
966 | ||
94c30b78 | 967 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 968 | { |
d4473757 KB |
969 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
970 | n_saved_fp_regs = 3; | |
971 | else | |
972 | n_saved_fp_regs = 1; | |
96baa820 | 973 | } |
d4473757 | 974 | else |
96baa820 | 975 | { |
d4473757 KB |
976 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
977 | n_saved_fp_regs = 2; | |
978 | else | |
979 | n_saved_fp_regs = 4; | |
96baa820 | 980 | } |
d4473757 | 981 | |
34e8f22d | 982 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
983 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
984 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 985 | { |
4be43953 DJ |
986 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
987 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, | |
988 | regs[fp_start_reg++]); | |
96baa820 | 989 | } |
c906108c | 990 | } |
d4473757 | 991 | else if ((insn & 0xf0000000) != 0xe0000000) |
94c30b78 | 992 | break; /* Condition not true, exit early */ |
b8d5e71d | 993 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ |
94c30b78 | 994 | break; /* Don't scan past a block load */ |
d4473757 KB |
995 | else |
996 | /* The optimizer might shove anything into the prologue, | |
94c30b78 | 997 | so we just skip what we don't recognize. */ |
d4473757 | 998 | continue; |
c906108c SS |
999 | } |
1000 | ||
4be43953 DJ |
1001 | /* The frame size is just the distance from the frame register |
1002 | to the original stack pointer. */ | |
1003 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1004 | { | |
1005 | /* Frame pointer is fp. */ | |
1006 | cache->framereg = ARM_FP_REGNUM; | |
1007 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1008 | } | |
1009 | else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM)) | |
1010 | { | |
1011 | /* Try the stack pointer... this is a bit desperate. */ | |
1012 | cache->framereg = ARM_SP_REGNUM; | |
1013 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1014 | } | |
d4473757 | 1015 | else |
4be43953 DJ |
1016 | { |
1017 | /* We're just out of luck. We don't know where the frame is. */ | |
1018 | cache->framereg = -1; | |
1019 | cache->framesize = 0; | |
1020 | } | |
1021 | ||
1022 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
1023 | if (pv_area_find_reg (stack, gdbarch, regno, &offset)) | |
1024 | cache->saved_regs[regno].addr = offset; | |
1025 | ||
1026 | do_cleanups (back_to); | |
c906108c SS |
1027 | } |
1028 | ||
eb5492fa | 1029 | static struct arm_prologue_cache * |
a262aec2 | 1030 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 1031 | { |
eb5492fa DJ |
1032 | int reg; |
1033 | struct arm_prologue_cache *cache; | |
1034 | CORE_ADDR unwound_fp; | |
c5aa993b | 1035 | |
35d5d4ee | 1036 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 1037 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 1038 | |
a262aec2 | 1039 | arm_scan_prologue (this_frame, cache); |
848cfffb | 1040 | |
a262aec2 | 1041 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
1042 | if (unwound_fp == 0) |
1043 | return cache; | |
c906108c | 1044 | |
4be43953 | 1045 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 1046 | |
eb5492fa DJ |
1047 | /* Calculate actual addresses of saved registers using offsets |
1048 | determined by arm_scan_prologue. */ | |
a262aec2 | 1049 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 1050 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
1051 | cache->saved_regs[reg].addr += cache->prev_sp; |
1052 | ||
1053 | return cache; | |
c906108c SS |
1054 | } |
1055 | ||
eb5492fa DJ |
1056 | /* Our frame ID for a normal frame is the current function's starting PC |
1057 | and the caller's SP when we were called. */ | |
c906108c | 1058 | |
148754e5 | 1059 | static void |
a262aec2 | 1060 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
1061 | void **this_cache, |
1062 | struct frame_id *this_id) | |
c906108c | 1063 | { |
eb5492fa DJ |
1064 | struct arm_prologue_cache *cache; |
1065 | struct frame_id id; | |
2c404490 | 1066 | CORE_ADDR pc, func; |
f079148d | 1067 | |
eb5492fa | 1068 | if (*this_cache == NULL) |
a262aec2 | 1069 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 1070 | cache = *this_cache; |
2a451106 | 1071 | |
2c404490 DJ |
1072 | /* This is meant to halt the backtrace at "_start". */ |
1073 | pc = get_frame_pc (this_frame); | |
1074 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
eb5492fa | 1075 | return; |
5a203e44 | 1076 | |
eb5492fa DJ |
1077 | /* If we've hit a wall, stop. */ |
1078 | if (cache->prev_sp == 0) | |
1079 | return; | |
24de872b | 1080 | |
2c404490 | 1081 | func = get_frame_func (this_frame); |
eb5492fa | 1082 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 1083 | *this_id = id; |
c906108c SS |
1084 | } |
1085 | ||
a262aec2 DJ |
1086 | static struct value * |
1087 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 1088 | void **this_cache, |
a262aec2 | 1089 | int prev_regnum) |
24de872b | 1090 | { |
24568a2c | 1091 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
1092 | struct arm_prologue_cache *cache; |
1093 | ||
eb5492fa | 1094 | if (*this_cache == NULL) |
a262aec2 | 1095 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 1096 | cache = *this_cache; |
24de872b | 1097 | |
eb5492fa | 1098 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
1099 | instead. The prologue may save PC, but it will point into this |
1100 | frame's prologue, not the next frame's resume location. Also | |
1101 | strip the saved T bit. A valid LR may have the low bit set, but | |
1102 | a valid PC never does. */ | |
eb5492fa | 1103 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
1104 | { |
1105 | CORE_ADDR lr; | |
1106 | ||
1107 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1108 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 1109 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 1110 | } |
24de872b | 1111 | |
eb5492fa | 1112 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 1113 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
1114 | The value was already reconstructed into PREV_SP. */ |
1115 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 1116 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 1117 | |
b39cc962 DJ |
1118 | /* The CPSR may have been changed by the call instruction and by the |
1119 | called function. The only bit we can reconstruct is the T bit, | |
1120 | by checking the low bit of LR as of the call. This is a reliable | |
1121 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
1122 | Thumb code, which could get away with a clear low bit as long as | |
1123 | the called function did not use bx. Guess that all other | |
1124 | bits are unchanged; the condition flags are presumably lost, | |
1125 | but the processor status is likely valid. */ | |
1126 | if (prev_regnum == ARM_PS_REGNUM) | |
1127 | { | |
1128 | CORE_ADDR lr, cpsr; | |
1129 | ||
1130 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
1131 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1132 | if (IS_THUMB_ADDR (lr)) | |
1133 | cpsr |= CPSR_T; | |
1134 | else | |
1135 | cpsr &= ~CPSR_T; | |
1136 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); | |
1137 | } | |
1138 | ||
a262aec2 DJ |
1139 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
1140 | prev_regnum); | |
eb5492fa DJ |
1141 | } |
1142 | ||
1143 | struct frame_unwind arm_prologue_unwind = { | |
1144 | NORMAL_FRAME, | |
1145 | arm_prologue_this_id, | |
a262aec2 DJ |
1146 | arm_prologue_prev_register, |
1147 | NULL, | |
1148 | default_frame_sniffer | |
eb5492fa DJ |
1149 | }; |
1150 | ||
909cf6ea | 1151 | static struct arm_prologue_cache * |
a262aec2 | 1152 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea DJ |
1153 | { |
1154 | int reg; | |
1155 | struct arm_prologue_cache *cache; | |
1156 | CORE_ADDR unwound_fp; | |
1157 | ||
35d5d4ee | 1158 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 1159 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 1160 | |
a262aec2 | 1161 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
1162 | |
1163 | return cache; | |
1164 | } | |
1165 | ||
1166 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
1167 | ||
1168 | static void | |
a262aec2 | 1169 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
1170 | void **this_cache, |
1171 | struct frame_id *this_id) | |
1172 | { | |
1173 | struct arm_prologue_cache *cache; | |
1174 | ||
1175 | if (*this_cache == NULL) | |
a262aec2 | 1176 | *this_cache = arm_make_stub_cache (this_frame); |
909cf6ea DJ |
1177 | cache = *this_cache; |
1178 | ||
a262aec2 | 1179 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
1180 | } |
1181 | ||
a262aec2 DJ |
1182 | static int |
1183 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
1184 | struct frame_info *this_frame, | |
1185 | void **this_prologue_cache) | |
909cf6ea | 1186 | { |
93d42b30 | 1187 | CORE_ADDR addr_in_block; |
909cf6ea DJ |
1188 | char dummy[4]; |
1189 | ||
a262aec2 | 1190 | addr_in_block = get_frame_address_in_block (this_frame); |
93d42b30 | 1191 | if (in_plt_section (addr_in_block, NULL) |
a262aec2 DJ |
1192 | || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
1193 | return 1; | |
909cf6ea | 1194 | |
a262aec2 | 1195 | return 0; |
909cf6ea DJ |
1196 | } |
1197 | ||
a262aec2 DJ |
1198 | struct frame_unwind arm_stub_unwind = { |
1199 | NORMAL_FRAME, | |
1200 | arm_stub_this_id, | |
1201 | arm_prologue_prev_register, | |
1202 | NULL, | |
1203 | arm_stub_unwind_sniffer | |
1204 | }; | |
1205 | ||
24de872b | 1206 | static CORE_ADDR |
a262aec2 | 1207 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
1208 | { |
1209 | struct arm_prologue_cache *cache; | |
1210 | ||
eb5492fa | 1211 | if (*this_cache == NULL) |
a262aec2 | 1212 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa DJ |
1213 | cache = *this_cache; |
1214 | ||
4be43953 | 1215 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
1216 | } |
1217 | ||
eb5492fa DJ |
1218 | struct frame_base arm_normal_base = { |
1219 | &arm_prologue_unwind, | |
1220 | arm_normal_frame_base, | |
1221 | arm_normal_frame_base, | |
1222 | arm_normal_frame_base | |
1223 | }; | |
1224 | ||
a262aec2 | 1225 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
1226 | dummy frame. The frame ID's base needs to match the TOS value |
1227 | saved by save_dummy_frame_tos() and returned from | |
1228 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
1229 | breakpoint. */ | |
c906108c | 1230 | |
eb5492fa | 1231 | static struct frame_id |
a262aec2 | 1232 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 1233 | { |
a262aec2 DJ |
1234 | return frame_id_build (get_frame_register_unsigned (this_frame, ARM_SP_REGNUM), |
1235 | get_frame_pc (this_frame)); | |
eb5492fa | 1236 | } |
c3b4394c | 1237 | |
eb5492fa DJ |
1238 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
1239 | be used to construct the previous frame's ID, after looking up the | |
1240 | containing function). */ | |
c3b4394c | 1241 | |
eb5492fa DJ |
1242 | static CORE_ADDR |
1243 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1244 | { | |
1245 | CORE_ADDR pc; | |
1246 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 1247 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
1248 | } |
1249 | ||
1250 | static CORE_ADDR | |
1251 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1252 | { | |
1253 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
1254 | } |
1255 | ||
b39cc962 DJ |
1256 | static struct value * |
1257 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
1258 | int regnum) | |
1259 | { | |
24568a2c | 1260 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 DJ |
1261 | CORE_ADDR lr, cpsr; |
1262 | ||
1263 | switch (regnum) | |
1264 | { | |
1265 | case ARM_PC_REGNUM: | |
1266 | /* The PC is normally copied from the return column, which | |
1267 | describes saves of LR. However, that version may have an | |
1268 | extra bit set to indicate Thumb state. The bit is not | |
1269 | part of the PC. */ | |
1270 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1271 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 1272 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
1273 | |
1274 | case ARM_PS_REGNUM: | |
1275 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 1276 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
1277 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
1278 | if (IS_THUMB_ADDR (lr)) | |
1279 | cpsr |= CPSR_T; | |
1280 | else | |
1281 | cpsr &= ~CPSR_T; | |
ca38c58e | 1282 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
1283 | |
1284 | default: | |
1285 | internal_error (__FILE__, __LINE__, | |
1286 | _("Unexpected register %d"), regnum); | |
1287 | } | |
1288 | } | |
1289 | ||
1290 | static void | |
1291 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
1292 | struct dwarf2_frame_state_reg *reg, | |
1293 | struct frame_info *this_frame) | |
1294 | { | |
1295 | switch (regnum) | |
1296 | { | |
1297 | case ARM_PC_REGNUM: | |
1298 | case ARM_PS_REGNUM: | |
1299 | reg->how = DWARF2_FRAME_REG_FN; | |
1300 | reg->loc.fn = arm_dwarf2_prev_register; | |
1301 | break; | |
1302 | case ARM_SP_REGNUM: | |
1303 | reg->how = DWARF2_FRAME_REG_CFA; | |
1304 | break; | |
1305 | } | |
1306 | } | |
1307 | ||
2dd604e7 RE |
1308 | /* When arguments must be pushed onto the stack, they go on in reverse |
1309 | order. The code below implements a FILO (stack) to do this. */ | |
1310 | ||
1311 | struct stack_item | |
1312 | { | |
1313 | int len; | |
1314 | struct stack_item *prev; | |
1315 | void *data; | |
1316 | }; | |
1317 | ||
1318 | static struct stack_item * | |
1319 | push_stack_item (struct stack_item *prev, void *contents, int len) | |
1320 | { | |
1321 | struct stack_item *si; | |
1322 | si = xmalloc (sizeof (struct stack_item)); | |
226c7fbc | 1323 | si->data = xmalloc (len); |
2dd604e7 RE |
1324 | si->len = len; |
1325 | si->prev = prev; | |
1326 | memcpy (si->data, contents, len); | |
1327 | return si; | |
1328 | } | |
1329 | ||
1330 | static struct stack_item * | |
1331 | pop_stack_item (struct stack_item *si) | |
1332 | { | |
1333 | struct stack_item *dead = si; | |
1334 | si = si->prev; | |
1335 | xfree (dead->data); | |
1336 | xfree (dead); | |
1337 | return si; | |
1338 | } | |
1339 | ||
2af48f68 PB |
1340 | |
1341 | /* Return the alignment (in bytes) of the given type. */ | |
1342 | ||
1343 | static int | |
1344 | arm_type_align (struct type *t) | |
1345 | { | |
1346 | int n; | |
1347 | int align; | |
1348 | int falign; | |
1349 | ||
1350 | t = check_typedef (t); | |
1351 | switch (TYPE_CODE (t)) | |
1352 | { | |
1353 | default: | |
1354 | /* Should never happen. */ | |
1355 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
1356 | return 4; | |
1357 | ||
1358 | case TYPE_CODE_PTR: | |
1359 | case TYPE_CODE_ENUM: | |
1360 | case TYPE_CODE_INT: | |
1361 | case TYPE_CODE_FLT: | |
1362 | case TYPE_CODE_SET: | |
1363 | case TYPE_CODE_RANGE: | |
1364 | case TYPE_CODE_BITSTRING: | |
1365 | case TYPE_CODE_REF: | |
1366 | case TYPE_CODE_CHAR: | |
1367 | case TYPE_CODE_BOOL: | |
1368 | return TYPE_LENGTH (t); | |
1369 | ||
1370 | case TYPE_CODE_ARRAY: | |
1371 | case TYPE_CODE_COMPLEX: | |
1372 | /* TODO: What about vector types? */ | |
1373 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
1374 | ||
1375 | case TYPE_CODE_STRUCT: | |
1376 | case TYPE_CODE_UNION: | |
1377 | align = 1; | |
1378 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
1379 | { | |
1380 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
1381 | if (falign > align) | |
1382 | align = falign; | |
1383 | } | |
1384 | return align; | |
1385 | } | |
1386 | } | |
1387 | ||
90445bd3 DJ |
1388 | /* Possible base types for a candidate for passing and returning in |
1389 | VFP registers. */ | |
1390 | ||
1391 | enum arm_vfp_cprc_base_type | |
1392 | { | |
1393 | VFP_CPRC_UNKNOWN, | |
1394 | VFP_CPRC_SINGLE, | |
1395 | VFP_CPRC_DOUBLE, | |
1396 | VFP_CPRC_VEC64, | |
1397 | VFP_CPRC_VEC128 | |
1398 | }; | |
1399 | ||
1400 | /* The length of one element of base type B. */ | |
1401 | ||
1402 | static unsigned | |
1403 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
1404 | { | |
1405 | switch (b) | |
1406 | { | |
1407 | case VFP_CPRC_SINGLE: | |
1408 | return 4; | |
1409 | case VFP_CPRC_DOUBLE: | |
1410 | return 8; | |
1411 | case VFP_CPRC_VEC64: | |
1412 | return 8; | |
1413 | case VFP_CPRC_VEC128: | |
1414 | return 16; | |
1415 | default: | |
1416 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
1417 | (int) b); | |
1418 | } | |
1419 | } | |
1420 | ||
1421 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
1422 | for passing base type B. */ | |
1423 | ||
1424 | static int | |
1425 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
1426 | { | |
1427 | switch (b) | |
1428 | { | |
1429 | case VFP_CPRC_SINGLE: | |
1430 | return 's'; | |
1431 | case VFP_CPRC_DOUBLE: | |
1432 | return 'd'; | |
1433 | case VFP_CPRC_VEC64: | |
1434 | return 'd'; | |
1435 | case VFP_CPRC_VEC128: | |
1436 | return 'q'; | |
1437 | default: | |
1438 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
1439 | (int) b); | |
1440 | } | |
1441 | } | |
1442 | ||
1443 | /* Determine whether T may be part of a candidate for passing and | |
1444 | returning in VFP registers, ignoring the limit on the total number | |
1445 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
1446 | classification of the first valid component found; if it is not | |
1447 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
1448 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
1449 | for passing and returning in VFP registers, a type differently | |
1450 | classified from *BASE_TYPE, or two types differently classified | |
1451 | from each other, return -1, otherwise return the total number of | |
1452 | base-type elements found (possibly 0 in an empty structure or | |
1453 | array). Vectors and complex types are not currently supported, | |
1454 | matching the generic AAPCS support. */ | |
1455 | ||
1456 | static int | |
1457 | arm_vfp_cprc_sub_candidate (struct type *t, | |
1458 | enum arm_vfp_cprc_base_type *base_type) | |
1459 | { | |
1460 | t = check_typedef (t); | |
1461 | switch (TYPE_CODE (t)) | |
1462 | { | |
1463 | case TYPE_CODE_FLT: | |
1464 | switch (TYPE_LENGTH (t)) | |
1465 | { | |
1466 | case 4: | |
1467 | if (*base_type == VFP_CPRC_UNKNOWN) | |
1468 | *base_type = VFP_CPRC_SINGLE; | |
1469 | else if (*base_type != VFP_CPRC_SINGLE) | |
1470 | return -1; | |
1471 | return 1; | |
1472 | ||
1473 | case 8: | |
1474 | if (*base_type == VFP_CPRC_UNKNOWN) | |
1475 | *base_type = VFP_CPRC_DOUBLE; | |
1476 | else if (*base_type != VFP_CPRC_DOUBLE) | |
1477 | return -1; | |
1478 | return 1; | |
1479 | ||
1480 | default: | |
1481 | return -1; | |
1482 | } | |
1483 | break; | |
1484 | ||
1485 | case TYPE_CODE_ARRAY: | |
1486 | { | |
1487 | int count; | |
1488 | unsigned unitlen; | |
1489 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type); | |
1490 | if (count == -1) | |
1491 | return -1; | |
1492 | if (TYPE_LENGTH (t) == 0) | |
1493 | { | |
1494 | gdb_assert (count == 0); | |
1495 | return 0; | |
1496 | } | |
1497 | else if (count == 0) | |
1498 | return -1; | |
1499 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
1500 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
1501 | return TYPE_LENGTH (t) / unitlen; | |
1502 | } | |
1503 | break; | |
1504 | ||
1505 | case TYPE_CODE_STRUCT: | |
1506 | { | |
1507 | int count = 0; | |
1508 | unsigned unitlen; | |
1509 | int i; | |
1510 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
1511 | { | |
1512 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
1513 | base_type); | |
1514 | if (sub_count == -1) | |
1515 | return -1; | |
1516 | count += sub_count; | |
1517 | } | |
1518 | if (TYPE_LENGTH (t) == 0) | |
1519 | { | |
1520 | gdb_assert (count == 0); | |
1521 | return 0; | |
1522 | } | |
1523 | else if (count == 0) | |
1524 | return -1; | |
1525 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
1526 | if (TYPE_LENGTH (t) != unitlen * count) | |
1527 | return -1; | |
1528 | return count; | |
1529 | } | |
1530 | ||
1531 | case TYPE_CODE_UNION: | |
1532 | { | |
1533 | int count = 0; | |
1534 | unsigned unitlen; | |
1535 | int i; | |
1536 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
1537 | { | |
1538 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
1539 | base_type); | |
1540 | if (sub_count == -1) | |
1541 | return -1; | |
1542 | count = (count > sub_count ? count : sub_count); | |
1543 | } | |
1544 | if (TYPE_LENGTH (t) == 0) | |
1545 | { | |
1546 | gdb_assert (count == 0); | |
1547 | return 0; | |
1548 | } | |
1549 | else if (count == 0) | |
1550 | return -1; | |
1551 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
1552 | if (TYPE_LENGTH (t) != unitlen * count) | |
1553 | return -1; | |
1554 | return count; | |
1555 | } | |
1556 | ||
1557 | default: | |
1558 | break; | |
1559 | } | |
1560 | ||
1561 | return -1; | |
1562 | } | |
1563 | ||
1564 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
1565 | if passed to or returned from a non-variadic function with the VFP | |
1566 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
1567 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
1568 | elements of that base type before returning. */ | |
1569 | ||
1570 | static int | |
1571 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
1572 | int *count) | |
1573 | { | |
1574 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
1575 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
1576 | if (c <= 0 || c > 4) | |
1577 | return 0; | |
1578 | *base_type = b; | |
1579 | *count = c; | |
1580 | return 1; | |
1581 | } | |
1582 | ||
1583 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
1584 | returning values from a function of type FUNC_TYPE, 0 | |
1585 | otherwise. */ | |
1586 | ||
1587 | static int | |
1588 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
1589 | { | |
1590 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1591 | /* Variadic functions always use the base ABI. Assume that functions | |
1592 | without debug info are not variadic. */ | |
1593 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
1594 | return 0; | |
1595 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
1596 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
1597 | return 0; | |
1598 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
1599 | } | |
1600 | ||
1601 | /* We currently only support passing parameters in integer registers, which | |
1602 | conforms with GCC's default model, and VFP argument passing following | |
1603 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
1604 | we should probably support some of them based on the selected ABI. */ |
1605 | ||
1606 | static CORE_ADDR | |
7d9b040b | 1607 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
1608 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
1609 | struct value **args, CORE_ADDR sp, int struct_return, | |
1610 | CORE_ADDR struct_addr) | |
2dd604e7 | 1611 | { |
e17a4113 | 1612 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
1613 | int argnum; |
1614 | int argreg; | |
1615 | int nstack; | |
1616 | struct stack_item *si = NULL; | |
90445bd3 DJ |
1617 | int use_vfp_abi; |
1618 | struct type *ftype; | |
1619 | unsigned vfp_regs_free = (1 << 16) - 1; | |
1620 | ||
1621 | /* Determine the type of this function and whether the VFP ABI | |
1622 | applies. */ | |
1623 | ftype = check_typedef (value_type (function)); | |
1624 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
1625 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
1626 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 1627 | |
6a65450a AC |
1628 | /* Set the return address. For the ARM, the return breakpoint is |
1629 | always at BP_ADDR. */ | |
9dca5578 DJ |
1630 | if (arm_pc_is_thumb (bp_addr)) |
1631 | bp_addr |= 1; | |
6a65450a | 1632 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
1633 | |
1634 | /* Walk through the list of args and determine how large a temporary | |
1635 | stack is required. Need to take care here as structs may be | |
1636 | passed on the stack, and we have to to push them. */ | |
1637 | nstack = 0; | |
1638 | ||
1639 | argreg = ARM_A1_REGNUM; | |
1640 | nstack = 0; | |
1641 | ||
2dd604e7 RE |
1642 | /* The struct_return pointer occupies the first parameter |
1643 | passing register. */ | |
1644 | if (struct_return) | |
1645 | { | |
1646 | if (arm_debug) | |
5af949e3 | 1647 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 1648 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 1649 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
1650 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
1651 | argreg++; | |
1652 | } | |
1653 | ||
1654 | for (argnum = 0; argnum < nargs; argnum++) | |
1655 | { | |
1656 | int len; | |
1657 | struct type *arg_type; | |
1658 | struct type *target_type; | |
1659 | enum type_code typecode; | |
0fd88904 | 1660 | bfd_byte *val; |
2af48f68 | 1661 | int align; |
90445bd3 DJ |
1662 | enum arm_vfp_cprc_base_type vfp_base_type; |
1663 | int vfp_base_count; | |
1664 | int may_use_core_reg = 1; | |
2dd604e7 | 1665 | |
df407dfe | 1666 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
1667 | len = TYPE_LENGTH (arg_type); |
1668 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1669 | typecode = TYPE_CODE (arg_type); | |
0fd88904 | 1670 | val = value_contents_writeable (args[argnum]); |
2dd604e7 | 1671 | |
2af48f68 PB |
1672 | align = arm_type_align (arg_type); |
1673 | /* Round alignment up to a whole number of words. */ | |
1674 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
1675 | /* Different ABIs have different maximum alignments. */ | |
1676 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
1677 | { | |
1678 | /* The APCS ABI only requires word alignment. */ | |
1679 | align = INT_REGISTER_SIZE; | |
1680 | } | |
1681 | else | |
1682 | { | |
1683 | /* The AAPCS requires at most doubleword alignment. */ | |
1684 | if (align > INT_REGISTER_SIZE * 2) | |
1685 | align = INT_REGISTER_SIZE * 2; | |
1686 | } | |
1687 | ||
90445bd3 DJ |
1688 | if (use_vfp_abi |
1689 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
1690 | &vfp_base_count)) | |
1691 | { | |
1692 | int regno; | |
1693 | int unit_length; | |
1694 | int shift; | |
1695 | unsigned mask; | |
1696 | ||
1697 | /* Because this is a CPRC it cannot go in a core register or | |
1698 | cause a core register to be skipped for alignment. | |
1699 | Either it goes in VFP registers and the rest of this loop | |
1700 | iteration is skipped for this argument, or it goes on the | |
1701 | stack (and the stack alignment code is correct for this | |
1702 | case). */ | |
1703 | may_use_core_reg = 0; | |
1704 | ||
1705 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
1706 | shift = unit_length / 4; | |
1707 | mask = (1 << (shift * vfp_base_count)) - 1; | |
1708 | for (regno = 0; regno < 16; regno += shift) | |
1709 | if (((vfp_regs_free >> regno) & mask) == mask) | |
1710 | break; | |
1711 | ||
1712 | if (regno < 16) | |
1713 | { | |
1714 | int reg_char; | |
1715 | int reg_scaled; | |
1716 | int i; | |
1717 | ||
1718 | vfp_regs_free &= ~(mask << regno); | |
1719 | reg_scaled = regno / shift; | |
1720 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
1721 | for (i = 0; i < vfp_base_count; i++) | |
1722 | { | |
1723 | char name_buf[4]; | |
1724 | int regnum; | |
58d6951d DJ |
1725 | if (reg_char == 'q') |
1726 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 1727 | val + i * unit_length); |
58d6951d DJ |
1728 | else |
1729 | { | |
1730 | sprintf (name_buf, "%c%d", reg_char, reg_scaled + i); | |
1731 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
1732 | strlen (name_buf)); | |
1733 | regcache_cooked_write (regcache, regnum, | |
1734 | val + i * unit_length); | |
1735 | } | |
90445bd3 DJ |
1736 | } |
1737 | continue; | |
1738 | } | |
1739 | else | |
1740 | { | |
1741 | /* This CPRC could not go in VFP registers, so all VFP | |
1742 | registers are now marked as used. */ | |
1743 | vfp_regs_free = 0; | |
1744 | } | |
1745 | } | |
1746 | ||
2af48f68 PB |
1747 | /* Push stack padding for dowubleword alignment. */ |
1748 | if (nstack & (align - 1)) | |
1749 | { | |
1750 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
1751 | nstack += INT_REGISTER_SIZE; | |
1752 | } | |
1753 | ||
1754 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
1755 | if (may_use_core_reg |
1756 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
1757 | && align > INT_REGISTER_SIZE |
1758 | && argreg & 1) | |
1759 | argreg++; | |
1760 | ||
2dd604e7 RE |
1761 | /* If the argument is a pointer to a function, and it is a |
1762 | Thumb function, create a LOCAL copy of the value and set | |
1763 | the THUMB bit in it. */ | |
1764 | if (TYPE_CODE_PTR == typecode | |
1765 | && target_type != NULL | |
1766 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
1767 | { | |
e17a4113 | 1768 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
2dd604e7 RE |
1769 | if (arm_pc_is_thumb (regval)) |
1770 | { | |
1771 | val = alloca (len); | |
e17a4113 UW |
1772 | store_unsigned_integer (val, len, byte_order, |
1773 | MAKE_THUMB_ADDR (regval)); | |
2dd604e7 RE |
1774 | } |
1775 | } | |
1776 | ||
1777 | /* Copy the argument to general registers or the stack in | |
1778 | register-sized pieces. Large arguments are split between | |
1779 | registers and stack. */ | |
1780 | while (len > 0) | |
1781 | { | |
f0c9063c | 1782 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
2dd604e7 | 1783 | |
90445bd3 | 1784 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
1785 | { |
1786 | /* The argument is being passed in a general purpose | |
1787 | register. */ | |
e17a4113 UW |
1788 | CORE_ADDR regval |
1789 | = extract_unsigned_integer (val, partial_len, byte_order); | |
1790 | if (byte_order == BFD_ENDIAN_BIG) | |
8bf8793c | 1791 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
1792 | if (arm_debug) |
1793 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
1794 | argnum, |
1795 | gdbarch_register_name | |
2af46ca0 | 1796 | (gdbarch, argreg), |
f0c9063c | 1797 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
1798 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
1799 | argreg++; | |
1800 | } | |
1801 | else | |
1802 | { | |
1803 | /* Push the arguments onto the stack. */ | |
1804 | if (arm_debug) | |
1805 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
1806 | argnum, nstack); | |
f0c9063c UW |
1807 | si = push_stack_item (si, val, INT_REGISTER_SIZE); |
1808 | nstack += INT_REGISTER_SIZE; | |
2dd604e7 RE |
1809 | } |
1810 | ||
1811 | len -= partial_len; | |
1812 | val += partial_len; | |
1813 | } | |
1814 | } | |
1815 | /* If we have an odd number of words to push, then decrement the stack | |
1816 | by one word now, so first stack argument will be dword aligned. */ | |
1817 | if (nstack & 4) | |
1818 | sp -= 4; | |
1819 | ||
1820 | while (si) | |
1821 | { | |
1822 | sp -= si->len; | |
1823 | write_memory (sp, si->data, si->len); | |
1824 | si = pop_stack_item (si); | |
1825 | } | |
1826 | ||
1827 | /* Finally, update teh SP register. */ | |
1828 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
1829 | ||
1830 | return sp; | |
1831 | } | |
1832 | ||
f53f0d0b PB |
1833 | |
1834 | /* Always align the frame to an 8-byte boundary. This is required on | |
1835 | some platforms and harmless on the rest. */ | |
1836 | ||
1837 | static CORE_ADDR | |
1838 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1839 | { | |
1840 | /* Align the stack to eight bytes. */ | |
1841 | return sp & ~ (CORE_ADDR) 7; | |
1842 | } | |
1843 | ||
c906108c | 1844 | static void |
ed9a39eb | 1845 | print_fpu_flags (int flags) |
c906108c | 1846 | { |
c5aa993b JM |
1847 | if (flags & (1 << 0)) |
1848 | fputs ("IVO ", stdout); | |
1849 | if (flags & (1 << 1)) | |
1850 | fputs ("DVZ ", stdout); | |
1851 | if (flags & (1 << 2)) | |
1852 | fputs ("OFL ", stdout); | |
1853 | if (flags & (1 << 3)) | |
1854 | fputs ("UFL ", stdout); | |
1855 | if (flags & (1 << 4)) | |
1856 | fputs ("INX ", stdout); | |
1857 | putchar ('\n'); | |
c906108c SS |
1858 | } |
1859 | ||
5e74b15c RE |
1860 | /* Print interesting information about the floating point processor |
1861 | (if present) or emulator. */ | |
34e8f22d | 1862 | static void |
d855c300 | 1863 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 1864 | struct frame_info *frame, const char *args) |
c906108c | 1865 | { |
9c9acae0 | 1866 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
1867 | int type; |
1868 | ||
1869 | type = (status >> 24) & 127; | |
edefbb7c AC |
1870 | if (status & (1 << 31)) |
1871 | printf (_("Hardware FPU type %d\n"), type); | |
1872 | else | |
1873 | printf (_("Software FPU type %d\n"), type); | |
1874 | /* i18n: [floating point unit] mask */ | |
1875 | fputs (_("mask: "), stdout); | |
c5aa993b | 1876 | print_fpu_flags (status >> 16); |
edefbb7c AC |
1877 | /* i18n: [floating point unit] flags */ |
1878 | fputs (_("flags: "), stdout); | |
c5aa993b | 1879 | print_fpu_flags (status); |
c906108c SS |
1880 | } |
1881 | ||
27067745 UW |
1882 | /* Construct the ARM extended floating point type. */ |
1883 | static struct type * | |
1884 | arm_ext_type (struct gdbarch *gdbarch) | |
1885 | { | |
1886 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1887 | ||
1888 | if (!tdep->arm_ext_type) | |
1889 | tdep->arm_ext_type | |
e9bb382b | 1890 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
1891 | floatformats_arm_ext); |
1892 | ||
1893 | return tdep->arm_ext_type; | |
1894 | } | |
1895 | ||
58d6951d DJ |
1896 | static struct type * |
1897 | arm_neon_double_type (struct gdbarch *gdbarch) | |
1898 | { | |
1899 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1900 | ||
1901 | if (tdep->neon_double_type == NULL) | |
1902 | { | |
1903 | struct type *t, *elem; | |
1904 | ||
1905 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
1906 | TYPE_CODE_UNION); | |
1907 | elem = builtin_type (gdbarch)->builtin_uint8; | |
1908 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
1909 | elem = builtin_type (gdbarch)->builtin_uint16; | |
1910 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
1911 | elem = builtin_type (gdbarch)->builtin_uint32; | |
1912 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
1913 | elem = builtin_type (gdbarch)->builtin_uint64; | |
1914 | append_composite_type_field (t, "u64", elem); | |
1915 | elem = builtin_type (gdbarch)->builtin_float; | |
1916 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
1917 | elem = builtin_type (gdbarch)->builtin_double; | |
1918 | append_composite_type_field (t, "f64", elem); | |
1919 | ||
1920 | TYPE_VECTOR (t) = 1; | |
1921 | TYPE_NAME (t) = "neon_d"; | |
1922 | tdep->neon_double_type = t; | |
1923 | } | |
1924 | ||
1925 | return tdep->neon_double_type; | |
1926 | } | |
1927 | ||
1928 | /* FIXME: The vector types are not correctly ordered on big-endian | |
1929 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
1930 | bits of d0 - regardless of what unit size is being held in d0. So | |
1931 | the offset of the first uint8 in d0 is 7, but the offset of the | |
1932 | first float is 4. This code works as-is for little-endian | |
1933 | targets. */ | |
1934 | ||
1935 | static struct type * | |
1936 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
1937 | { | |
1938 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1939 | ||
1940 | if (tdep->neon_quad_type == NULL) | |
1941 | { | |
1942 | struct type *t, *elem; | |
1943 | ||
1944 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
1945 | TYPE_CODE_UNION); | |
1946 | elem = builtin_type (gdbarch)->builtin_uint8; | |
1947 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
1948 | elem = builtin_type (gdbarch)->builtin_uint16; | |
1949 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
1950 | elem = builtin_type (gdbarch)->builtin_uint32; | |
1951 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
1952 | elem = builtin_type (gdbarch)->builtin_uint64; | |
1953 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
1954 | elem = builtin_type (gdbarch)->builtin_float; | |
1955 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
1956 | elem = builtin_type (gdbarch)->builtin_double; | |
1957 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
1958 | ||
1959 | TYPE_VECTOR (t) = 1; | |
1960 | TYPE_NAME (t) = "neon_q"; | |
1961 | tdep->neon_quad_type = t; | |
1962 | } | |
1963 | ||
1964 | return tdep->neon_quad_type; | |
1965 | } | |
1966 | ||
34e8f22d RE |
1967 | /* Return the GDB type object for the "standard" data type of data in |
1968 | register N. */ | |
1969 | ||
1970 | static struct type * | |
7a5ea0d4 | 1971 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 1972 | { |
58d6951d DJ |
1973 | int num_regs = gdbarch_num_regs (gdbarch); |
1974 | ||
1975 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
1976 | && regnum >= num_regs && regnum < num_regs + 32) | |
1977 | return builtin_type (gdbarch)->builtin_float; | |
1978 | ||
1979 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
1980 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
1981 | return arm_neon_quad_type (gdbarch); | |
1982 | ||
1983 | /* If the target description has register information, we are only | |
1984 | in this function so that we can override the types of | |
1985 | double-precision registers for NEON. */ | |
1986 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
1987 | { | |
1988 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
1989 | ||
1990 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
1991 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
1992 | && gdbarch_tdep (gdbarch)->have_neon) | |
1993 | return arm_neon_double_type (gdbarch); | |
1994 | else | |
1995 | return t; | |
1996 | } | |
1997 | ||
34e8f22d | 1998 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
1999 | { |
2000 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
2001 | return builtin_type (gdbarch)->builtin_void; | |
2002 | ||
2003 | return arm_ext_type (gdbarch); | |
2004 | } | |
e4c16157 | 2005 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 2006 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 2007 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 2008 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
2009 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
2010 | /* These registers are only supported on targets which supply | |
2011 | an XML description. */ | |
df4df182 | 2012 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 2013 | else |
df4df182 | 2014 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
2015 | } |
2016 | ||
ff6f572f DJ |
2017 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
2018 | number. */ | |
2019 | ||
2020 | static int | |
d3f73121 | 2021 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
2022 | { |
2023 | /* Core integer regs. */ | |
2024 | if (reg >= 0 && reg <= 15) | |
2025 | return reg; | |
2026 | ||
2027 | /* Legacy FPA encoding. These were once used in a way which | |
2028 | overlapped with VFP register numbering, so their use is | |
2029 | discouraged, but GDB doesn't support the ARM toolchain | |
2030 | which used them for VFP. */ | |
2031 | if (reg >= 16 && reg <= 23) | |
2032 | return ARM_F0_REGNUM + reg - 16; | |
2033 | ||
2034 | /* New assignments for the FPA registers. */ | |
2035 | if (reg >= 96 && reg <= 103) | |
2036 | return ARM_F0_REGNUM + reg - 96; | |
2037 | ||
2038 | /* WMMX register assignments. */ | |
2039 | if (reg >= 104 && reg <= 111) | |
2040 | return ARM_WCGR0_REGNUM + reg - 104; | |
2041 | ||
2042 | if (reg >= 112 && reg <= 127) | |
2043 | return ARM_WR0_REGNUM + reg - 112; | |
2044 | ||
2045 | if (reg >= 192 && reg <= 199) | |
2046 | return ARM_WC0_REGNUM + reg - 192; | |
2047 | ||
58d6951d DJ |
2048 | /* VFP v2 registers. A double precision value is actually |
2049 | in d1 rather than s2, but the ABI only defines numbering | |
2050 | for the single precision registers. This will "just work" | |
2051 | in GDB for little endian targets (we'll read eight bytes, | |
2052 | starting in s0 and then progressing to s1), but will be | |
2053 | reversed on big endian targets with VFP. This won't | |
2054 | be a problem for the new Neon quad registers; you're supposed | |
2055 | to use DW_OP_piece for those. */ | |
2056 | if (reg >= 64 && reg <= 95) | |
2057 | { | |
2058 | char name_buf[4]; | |
2059 | ||
2060 | sprintf (name_buf, "s%d", reg - 64); | |
2061 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
2062 | strlen (name_buf)); | |
2063 | } | |
2064 | ||
2065 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
2066 | registers, except that it now describes d0 instead of s0. */ | |
2067 | if (reg >= 256 && reg <= 287) | |
2068 | { | |
2069 | char name_buf[4]; | |
2070 | ||
2071 | sprintf (name_buf, "d%d", reg - 256); | |
2072 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
2073 | strlen (name_buf)); | |
2074 | } | |
2075 | ||
ff6f572f DJ |
2076 | return -1; |
2077 | } | |
2078 | ||
26216b98 AC |
2079 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
2080 | static int | |
e7faf938 | 2081 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
2082 | { |
2083 | int reg = regnum; | |
e7faf938 | 2084 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 2085 | |
ff6f572f DJ |
2086 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
2087 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
2088 | ||
2089 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
2090 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
2091 | ||
2092 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
2093 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
2094 | ||
26216b98 AC |
2095 | if (reg < NUM_GREGS) |
2096 | return SIM_ARM_R0_REGNUM + reg; | |
2097 | reg -= NUM_GREGS; | |
2098 | ||
2099 | if (reg < NUM_FREGS) | |
2100 | return SIM_ARM_FP0_REGNUM + reg; | |
2101 | reg -= NUM_FREGS; | |
2102 | ||
2103 | if (reg < NUM_SREGS) | |
2104 | return SIM_ARM_FPS_REGNUM + reg; | |
2105 | reg -= NUM_SREGS; | |
2106 | ||
edefbb7c | 2107 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 2108 | } |
34e8f22d | 2109 | |
a37b3cc0 AC |
2110 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
2111 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
2112 | It is thought that this is is the floating-point register format on | |
2113 | little-endian systems. */ | |
c906108c | 2114 | |
ed9a39eb | 2115 | static void |
b508a996 | 2116 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
be8626e0 | 2117 | void *dbl, int endianess) |
c906108c | 2118 | { |
a37b3cc0 | 2119 | DOUBLEST d; |
be8626e0 MD |
2120 | |
2121 | if (endianess == BFD_ENDIAN_BIG) | |
a37b3cc0 AC |
2122 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
2123 | else | |
2124 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
2125 | ptr, &d); | |
b508a996 | 2126 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
2127 | } |
2128 | ||
34e8f22d | 2129 | static void |
be8626e0 MD |
2130 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr, |
2131 | int endianess) | |
c906108c | 2132 | { |
a37b3cc0 | 2133 | DOUBLEST d; |
be8626e0 | 2134 | |
b508a996 | 2135 | floatformat_to_doublest (fmt, ptr, &d); |
be8626e0 | 2136 | if (endianess == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
2137 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
2138 | else | |
2139 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
2140 | &d, dbl); | |
c906108c | 2141 | } |
ed9a39eb | 2142 | |
c906108c | 2143 | static int |
ed9a39eb | 2144 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
2145 | { |
2146 | if (cond == INST_AL || cond == INST_NV) | |
2147 | return 1; | |
2148 | ||
2149 | switch (cond) | |
2150 | { | |
2151 | case INST_EQ: | |
2152 | return ((status_reg & FLAG_Z) != 0); | |
2153 | case INST_NE: | |
2154 | return ((status_reg & FLAG_Z) == 0); | |
2155 | case INST_CS: | |
2156 | return ((status_reg & FLAG_C) != 0); | |
2157 | case INST_CC: | |
2158 | return ((status_reg & FLAG_C) == 0); | |
2159 | case INST_MI: | |
2160 | return ((status_reg & FLAG_N) != 0); | |
2161 | case INST_PL: | |
2162 | return ((status_reg & FLAG_N) == 0); | |
2163 | case INST_VS: | |
2164 | return ((status_reg & FLAG_V) != 0); | |
2165 | case INST_VC: | |
2166 | return ((status_reg & FLAG_V) == 0); | |
2167 | case INST_HI: | |
2168 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
2169 | case INST_LS: | |
2170 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
2171 | case INST_GE: | |
2172 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
2173 | case INST_LT: | |
2174 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
2175 | case INST_GT: | |
f8bf5763 PM |
2176 | return (((status_reg & FLAG_Z) == 0) |
2177 | && (((status_reg & FLAG_N) == 0) | |
2178 | == ((status_reg & FLAG_V) == 0))); | |
c906108c | 2179 | case INST_LE: |
f8bf5763 PM |
2180 | return (((status_reg & FLAG_Z) != 0) |
2181 | || (((status_reg & FLAG_N) == 0) | |
2182 | != ((status_reg & FLAG_V) == 0))); | |
c906108c SS |
2183 | } |
2184 | return 1; | |
2185 | } | |
2186 | ||
9512d7fd | 2187 | /* Support routines for single stepping. Calculate the next PC value. */ |
c906108c SS |
2188 | #define submask(x) ((1L << ((x) + 1)) - 1) |
2189 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
2190 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
2191 | #define sbits(obj,st,fn) \ | |
2192 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
2193 | #define BranchDest(addr,instr) \ | |
2194 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
2195 | #define ARM_PC_32 1 | |
2196 | ||
2197 | static unsigned long | |
0b1b3e42 UW |
2198 | shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry, |
2199 | unsigned long pc_val, unsigned long status_reg) | |
c906108c SS |
2200 | { |
2201 | unsigned long res, shift; | |
2202 | int rm = bits (inst, 0, 3); | |
2203 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
2204 | |
2205 | if (bit (inst, 4)) | |
c906108c SS |
2206 | { |
2207 | int rs = bits (inst, 8, 11); | |
0b1b3e42 UW |
2208 | shift = (rs == 15 ? pc_val + 8 |
2209 | : get_frame_register_unsigned (frame, rs)) & 0xFF; | |
c906108c SS |
2210 | } |
2211 | else | |
2212 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
2213 | |
2214 | res = (rm == 15 | |
c906108c | 2215 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 2216 | + (bit (inst, 4) ? 12 : 8)) |
0b1b3e42 | 2217 | : get_frame_register_unsigned (frame, rm)); |
c906108c SS |
2218 | |
2219 | switch (shifttype) | |
2220 | { | |
c5aa993b | 2221 | case 0: /* LSL */ |
c906108c SS |
2222 | res = shift >= 32 ? 0 : res << shift; |
2223 | break; | |
c5aa993b JM |
2224 | |
2225 | case 1: /* LSR */ | |
c906108c SS |
2226 | res = shift >= 32 ? 0 : res >> shift; |
2227 | break; | |
2228 | ||
c5aa993b JM |
2229 | case 2: /* ASR */ |
2230 | if (shift >= 32) | |
2231 | shift = 31; | |
c906108c SS |
2232 | res = ((res & 0x80000000L) |
2233 | ? ~((~res) >> shift) : res >> shift); | |
2234 | break; | |
2235 | ||
c5aa993b | 2236 | case 3: /* ROR/RRX */ |
c906108c SS |
2237 | shift &= 31; |
2238 | if (shift == 0) | |
2239 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
2240 | else | |
c5aa993b | 2241 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
2242 | break; |
2243 | } | |
2244 | ||
2245 | return res & 0xffffffff; | |
2246 | } | |
2247 | ||
c906108c SS |
2248 | /* Return number of 1-bits in VAL. */ |
2249 | ||
2250 | static int | |
ed9a39eb | 2251 | bitcount (unsigned long val) |
c906108c SS |
2252 | { |
2253 | int nbits; | |
2254 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 2255 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
2256 | return nbits; |
2257 | } | |
2258 | ||
ad527d2e | 2259 | static CORE_ADDR |
0b1b3e42 | 2260 | thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2261 | { |
2af46ca0 | 2262 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 UW |
2263 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2264 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c5aa993b | 2265 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
e17a4113 | 2266 | unsigned short inst1; |
94c30b78 | 2267 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c | 2268 | unsigned long offset; |
9dca5578 | 2269 | ULONGEST status, it; |
c906108c | 2270 | |
e17a4113 | 2271 | inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code); |
9d4fde75 | 2272 | |
9dca5578 DJ |
2273 | /* Thumb-2 conditional execution support. There are eight bits in |
2274 | the CPSR which describe conditional execution state. Once | |
2275 | reconstructed (they're in a funny order), the low five bits | |
2276 | describe the low bit of the condition for each instruction and | |
2277 | how many instructions remain. The high three bits describe the | |
2278 | base condition. One of the low four bits will be set if an IT | |
2279 | block is active. These bits read as zero on earlier | |
2280 | processors. */ | |
2281 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
2282 | it = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); | |
2283 | ||
2284 | /* On GNU/Linux, where this routine is used, we use an undefined | |
2285 | instruction as a breakpoint. Unlike BKPT, IT can disable execution | |
2286 | of the undefined instruction. So we might miss the breakpoint! */ | |
5fed8c43 | 2287 | if (((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) || (it & 0x0f)) |
9dca5578 DJ |
2288 | error (_("Stepping through Thumb-2 IT blocks is not yet supported")); |
2289 | ||
2290 | if (it & 0x0f) | |
2291 | { | |
2292 | /* We are in a conditional block. Check the condition. */ | |
2293 | int cond = it >> 4; | |
2294 | ||
2295 | if (! condition_true (cond, status)) | |
2296 | { | |
2297 | /* Advance to the next instruction. All the 32-bit | |
2298 | instructions share a common prefix. */ | |
2299 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
2300 | return pc + 4; | |
2301 | else | |
2302 | return pc + 2; | |
2303 | } | |
2304 | } | |
2305 | ||
c906108c SS |
2306 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ |
2307 | { | |
2308 | CORE_ADDR sp; | |
2309 | ||
2310 | /* Fetch the saved PC from the stack. It's stored above | |
2311 | all of the other registers. */ | |
f0c9063c | 2312 | offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE; |
0b1b3e42 | 2313 | sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM); |
e17a4113 | 2314 | nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order); |
2af46ca0 | 2315 | nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc); |
c906108c | 2316 | if (nextpc == pc) |
edefbb7c | 2317 | error (_("Infinite loop detected")); |
c906108c SS |
2318 | } |
2319 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
2320 | { | |
c5aa993b | 2321 | unsigned long cond = bits (inst1, 8, 11); |
94c30b78 | 2322 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
c906108c SS |
2323 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); |
2324 | } | |
2325 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
2326 | { | |
2327 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
2328 | } | |
9dca5578 | 2329 | else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */ |
c906108c | 2330 | { |
e17a4113 UW |
2331 | unsigned short inst2; |
2332 | inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
9dca5578 DJ |
2333 | |
2334 | /* Default to the next instruction. */ | |
2335 | nextpc = pc + 4; | |
2336 | ||
2337 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
2338 | { | |
2339 | /* Branches and miscellaneous control instructions. */ | |
2340 | ||
2341 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
2342 | { | |
2343 | /* B, BL, BLX. */ | |
2344 | int j1, j2, imm1, imm2; | |
2345 | ||
2346 | imm1 = sbits (inst1, 0, 10); | |
2347 | imm2 = bits (inst2, 0, 10); | |
2348 | j1 = bit (inst2, 13); | |
2349 | j2 = bit (inst2, 11); | |
2350 | ||
2351 | offset = ((imm1 << 12) + (imm2 << 1)); | |
2352 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
2353 | ||
2354 | nextpc = pc_val + offset; | |
2355 | /* For BLX make sure to clear the low bits. */ | |
2356 | if (bit (inst2, 12) == 0) | |
2357 | nextpc = nextpc & 0xfffffffc; | |
2358 | } | |
2359 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
2360 | { | |
2361 | /* SUBS PC, LR, #imm8. */ | |
2362 | nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM); | |
2363 | nextpc -= inst2 & 0x00ff; | |
2364 | } | |
2365 | else if ((inst2 & 0xd000) == 0xc000 && (inst1 & 0x0380) != 0x0380) | |
2366 | { | |
2367 | /* Conditional branch. */ | |
2368 | if (condition_true (bits (inst1, 6, 9), status)) | |
2369 | { | |
2370 | int sign, j1, j2, imm1, imm2; | |
2371 | ||
2372 | sign = sbits (inst1, 10, 10); | |
2373 | imm1 = bits (inst1, 0, 5); | |
2374 | imm2 = bits (inst2, 0, 10); | |
2375 | j1 = bit (inst2, 13); | |
2376 | j2 = bit (inst2, 11); | |
2377 | ||
2378 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
2379 | offset += (imm1 << 12) + (imm2 << 1); | |
2380 | ||
2381 | nextpc = pc_val + offset; | |
2382 | } | |
2383 | } | |
2384 | } | |
2385 | else if ((inst1 & 0xfe50) == 0xe810) | |
2386 | { | |
2387 | /* Load multiple or RFE. */ | |
2388 | int rn, offset, load_pc = 1; | |
2389 | ||
2390 | rn = bits (inst1, 0, 3); | |
2391 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
2392 | { | |
2393 | /* LDMIA or POP */ | |
2394 | if (!bit (inst2, 15)) | |
2395 | load_pc = 0; | |
2396 | offset = bitcount (inst2) * 4 - 4; | |
2397 | } | |
2398 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
2399 | { | |
2400 | /* LDMDB */ | |
2401 | if (!bit (inst2, 15)) | |
2402 | load_pc = 0; | |
2403 | offset = -4; | |
2404 | } | |
2405 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
2406 | { | |
2407 | /* RFEIA */ | |
2408 | offset = 0; | |
2409 | } | |
2410 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
2411 | { | |
2412 | /* RFEDB */ | |
2413 | offset = -8; | |
2414 | } | |
2415 | else | |
2416 | load_pc = 0; | |
2417 | ||
2418 | if (load_pc) | |
2419 | { | |
2420 | CORE_ADDR addr = get_frame_register_unsigned (frame, rn); | |
2421 | nextpc = get_frame_memory_unsigned (frame, addr + offset, 4); | |
2422 | } | |
2423 | } | |
2424 | else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
2425 | { | |
2426 | /* MOV PC or MOVS PC. */ | |
2427 | nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
2428 | } | |
2429 | else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
2430 | { | |
2431 | /* LDR PC. */ | |
2432 | CORE_ADDR base; | |
2433 | int rn, load_pc = 1; | |
2434 | ||
2435 | rn = bits (inst1, 0, 3); | |
2436 | base = get_frame_register_unsigned (frame, rn); | |
2437 | if (rn == 15) | |
2438 | { | |
2439 | base = (base + 4) & ~(CORE_ADDR) 0x3; | |
2440 | if (bit (inst1, 7)) | |
2441 | base += bits (inst2, 0, 11); | |
2442 | else | |
2443 | base -= bits (inst2, 0, 11); | |
2444 | } | |
2445 | else if (bit (inst1, 7)) | |
2446 | base += bits (inst2, 0, 11); | |
2447 | else if (bit (inst2, 11)) | |
2448 | { | |
2449 | if (bit (inst2, 10)) | |
2450 | { | |
2451 | if (bit (inst2, 9)) | |
2452 | base += bits (inst2, 0, 7); | |
2453 | else | |
2454 | base -= bits (inst2, 0, 7); | |
2455 | } | |
2456 | } | |
2457 | else if ((inst2 & 0x0fc0) == 0x0000) | |
2458 | { | |
2459 | int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3); | |
2460 | base += get_frame_register_unsigned (frame, rm) << shift; | |
2461 | } | |
2462 | else | |
2463 | /* Reserved. */ | |
2464 | load_pc = 0; | |
2465 | ||
2466 | if (load_pc) | |
2467 | nextpc = get_frame_memory_unsigned (frame, base, 4); | |
2468 | } | |
2469 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
2470 | { | |
2471 | /* TBB. */ | |
2472 | CORE_ADDR table, offset, length; | |
2473 | ||
2474 | table = get_frame_register_unsigned (frame, bits (inst1, 0, 3)); | |
2475 | offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
2476 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 1); | |
2477 | nextpc = pc_val + length; | |
2478 | } | |
2479 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
2480 | { | |
2481 | /* TBH. */ | |
2482 | CORE_ADDR table, offset, length; | |
2483 | ||
2484 | table = get_frame_register_unsigned (frame, bits (inst1, 0, 3)); | |
2485 | offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
2486 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 2); | |
2487 | nextpc = pc_val + length; | |
2488 | } | |
c906108c | 2489 | } |
aa17d93e | 2490 | else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */ |
9498281f DJ |
2491 | { |
2492 | if (bits (inst1, 3, 6) == 0x0f) | |
2493 | nextpc = pc_val; | |
2494 | else | |
0b1b3e42 | 2495 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); |
9498281f | 2496 | |
2af46ca0 | 2497 | nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc); |
9498281f | 2498 | if (nextpc == pc) |
edefbb7c | 2499 | error (_("Infinite loop detected")); |
9498281f | 2500 | } |
9dca5578 DJ |
2501 | else if ((inst1 & 0xf500) == 0xb100) |
2502 | { | |
2503 | /* CBNZ or CBZ. */ | |
2504 | int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1); | |
2505 | ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2)); | |
2506 | ||
2507 | if (bit (inst1, 11) && reg != 0) | |
2508 | nextpc = pc_val + imm; | |
2509 | else if (!bit (inst1, 11) && reg == 0) | |
2510 | nextpc = pc_val + imm; | |
2511 | } | |
c906108c SS |
2512 | |
2513 | return nextpc; | |
2514 | } | |
2515 | ||
daddc3c1 | 2516 | CORE_ADDR |
0b1b3e42 | 2517 | arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2518 | { |
2af46ca0 | 2519 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 UW |
2520 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2521 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c906108c SS |
2522 | unsigned long pc_val; |
2523 | unsigned long this_instr; | |
2524 | unsigned long status; | |
2525 | CORE_ADDR nextpc; | |
2526 | ||
b39cc962 | 2527 | if (arm_frame_is_thumb (frame)) |
0b1b3e42 | 2528 | return thumb_get_next_pc (frame, pc); |
c906108c SS |
2529 | |
2530 | pc_val = (unsigned long) pc; | |
e17a4113 | 2531 | this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code); |
9d4fde75 | 2532 | |
0b1b3e42 | 2533 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); |
c5aa993b | 2534 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c | 2535 | |
daddc3c1 DJ |
2536 | if (bits (this_instr, 28, 31) == INST_NV) |
2537 | switch (bits (this_instr, 24, 27)) | |
2538 | { | |
2539 | case 0xa: | |
2540 | case 0xb: | |
2541 | { | |
2542 | /* Branch with Link and change to Thumb. */ | |
2543 | nextpc = BranchDest (pc, this_instr); | |
2544 | nextpc |= bit (this_instr, 24) << 1; | |
2545 | ||
e1e01acd | 2546 | nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc); |
daddc3c1 DJ |
2547 | if (nextpc == pc) |
2548 | error (_("Infinite loop detected")); | |
2549 | break; | |
2550 | } | |
2551 | case 0xc: | |
2552 | case 0xd: | |
2553 | case 0xe: | |
2554 | /* Coprocessor register transfer. */ | |
2555 | if (bits (this_instr, 12, 15) == 15) | |
2556 | error (_("Invalid update to pc in instruction")); | |
2557 | break; | |
2558 | } | |
2559 | else if (condition_true (bits (this_instr, 28, 31), status)) | |
c906108c SS |
2560 | { |
2561 | switch (bits (this_instr, 24, 27)) | |
2562 | { | |
c5aa993b | 2563 | case 0x0: |
94c30b78 | 2564 | case 0x1: /* data processing */ |
c5aa993b JM |
2565 | case 0x2: |
2566 | case 0x3: | |
c906108c SS |
2567 | { |
2568 | unsigned long operand1, operand2, result = 0; | |
2569 | unsigned long rn; | |
2570 | int c; | |
c5aa993b | 2571 | |
c906108c SS |
2572 | if (bits (this_instr, 12, 15) != 15) |
2573 | break; | |
2574 | ||
2575 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 2576 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
edefbb7c | 2577 | error (_("Invalid update to pc in instruction")); |
c906108c | 2578 | |
9498281f | 2579 | /* BX <reg>, BLX <reg> */ |
e150acc7 PB |
2580 | if (bits (this_instr, 4, 27) == 0x12fff1 |
2581 | || bits (this_instr, 4, 27) == 0x12fff3) | |
9498281f DJ |
2582 | { |
2583 | rn = bits (this_instr, 0, 3); | |
0b1b3e42 UW |
2584 | result = (rn == 15) ? pc_val + 8 |
2585 | : get_frame_register_unsigned (frame, rn); | |
bf6ae464 | 2586 | nextpc = (CORE_ADDR) gdbarch_addr_bits_remove |
2af46ca0 | 2587 | (gdbarch, result); |
9498281f DJ |
2588 | |
2589 | if (nextpc == pc) | |
edefbb7c | 2590 | error (_("Infinite loop detected")); |
9498281f DJ |
2591 | |
2592 | return nextpc; | |
2593 | } | |
2594 | ||
c906108c SS |
2595 | /* Multiply into PC */ |
2596 | c = (status & FLAG_C) ? 1 : 0; | |
2597 | rn = bits (this_instr, 16, 19); | |
0b1b3e42 UW |
2598 | operand1 = (rn == 15) ? pc_val + 8 |
2599 | : get_frame_register_unsigned (frame, rn); | |
c5aa993b | 2600 | |
c906108c SS |
2601 | if (bit (this_instr, 25)) |
2602 | { | |
2603 | unsigned long immval = bits (this_instr, 0, 7); | |
2604 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
2605 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
2606 | & 0xffffffff; | |
c906108c | 2607 | } |
c5aa993b | 2608 | else /* operand 2 is a shifted register */ |
0b1b3e42 | 2609 | operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status); |
c5aa993b | 2610 | |
c906108c SS |
2611 | switch (bits (this_instr, 21, 24)) |
2612 | { | |
c5aa993b | 2613 | case 0x0: /*and */ |
c906108c SS |
2614 | result = operand1 & operand2; |
2615 | break; | |
2616 | ||
c5aa993b | 2617 | case 0x1: /*eor */ |
c906108c SS |
2618 | result = operand1 ^ operand2; |
2619 | break; | |
2620 | ||
c5aa993b | 2621 | case 0x2: /*sub */ |
c906108c SS |
2622 | result = operand1 - operand2; |
2623 | break; | |
2624 | ||
c5aa993b | 2625 | case 0x3: /*rsb */ |
c906108c SS |
2626 | result = operand2 - operand1; |
2627 | break; | |
2628 | ||
c5aa993b | 2629 | case 0x4: /*add */ |
c906108c SS |
2630 | result = operand1 + operand2; |
2631 | break; | |
2632 | ||
c5aa993b | 2633 | case 0x5: /*adc */ |
c906108c SS |
2634 | result = operand1 + operand2 + c; |
2635 | break; | |
2636 | ||
c5aa993b | 2637 | case 0x6: /*sbc */ |
c906108c SS |
2638 | result = operand1 - operand2 + c; |
2639 | break; | |
2640 | ||
c5aa993b | 2641 | case 0x7: /*rsc */ |
c906108c SS |
2642 | result = operand2 - operand1 + c; |
2643 | break; | |
2644 | ||
c5aa993b JM |
2645 | case 0x8: |
2646 | case 0x9: | |
2647 | case 0xa: | |
2648 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
2649 | result = (unsigned long) nextpc; |
2650 | break; | |
2651 | ||
c5aa993b | 2652 | case 0xc: /*orr */ |
c906108c SS |
2653 | result = operand1 | operand2; |
2654 | break; | |
2655 | ||
c5aa993b | 2656 | case 0xd: /*mov */ |
c906108c SS |
2657 | /* Always step into a function. */ |
2658 | result = operand2; | |
c5aa993b | 2659 | break; |
c906108c | 2660 | |
c5aa993b | 2661 | case 0xe: /*bic */ |
c906108c SS |
2662 | result = operand1 & ~operand2; |
2663 | break; | |
2664 | ||
c5aa993b | 2665 | case 0xf: /*mvn */ |
c906108c SS |
2666 | result = ~operand2; |
2667 | break; | |
2668 | } | |
bf6ae464 | 2669 | nextpc = (CORE_ADDR) gdbarch_addr_bits_remove |
2af46ca0 | 2670 | (gdbarch, result); |
c906108c SS |
2671 | |
2672 | if (nextpc == pc) | |
edefbb7c | 2673 | error (_("Infinite loop detected")); |
c906108c SS |
2674 | break; |
2675 | } | |
c5aa993b JM |
2676 | |
2677 | case 0x4: | |
2678 | case 0x5: /* data transfer */ | |
2679 | case 0x6: | |
2680 | case 0x7: | |
c906108c SS |
2681 | if (bit (this_instr, 20)) |
2682 | { | |
2683 | /* load */ | |
2684 | if (bits (this_instr, 12, 15) == 15) | |
2685 | { | |
2686 | /* rd == pc */ | |
c5aa993b | 2687 | unsigned long rn; |
c906108c | 2688 | unsigned long base; |
c5aa993b | 2689 | |
c906108c | 2690 | if (bit (this_instr, 22)) |
edefbb7c | 2691 | error (_("Invalid update to pc in instruction")); |
c906108c SS |
2692 | |
2693 | /* byte write to PC */ | |
2694 | rn = bits (this_instr, 16, 19); | |
0b1b3e42 UW |
2695 | base = (rn == 15) ? pc_val + 8 |
2696 | : get_frame_register_unsigned (frame, rn); | |
c906108c SS |
2697 | if (bit (this_instr, 24)) |
2698 | { | |
2699 | /* pre-indexed */ | |
2700 | int c = (status & FLAG_C) ? 1 : 0; | |
2701 | unsigned long offset = | |
c5aa993b | 2702 | (bit (this_instr, 25) |
0b1b3e42 | 2703 | ? shifted_reg_val (frame, this_instr, c, pc_val, status) |
c5aa993b | 2704 | : bits (this_instr, 0, 11)); |
c906108c SS |
2705 | |
2706 | if (bit (this_instr, 23)) | |
2707 | base += offset; | |
2708 | else | |
2709 | base -= offset; | |
2710 | } | |
c5aa993b | 2711 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
e17a4113 | 2712 | 4, byte_order); |
c5aa993b | 2713 | |
2af46ca0 | 2714 | nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc); |
c906108c SS |
2715 | |
2716 | if (nextpc == pc) | |
edefbb7c | 2717 | error (_("Infinite loop detected")); |
c906108c SS |
2718 | } |
2719 | } | |
2720 | break; | |
c5aa993b JM |
2721 | |
2722 | case 0x8: | |
2723 | case 0x9: /* block transfer */ | |
c906108c SS |
2724 | if (bit (this_instr, 20)) |
2725 | { | |
2726 | /* LDM */ | |
2727 | if (bit (this_instr, 15)) | |
2728 | { | |
2729 | /* loading pc */ | |
2730 | int offset = 0; | |
2731 | ||
2732 | if (bit (this_instr, 23)) | |
2733 | { | |
2734 | /* up */ | |
2735 | unsigned long reglist = bits (this_instr, 0, 14); | |
2736 | offset = bitcount (reglist) * 4; | |
c5aa993b | 2737 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
2738 | offset += 4; |
2739 | } | |
2740 | else if (bit (this_instr, 24)) | |
2741 | offset = -4; | |
c5aa993b | 2742 | |
c906108c | 2743 | { |
c5aa993b | 2744 | unsigned long rn_val = |
0b1b3e42 UW |
2745 | get_frame_register_unsigned (frame, |
2746 | bits (this_instr, 16, 19)); | |
c906108c SS |
2747 | nextpc = |
2748 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 2749 | + offset), |
e17a4113 | 2750 | 4, byte_order); |
c906108c | 2751 | } |
bf6ae464 | 2752 | nextpc = gdbarch_addr_bits_remove |
2af46ca0 | 2753 | (gdbarch, nextpc); |
c906108c | 2754 | if (nextpc == pc) |
edefbb7c | 2755 | error (_("Infinite loop detected")); |
c906108c SS |
2756 | } |
2757 | } | |
2758 | break; | |
c5aa993b JM |
2759 | |
2760 | case 0xb: /* branch & link */ | |
2761 | case 0xa: /* branch */ | |
c906108c SS |
2762 | { |
2763 | nextpc = BranchDest (pc, this_instr); | |
2764 | ||
2af46ca0 | 2765 | nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc); |
c906108c | 2766 | if (nextpc == pc) |
edefbb7c | 2767 | error (_("Infinite loop detected")); |
c906108c SS |
2768 | break; |
2769 | } | |
c5aa993b JM |
2770 | |
2771 | case 0xc: | |
2772 | case 0xd: | |
2773 | case 0xe: /* coproc ops */ | |
2774 | case 0xf: /* SWI */ | |
c906108c SS |
2775 | break; |
2776 | ||
2777 | default: | |
edefbb7c | 2778 | fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n")); |
c906108c SS |
2779 | return (pc); |
2780 | } | |
2781 | } | |
2782 | ||
2783 | return nextpc; | |
2784 | } | |
2785 | ||
9512d7fd FN |
2786 | /* single_step() is called just before we want to resume the inferior, |
2787 | if we want to single-step it but there is no hardware or kernel | |
2788 | single-step support. We find the target of the coming instruction | |
e0cd558a | 2789 | and breakpoint it. */ |
9512d7fd | 2790 | |
190dce09 | 2791 | int |
0b1b3e42 | 2792 | arm_software_single_step (struct frame_info *frame) |
9512d7fd | 2793 | { |
a6d9a66e | 2794 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 2795 | struct address_space *aspace = get_frame_address_space (frame); |
a6d9a66e | 2796 | |
8181d85f DJ |
2797 | /* NOTE: This may insert the wrong breakpoint instruction when |
2798 | single-stepping over a mode-changing instruction, if the | |
2799 | CPSR heuristics are used. */ | |
9512d7fd | 2800 | |
0b1b3e42 | 2801 | CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame)); |
6c95b8df | 2802 | insert_single_step_breakpoint (gdbarch, aspace, next_pc); |
e6590a1b UW |
2803 | |
2804 | return 1; | |
9512d7fd | 2805 | } |
9512d7fd | 2806 | |
cca44b1b | 2807 | /* ARM displaced stepping support. |
c906108c | 2808 | |
cca44b1b | 2809 | Generally ARM displaced stepping works as follows: |
c906108c | 2810 | |
cca44b1b JB |
2811 | 1. When an instruction is to be single-stepped, it is first decoded by |
2812 | arm_process_displaced_insn (called from arm_displaced_step_copy_insn). | |
2813 | Depending on the type of instruction, it is then copied to a scratch | |
2814 | location, possibly in a modified form. The copy_* set of functions | |
2815 | performs such modification, as necessary. A breakpoint is placed after | |
2816 | the modified instruction in the scratch space to return control to GDB. | |
2817 | Note in particular that instructions which modify the PC will no longer | |
2818 | do so after modification. | |
c5aa993b | 2819 | |
cca44b1b JB |
2820 | 2. The instruction is single-stepped, by setting the PC to the scratch |
2821 | location address, and resuming. Control returns to GDB when the | |
2822 | breakpoint is hit. | |
c5aa993b | 2823 | |
cca44b1b JB |
2824 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
2825 | function used for the current instruction. This function's job is to | |
2826 | put the CPU/memory state back to what it would have been if the | |
2827 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 2828 | |
cca44b1b JB |
2829 | /* NOP instruction (mov r0, r0). */ |
2830 | #define ARM_NOP 0xe1a00000 | |
2831 | ||
2832 | /* Helper for register reads for displaced stepping. In particular, this | |
2833 | returns the PC as it would be seen by the instruction at its original | |
2834 | location. */ | |
2835 | ||
2836 | ULONGEST | |
2837 | displaced_read_reg (struct regcache *regs, CORE_ADDR from, int regno) | |
2838 | { | |
2839 | ULONGEST ret; | |
2840 | ||
2841 | if (regno == 15) | |
2842 | { | |
2843 | if (debug_displaced) | |
2844 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
2845 | (unsigned long) from + 8); | |
2846 | return (ULONGEST) from + 8; /* Pipeline offset. */ | |
2847 | } | |
c906108c | 2848 | else |
cca44b1b JB |
2849 | { |
2850 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
2851 | if (debug_displaced) | |
2852 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
2853 | regno, (unsigned long) ret); | |
2854 | return ret; | |
2855 | } | |
c906108c SS |
2856 | } |
2857 | ||
cca44b1b JB |
2858 | static int |
2859 | displaced_in_arm_mode (struct regcache *regs) | |
2860 | { | |
2861 | ULONGEST ps; | |
66e810cd | 2862 | |
cca44b1b | 2863 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 2864 | |
cca44b1b JB |
2865 | return (ps & CPSR_T) == 0; |
2866 | } | |
66e810cd | 2867 | |
cca44b1b | 2868 | /* Write to the PC as from a branch instruction. */ |
c906108c | 2869 | |
cca44b1b JB |
2870 | static void |
2871 | branch_write_pc (struct regcache *regs, ULONGEST val) | |
c906108c | 2872 | { |
cca44b1b JB |
2873 | if (displaced_in_arm_mode (regs)) |
2874 | /* Note: If bits 0/1 are set, this branch would be unpredictable for | |
2875 | architecture versions < 6. */ | |
2876 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & ~(ULONGEST) 0x3); | |
2877 | else | |
2878 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & ~(ULONGEST) 0x1); | |
2879 | } | |
66e810cd | 2880 | |
cca44b1b JB |
2881 | /* Write to the PC as from a branch-exchange instruction. */ |
2882 | ||
2883 | static void | |
2884 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
2885 | { | |
2886 | ULONGEST ps; | |
2887 | ||
2888 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
2889 | ||
2890 | if ((val & 1) == 1) | |
c906108c | 2891 | { |
cca44b1b JB |
2892 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | CPSR_T); |
2893 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); | |
2894 | } | |
2895 | else if ((val & 2) == 0) | |
2896 | { | |
2897 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, | |
2898 | ps & ~(ULONGEST) CPSR_T); | |
2899 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); | |
c906108c SS |
2900 | } |
2901 | else | |
2902 | { | |
cca44b1b JB |
2903 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
2904 | mode, align dest to 4 bytes). */ | |
2905 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
2906 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, | |
2907 | ps & ~(ULONGEST) CPSR_T); | |
2908 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); | |
c906108c SS |
2909 | } |
2910 | } | |
ed9a39eb | 2911 | |
cca44b1b | 2912 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 2913 | |
34e8f22d | 2914 | static void |
cca44b1b | 2915 | load_write_pc (struct regcache *regs, ULONGEST val) |
ed9a39eb | 2916 | { |
cca44b1b JB |
2917 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
2918 | bx_write_pc (regs, val); | |
2919 | else | |
2920 | branch_write_pc (regs, val); | |
2921 | } | |
be8626e0 | 2922 | |
cca44b1b JB |
2923 | /* Write to the PC as if from an ALU instruction. */ |
2924 | ||
2925 | static void | |
2926 | alu_write_pc (struct regcache *regs, ULONGEST val) | |
2927 | { | |
2928 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && displaced_in_arm_mode (regs)) | |
2929 | bx_write_pc (regs, val); | |
2930 | else | |
2931 | branch_write_pc (regs, val); | |
2932 | } | |
2933 | ||
2934 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
2935 | has a varying effects depending on the instruction which does the write: | |
2936 | this is controlled by the WRITE_PC argument. */ | |
2937 | ||
2938 | void | |
2939 | displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc, | |
2940 | int regno, ULONGEST val, enum pc_write_style write_pc) | |
2941 | { | |
2942 | if (regno == 15) | |
08216dd7 | 2943 | { |
cca44b1b JB |
2944 | if (debug_displaced) |
2945 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
2946 | (unsigned long) val); | |
2947 | switch (write_pc) | |
08216dd7 | 2948 | { |
cca44b1b JB |
2949 | case BRANCH_WRITE_PC: |
2950 | branch_write_pc (regs, val); | |
08216dd7 RE |
2951 | break; |
2952 | ||
cca44b1b JB |
2953 | case BX_WRITE_PC: |
2954 | bx_write_pc (regs, val); | |
2955 | break; | |
2956 | ||
2957 | case LOAD_WRITE_PC: | |
2958 | load_write_pc (regs, val); | |
2959 | break; | |
2960 | ||
2961 | case ALU_WRITE_PC: | |
2962 | alu_write_pc (regs, val); | |
2963 | break; | |
2964 | ||
2965 | case CANNOT_WRITE_PC: | |
2966 | warning (_("Instruction wrote to PC in an unexpected way when " | |
2967 | "single-stepping")); | |
08216dd7 RE |
2968 | break; |
2969 | ||
2970 | default: | |
97b9747c JB |
2971 | internal_error (__FILE__, __LINE__, |
2972 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 2973 | } |
b508a996 | 2974 | |
cca44b1b | 2975 | dsc->wrote_to_pc = 1; |
b508a996 | 2976 | } |
ed9a39eb | 2977 | else |
b508a996 | 2978 | { |
cca44b1b JB |
2979 | if (debug_displaced) |
2980 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
2981 | regno, (unsigned long) val); | |
2982 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 2983 | } |
34e8f22d RE |
2984 | } |
2985 | ||
cca44b1b JB |
2986 | /* This function is used to concisely determine if an instruction INSN |
2987 | references PC. Register fields of interest in INSN should have the | |
2988 | corresponding fields of BITMASK set to 0b1111. The function returns return 1 | |
2989 | if any of these fields in INSN reference the PC (also 0b1111, r15), else it | |
2990 | returns 0. */ | |
67255d04 RE |
2991 | |
2992 | static int | |
cca44b1b | 2993 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 2994 | { |
cca44b1b | 2995 | uint32_t lowbit = 1; |
67255d04 | 2996 | |
cca44b1b JB |
2997 | while (bitmask != 0) |
2998 | { | |
2999 | uint32_t mask; | |
44e1a9eb | 3000 | |
cca44b1b JB |
3001 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
3002 | ; | |
67255d04 | 3003 | |
cca44b1b JB |
3004 | if (!lowbit) |
3005 | break; | |
67255d04 | 3006 | |
cca44b1b | 3007 | mask = lowbit * 0xf; |
67255d04 | 3008 | |
cca44b1b JB |
3009 | if ((insn & mask) == mask) |
3010 | return 1; | |
3011 | ||
3012 | bitmask &= ~mask; | |
67255d04 RE |
3013 | } |
3014 | ||
cca44b1b JB |
3015 | return 0; |
3016 | } | |
2af48f68 | 3017 | |
cca44b1b JB |
3018 | /* The simplest copy function. Many instructions have the same effect no |
3019 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 3020 | |
cca44b1b JB |
3021 | static int |
3022 | copy_unmodified (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn, | |
3023 | const char *iname, struct displaced_step_closure *dsc) | |
3024 | { | |
3025 | if (debug_displaced) | |
3026 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
3027 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
3028 | iname); | |
67255d04 | 3029 | |
cca44b1b | 3030 | dsc->modinsn[0] = insn; |
67255d04 | 3031 | |
cca44b1b JB |
3032 | return 0; |
3033 | } | |
3034 | ||
3035 | /* Preload instructions with immediate offset. */ | |
3036 | ||
3037 | static void | |
3038 | cleanup_preload (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3039 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3040 | { | |
3041 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
3042 | if (!dsc->u.preload.immed) | |
3043 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
3044 | } | |
3045 | ||
3046 | static int | |
3047 | copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
3048 | struct displaced_step_closure *dsc) | |
3049 | { | |
3050 | unsigned int rn = bits (insn, 16, 19); | |
3051 | ULONGEST rn_val; | |
3052 | CORE_ADDR from = dsc->insn_addr; | |
3053 | ||
3054 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
3055 | return copy_unmodified (gdbarch, insn, "preload", dsc); | |
3056 | ||
3057 | if (debug_displaced) | |
3058 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
3059 | (unsigned long) insn); | |
3060 | ||
3061 | /* Preload instructions: | |
3062 | ||
3063 | {pli/pld} [rn, #+/-imm] | |
3064 | -> | |
3065 | {pli/pld} [r0, #+/-imm]. */ | |
3066 | ||
3067 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3068 | rn_val = displaced_read_reg (regs, from, rn); | |
3069 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
3070 | ||
3071 | dsc->u.preload.immed = 1; | |
3072 | ||
3073 | dsc->modinsn[0] = insn & 0xfff0ffff; | |
3074 | ||
3075 | dsc->cleanup = &cleanup_preload; | |
3076 | ||
3077 | return 0; | |
3078 | } | |
3079 | ||
3080 | /* Preload instructions with register offset. */ | |
3081 | ||
3082 | static int | |
3083 | copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
3084 | struct displaced_step_closure *dsc) | |
3085 | { | |
3086 | unsigned int rn = bits (insn, 16, 19); | |
3087 | unsigned int rm = bits (insn, 0, 3); | |
3088 | ULONGEST rn_val, rm_val; | |
3089 | CORE_ADDR from = dsc->insn_addr; | |
3090 | ||
3091 | if (!insn_references_pc (insn, 0x000f000ful)) | |
3092 | return copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
3093 | ||
3094 | if (debug_displaced) | |
3095 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
3096 | (unsigned long) insn); | |
3097 | ||
3098 | /* Preload register-offset instructions: | |
3099 | ||
3100 | {pli/pld} [rn, rm {, shift}] | |
3101 | -> | |
3102 | {pli/pld} [r0, r1 {, shift}]. */ | |
3103 | ||
3104 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3105 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
3106 | rn_val = displaced_read_reg (regs, from, rn); | |
3107 | rm_val = displaced_read_reg (regs, from, rm); | |
3108 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
3109 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
3110 | ||
3111 | dsc->u.preload.immed = 0; | |
3112 | ||
3113 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
3114 | ||
3115 | dsc->cleanup = &cleanup_preload; | |
3116 | ||
3117 | return 0; | |
3118 | } | |
3119 | ||
3120 | /* Copy/cleanup coprocessor load and store instructions. */ | |
3121 | ||
3122 | static void | |
3123 | cleanup_copro_load_store (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3124 | struct regcache *regs, | |
3125 | struct displaced_step_closure *dsc) | |
3126 | { | |
3127 | ULONGEST rn_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
3128 | ||
3129 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
3130 | ||
3131 | if (dsc->u.ldst.writeback) | |
3132 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
3133 | } | |
3134 | ||
3135 | static int | |
3136 | copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
3137 | struct regcache *regs, | |
3138 | struct displaced_step_closure *dsc) | |
3139 | { | |
3140 | unsigned int rn = bits (insn, 16, 19); | |
3141 | ULONGEST rn_val; | |
3142 | CORE_ADDR from = dsc->insn_addr; | |
3143 | ||
3144 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
3145 | return copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
3146 | ||
3147 | if (debug_displaced) | |
3148 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
3149 | "load/store insn %.8lx\n", (unsigned long) insn); | |
3150 | ||
3151 | /* Coprocessor load/store instructions: | |
3152 | ||
3153 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
3154 | -> | |
3155 | {stc/stc2} [r0, #+/-imm]. | |
3156 | ||
3157 | ldc/ldc2 are handled identically. */ | |
3158 | ||
3159 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3160 | rn_val = displaced_read_reg (regs, from, rn); | |
3161 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
3162 | ||
3163 | dsc->u.ldst.writeback = bit (insn, 25); | |
3164 | dsc->u.ldst.rn = rn; | |
3165 | ||
3166 | dsc->modinsn[0] = insn & 0xfff0ffff; | |
3167 | ||
3168 | dsc->cleanup = &cleanup_copro_load_store; | |
3169 | ||
3170 | return 0; | |
3171 | } | |
3172 | ||
3173 | /* Clean up branch instructions (actually perform the branch, by setting | |
3174 | PC). */ | |
3175 | ||
3176 | static void | |
3177 | cleanup_branch (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs, | |
3178 | struct displaced_step_closure *dsc) | |
3179 | { | |
3180 | ULONGEST from = dsc->insn_addr; | |
3181 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
3182 | int branch_taken = condition_true (dsc->u.branch.cond, status); | |
3183 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
3184 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
3185 | ||
3186 | if (!branch_taken) | |
3187 | return; | |
3188 | ||
3189 | if (dsc->u.branch.link) | |
3190 | { | |
3191 | ULONGEST pc = displaced_read_reg (regs, from, 15); | |
3192 | displaced_write_reg (regs, dsc, 14, pc - 4, CANNOT_WRITE_PC); | |
3193 | } | |
3194 | ||
3195 | displaced_write_reg (regs, dsc, 15, dsc->u.branch.dest, write_pc); | |
3196 | } | |
3197 | ||
3198 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
3199 | ||
3200 | static int | |
3201 | copy_b_bl_blx (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn, | |
3202 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3203 | { | |
3204 | unsigned int cond = bits (insn, 28, 31); | |
3205 | int exchange = (cond == 0xf); | |
3206 | int link = exchange || bit (insn, 24); | |
3207 | CORE_ADDR from = dsc->insn_addr; | |
3208 | long offset; | |
3209 | ||
3210 | if (debug_displaced) | |
3211 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
3212 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
3213 | (unsigned long) insn); | |
3214 | ||
3215 | /* Implement "BL<cond> <label>" as: | |
3216 | ||
3217 | Preparation: cond <- instruction condition | |
3218 | Insn: mov r0, r0 (nop) | |
3219 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
3220 | ||
3221 | B<cond> similar, but don't set r14 in cleanup. */ | |
3222 | ||
3223 | if (exchange) | |
3224 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
3225 | then arrange the switch into Thumb mode. */ | |
3226 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
3227 | else | |
3228 | offset = bits (insn, 0, 23) << 2; | |
3229 | ||
3230 | if (bit (offset, 25)) | |
3231 | offset = offset | ~0x3ffffff; | |
3232 | ||
3233 | dsc->u.branch.cond = cond; | |
3234 | dsc->u.branch.link = link; | |
3235 | dsc->u.branch.exchange = exchange; | |
3236 | dsc->u.branch.dest = from + 8 + offset; | |
3237 | ||
3238 | dsc->modinsn[0] = ARM_NOP; | |
3239 | ||
3240 | dsc->cleanup = &cleanup_branch; | |
3241 | ||
3242 | return 0; | |
3243 | } | |
3244 | ||
3245 | /* Copy BX/BLX with register-specified destinations. */ | |
3246 | ||
3247 | static int | |
3248 | copy_bx_blx_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn, | |
3249 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3250 | { | |
3251 | unsigned int cond = bits (insn, 28, 31); | |
3252 | /* BX: x12xxx1x | |
3253 | BLX: x12xxx3x. */ | |
3254 | int link = bit (insn, 5); | |
3255 | unsigned int rm = bits (insn, 0, 3); | |
3256 | CORE_ADDR from = dsc->insn_addr; | |
3257 | ||
3258 | if (debug_displaced) | |
3259 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s register insn " | |
3260 | "%.8lx\n", (link) ? "blx" : "bx", (unsigned long) insn); | |
3261 | ||
3262 | /* Implement {BX,BLX}<cond> <reg>" as: | |
3263 | ||
3264 | Preparation: cond <- instruction condition | |
3265 | Insn: mov r0, r0 (nop) | |
3266 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
3267 | ||
3268 | Don't set r14 in cleanup for BX. */ | |
3269 | ||
3270 | dsc->u.branch.dest = displaced_read_reg (regs, from, rm); | |
3271 | ||
3272 | dsc->u.branch.cond = cond; | |
3273 | dsc->u.branch.link = link; | |
3274 | dsc->u.branch.exchange = 1; | |
3275 | ||
3276 | dsc->modinsn[0] = ARM_NOP; | |
3277 | ||
3278 | dsc->cleanup = &cleanup_branch; | |
3279 | ||
3280 | return 0; | |
3281 | } | |
3282 | ||
3283 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ | |
3284 | ||
3285 | static void | |
3286 | cleanup_alu_imm (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3287 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3288 | { | |
3289 | ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
3290 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
3291 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
3292 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
3293 | } | |
3294 | ||
3295 | static int | |
3296 | copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
3297 | struct displaced_step_closure *dsc) | |
3298 | { | |
3299 | unsigned int rn = bits (insn, 16, 19); | |
3300 | unsigned int rd = bits (insn, 12, 15); | |
3301 | unsigned int op = bits (insn, 21, 24); | |
3302 | int is_mov = (op == 0xd); | |
3303 | ULONGEST rd_val, rn_val; | |
3304 | CORE_ADDR from = dsc->insn_addr; | |
3305 | ||
3306 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
3307 | return copy_unmodified (gdbarch, insn, "ALU immediate", dsc); | |
3308 | ||
3309 | if (debug_displaced) | |
3310 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
3311 | "%.8lx\n", is_mov ? "move" : "ALU", | |
3312 | (unsigned long) insn); | |
3313 | ||
3314 | /* Instruction is of form: | |
3315 | ||
3316 | <op><cond> rd, [rn,] #imm | |
3317 | ||
3318 | Rewrite as: | |
3319 | ||
3320 | Preparation: tmp1, tmp2 <- r0, r1; | |
3321 | r0, r1 <- rd, rn | |
3322 | Insn: <op><cond> r0, r1, #imm | |
3323 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
3324 | */ | |
3325 | ||
3326 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3327 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
3328 | rn_val = displaced_read_reg (regs, from, rn); | |
3329 | rd_val = displaced_read_reg (regs, from, rd); | |
3330 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
3331 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
3332 | dsc->rd = rd; | |
3333 | ||
3334 | if (is_mov) | |
3335 | dsc->modinsn[0] = insn & 0xfff00fff; | |
3336 | else | |
3337 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
3338 | ||
3339 | dsc->cleanup = &cleanup_alu_imm; | |
3340 | ||
3341 | return 0; | |
3342 | } | |
3343 | ||
3344 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ | |
3345 | ||
3346 | static void | |
3347 | cleanup_alu_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3348 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3349 | { | |
3350 | ULONGEST rd_val; | |
3351 | int i; | |
3352 | ||
3353 | rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
3354 | ||
3355 | for (i = 0; i < 3; i++) | |
3356 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
3357 | ||
3358 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
3359 | } | |
3360 | ||
3361 | static int | |
3362 | copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
3363 | struct displaced_step_closure *dsc) | |
3364 | { | |
3365 | unsigned int rn = bits (insn, 16, 19); | |
3366 | unsigned int rm = bits (insn, 0, 3); | |
3367 | unsigned int rd = bits (insn, 12, 15); | |
3368 | unsigned int op = bits (insn, 21, 24); | |
3369 | int is_mov = (op == 0xd); | |
3370 | ULONGEST rd_val, rn_val, rm_val; | |
3371 | CORE_ADDR from = dsc->insn_addr; | |
3372 | ||
3373 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
3374 | return copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
3375 | ||
3376 | if (debug_displaced) | |
3377 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
3378 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
3379 | ||
3380 | /* Instruction is of form: | |
3381 | ||
3382 | <op><cond> rd, [rn,] rm [, <shift>] | |
3383 | ||
3384 | Rewrite as: | |
3385 | ||
3386 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
3387 | r0, r1, r2 <- rd, rn, rm | |
3388 | Insn: <op><cond> r0, r1, r2 [, <shift>] | |
3389 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 | |
3390 | */ | |
3391 | ||
3392 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3393 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
3394 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
3395 | rd_val = displaced_read_reg (regs, from, rd); | |
3396 | rn_val = displaced_read_reg (regs, from, rn); | |
3397 | rm_val = displaced_read_reg (regs, from, rm); | |
3398 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
3399 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
3400 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
3401 | dsc->rd = rd; | |
3402 | ||
3403 | if (is_mov) | |
3404 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
3405 | else | |
3406 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
3407 | ||
3408 | dsc->cleanup = &cleanup_alu_reg; | |
3409 | ||
3410 | return 0; | |
3411 | } | |
3412 | ||
3413 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ | |
3414 | ||
3415 | static void | |
3416 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3417 | struct regcache *regs, | |
3418 | struct displaced_step_closure *dsc) | |
3419 | { | |
3420 | ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
3421 | int i; | |
3422 | ||
3423 | for (i = 0; i < 4; i++) | |
3424 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
3425 | ||
3426 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
3427 | } | |
3428 | ||
3429 | static int | |
3430 | copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
3431 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3432 | { | |
3433 | unsigned int rn = bits (insn, 16, 19); | |
3434 | unsigned int rm = bits (insn, 0, 3); | |
3435 | unsigned int rd = bits (insn, 12, 15); | |
3436 | unsigned int rs = bits (insn, 8, 11); | |
3437 | unsigned int op = bits (insn, 21, 24); | |
3438 | int is_mov = (op == 0xd), i; | |
3439 | ULONGEST rd_val, rn_val, rm_val, rs_val; | |
3440 | CORE_ADDR from = dsc->insn_addr; | |
3441 | ||
3442 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
3443 | return copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
3444 | ||
3445 | if (debug_displaced) | |
3446 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
3447 | "%.8lx\n", is_mov ? "move" : "ALU", | |
3448 | (unsigned long) insn); | |
3449 | ||
3450 | /* Instruction is of form: | |
3451 | ||
3452 | <op><cond> rd, [rn,] rm, <shift> rs | |
3453 | ||
3454 | Rewrite as: | |
3455 | ||
3456 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
3457 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
3458 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
3459 | Cleanup: tmp5 <- r0 | |
3460 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
3461 | rd <- tmp5 | |
3462 | */ | |
3463 | ||
3464 | for (i = 0; i < 4; i++) | |
3465 | dsc->tmp[i] = displaced_read_reg (regs, from, i); | |
3466 | ||
3467 | rd_val = displaced_read_reg (regs, from, rd); | |
3468 | rn_val = displaced_read_reg (regs, from, rn); | |
3469 | rm_val = displaced_read_reg (regs, from, rm); | |
3470 | rs_val = displaced_read_reg (regs, from, rs); | |
3471 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
3472 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
3473 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
3474 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
3475 | dsc->rd = rd; | |
3476 | ||
3477 | if (is_mov) | |
3478 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
3479 | else | |
3480 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
3481 | ||
3482 | dsc->cleanup = &cleanup_alu_shifted_reg; | |
3483 | ||
3484 | return 0; | |
3485 | } | |
3486 | ||
3487 | /* Clean up load instructions. */ | |
3488 | ||
3489 | static void | |
3490 | cleanup_load (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs, | |
3491 | struct displaced_step_closure *dsc) | |
3492 | { | |
3493 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
3494 | CORE_ADDR from = dsc->insn_addr; | |
3495 | ||
3496 | rt_val = displaced_read_reg (regs, from, 0); | |
3497 | if (dsc->u.ldst.xfersize == 8) | |
3498 | rt_val2 = displaced_read_reg (regs, from, 1); | |
3499 | rn_val = displaced_read_reg (regs, from, 2); | |
3500 | ||
3501 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
3502 | if (dsc->u.ldst.xfersize > 4) | |
3503 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
3504 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
3505 | if (!dsc->u.ldst.immed) | |
3506 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
3507 | ||
3508 | /* Handle register writeback. */ | |
3509 | if (dsc->u.ldst.writeback) | |
3510 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
3511 | /* Put result in right place. */ | |
3512 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
3513 | if (dsc->u.ldst.xfersize == 8) | |
3514 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
3515 | } | |
3516 | ||
3517 | /* Clean up store instructions. */ | |
3518 | ||
3519 | static void | |
3520 | cleanup_store (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs, | |
3521 | struct displaced_step_closure *dsc) | |
3522 | { | |
3523 | CORE_ADDR from = dsc->insn_addr; | |
3524 | ULONGEST rn_val = displaced_read_reg (regs, from, 2); | |
3525 | ||
3526 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
3527 | if (dsc->u.ldst.xfersize > 4) | |
3528 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
3529 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
3530 | if (!dsc->u.ldst.immed) | |
3531 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
3532 | if (!dsc->u.ldst.restore_r4) | |
3533 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
3534 | ||
3535 | /* Writeback. */ | |
3536 | if (dsc->u.ldst.writeback) | |
3537 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
3538 | } | |
3539 | ||
3540 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
3541 | transfers, which have a different encoding to byte/word transfers. */ | |
3542 | ||
3543 | static int | |
3544 | copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged, | |
3545 | struct regcache *regs, struct displaced_step_closure *dsc) | |
3546 | { | |
3547 | unsigned int op1 = bits (insn, 20, 24); | |
3548 | unsigned int op2 = bits (insn, 5, 6); | |
3549 | unsigned int rt = bits (insn, 12, 15); | |
3550 | unsigned int rn = bits (insn, 16, 19); | |
3551 | unsigned int rm = bits (insn, 0, 3); | |
3552 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
3553 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
3554 | int immed = (op1 & 0x4) != 0; | |
3555 | int opcode; | |
3556 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
3557 | CORE_ADDR from = dsc->insn_addr; | |
3558 | ||
3559 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
3560 | return copy_unmodified (gdbarch, insn, "extra load/store", dsc); | |
3561 | ||
3562 | if (debug_displaced) | |
3563 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
3564 | "insn %.8lx\n", unpriveleged ? "unpriveleged " : "", | |
3565 | (unsigned long) insn); | |
3566 | ||
3567 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
3568 | ||
3569 | if (opcode < 0) | |
3570 | internal_error (__FILE__, __LINE__, | |
3571 | _("copy_extra_ld_st: instruction decode error")); | |
3572 | ||
3573 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3574 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
3575 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
3576 | if (!immed) | |
3577 | dsc->tmp[3] = displaced_read_reg (regs, from, 3); | |
3578 | ||
3579 | rt_val = displaced_read_reg (regs, from, rt); | |
3580 | if (bytesize[opcode] == 8) | |
3581 | rt_val2 = displaced_read_reg (regs, from, rt + 1); | |
3582 | rn_val = displaced_read_reg (regs, from, rn); | |
3583 | if (!immed) | |
3584 | rm_val = displaced_read_reg (regs, from, rm); | |
3585 | ||
3586 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
3587 | if (bytesize[opcode] == 8) | |
3588 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
3589 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
3590 | if (!immed) | |
3591 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
3592 | ||
3593 | dsc->rd = rt; | |
3594 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
3595 | dsc->u.ldst.rn = rn; | |
3596 | dsc->u.ldst.immed = immed; | |
3597 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
3598 | dsc->u.ldst.restore_r4 = 0; | |
3599 | ||
3600 | if (immed) | |
3601 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
3602 | -> | |
3603 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
3604 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
3605 | else | |
3606 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
3607 | -> | |
3608 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
3609 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
3610 | ||
3611 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
3612 | ||
3613 | return 0; | |
3614 | } | |
3615 | ||
3616 | /* Copy byte/word loads and stores. */ | |
3617 | ||
3618 | static int | |
3619 | copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
3620 | struct regcache *regs, | |
3621 | struct displaced_step_closure *dsc, int load, int byte, | |
3622 | int usermode) | |
3623 | { | |
3624 | int immed = !bit (insn, 25); | |
3625 | unsigned int rt = bits (insn, 12, 15); | |
3626 | unsigned int rn = bits (insn, 16, 19); | |
3627 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
3628 | ULONGEST rt_val, rn_val, rm_val = 0; | |
3629 | CORE_ADDR from = dsc->insn_addr; | |
3630 | ||
3631 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
3632 | return copy_unmodified (gdbarch, insn, "load/store", dsc); | |
3633 | ||
3634 | if (debug_displaced) | |
3635 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s%s insn %.8lx\n", | |
3636 | load ? (byte ? "ldrb" : "ldr") | |
3637 | : (byte ? "strb" : "str"), usermode ? "t" : "", | |
3638 | (unsigned long) insn); | |
3639 | ||
3640 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
3641 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
3642 | if (!immed) | |
3643 | dsc->tmp[3] = displaced_read_reg (regs, from, 3); | |
3644 | if (!load) | |
3645 | dsc->tmp[4] = displaced_read_reg (regs, from, 4); | |
3646 | ||
3647 | rt_val = displaced_read_reg (regs, from, rt); | |
3648 | rn_val = displaced_read_reg (regs, from, rn); | |
3649 | if (!immed) | |
3650 | rm_val = displaced_read_reg (regs, from, rm); | |
3651 | ||
3652 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
3653 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
3654 | if (!immed) | |
3655 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
3656 | ||
3657 | dsc->rd = rt; | |
3658 | dsc->u.ldst.xfersize = byte ? 1 : 4; | |
3659 | dsc->u.ldst.rn = rn; | |
3660 | dsc->u.ldst.immed = immed; | |
3661 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
3662 | ||
3663 | /* To write PC we can do: | |
3664 | ||
3665 | scratch+0: str pc, temp (*temp = scratch + 8 + offset) | |
3666 | scratch+4: ldr r4, temp | |
3667 | scratch+8: sub r4, r4, pc (r4 = scratch + 8 + offset - scratch - 8 - 8) | |
3668 | scratch+12: add r4, r4, #8 (r4 = offset) | |
3669 | scratch+16: add r0, r0, r4 | |
3670 | scratch+20: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
3671 | scratch+24: <temp> | |
3672 | ||
3673 | Otherwise we don't know what value to write for PC, since the offset is | |
3674 | architecture-dependent (sometimes PC+8, sometimes PC+12). */ | |
3675 | ||
3676 | if (load || rt != 15) | |
3677 | { | |
3678 | dsc->u.ldst.restore_r4 = 0; | |
3679 | ||
3680 | if (immed) | |
3681 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
3682 | -> | |
3683 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
3684 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
3685 | else | |
3686 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
3687 | -> | |
3688 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
3689 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
3690 | } | |
3691 | else | |
3692 | { | |
3693 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
3694 | dsc->u.ldst.restore_r4 = 1; | |
3695 | ||
3696 | dsc->modinsn[0] = 0xe58ff014; /* str pc, [pc, #20]. */ | |
3697 | dsc->modinsn[1] = 0xe59f4010; /* ldr r4, [pc, #16]. */ | |
3698 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ | |
3699 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
3700 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
3701 | ||
3702 | /* As above. */ | |
3703 | if (immed) | |
3704 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
3705 | else | |
3706 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
3707 | ||
3708 | dsc->modinsn[6] = 0x0; /* breakpoint location. */ | |
3709 | dsc->modinsn[7] = 0x0; /* scratch space. */ | |
3710 | ||
3711 | dsc->numinsns = 6; | |
3712 | } | |
3713 | ||
3714 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
3715 | ||
3716 | return 0; | |
3717 | } | |
3718 | ||
3719 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
3720 | unfortunate corner case: it's impossible to implement correctly by modifying | |
3721 | the instruction. The issue is as follows: we have an instruction, | |
3722 | ||
3723 | ldm rN, {r0-r15} | |
3724 | ||
3725 | which we must rewrite to avoid loading PC. A possible solution would be to | |
3726 | do the load in two halves, something like (with suitable cleanup | |
3727 | afterwards): | |
3728 | ||
3729 | mov r8, rN | |
3730 | ldm[id][ab] r8!, {r0-r7} | |
3731 | str r7, <temp> | |
3732 | ldm[id][ab] r8, {r7-r14} | |
3733 | <bkpt> | |
3734 | ||
3735 | but at present there's no suitable place for <temp>, since the scratch space | |
3736 | is overwritten before the cleanup routine is called. For now, we simply | |
3737 | emulate the instruction. */ | |
3738 | ||
3739 | static void | |
3740 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
3741 | struct displaced_step_closure *dsc) | |
3742 | { | |
3743 | ULONGEST from = dsc->insn_addr; | |
3744 | int inc = dsc->u.block.increment; | |
3745 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
3746 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
3747 | uint32_t regmask = dsc->u.block.regmask; | |
3748 | int regno = inc ? 0 : 15; | |
3749 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
3750 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
3751 | && (regmask & 0x8000) != 0; | |
3752 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
3753 | int do_transfer = condition_true (dsc->u.block.cond, status); | |
3754 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
3755 | ||
3756 | if (!do_transfer) | |
3757 | return; | |
3758 | ||
3759 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
3760 | sensible we can do here. Complain loudly. */ | |
3761 | if (exception_return) | |
3762 | error (_("Cannot single-step exception return")); | |
3763 | ||
3764 | /* We don't handle any stores here for now. */ | |
3765 | gdb_assert (dsc->u.block.load != 0); | |
3766 | ||
3767 | if (debug_displaced) | |
3768 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
3769 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
3770 | dsc->u.block.increment ? "inc" : "dec", | |
3771 | dsc->u.block.before ? "before" : "after"); | |
3772 | ||
3773 | while (regmask) | |
3774 | { | |
3775 | uint32_t memword; | |
3776 | ||
3777 | if (inc) | |
3778 | while (regno <= 15 && (regmask & (1 << regno)) == 0) | |
3779 | regno++; | |
3780 | else | |
3781 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
3782 | regno--; | |
3783 | ||
3784 | xfer_addr += bump_before; | |
3785 | ||
3786 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
3787 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
3788 | ||
3789 | xfer_addr += bump_after; | |
3790 | ||
3791 | regmask &= ~(1 << regno); | |
3792 | } | |
3793 | ||
3794 | if (dsc->u.block.writeback) | |
3795 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
3796 | CANNOT_WRITE_PC); | |
3797 | } | |
3798 | ||
3799 | /* Clean up an STM which included the PC in the register list. */ | |
3800 | ||
3801 | static void | |
3802 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
3803 | struct displaced_step_closure *dsc) | |
3804 | { | |
3805 | ULONGEST from = dsc->insn_addr; | |
3806 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
3807 | int store_executed = condition_true (dsc->u.block.cond, status); | |
3808 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
3809 | CORE_ADDR stm_insn_addr; | |
3810 | uint32_t pc_val; | |
3811 | long offset; | |
3812 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
3813 | ||
3814 | /* If condition code fails, there's nothing else to do. */ | |
3815 | if (!store_executed) | |
3816 | return; | |
3817 | ||
3818 | if (dsc->u.block.increment) | |
3819 | { | |
3820 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
3821 | ||
3822 | if (dsc->u.block.before) | |
3823 | pc_stored_at += 4; | |
3824 | } | |
3825 | else | |
3826 | { | |
3827 | pc_stored_at = dsc->u.block.xfer_addr; | |
3828 | ||
3829 | if (dsc->u.block.before) | |
3830 | pc_stored_at -= 4; | |
3831 | } | |
3832 | ||
3833 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
3834 | stm_insn_addr = dsc->scratch_base; | |
3835 | offset = pc_val - stm_insn_addr; | |
3836 | ||
3837 | if (debug_displaced) | |
3838 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
3839 | "STM instruction\n", offset); | |
3840 | ||
3841 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
3842 | instruction. */ | |
3843 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
3844 | dsc->insn_addr + offset); | |
3845 | } | |
3846 | ||
3847 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
3848 | the registers in the transferred list into a contiguous range r0...rX (to | |
3849 | avoid loading PC directly and losing control of the debugged program), so we | |
3850 | must undo that here. */ | |
3851 | ||
3852 | static void | |
3853 | cleanup_block_load_pc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, | |
3854 | struct regcache *regs, | |
3855 | struct displaced_step_closure *dsc) | |
3856 | { | |
3857 | ULONGEST from = dsc->insn_addr; | |
3858 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
3859 | int load_executed = condition_true (dsc->u.block.cond, status), i; | |
3860 | unsigned int mask = dsc->u.block.regmask, write_reg = 15; | |
3861 | unsigned int regs_loaded = bitcount (mask); | |
3862 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
3863 | ||
3864 | /* The method employed here will fail if the register list is fully populated | |
3865 | (we need to avoid loading PC directly). */ | |
3866 | gdb_assert (num_to_shuffle < 16); | |
3867 | ||
3868 | if (!load_executed) | |
3869 | return; | |
3870 | ||
3871 | clobbered = (1 << num_to_shuffle) - 1; | |
3872 | ||
3873 | while (num_to_shuffle > 0) | |
3874 | { | |
3875 | if ((mask & (1 << write_reg)) != 0) | |
3876 | { | |
3877 | unsigned int read_reg = num_to_shuffle - 1; | |
3878 | ||
3879 | if (read_reg != write_reg) | |
3880 | { | |
3881 | ULONGEST rval = displaced_read_reg (regs, from, read_reg); | |
3882 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); | |
3883 | if (debug_displaced) | |
3884 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
3885 | "loaded register r%d to r%d\n"), read_reg, | |
3886 | write_reg); | |
3887 | } | |
3888 | else if (debug_displaced) | |
3889 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
3890 | "r%d already in the right place\n"), | |
3891 | write_reg); | |
3892 | ||
3893 | clobbered &= ~(1 << write_reg); | |
3894 | ||
3895 | num_to_shuffle--; | |
3896 | } | |
3897 | ||
3898 | write_reg--; | |
3899 | } | |
3900 | ||
3901 | /* Restore any registers we scribbled over. */ | |
3902 | for (write_reg = 0; clobbered != 0; write_reg++) | |
3903 | { | |
3904 | if ((clobbered & (1 << write_reg)) != 0) | |
3905 | { | |
3906 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
3907 | CANNOT_WRITE_PC); | |
3908 | if (debug_displaced) | |
3909 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
3910 | "clobbered register r%d\n"), write_reg); | |
3911 | clobbered &= ~(1 << write_reg); | |
3912 | } | |
3913 | } | |
3914 | ||
3915 | /* Perform register writeback manually. */ | |
3916 | if (dsc->u.block.writeback) | |
3917 | { | |
3918 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
3919 | ||
3920 | if (dsc->u.block.increment) | |
3921 | new_rn_val += regs_loaded * 4; | |
3922 | else | |
3923 | new_rn_val -= regs_loaded * 4; | |
3924 | ||
3925 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
3926 | CANNOT_WRITE_PC); | |
3927 | } | |
3928 | } | |
3929 | ||
3930 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
3931 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
3932 | ||
3933 | static int | |
3934 | copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
3935 | struct displaced_step_closure *dsc) | |
3936 | { | |
3937 | int load = bit (insn, 20); | |
3938 | int user = bit (insn, 22); | |
3939 | int increment = bit (insn, 23); | |
3940 | int before = bit (insn, 24); | |
3941 | int writeback = bit (insn, 21); | |
3942 | int rn = bits (insn, 16, 19); | |
3943 | CORE_ADDR from = dsc->insn_addr; | |
3944 | ||
3945 | /* Block transfers which don't mention PC can be run directly out-of-line. */ | |
3946 | if (rn != 15 && (insn & 0x8000) == 0) | |
3947 | return copy_unmodified (gdbarch, insn, "ldm/stm", dsc); | |
3948 | ||
3949 | if (rn == 15) | |
3950 | { | |
3951 | warning (_("displaced: Unpredictable LDM or STM with base register r15")); | |
3952 | return copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); | |
3953 | } | |
3954 | ||
3955 | if (debug_displaced) | |
3956 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
3957 | "%.8lx\n", (unsigned long) insn); | |
3958 | ||
3959 | dsc->u.block.xfer_addr = displaced_read_reg (regs, from, rn); | |
3960 | dsc->u.block.rn = rn; | |
3961 | ||
3962 | dsc->u.block.load = load; | |
3963 | dsc->u.block.user = user; | |
3964 | dsc->u.block.increment = increment; | |
3965 | dsc->u.block.before = before; | |
3966 | dsc->u.block.writeback = writeback; | |
3967 | dsc->u.block.cond = bits (insn, 28, 31); | |
3968 | ||
3969 | dsc->u.block.regmask = insn & 0xffff; | |
3970 | ||
3971 | if (load) | |
3972 | { | |
3973 | if ((insn & 0xffff) == 0xffff) | |
3974 | { | |
3975 | /* LDM with a fully-populated register list. This case is | |
3976 | particularly tricky. Implement for now by fully emulating the | |
3977 | instruction (which might not behave perfectly in all cases, but | |
3978 | these instructions should be rare enough for that not to matter | |
3979 | too much). */ | |
3980 | dsc->modinsn[0] = ARM_NOP; | |
3981 | ||
3982 | dsc->cleanup = &cleanup_block_load_all; | |
3983 | } | |
3984 | else | |
3985 | { | |
3986 | /* LDM of a list of registers which includes PC. Implement by | |
3987 | rewriting the list of registers to be transferred into a | |
3988 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
3989 | registers into the correct places in the cleanup routine. */ | |
3990 | unsigned int regmask = insn & 0xffff; | |
3991 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
3992 | unsigned int to = 0, from = 0, i, new_rn; | |
3993 | ||
3994 | for (i = 0; i < num_in_list; i++) | |
3995 | dsc->tmp[i] = displaced_read_reg (regs, from, i); | |
3996 | ||
3997 | /* Writeback makes things complicated. We need to avoid clobbering | |
3998 | the base register with one of the registers in our modified | |
3999 | register list, but just using a different register can't work in | |
4000 | all cases, e.g.: | |
4001 | ||
4002 | ldm r14!, {r0-r13,pc} | |
4003 | ||
4004 | which would need to be rewritten as: | |
4005 | ||
4006 | ldm rN!, {r0-r14} | |
4007 | ||
4008 | but that can't work, because there's no free register for N. | |
4009 | ||
4010 | Solve this by turning off the writeback bit, and emulating | |
4011 | writeback manually in the cleanup routine. */ | |
4012 | ||
4013 | if (writeback) | |
4014 | insn &= ~(1 << 21); | |
4015 | ||
4016 | new_regmask = (1 << num_in_list) - 1; | |
4017 | ||
4018 | if (debug_displaced) | |
4019 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
4020 | "{..., pc}: original reg list %.4x, modified " | |
4021 | "list %.4x\n"), rn, writeback ? "!" : "", | |
4022 | (int) insn & 0xffff, new_regmask); | |
4023 | ||
4024 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
4025 | ||
4026 | dsc->cleanup = &cleanup_block_load_pc; | |
4027 | } | |
4028 | } | |
4029 | else | |
4030 | { | |
4031 | /* STM of a list of registers which includes PC. Run the instruction | |
4032 | as-is, but out of line: this will store the wrong value for the PC, | |
4033 | so we must manually fix up the memory in the cleanup routine. | |
4034 | Doing things this way has the advantage that we can auto-detect | |
4035 | the offset of the PC write (which is architecture-dependent) in | |
4036 | the cleanup routine. */ | |
4037 | dsc->modinsn[0] = insn; | |
4038 | ||
4039 | dsc->cleanup = &cleanup_block_store_pc; | |
4040 | } | |
4041 | ||
4042 | return 0; | |
4043 | } | |
4044 | ||
4045 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden | |
4046 | for Linux, where some SVC instructions must be treated specially. */ | |
4047 | ||
4048 | static void | |
4049 | cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs, | |
4050 | struct displaced_step_closure *dsc) | |
4051 | { | |
4052 | CORE_ADDR from = dsc->insn_addr; | |
4053 | CORE_ADDR resume_addr = from + 4; | |
4054 | ||
4055 | if (debug_displaced) | |
4056 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
4057 | "%.8lx\n", (unsigned long) resume_addr); | |
4058 | ||
4059 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
4060 | } | |
4061 | ||
4062 | static int | |
4063 | copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, | |
4064 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4065 | { | |
4066 | CORE_ADDR from = dsc->insn_addr; | |
4067 | ||
4068 | /* Allow OS-specific code to override SVC handling. */ | |
4069 | if (dsc->u.svc.copy_svc_os) | |
4070 | return dsc->u.svc.copy_svc_os (gdbarch, insn, to, regs, dsc); | |
4071 | ||
4072 | if (debug_displaced) | |
4073 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
4074 | (unsigned long) insn); | |
4075 | ||
4076 | /* Preparation: none. | |
4077 | Insn: unmodified svc. | |
4078 | Cleanup: pc <- insn_addr + 4. */ | |
4079 | ||
4080 | dsc->modinsn[0] = insn; | |
4081 | ||
4082 | dsc->cleanup = &cleanup_svc; | |
4083 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
4084 | instruction. */ | |
4085 | dsc->wrote_to_pc = 1; | |
4086 | ||
4087 | return 0; | |
4088 | } | |
4089 | ||
4090 | /* Copy undefined instructions. */ | |
4091 | ||
4092 | static int | |
4093 | copy_undef (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn, | |
4094 | struct displaced_step_closure *dsc) | |
4095 | { | |
4096 | if (debug_displaced) | |
4097 | fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn %.8lx\n", | |
4098 | (unsigned long) insn); | |
4099 | ||
4100 | dsc->modinsn[0] = insn; | |
4101 | ||
4102 | return 0; | |
4103 | } | |
4104 | ||
4105 | /* Copy unpredictable instructions. */ | |
4106 | ||
4107 | static int | |
4108 | copy_unpred (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn, | |
4109 | struct displaced_step_closure *dsc) | |
4110 | { | |
4111 | if (debug_displaced) | |
4112 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
4113 | "%.8lx\n", (unsigned long) insn); | |
4114 | ||
4115 | dsc->modinsn[0] = insn; | |
4116 | ||
4117 | return 0; | |
4118 | } | |
4119 | ||
4120 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
4121 | the presentation in the ARM ARM. */ | |
4122 | ||
4123 | static int | |
4124 | decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, | |
4125 | struct regcache *regs, | |
4126 | struct displaced_step_closure *dsc) | |
4127 | { | |
4128 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
4129 | unsigned int rn = bits (insn, 16, 19); | |
4130 | ||
4131 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0) | |
4132 | return copy_unmodified (gdbarch, insn, "cps", dsc); | |
4133 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1) | |
4134 | return copy_unmodified (gdbarch, insn, "setend", dsc); | |
4135 | else if ((op1 & 0x60) == 0x20) | |
4136 | return copy_unmodified (gdbarch, insn, "neon dataproc", dsc); | |
4137 | else if ((op1 & 0x71) == 0x40) | |
4138 | return copy_unmodified (gdbarch, insn, "neon elt/struct load/store", dsc); | |
4139 | else if ((op1 & 0x77) == 0x41) | |
4140 | return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | |
4141 | else if ((op1 & 0x77) == 0x45) | |
4142 | return copy_preload (gdbarch, insn, regs, dsc); /* pli. */ | |
4143 | else if ((op1 & 0x77) == 0x51) | |
4144 | { | |
4145 | if (rn != 0xf) | |
4146 | return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ | |
4147 | else | |
4148 | return copy_unpred (gdbarch, insn, dsc); | |
4149 | } | |
4150 | else if ((op1 & 0x77) == 0x55) | |
4151 | return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ | |
4152 | else if (op1 == 0x57) | |
4153 | switch (op2) | |
4154 | { | |
4155 | case 0x1: return copy_unmodified (gdbarch, insn, "clrex", dsc); | |
4156 | case 0x4: return copy_unmodified (gdbarch, insn, "dsb", dsc); | |
4157 | case 0x5: return copy_unmodified (gdbarch, insn, "dmb", dsc); | |
4158 | case 0x6: return copy_unmodified (gdbarch, insn, "isb", dsc); | |
4159 | default: return copy_unpred (gdbarch, insn, dsc); | |
4160 | } | |
4161 | else if ((op1 & 0x63) == 0x43) | |
4162 | return copy_unpred (gdbarch, insn, dsc); | |
4163 | else if ((op2 & 0x1) == 0x0) | |
4164 | switch (op1 & ~0x80) | |
4165 | { | |
4166 | case 0x61: | |
4167 | return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | |
4168 | case 0x65: | |
4169 | return copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ | |
4170 | case 0x71: case 0x75: | |
4171 | /* pld/pldw reg. */ | |
4172 | return copy_preload_reg (gdbarch, insn, regs, dsc); | |
4173 | case 0x63: case 0x67: case 0x73: case 0x77: | |
4174 | return copy_unpred (gdbarch, insn, dsc); | |
4175 | default: | |
4176 | return copy_undef (gdbarch, insn, dsc); | |
4177 | } | |
4178 | else | |
4179 | return copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ | |
4180 | } | |
4181 | ||
4182 | static int | |
4183 | decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, | |
4184 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4185 | { | |
4186 | if (bit (insn, 27) == 0) | |
4187 | return decode_misc_memhint_neon (gdbarch, insn, regs, dsc); | |
4188 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ | |
4189 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
4190 | { | |
4191 | case 0x0: case 0x2: | |
4192 | return copy_unmodified (gdbarch, insn, "srs", dsc); | |
4193 | ||
4194 | case 0x1: case 0x3: | |
4195 | return copy_unmodified (gdbarch, insn, "rfe", dsc); | |
4196 | ||
4197 | case 0x4: case 0x5: case 0x6: case 0x7: | |
4198 | return copy_b_bl_blx (gdbarch, insn, regs, dsc); | |
4199 | ||
4200 | case 0x8: | |
4201 | switch ((insn & 0xe00000) >> 21) | |
4202 | { | |
4203 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
4204 | /* stc/stc2. */ | |
4205 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4206 | ||
4207 | case 0x2: | |
4208 | return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | |
4209 | ||
4210 | default: | |
4211 | return copy_undef (gdbarch, insn, dsc); | |
4212 | } | |
4213 | ||
4214 | case 0x9: | |
4215 | { | |
4216 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
4217 | switch ((insn & 0xe00000) >> 21) | |
4218 | { | |
4219 | case 0x1: case 0x3: | |
4220 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
4221 | return rn_f ? copy_undef (gdbarch, insn, dsc) | |
4222 | : copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4223 | ||
4224 | case 0x2: | |
4225 | return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | |
4226 | ||
4227 | case 0x4: case 0x5: case 0x6: case 0x7: | |
4228 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
4229 | return rn_f ? copy_copro_load_store (gdbarch, insn, regs, dsc) | |
4230 | : copy_undef (gdbarch, insn, dsc); | |
4231 | ||
4232 | default: | |
4233 | return copy_undef (gdbarch, insn, dsc); | |
4234 | } | |
4235 | } | |
4236 | ||
4237 | case 0xa: | |
4238 | return copy_unmodified (gdbarch, insn, "stc/stc2", dsc); | |
4239 | ||
4240 | case 0xb: | |
4241 | if (bits (insn, 16, 19) == 0xf) | |
4242 | /* ldc/ldc2 lit. */ | |
4243 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4244 | else | |
4245 | return copy_undef (gdbarch, insn, dsc); | |
4246 | ||
4247 | case 0xc: | |
4248 | if (bit (insn, 4)) | |
4249 | return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | |
4250 | else | |
4251 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
4252 | ||
4253 | case 0xd: | |
4254 | if (bit (insn, 4)) | |
4255 | return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | |
4256 | else | |
4257 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
4258 | ||
4259 | default: | |
4260 | return copy_undef (gdbarch, insn, dsc); | |
4261 | } | |
4262 | } | |
4263 | ||
4264 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
4265 | ||
4266 | static int | |
4267 | decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, | |
4268 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4269 | { | |
4270 | unsigned int op2 = bits (insn, 4, 6); | |
4271 | unsigned int op = bits (insn, 21, 22); | |
4272 | unsigned int op1 = bits (insn, 16, 19); | |
4273 | ||
4274 | switch (op2) | |
4275 | { | |
4276 | case 0x0: | |
4277 | return copy_unmodified (gdbarch, insn, "mrs/msr", dsc); | |
4278 | ||
4279 | case 0x1: | |
4280 | if (op == 0x1) /* bx. */ | |
4281 | return copy_bx_blx_reg (gdbarch, insn, regs, dsc); | |
4282 | else if (op == 0x3) | |
4283 | return copy_unmodified (gdbarch, insn, "clz", dsc); | |
4284 | else | |
4285 | return copy_undef (gdbarch, insn, dsc); | |
4286 | ||
4287 | case 0x2: | |
4288 | if (op == 0x1) | |
4289 | /* Not really supported. */ | |
4290 | return copy_unmodified (gdbarch, insn, "bxj", dsc); | |
4291 | else | |
4292 | return copy_undef (gdbarch, insn, dsc); | |
4293 | ||
4294 | case 0x3: | |
4295 | if (op == 0x1) | |
4296 | return copy_bx_blx_reg (gdbarch, insn, regs, dsc); /* blx register. */ | |
4297 | else | |
4298 | return copy_undef (gdbarch, insn, dsc); | |
4299 | ||
4300 | case 0x5: | |
4301 | return copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); | |
4302 | ||
4303 | case 0x7: | |
4304 | if (op == 0x1) | |
4305 | return copy_unmodified (gdbarch, insn, "bkpt", dsc); | |
4306 | else if (op == 0x3) | |
4307 | /* Not really supported. */ | |
4308 | return copy_unmodified (gdbarch, insn, "smc", dsc); | |
4309 | ||
4310 | default: | |
4311 | return copy_undef (gdbarch, insn, dsc); | |
4312 | } | |
4313 | } | |
4314 | ||
4315 | static int | |
4316 | decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
4317 | struct displaced_step_closure *dsc) | |
4318 | { | |
4319 | if (bit (insn, 25)) | |
4320 | switch (bits (insn, 20, 24)) | |
4321 | { | |
4322 | case 0x10: | |
4323 | return copy_unmodified (gdbarch, insn, "movw", dsc); | |
4324 | ||
4325 | case 0x14: | |
4326 | return copy_unmodified (gdbarch, insn, "movt", dsc); | |
4327 | ||
4328 | case 0x12: case 0x16: | |
4329 | return copy_unmodified (gdbarch, insn, "msr imm", dsc); | |
4330 | ||
4331 | default: | |
4332 | return copy_alu_imm (gdbarch, insn, regs, dsc); | |
4333 | } | |
4334 | else | |
4335 | { | |
4336 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
4337 | ||
4338 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
4339 | return copy_alu_reg (gdbarch, insn, regs, dsc); | |
4340 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) | |
4341 | return copy_alu_shifted_reg (gdbarch, insn, regs, dsc); | |
4342 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) | |
4343 | return decode_miscellaneous (gdbarch, insn, regs, dsc); | |
4344 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) | |
4345 | return copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); | |
4346 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) | |
4347 | return copy_unmodified (gdbarch, insn, "mul/mla", dsc); | |
4348 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) | |
4349 | return copy_unmodified (gdbarch, insn, "synch", dsc); | |
4350 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) | |
4351 | /* 2nd arg means "unpriveleged". */ | |
4352 | return copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, | |
4353 | dsc); | |
4354 | } | |
4355 | ||
4356 | /* Should be unreachable. */ | |
4357 | return 1; | |
4358 | } | |
4359 | ||
4360 | static int | |
4361 | decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, | |
4362 | struct regcache *regs, | |
4363 | struct displaced_step_closure *dsc) | |
4364 | { | |
4365 | int a = bit (insn, 25), b = bit (insn, 4); | |
4366 | uint32_t op1 = bits (insn, 20, 24); | |
4367 | int rn_f = bits (insn, 16, 19) == 0xf; | |
4368 | ||
4369 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
4370 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
4371 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0); | |
4372 | else if ((!a && (op1 & 0x17) == 0x02) | |
4373 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
4374 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1); | |
4375 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) | |
4376 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
4377 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0); | |
4378 | else if ((!a && (op1 & 0x17) == 0x03) | |
4379 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
4380 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1); | |
4381 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) | |
4382 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
4383 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); | |
4384 | else if ((!a && (op1 & 0x17) == 0x06) | |
4385 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
4386 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); | |
4387 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) | |
4388 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
4389 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); | |
4390 | else if ((!a && (op1 & 0x17) == 0x07) | |
4391 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
4392 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); | |
4393 | ||
4394 | /* Should be unreachable. */ | |
4395 | return 1; | |
4396 | } | |
4397 | ||
4398 | static int | |
4399 | decode_media (struct gdbarch *gdbarch, uint32_t insn, | |
4400 | struct displaced_step_closure *dsc) | |
4401 | { | |
4402 | switch (bits (insn, 20, 24)) | |
4403 | { | |
4404 | case 0x00: case 0x01: case 0x02: case 0x03: | |
4405 | return copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); | |
4406 | ||
4407 | case 0x04: case 0x05: case 0x06: case 0x07: | |
4408 | return copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); | |
4409 | ||
4410 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
4411 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
4412 | return copy_unmodified (gdbarch, insn, | |
4413 | "decode/pack/unpack/saturate/reverse", dsc); | |
4414 | ||
4415 | case 0x18: | |
4416 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
4417 | { | |
4418 | if (bits (insn, 12, 15) == 0xf) | |
4419 | return copy_unmodified (gdbarch, insn, "usad8", dsc); | |
4420 | else | |
4421 | return copy_unmodified (gdbarch, insn, "usada8", dsc); | |
4422 | } | |
4423 | else | |
4424 | return copy_undef (gdbarch, insn, dsc); | |
4425 | ||
4426 | case 0x1a: case 0x1b: | |
4427 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
4428 | return copy_unmodified (gdbarch, insn, "sbfx", dsc); | |
4429 | else | |
4430 | return copy_undef (gdbarch, insn, dsc); | |
4431 | ||
4432 | case 0x1c: case 0x1d: | |
4433 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
4434 | { | |
4435 | if (bits (insn, 0, 3) == 0xf) | |
4436 | return copy_unmodified (gdbarch, insn, "bfc", dsc); | |
4437 | else | |
4438 | return copy_unmodified (gdbarch, insn, "bfi", dsc); | |
4439 | } | |
4440 | else | |
4441 | return copy_undef (gdbarch, insn, dsc); | |
4442 | ||
4443 | case 0x1e: case 0x1f: | |
4444 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
4445 | return copy_unmodified (gdbarch, insn, "ubfx", dsc); | |
4446 | else | |
4447 | return copy_undef (gdbarch, insn, dsc); | |
4448 | } | |
4449 | ||
4450 | /* Should be unreachable. */ | |
4451 | return 1; | |
4452 | } | |
4453 | ||
4454 | static int | |
4455 | decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn, | |
4456 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4457 | { | |
4458 | if (bit (insn, 25)) | |
4459 | return copy_b_bl_blx (gdbarch, insn, regs, dsc); | |
4460 | else | |
4461 | return copy_block_xfer (gdbarch, insn, regs, dsc); | |
4462 | } | |
4463 | ||
4464 | static int | |
4465 | decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, | |
4466 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4467 | { | |
4468 | unsigned int opcode = bits (insn, 20, 24); | |
4469 | ||
4470 | switch (opcode) | |
4471 | { | |
4472 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
4473 | return copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); | |
4474 | ||
4475 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
4476 | case 0x12: case 0x16: | |
4477 | return copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); | |
4478 | ||
4479 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
4480 | case 0x13: case 0x17: | |
4481 | return copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); | |
4482 | ||
4483 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
4484 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
4485 | /* Note: no writeback for these instructions. Bit 25 will always be | |
4486 | zero though (via caller), so the following works OK. */ | |
4487 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4488 | } | |
4489 | ||
4490 | /* Should be unreachable. */ | |
4491 | return 1; | |
4492 | } | |
4493 | ||
4494 | static int | |
4495 | decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, | |
4496 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4497 | { | |
4498 | unsigned int op1 = bits (insn, 20, 25); | |
4499 | int op = bit (insn, 4); | |
4500 | unsigned int coproc = bits (insn, 8, 11); | |
4501 | unsigned int rn = bits (insn, 16, 19); | |
4502 | ||
4503 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
4504 | return decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); | |
4505 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 | |
4506 | && (coproc & 0xe) != 0xa) | |
4507 | /* stc/stc2. */ | |
4508 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4509 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 | |
4510 | && (coproc & 0xe) != 0xa) | |
4511 | /* ldc/ldc2 imm/lit. */ | |
4512 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
4513 | else if ((op1 & 0x3e) == 0x00) | |
4514 | return copy_undef (gdbarch, insn, dsc); | |
4515 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) | |
4516 | return copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); | |
4517 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) | |
4518 | return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | |
4519 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) | |
4520 | return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | |
4521 | else if ((op1 & 0x30) == 0x20 && !op) | |
4522 | { | |
4523 | if ((coproc & 0xe) == 0xa) | |
4524 | return copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); | |
4525 | else | |
4526 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
4527 | } | |
4528 | else if ((op1 & 0x30) == 0x20 && op) | |
4529 | return copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); | |
4530 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) | |
4531 | return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | |
4532 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) | |
4533 | return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | |
4534 | else if ((op1 & 0x30) == 0x30) | |
4535 | return copy_svc (gdbarch, insn, to, regs, dsc); | |
4536 | else | |
4537 | return copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ | |
4538 | } | |
4539 | ||
4540 | void | |
4541 | arm_process_displaced_insn (struct gdbarch *gdbarch, uint32_t insn, | |
4542 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs, | |
4543 | struct displaced_step_closure *dsc) | |
4544 | { | |
4545 | int err = 0; | |
4546 | ||
4547 | if (!displaced_in_arm_mode (regs)) | |
4548 | error (_("Displaced stepping is only supported in ARM mode")); | |
4549 | ||
4550 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
4551 | here and override below if/when necessary. */ | |
4552 | dsc->numinsns = 1; | |
4553 | dsc->insn_addr = from; | |
4554 | dsc->scratch_base = to; | |
4555 | dsc->cleanup = NULL; | |
4556 | dsc->wrote_to_pc = 0; | |
4557 | ||
4558 | if ((insn & 0xf0000000) == 0xf0000000) | |
4559 | err = decode_unconditional (gdbarch, insn, regs, dsc); | |
4560 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) | |
4561 | { | |
4562 | case 0x0: case 0x1: case 0x2: case 0x3: | |
4563 | err = decode_dp_misc (gdbarch, insn, regs, dsc); | |
4564 | break; | |
4565 | ||
4566 | case 0x4: case 0x5: case 0x6: | |
4567 | err = decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); | |
4568 | break; | |
4569 | ||
4570 | case 0x7: | |
4571 | err = decode_media (gdbarch, insn, dsc); | |
4572 | break; | |
4573 | ||
4574 | case 0x8: case 0x9: case 0xa: case 0xb: | |
4575 | err = decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); | |
4576 | break; | |
4577 | ||
4578 | case 0xc: case 0xd: case 0xe: case 0xf: | |
4579 | err = decode_svc_copro (gdbarch, insn, to, regs, dsc); | |
4580 | break; | |
4581 | } | |
4582 | ||
4583 | if (err) | |
4584 | internal_error (__FILE__, __LINE__, | |
4585 | _("arm_process_displaced_insn: Instruction decode error")); | |
4586 | } | |
4587 | ||
4588 | /* Actually set up the scratch space for a displaced instruction. */ | |
4589 | ||
4590 | void | |
4591 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
4592 | CORE_ADDR to, struct displaced_step_closure *dsc) | |
4593 | { | |
4594 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4595 | unsigned int i; | |
4596 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
4597 | ||
4598 | /* Poke modified instruction(s). */ | |
4599 | for (i = 0; i < dsc->numinsns; i++) | |
4600 | { | |
4601 | if (debug_displaced) | |
4602 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn %.8lx at " | |
4603 | "%.8lx\n", (unsigned long) dsc->modinsn[i], | |
4604 | (unsigned long) to + i * 4); | |
4605 | write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code, | |
4606 | dsc->modinsn[i]); | |
4607 | } | |
4608 | ||
4609 | /* Put breakpoint afterwards. */ | |
4610 | write_memory (to + dsc->numinsns * 4, tdep->arm_breakpoint, | |
4611 | tdep->arm_breakpoint_size); | |
4612 | ||
4613 | if (debug_displaced) | |
4614 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
4615 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
4616 | } | |
4617 | ||
4618 | /* Entry point for copying an instruction into scratch space for displaced | |
4619 | stepping. */ | |
4620 | ||
4621 | struct displaced_step_closure * | |
4622 | arm_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
4623 | CORE_ADDR from, CORE_ADDR to, | |
4624 | struct regcache *regs) | |
4625 | { | |
4626 | struct displaced_step_closure *dsc | |
4627 | = xmalloc (sizeof (struct displaced_step_closure)); | |
4628 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
4629 | uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); | |
4630 | ||
4631 | if (debug_displaced) | |
4632 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
4633 | "at %.8lx\n", (unsigned long) insn, | |
4634 | (unsigned long) from); | |
4635 | ||
4636 | arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc); | |
4637 | arm_displaced_init_closure (gdbarch, from, to, dsc); | |
4638 | ||
4639 | return dsc; | |
4640 | } | |
4641 | ||
4642 | /* Entry point for cleaning things up after a displaced instruction has been | |
4643 | single-stepped. */ | |
4644 | ||
4645 | void | |
4646 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
4647 | struct displaced_step_closure *dsc, | |
4648 | CORE_ADDR from, CORE_ADDR to, | |
4649 | struct regcache *regs) | |
4650 | { | |
4651 | if (dsc->cleanup) | |
4652 | dsc->cleanup (gdbarch, regs, dsc); | |
4653 | ||
4654 | if (!dsc->wrote_to_pc) | |
4655 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, dsc->insn_addr + 4); | |
4656 | } | |
4657 | ||
4658 | #include "bfd-in2.h" | |
4659 | #include "libcoff.h" | |
4660 | ||
4661 | static int | |
4662 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
4663 | { | |
4664 | if (arm_pc_is_thumb (memaddr)) | |
4665 | { | |
4666 | static asymbol *asym; | |
4667 | static combined_entry_type ce; | |
4668 | static struct coff_symbol_struct csym; | |
4669 | static struct bfd fake_bfd; | |
4670 | static bfd_target fake_target; | |
4671 | ||
4672 | if (csym.native == NULL) | |
4673 | { | |
4674 | /* Create a fake symbol vector containing a Thumb symbol. | |
4675 | This is solely so that the code in print_insn_little_arm() | |
4676 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
4677 | the presence of a Thumb symbol and switch to decoding | |
4678 | Thumb instructions. */ | |
4679 | ||
4680 | fake_target.flavour = bfd_target_coff_flavour; | |
4681 | fake_bfd.xvec = &fake_target; | |
4682 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
4683 | csym.native = &ce; | |
4684 | csym.symbol.the_bfd = &fake_bfd; | |
4685 | csym.symbol.name = "fake"; | |
4686 | asym = (asymbol *) & csym; | |
4687 | } | |
4688 | ||
4689 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
4690 | info->symbols = &asym; | |
4691 | } | |
4692 | else | |
4693 | info->symbols = NULL; | |
4694 | ||
4695 | if (info->endian == BFD_ENDIAN_BIG) | |
4696 | return print_insn_big_arm (memaddr, info); | |
4697 | else | |
4698 | return print_insn_little_arm (memaddr, info); | |
4699 | } | |
4700 | ||
4701 | /* The following define instruction sequences that will cause ARM | |
4702 | cpu's to take an undefined instruction trap. These are used to | |
4703 | signal a breakpoint to GDB. | |
4704 | ||
4705 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
4706 | modes. A different instruction is required for each mode. The ARM | |
4707 | cpu's can also be big or little endian. Thus four different | |
4708 | instructions are needed to support all cases. | |
4709 | ||
4710 | Note: ARMv4 defines several new instructions that will take the | |
4711 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
4712 | not in fact add the new instructions. The new undefined | |
4713 | instructions in ARMv4 are all instructions that had no defined | |
4714 | behaviour in earlier chips. There is no guarantee that they will | |
4715 | raise an exception, but may be treated as NOP's. In practice, it | |
4716 | may only safe to rely on instructions matching: | |
4717 | ||
4718 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
4719 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
4720 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
4721 | ||
4722 | Even this may only true if the condition predicate is true. The | |
4723 | following use a condition predicate of ALWAYS so it is always TRUE. | |
4724 | ||
4725 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
4726 | and NetBSD all use a software interrupt rather than an undefined | |
4727 | instruction to force a trap. This can be handled by by the | |
4728 | abi-specific code during establishment of the gdbarch vector. */ | |
4729 | ||
4730 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
4731 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
4732 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
4733 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
4734 | ||
4735 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
4736 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
4737 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
4738 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
4739 | ||
4740 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses | |
4741 | the program counter value to determine whether a 16-bit or 32-bit | |
4742 | breakpoint should be used. It returns a pointer to a string of | |
4743 | bytes that encode a breakpoint instruction, stores the length of | |
4744 | the string to *lenptr, and adjusts the program counter (if | |
4745 | necessary) to point to the actual memory location where the | |
4746 | breakpoint should be inserted. */ | |
4747 | ||
4748 | static const unsigned char * | |
4749 | arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
4750 | { | |
4751 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4752 | ||
4753 | if (arm_pc_is_thumb (*pcptr)) | |
4754 | { | |
4755 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
4756 | *lenptr = tdep->thumb_breakpoint_size; | |
4757 | return tdep->thumb_breakpoint; | |
4758 | } | |
4759 | else | |
4760 | { | |
4761 | *lenptr = tdep->arm_breakpoint_size; | |
4762 | return tdep->arm_breakpoint; | |
4763 | } | |
4764 | } | |
4765 | ||
4766 | /* Extract from an array REGBUF containing the (raw) register state a | |
4767 | function return value of type TYPE, and copy that, in virtual | |
4768 | format, into VALBUF. */ | |
4769 | ||
4770 | static void | |
4771 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
4772 | gdb_byte *valbuf) | |
4773 | { | |
4774 | struct gdbarch *gdbarch = get_regcache_arch (regs); | |
4775 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4776 | ||
4777 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
4778 | { | |
4779 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
4780 | { | |
4781 | case ARM_FLOAT_FPA: | |
4782 | { | |
4783 | /* The value is in register F0 in internal format. We need to | |
4784 | extract the raw value and then convert it to the desired | |
4785 | internal type. */ | |
4786 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
4787 | ||
4788 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
4789 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
4790 | valbuf, gdbarch_byte_order (gdbarch)); | |
4791 | } | |
4792 | break; | |
4793 | ||
4794 | case ARM_FLOAT_SOFT_FPA: | |
4795 | case ARM_FLOAT_SOFT_VFP: | |
4796 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
4797 | not using the VFP ABI code. */ | |
4798 | case ARM_FLOAT_VFP: | |
4799 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
4800 | if (TYPE_LENGTH (type) > 4) | |
4801 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
4802 | valbuf + INT_REGISTER_SIZE); | |
4803 | break; | |
4804 | ||
4805 | default: | |
4806 | internal_error | |
4807 | (__FILE__, __LINE__, | |
4808 | _("arm_extract_return_value: Floating point model not supported")); | |
4809 | break; | |
4810 | } | |
4811 | } | |
4812 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
4813 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
4814 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
4815 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
4816 | || TYPE_CODE (type) == TYPE_CODE_REF | |
4817 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
4818 | { | |
4819 | /* If the the type is a plain integer, then the access is | |
4820 | straight-forward. Otherwise we have to play around a bit more. */ | |
4821 | int len = TYPE_LENGTH (type); | |
4822 | int regno = ARM_A1_REGNUM; | |
4823 | ULONGEST tmp; | |
4824 | ||
4825 | while (len > 0) | |
4826 | { | |
4827 | /* By using store_unsigned_integer we avoid having to do | |
4828 | anything special for small big-endian values. */ | |
4829 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
4830 | store_unsigned_integer (valbuf, | |
4831 | (len > INT_REGISTER_SIZE | |
4832 | ? INT_REGISTER_SIZE : len), | |
4833 | byte_order, tmp); | |
4834 | len -= INT_REGISTER_SIZE; | |
4835 | valbuf += INT_REGISTER_SIZE; | |
4836 | } | |
4837 | } | |
4838 | else | |
4839 | { | |
4840 | /* For a structure or union the behaviour is as if the value had | |
4841 | been stored to word-aligned memory and then loaded into | |
4842 | registers with 32-bit load instruction(s). */ | |
4843 | int len = TYPE_LENGTH (type); | |
4844 | int regno = ARM_A1_REGNUM; | |
4845 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
4846 | ||
4847 | while (len > 0) | |
4848 | { | |
4849 | regcache_cooked_read (regs, regno++, tmpbuf); | |
4850 | memcpy (valbuf, tmpbuf, | |
4851 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
4852 | len -= INT_REGISTER_SIZE; | |
4853 | valbuf += INT_REGISTER_SIZE; | |
4854 | } | |
4855 | } | |
4856 | } | |
4857 | ||
4858 | ||
4859 | /* Will a function return an aggregate type in memory or in a | |
4860 | register? Return 0 if an aggregate type can be returned in a | |
4861 | register, 1 if it must be returned in memory. */ | |
4862 | ||
4863 | static int | |
4864 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
4865 | { | |
4866 | int nRc; | |
4867 | enum type_code code; | |
4868 | ||
4869 | CHECK_TYPEDEF (type); | |
4870 | ||
4871 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
4872 | registers. For an aggregate type to be integer like, its size | |
4873 | must be less than or equal to INT_REGISTER_SIZE and the | |
4874 | offset of each addressable subfield must be zero. Note that bit | |
4875 | fields are not addressable, and all addressable subfields of | |
4876 | unions always start at offset zero. | |
4877 | ||
4878 | This function is based on the behaviour of GCC 2.95.1. | |
4879 | See: gcc/arm.c: arm_return_in_memory() for details. | |
4880 | ||
4881 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
4882 | parameters correctly for a function returning the following | |
4883 | structure: struct { float f;}; This should be returned in memory, | |
4884 | not a register. Richard Earnshaw sent me a patch, but I do not | |
4885 | know of any way to detect if a function like the above has been | |
4886 | compiled with the correct calling convention. */ | |
4887 | ||
4888 | /* All aggregate types that won't fit in a register must be returned | |
4889 | in memory. */ | |
4890 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
4891 | { | |
4892 | return 1; | |
4893 | } | |
4894 | ||
4895 | /* The AAPCS says all aggregates not larger than a word are returned | |
4896 | in a register. */ | |
4897 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) | |
4898 | return 0; | |
4899 | ||
4900 | /* The only aggregate types that can be returned in a register are | |
4901 | structs and unions. Arrays must be returned in memory. */ | |
4902 | code = TYPE_CODE (type); | |
4903 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
4904 | { | |
4905 | return 1; | |
4906 | } | |
4907 | ||
4908 | /* Assume all other aggregate types can be returned in a register. | |
4909 | Run a check for structures, unions and arrays. */ | |
4910 | nRc = 0; | |
4911 | ||
4912 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
4913 | { | |
4914 | int i; | |
4915 | /* Need to check if this struct/union is "integer" like. For | |
4916 | this to be true, its size must be less than or equal to | |
4917 | INT_REGISTER_SIZE and the offset of each addressable | |
4918 | subfield must be zero. Note that bit fields are not | |
4919 | addressable, and unions always start at offset zero. If any | |
4920 | of the subfields is a floating point type, the struct/union | |
4921 | cannot be an integer type. */ | |
4922 | ||
4923 | /* For each field in the object, check: | |
4924 | 1) Is it FP? --> yes, nRc = 1; | |
67255d04 RE |
4925 | 2) Is it addressable (bitpos != 0) and |
4926 | not packed (bitsize == 0)? | |
4927 | --> yes, nRc = 1 | |
4928 | */ | |
4929 | ||
4930 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
4931 | { | |
4932 | enum type_code field_type_code; | |
44e1a9eb | 4933 | field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i))); |
67255d04 RE |
4934 | |
4935 | /* Is it a floating point type field? */ | |
4936 | if (field_type_code == TYPE_CODE_FLT) | |
4937 | { | |
4938 | nRc = 1; | |
4939 | break; | |
4940 | } | |
4941 | ||
4942 | /* If bitpos != 0, then we have to care about it. */ | |
4943 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
4944 | { | |
4945 | /* Bitfields are not addressable. If the field bitsize is | |
4946 | zero, then the field is not packed. Hence it cannot be | |
4947 | a bitfield or any other packed type. */ | |
4948 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
4949 | { | |
4950 | nRc = 1; | |
4951 | break; | |
4952 | } | |
4953 | } | |
4954 | } | |
4955 | } | |
4956 | ||
4957 | return nRc; | |
4958 | } | |
4959 | ||
34e8f22d RE |
4960 | /* Write into appropriate registers a function return value of type |
4961 | TYPE, given in virtual format. */ | |
4962 | ||
4963 | static void | |
b508a996 | 4964 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 4965 | const gdb_byte *valbuf) |
34e8f22d | 4966 | { |
be8626e0 | 4967 | struct gdbarch *gdbarch = get_regcache_arch (regs); |
e17a4113 | 4968 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 4969 | |
34e8f22d RE |
4970 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
4971 | { | |
7a5ea0d4 | 4972 | char buf[MAX_REGISTER_SIZE]; |
34e8f22d | 4973 | |
be8626e0 | 4974 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
4975 | { |
4976 | case ARM_FLOAT_FPA: | |
4977 | ||
be8626e0 MD |
4978 | convert_to_extended (floatformat_from_type (type), buf, valbuf, |
4979 | gdbarch_byte_order (gdbarch)); | |
b508a996 | 4980 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
4981 | break; |
4982 | ||
fd50bc42 | 4983 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 4984 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
4985 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
4986 | not using the VFP ABI code. */ | |
4987 | case ARM_FLOAT_VFP: | |
b508a996 RE |
4988 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
4989 | if (TYPE_LENGTH (type) > 4) | |
4990 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 4991 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
4992 | break; |
4993 | ||
4994 | default: | |
4995 | internal_error | |
4996 | (__FILE__, __LINE__, | |
edefbb7c | 4997 | _("arm_store_return_value: Floating point model not supported")); |
08216dd7 RE |
4998 | break; |
4999 | } | |
34e8f22d | 5000 | } |
b508a996 RE |
5001 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
5002 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
5003 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
5004 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
5005 | || TYPE_CODE (type) == TYPE_CODE_REF | |
5006 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
5007 | { | |
5008 | if (TYPE_LENGTH (type) <= 4) | |
5009 | { | |
5010 | /* Values of one word or less are zero/sign-extended and | |
5011 | returned in r0. */ | |
7a5ea0d4 | 5012 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
5013 | LONGEST val = unpack_long (type, valbuf); |
5014 | ||
e17a4113 | 5015 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
5016 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
5017 | } | |
5018 | else | |
5019 | { | |
5020 | /* Integral values greater than one word are stored in consecutive | |
5021 | registers starting with r0. This will always be a multiple of | |
5022 | the regiser size. */ | |
5023 | int len = TYPE_LENGTH (type); | |
5024 | int regno = ARM_A1_REGNUM; | |
5025 | ||
5026 | while (len > 0) | |
5027 | { | |
5028 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
5029 | len -= INT_REGISTER_SIZE; |
5030 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
5031 | } |
5032 | } | |
5033 | } | |
34e8f22d | 5034 | else |
b508a996 RE |
5035 | { |
5036 | /* For a structure or union the behaviour is as if the value had | |
5037 | been stored to word-aligned memory and then loaded into | |
5038 | registers with 32-bit load instruction(s). */ | |
5039 | int len = TYPE_LENGTH (type); | |
5040 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 5041 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
5042 | |
5043 | while (len > 0) | |
5044 | { | |
5045 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 5046 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 5047 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
5048 | len -= INT_REGISTER_SIZE; |
5049 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
5050 | } |
5051 | } | |
34e8f22d RE |
5052 | } |
5053 | ||
2af48f68 PB |
5054 | |
5055 | /* Handle function return values. */ | |
5056 | ||
5057 | static enum return_value_convention | |
c055b101 CV |
5058 | arm_return_value (struct gdbarch *gdbarch, struct type *func_type, |
5059 | struct type *valtype, struct regcache *regcache, | |
5060 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 5061 | { |
7c00367c | 5062 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
90445bd3 DJ |
5063 | enum arm_vfp_cprc_base_type vfp_base_type; |
5064 | int vfp_base_count; | |
5065 | ||
5066 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
5067 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
5068 | { | |
5069 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
5070 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
5071 | int i; | |
5072 | for (i = 0; i < vfp_base_count; i++) | |
5073 | { | |
58d6951d DJ |
5074 | if (reg_char == 'q') |
5075 | { | |
5076 | if (writebuf) | |
5077 | arm_neon_quad_write (gdbarch, regcache, i, | |
5078 | writebuf + i * unit_length); | |
5079 | ||
5080 | if (readbuf) | |
5081 | arm_neon_quad_read (gdbarch, regcache, i, | |
5082 | readbuf + i * unit_length); | |
5083 | } | |
5084 | else | |
5085 | { | |
5086 | char name_buf[4]; | |
5087 | int regnum; | |
5088 | ||
5089 | sprintf (name_buf, "%c%d", reg_char, i); | |
5090 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
5091 | strlen (name_buf)); | |
5092 | if (writebuf) | |
5093 | regcache_cooked_write (regcache, regnum, | |
5094 | writebuf + i * unit_length); | |
5095 | if (readbuf) | |
5096 | regcache_cooked_read (regcache, regnum, | |
5097 | readbuf + i * unit_length); | |
5098 | } | |
90445bd3 DJ |
5099 | } |
5100 | return RETURN_VALUE_REGISTER_CONVENTION; | |
5101 | } | |
7c00367c | 5102 | |
2af48f68 PB |
5103 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
5104 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
5105 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
5106 | { | |
7c00367c MK |
5107 | if (tdep->struct_return == pcc_struct_return |
5108 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
5109 | return RETURN_VALUE_STRUCT_CONVENTION; |
5110 | } | |
5111 | ||
5112 | if (writebuf) | |
5113 | arm_store_return_value (valtype, regcache, writebuf); | |
5114 | ||
5115 | if (readbuf) | |
5116 | arm_extract_return_value (valtype, regcache, readbuf); | |
5117 | ||
5118 | return RETURN_VALUE_REGISTER_CONVENTION; | |
5119 | } | |
5120 | ||
5121 | ||
9df628e0 | 5122 | static int |
60ade65d | 5123 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 5124 | { |
e17a4113 UW |
5125 | struct gdbarch *gdbarch = get_frame_arch (frame); |
5126 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5127 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 5128 | CORE_ADDR jb_addr; |
7a5ea0d4 | 5129 | char buf[INT_REGISTER_SIZE]; |
9df628e0 | 5130 | |
60ade65d | 5131 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
5132 | |
5133 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 5134 | INT_REGISTER_SIZE)) |
9df628e0 RE |
5135 | return 0; |
5136 | ||
e17a4113 | 5137 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
5138 | return 1; |
5139 | } | |
5140 | ||
faa95490 DJ |
5141 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
5142 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
5143 | |
5144 | CORE_ADDR | |
52f729a7 | 5145 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 5146 | { |
c5aa993b | 5147 | char *name; |
faa95490 | 5148 | int namelen; |
c906108c SS |
5149 | CORE_ADDR start_addr; |
5150 | ||
5151 | /* Find the starting address and name of the function containing the PC. */ | |
5152 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
5153 | return 0; | |
5154 | ||
faa95490 DJ |
5155 | /* If PC is in a Thumb call or return stub, return the address of the |
5156 | target PC, which is in a register. The thunk functions are called | |
5157 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
5158 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
5159 | functions, named __ARM_call_via_r[0-7]. */ | |
5160 | if (strncmp (name, "_call_via_", 10) == 0 | |
5161 | || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0) | |
c906108c | 5162 | { |
ed9a39eb JM |
5163 | /* Use the name suffix to determine which register contains the |
5164 | target PC. */ | |
c5aa993b JM |
5165 | static char *table[15] = |
5166 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
5167 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
5168 | }; | |
c906108c | 5169 | int regno; |
faa95490 | 5170 | int offset = strlen (name) - 2; |
c906108c SS |
5171 | |
5172 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 5173 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 5174 | return get_frame_register_unsigned (frame, regno); |
c906108c | 5175 | } |
ed9a39eb | 5176 | |
faa95490 DJ |
5177 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
5178 | non-interworking calls to foo. We could decode the stubs | |
5179 | to find the target but it's easier to use the symbol table. */ | |
5180 | namelen = strlen (name); | |
5181 | if (name[0] == '_' && name[1] == '_' | |
5182 | && ((namelen > 2 + strlen ("_from_thumb") | |
5183 | && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb", | |
5184 | strlen ("_from_thumb")) == 0) | |
5185 | || (namelen > 2 + strlen ("_from_arm") | |
5186 | && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm", | |
5187 | strlen ("_from_arm")) == 0))) | |
5188 | { | |
5189 | char *target_name; | |
5190 | int target_len = namelen - 2; | |
5191 | struct minimal_symbol *minsym; | |
5192 | struct objfile *objfile; | |
5193 | struct obj_section *sec; | |
5194 | ||
5195 | if (name[namelen - 1] == 'b') | |
5196 | target_len -= strlen ("_from_thumb"); | |
5197 | else | |
5198 | target_len -= strlen ("_from_arm"); | |
5199 | ||
5200 | target_name = alloca (target_len + 1); | |
5201 | memcpy (target_name, name + 2, target_len); | |
5202 | target_name[target_len] = '\0'; | |
5203 | ||
5204 | sec = find_pc_section (pc); | |
5205 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
5206 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
5207 | if (minsym != NULL) | |
5208 | return SYMBOL_VALUE_ADDRESS (minsym); | |
5209 | else | |
5210 | return 0; | |
5211 | } | |
5212 | ||
c5aa993b | 5213 | return 0; /* not a stub */ |
c906108c SS |
5214 | } |
5215 | ||
afd7eef0 RE |
5216 | static void |
5217 | set_arm_command (char *args, int from_tty) | |
5218 | { | |
edefbb7c AC |
5219 | printf_unfiltered (_("\ |
5220 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
5221 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
5222 | } | |
5223 | ||
5224 | static void | |
5225 | show_arm_command (char *args, int from_tty) | |
5226 | { | |
26304000 | 5227 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
5228 | } |
5229 | ||
28e97307 DJ |
5230 | static void |
5231 | arm_update_current_architecture (void) | |
fd50bc42 | 5232 | { |
28e97307 | 5233 | struct gdbarch_info info; |
fd50bc42 | 5234 | |
28e97307 | 5235 | /* If the current architecture is not ARM, we have nothing to do. */ |
1cf3db46 | 5236 | if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm) |
28e97307 | 5237 | return; |
fd50bc42 | 5238 | |
28e97307 DJ |
5239 | /* Update the architecture. */ |
5240 | gdbarch_info_init (&info); | |
fd50bc42 | 5241 | |
28e97307 DJ |
5242 | if (!gdbarch_update_p (info)) |
5243 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
fd50bc42 RE |
5244 | } |
5245 | ||
5246 | static void | |
5247 | set_fp_model_sfunc (char *args, int from_tty, | |
5248 | struct cmd_list_element *c) | |
5249 | { | |
5250 | enum arm_float_model fp_model; | |
5251 | ||
5252 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
5253 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
5254 | { | |
5255 | arm_fp_model = fp_model; | |
5256 | break; | |
5257 | } | |
5258 | ||
5259 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 5260 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
5261 | current_fp_model); |
5262 | ||
28e97307 | 5263 | arm_update_current_architecture (); |
fd50bc42 RE |
5264 | } |
5265 | ||
5266 | static void | |
08546159 AC |
5267 | show_fp_model (struct ui_file *file, int from_tty, |
5268 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 5269 | { |
1cf3db46 | 5270 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
fd50bc42 | 5271 | |
28e97307 | 5272 | if (arm_fp_model == ARM_FLOAT_AUTO |
1cf3db46 | 5273 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
5274 | fprintf_filtered (file, _("\ |
5275 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
5276 | fp_model_strings[tdep->fp_model]); | |
5277 | else | |
5278 | fprintf_filtered (file, _("\ | |
5279 | The current ARM floating point model is \"%s\".\n"), | |
5280 | fp_model_strings[arm_fp_model]); | |
5281 | } | |
5282 | ||
5283 | static void | |
5284 | arm_set_abi (char *args, int from_tty, | |
5285 | struct cmd_list_element *c) | |
5286 | { | |
5287 | enum arm_abi_kind arm_abi; | |
5288 | ||
5289 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
5290 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
5291 | { | |
5292 | arm_abi_global = arm_abi; | |
5293 | break; | |
5294 | } | |
5295 | ||
5296 | if (arm_abi == ARM_ABI_LAST) | |
5297 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
5298 | arm_abi_string); | |
5299 | ||
5300 | arm_update_current_architecture (); | |
5301 | } | |
5302 | ||
5303 | static void | |
5304 | arm_show_abi (struct ui_file *file, int from_tty, | |
5305 | struct cmd_list_element *c, const char *value) | |
5306 | { | |
1cf3db46 | 5307 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
28e97307 DJ |
5308 | |
5309 | if (arm_abi_global == ARM_ABI_AUTO | |
1cf3db46 | 5310 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
5311 | fprintf_filtered (file, _("\ |
5312 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
5313 | arm_abi_strings[tdep->arm_abi]); | |
5314 | else | |
5315 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
5316 | arm_abi_string); | |
fd50bc42 RE |
5317 | } |
5318 | ||
0428b8f5 DJ |
5319 | static void |
5320 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
5321 | struct cmd_list_element *c, const char *value) | |
5322 | { | |
1cf3db46 | 5323 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 DJ |
5324 | |
5325 | fprintf_filtered (file, _("\ | |
5326 | The current execution mode assumed (when symbols are unavailable) is \"%s\".\n"), | |
5327 | arm_fallback_mode_string); | |
5328 | } | |
5329 | ||
5330 | static void | |
5331 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
5332 | struct cmd_list_element *c, const char *value) | |
5333 | { | |
1cf3db46 | 5334 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 DJ |
5335 | |
5336 | fprintf_filtered (file, _("\ | |
5337 | The current execution mode assumed (even when symbols are available) is \"%s\".\n"), | |
5338 | arm_force_mode_string); | |
5339 | } | |
5340 | ||
afd7eef0 RE |
5341 | /* If the user changes the register disassembly style used for info |
5342 | register and other commands, we have to also switch the style used | |
5343 | in opcodes for disassembly output. This function is run in the "set | |
5344 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
5345 | |
5346 | static void | |
afd7eef0 | 5347 | set_disassembly_style_sfunc (char *args, int from_tty, |
bc90b915 FN |
5348 | struct cmd_list_element *c) |
5349 | { | |
afd7eef0 | 5350 | set_disassembly_style (); |
bc90b915 FN |
5351 | } |
5352 | \f | |
966fbf70 | 5353 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 5354 | static const char * |
d93859e2 | 5355 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 5356 | { |
58d6951d DJ |
5357 | const int num_regs = gdbarch_num_regs (gdbarch); |
5358 | ||
5359 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
5360 | && i >= num_regs && i < num_regs + 32) | |
5361 | { | |
5362 | static const char *const vfp_pseudo_names[] = { | |
5363 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
5364 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
5365 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
5366 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
5367 | }; | |
5368 | ||
5369 | return vfp_pseudo_names[i - num_regs]; | |
5370 | } | |
5371 | ||
5372 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
5373 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
5374 | { | |
5375 | static const char *const neon_pseudo_names[] = { | |
5376 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
5377 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
5378 | }; | |
5379 | ||
5380 | return neon_pseudo_names[i - num_regs - 32]; | |
5381 | } | |
5382 | ||
ff6f572f DJ |
5383 | if (i >= ARRAY_SIZE (arm_register_names)) |
5384 | /* These registers are only supported on targets which supply | |
5385 | an XML description. */ | |
5386 | return ""; | |
5387 | ||
966fbf70 RE |
5388 | return arm_register_names[i]; |
5389 | } | |
5390 | ||
bc90b915 | 5391 | static void |
afd7eef0 | 5392 | set_disassembly_style (void) |
bc90b915 | 5393 | { |
123dc839 | 5394 | int current; |
bc90b915 | 5395 | |
123dc839 DJ |
5396 | /* Find the style that the user wants. */ |
5397 | for (current = 0; current < num_disassembly_options; current++) | |
5398 | if (disassembly_style == valid_disassembly_styles[current]) | |
5399 | break; | |
5400 | gdb_assert (current < num_disassembly_options); | |
bc90b915 | 5401 | |
94c30b78 | 5402 | /* Synchronize the disassembler. */ |
bc90b915 FN |
5403 | set_arm_regname_option (current); |
5404 | } | |
5405 | ||
082fc60d RE |
5406 | /* Test whether the coff symbol specific value corresponds to a Thumb |
5407 | function. */ | |
5408 | ||
5409 | static int | |
5410 | coff_sym_is_thumb (int val) | |
5411 | { | |
f8bf5763 PM |
5412 | return (val == C_THUMBEXT |
5413 | || val == C_THUMBSTAT | |
5414 | || val == C_THUMBEXTFUNC | |
5415 | || val == C_THUMBSTATFUNC | |
5416 | || val == C_THUMBLABEL); | |
082fc60d RE |
5417 | } |
5418 | ||
5419 | /* arm_coff_make_msymbol_special() | |
5420 | arm_elf_make_msymbol_special() | |
5421 | ||
5422 | These functions test whether the COFF or ELF symbol corresponds to | |
5423 | an address in thumb code, and set a "special" bit in a minimal | |
5424 | symbol to indicate that it does. */ | |
5425 | ||
34e8f22d | 5426 | static void |
082fc60d RE |
5427 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
5428 | { | |
5429 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
5430 | STT_ARM_TFUNC). */ | |
5431 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
5432 | == STT_LOPROC) | |
5433 | MSYMBOL_SET_SPECIAL (msym); | |
5434 | } | |
5435 | ||
34e8f22d | 5436 | static void |
082fc60d RE |
5437 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
5438 | { | |
5439 | if (coff_sym_is_thumb (val)) | |
5440 | MSYMBOL_SET_SPECIAL (msym); | |
5441 | } | |
5442 | ||
60c5725c | 5443 | static void |
c1bd65d0 | 5444 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c DJ |
5445 | { |
5446 | struct arm_per_objfile *data = arg; | |
5447 | unsigned int i; | |
5448 | ||
5449 | for (i = 0; i < objfile->obfd->section_count; i++) | |
5450 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
5451 | } | |
5452 | ||
5453 | static void | |
5454 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
5455 | asymbol *sym) | |
5456 | { | |
5457 | const char *name = bfd_asymbol_name (sym); | |
5458 | struct arm_per_objfile *data; | |
5459 | VEC(arm_mapping_symbol_s) **map_p; | |
5460 | struct arm_mapping_symbol new_map_sym; | |
5461 | ||
5462 | gdb_assert (name[0] == '$'); | |
5463 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
5464 | return; | |
5465 | ||
5466 | data = objfile_data (objfile, arm_objfile_data_key); | |
5467 | if (data == NULL) | |
5468 | { | |
5469 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
5470 | struct arm_per_objfile); | |
5471 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
5472 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
5473 | objfile->obfd->section_count, | |
5474 | VEC(arm_mapping_symbol_s) *); | |
5475 | } | |
5476 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
5477 | ||
5478 | new_map_sym.value = sym->value; | |
5479 | new_map_sym.type = name[1]; | |
5480 | ||
5481 | /* Assume that most mapping symbols appear in order of increasing | |
5482 | value. If they were randomly distributed, it would be faster to | |
5483 | always push here and then sort at first use. */ | |
5484 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
5485 | { | |
5486 | struct arm_mapping_symbol *prev_map_sym; | |
5487 | ||
5488 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
5489 | if (prev_map_sym->value >= sym->value) | |
5490 | { | |
5491 | unsigned int idx; | |
5492 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
5493 | arm_compare_mapping_symbols); | |
5494 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
5495 | return; | |
5496 | } | |
5497 | } | |
5498 | ||
5499 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
5500 | } | |
5501 | ||
756fe439 | 5502 | static void |
61a1198a | 5503 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 5504 | { |
61a1198a | 5505 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
5506 | |
5507 | /* If necessary, set the T bit. */ | |
5508 | if (arm_apcs_32) | |
5509 | { | |
61a1198a UW |
5510 | ULONGEST val; |
5511 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); | |
756fe439 | 5512 | if (arm_pc_is_thumb (pc)) |
b39cc962 | 5513 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | CPSR_T); |
756fe439 | 5514 | else |
61a1198a | 5515 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
b39cc962 | 5516 | val & ~(ULONGEST) CPSR_T); |
756fe439 DJ |
5517 | } |
5518 | } | |
123dc839 | 5519 | |
58d6951d DJ |
5520 | /* Read the contents of a NEON quad register, by reading from two |
5521 | double registers. This is used to implement the quad pseudo | |
5522 | registers, and for argument passing in case the quad registers are | |
5523 | missing; vectors are passed in quad registers when using the VFP | |
5524 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
5525 | the quad register, in [0, 15]. */ | |
5526 | ||
5527 | static void | |
5528 | arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
5529 | int regnum, gdb_byte *buf) | |
5530 | { | |
5531 | char name_buf[4]; | |
5532 | gdb_byte reg_buf[8]; | |
5533 | int offset, double_regnum; | |
5534 | ||
5535 | sprintf (name_buf, "d%d", regnum << 1); | |
5536 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
5537 | strlen (name_buf)); | |
5538 | ||
5539 | /* d0 is always the least significant half of q0. */ | |
5540 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
5541 | offset = 8; | |
5542 | else | |
5543 | offset = 0; | |
5544 | ||
5545 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
5546 | memcpy (buf + offset, reg_buf, 8); | |
5547 | ||
5548 | offset = 8 - offset; | |
5549 | regcache_raw_read (regcache, double_regnum + 1, reg_buf); | |
5550 | memcpy (buf + offset, reg_buf, 8); | |
5551 | } | |
5552 | ||
5553 | static void | |
5554 | arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
5555 | int regnum, gdb_byte *buf) | |
5556 | { | |
5557 | const int num_regs = gdbarch_num_regs (gdbarch); | |
5558 | char name_buf[4]; | |
5559 | gdb_byte reg_buf[8]; | |
5560 | int offset, double_regnum; | |
5561 | ||
5562 | gdb_assert (regnum >= num_regs); | |
5563 | regnum -= num_regs; | |
5564 | ||
5565 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
5566 | /* Quad-precision register. */ | |
5567 | arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); | |
5568 | else | |
5569 | { | |
5570 | /* Single-precision register. */ | |
5571 | gdb_assert (regnum < 32); | |
5572 | ||
5573 | /* s0 is always the least significant half of d0. */ | |
5574 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
5575 | offset = (regnum & 1) ? 0 : 4; | |
5576 | else | |
5577 | offset = (regnum & 1) ? 4 : 0; | |
5578 | ||
5579 | sprintf (name_buf, "d%d", regnum >> 1); | |
5580 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
5581 | strlen (name_buf)); | |
5582 | ||
5583 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
5584 | memcpy (buf, reg_buf + offset, 4); | |
5585 | } | |
5586 | } | |
5587 | ||
5588 | /* Store the contents of BUF to a NEON quad register, by writing to | |
5589 | two double registers. This is used to implement the quad pseudo | |
5590 | registers, and for argument passing in case the quad registers are | |
5591 | missing; vectors are passed in quad registers when using the VFP | |
5592 | ABI, even if a NEON unit is not present. REGNUM is the index | |
5593 | of the quad register, in [0, 15]. */ | |
5594 | ||
5595 | static void | |
5596 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
5597 | int regnum, const gdb_byte *buf) | |
5598 | { | |
5599 | char name_buf[4]; | |
5600 | gdb_byte reg_buf[8]; | |
5601 | int offset, double_regnum; | |
5602 | ||
5603 | sprintf (name_buf, "d%d", regnum << 1); | |
5604 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
5605 | strlen (name_buf)); | |
5606 | ||
5607 | /* d0 is always the least significant half of q0. */ | |
5608 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
5609 | offset = 8; | |
5610 | else | |
5611 | offset = 0; | |
5612 | ||
5613 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
5614 | offset = 8 - offset; | |
5615 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
5616 | } | |
5617 | ||
5618 | static void | |
5619 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
5620 | int regnum, const gdb_byte *buf) | |
5621 | { | |
5622 | const int num_regs = gdbarch_num_regs (gdbarch); | |
5623 | char name_buf[4]; | |
5624 | gdb_byte reg_buf[8]; | |
5625 | int offset, double_regnum; | |
5626 | ||
5627 | gdb_assert (regnum >= num_regs); | |
5628 | regnum -= num_regs; | |
5629 | ||
5630 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
5631 | /* Quad-precision register. */ | |
5632 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
5633 | else | |
5634 | { | |
5635 | /* Single-precision register. */ | |
5636 | gdb_assert (regnum < 32); | |
5637 | ||
5638 | /* s0 is always the least significant half of d0. */ | |
5639 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
5640 | offset = (regnum & 1) ? 0 : 4; | |
5641 | else | |
5642 | offset = (regnum & 1) ? 4 : 0; | |
5643 | ||
5644 | sprintf (name_buf, "d%d", regnum >> 1); | |
5645 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
5646 | strlen (name_buf)); | |
5647 | ||
5648 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
5649 | memcpy (reg_buf + offset, buf, 4); | |
5650 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
5651 | } | |
5652 | } | |
5653 | ||
123dc839 DJ |
5654 | static struct value * |
5655 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
5656 | { | |
5657 | const int *reg_p = baton; | |
5658 | return value_of_register (*reg_p, frame); | |
5659 | } | |
97e03143 | 5660 | \f |
70f80edf JT |
5661 | static enum gdb_osabi |
5662 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 5663 | { |
2af48f68 | 5664 | unsigned int elfosabi; |
70f80edf | 5665 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 5666 | |
70f80edf | 5667 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 5668 | |
28e97307 DJ |
5669 | if (elfosabi == ELFOSABI_ARM) |
5670 | /* GNU tools use this value. Check note sections in this case, | |
5671 | as well. */ | |
5672 | bfd_map_over_sections (abfd, | |
5673 | generic_elf_osabi_sniff_abi_tag_sections, | |
5674 | &osabi); | |
97e03143 | 5675 | |
28e97307 | 5676 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 5677 | return osabi; |
97e03143 RE |
5678 | } |
5679 | ||
70f80edf | 5680 | \f |
da3c6d4a MS |
5681 | /* Initialize the current architecture based on INFO. If possible, |
5682 | re-use an architecture from ARCHES, which is a list of | |
5683 | architectures already created during this debugging session. | |
97e03143 | 5684 | |
da3c6d4a MS |
5685 | Called e.g. at program startup, when reading a core file, and when |
5686 | reading a binary file. */ | |
97e03143 | 5687 | |
39bbf761 RE |
5688 | static struct gdbarch * |
5689 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
5690 | { | |
97e03143 | 5691 | struct gdbarch_tdep *tdep; |
39bbf761 | 5692 | struct gdbarch *gdbarch; |
28e97307 DJ |
5693 | struct gdbarch_list *best_arch; |
5694 | enum arm_abi_kind arm_abi = arm_abi_global; | |
5695 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 DJ |
5696 | struct tdesc_arch_data *tdesc_data = NULL; |
5697 | int i; | |
58d6951d DJ |
5698 | int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
5699 | int have_neon = 0; | |
ff6f572f | 5700 | int have_fpa_registers = 1; |
123dc839 DJ |
5701 | |
5702 | /* Check any target description for validity. */ | |
5703 | if (tdesc_has_registers (info.target_desc)) | |
5704 | { | |
5705 | /* For most registers we require GDB's default names; but also allow | |
5706 | the numeric names for sp / lr / pc, as a convenience. */ | |
5707 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
5708 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
5709 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
5710 | ||
5711 | const struct tdesc_feature *feature; | |
58d6951d | 5712 | int valid_p; |
123dc839 DJ |
5713 | |
5714 | feature = tdesc_find_feature (info.target_desc, | |
5715 | "org.gnu.gdb.arm.core"); | |
5716 | if (feature == NULL) | |
5717 | return NULL; | |
5718 | ||
5719 | tdesc_data = tdesc_data_alloc (); | |
5720 | ||
5721 | valid_p = 1; | |
5722 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
5723 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
5724 | arm_register_names[i]); | |
5725 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
5726 | ARM_SP_REGNUM, | |
5727 | arm_sp_names); | |
5728 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
5729 | ARM_LR_REGNUM, | |
5730 | arm_lr_names); | |
5731 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
5732 | ARM_PC_REGNUM, | |
5733 | arm_pc_names); | |
5734 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
5735 | ARM_PS_REGNUM, "cpsr"); | |
5736 | ||
5737 | if (!valid_p) | |
5738 | { | |
5739 | tdesc_data_cleanup (tdesc_data); | |
5740 | return NULL; | |
5741 | } | |
5742 | ||
5743 | feature = tdesc_find_feature (info.target_desc, | |
5744 | "org.gnu.gdb.arm.fpa"); | |
5745 | if (feature != NULL) | |
5746 | { | |
5747 | valid_p = 1; | |
5748 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
5749 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
5750 | arm_register_names[i]); | |
5751 | if (!valid_p) | |
5752 | { | |
5753 | tdesc_data_cleanup (tdesc_data); | |
5754 | return NULL; | |
5755 | } | |
5756 | } | |
ff6f572f DJ |
5757 | else |
5758 | have_fpa_registers = 0; | |
5759 | ||
5760 | feature = tdesc_find_feature (info.target_desc, | |
5761 | "org.gnu.gdb.xscale.iwmmxt"); | |
5762 | if (feature != NULL) | |
5763 | { | |
5764 | static const char *const iwmmxt_names[] = { | |
5765 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
5766 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
5767 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
5768 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
5769 | }; | |
5770 | ||
5771 | valid_p = 1; | |
5772 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
5773 | valid_p | |
5774 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
5775 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
5776 | ||
5777 | /* Check for the control registers, but do not fail if they | |
5778 | are missing. */ | |
5779 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
5780 | tdesc_numbered_register (feature, tdesc_data, i, | |
5781 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
5782 | ||
5783 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
5784 | valid_p | |
5785 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
5786 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
5787 | ||
5788 | if (!valid_p) | |
5789 | { | |
5790 | tdesc_data_cleanup (tdesc_data); | |
5791 | return NULL; | |
5792 | } | |
5793 | } | |
58d6951d DJ |
5794 | |
5795 | /* If we have a VFP unit, check whether the single precision registers | |
5796 | are present. If not, then we will synthesize them as pseudo | |
5797 | registers. */ | |
5798 | feature = tdesc_find_feature (info.target_desc, | |
5799 | "org.gnu.gdb.arm.vfp"); | |
5800 | if (feature != NULL) | |
5801 | { | |
5802 | static const char *const vfp_double_names[] = { | |
5803 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
5804 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
5805 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
5806 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
5807 | }; | |
5808 | ||
5809 | /* Require the double precision registers. There must be either | |
5810 | 16 or 32. */ | |
5811 | valid_p = 1; | |
5812 | for (i = 0; i < 32; i++) | |
5813 | { | |
5814 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
5815 | ARM_D0_REGNUM + i, | |
5816 | vfp_double_names[i]); | |
5817 | if (!valid_p) | |
5818 | break; | |
5819 | } | |
5820 | ||
5821 | if (!valid_p && i != 16) | |
5822 | { | |
5823 | tdesc_data_cleanup (tdesc_data); | |
5824 | return NULL; | |
5825 | } | |
5826 | ||
5827 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
5828 | have_vfp_pseudos = 1; | |
5829 | ||
5830 | have_vfp_registers = 1; | |
5831 | ||
5832 | /* If we have VFP, also check for NEON. The architecture allows | |
5833 | NEON without VFP (integer vector operations only), but GDB | |
5834 | does not support that. */ | |
5835 | feature = tdesc_find_feature (info.target_desc, | |
5836 | "org.gnu.gdb.arm.neon"); | |
5837 | if (feature != NULL) | |
5838 | { | |
5839 | /* NEON requires 32 double-precision registers. */ | |
5840 | if (i != 32) | |
5841 | { | |
5842 | tdesc_data_cleanup (tdesc_data); | |
5843 | return NULL; | |
5844 | } | |
5845 | ||
5846 | /* If there are quad registers defined by the stub, use | |
5847 | their type; otherwise (normally) provide them with | |
5848 | the default type. */ | |
5849 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
5850 | have_neon_pseudos = 1; | |
5851 | ||
5852 | have_neon = 1; | |
5853 | } | |
5854 | } | |
123dc839 | 5855 | } |
39bbf761 | 5856 | |
28e97307 DJ |
5857 | /* If we have an object to base this architecture on, try to determine |
5858 | its ABI. */ | |
39bbf761 | 5859 | |
28e97307 | 5860 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) |
97e03143 | 5861 | { |
6b26d61a | 5862 | int ei_osabi, e_flags; |
28e97307 | 5863 | |
4be87837 | 5864 | switch (bfd_get_flavour (info.abfd)) |
97e03143 | 5865 | { |
4be87837 DJ |
5866 | case bfd_target_aout_flavour: |
5867 | /* Assume it's an old APCS-style ABI. */ | |
28e97307 | 5868 | arm_abi = ARM_ABI_APCS; |
4be87837 | 5869 | break; |
97e03143 | 5870 | |
4be87837 DJ |
5871 | case bfd_target_coff_flavour: |
5872 | /* Assume it's an old APCS-style ABI. */ | |
5873 | /* XXX WinCE? */ | |
28e97307 DJ |
5874 | arm_abi = ARM_ABI_APCS; |
5875 | break; | |
5876 | ||
5877 | case bfd_target_elf_flavour: | |
5878 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
6b26d61a MK |
5879 | e_flags = elf_elfheader (info.abfd)->e_flags; |
5880 | ||
28e97307 DJ |
5881 | if (ei_osabi == ELFOSABI_ARM) |
5882 | { | |
5883 | /* GNU tools used to use this value, but do not for EABI | |
6b26d61a MK |
5884 | objects. There's nowhere to tag an EABI version |
5885 | anyway, so assume APCS. */ | |
28e97307 DJ |
5886 | arm_abi = ARM_ABI_APCS; |
5887 | } | |
5888 | else if (ei_osabi == ELFOSABI_NONE) | |
5889 | { | |
6b26d61a | 5890 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); |
28e97307 DJ |
5891 | |
5892 | switch (eabi_ver) | |
5893 | { | |
5894 | case EF_ARM_EABI_UNKNOWN: | |
5895 | /* Assume GNU tools. */ | |
5896 | arm_abi = ARM_ABI_APCS; | |
5897 | break; | |
5898 | ||
5899 | case EF_ARM_EABI_VER4: | |
625b5003 | 5900 | case EF_ARM_EABI_VER5: |
28e97307 | 5901 | arm_abi = ARM_ABI_AAPCS; |
90445bd3 DJ |
5902 | /* EABI binaries default to VFP float ordering. |
5903 | They may also contain build attributes that can | |
5904 | be used to identify if the VFP argument-passing | |
5905 | ABI is in use. */ | |
2af48f68 | 5906 | if (fp_model == ARM_FLOAT_AUTO) |
90445bd3 DJ |
5907 | { |
5908 | #ifdef HAVE_ELF | |
5909 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
5910 | OBJ_ATTR_PROC, | |
5911 | Tag_ABI_VFP_args)) | |
5912 | { | |
5913 | case 0: | |
5914 | /* "The user intended FP parameter/result | |
5915 | passing to conform to AAPCS, base | |
5916 | variant". */ | |
5917 | fp_model = ARM_FLOAT_SOFT_VFP; | |
5918 | break; | |
5919 | case 1: | |
5920 | /* "The user intended FP parameter/result | |
5921 | passing to conform to AAPCS, VFP | |
5922 | variant". */ | |
5923 | fp_model = ARM_FLOAT_VFP; | |
5924 | break; | |
5925 | case 2: | |
5926 | /* "The user intended FP parameter/result | |
5927 | passing to conform to tool chain-specific | |
5928 | conventions" - we don't know any such | |
5929 | conventions, so leave it as "auto". */ | |
5930 | break; | |
5931 | default: | |
5932 | /* Attribute value not mentioned in the | |
5933 | October 2008 ABI, so leave it as | |
5934 | "auto". */ | |
5935 | break; | |
5936 | } | |
5937 | #else | |
5938 | fp_model = ARM_FLOAT_SOFT_VFP; | |
5939 | #endif | |
5940 | } | |
28e97307 DJ |
5941 | break; |
5942 | ||
5943 | default: | |
6b26d61a | 5944 | /* Leave it as "auto". */ |
28e97307 | 5945 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); |
6b26d61a MK |
5946 | break; |
5947 | } | |
5948 | } | |
5949 | ||
5950 | if (fp_model == ARM_FLOAT_AUTO) | |
5951 | { | |
5952 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
5953 | ||
5954 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
5955 | { | |
5956 | case 0: | |
5957 | /* Leave it as "auto". Strictly speaking this case | |
5958 | means FPA, but almost nobody uses that now, and | |
5959 | many toolchains fail to set the appropriate bits | |
5960 | for the floating-point model they use. */ | |
5961 | break; | |
5962 | case EF_ARM_SOFT_FLOAT: | |
5963 | fp_model = ARM_FLOAT_SOFT_FPA; | |
5964 | break; | |
5965 | case EF_ARM_VFP_FLOAT: | |
5966 | fp_model = ARM_FLOAT_VFP; | |
5967 | break; | |
5968 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
5969 | fp_model = ARM_FLOAT_SOFT_VFP; | |
28e97307 DJ |
5970 | break; |
5971 | } | |
5972 | } | |
9d4fde75 SS |
5973 | |
5974 | if (e_flags & EF_ARM_BE8) | |
5975 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
5976 | ||
4be87837 | 5977 | break; |
97e03143 | 5978 | |
4be87837 | 5979 | default: |
28e97307 | 5980 | /* Leave it as "auto". */ |
50ceaba5 | 5981 | break; |
97e03143 RE |
5982 | } |
5983 | } | |
5984 | ||
28e97307 DJ |
5985 | /* If there is already a candidate, use it. */ |
5986 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
5987 | best_arch != NULL; | |
5988 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
5989 | { | |
b8926edc DJ |
5990 | if (arm_abi != ARM_ABI_AUTO |
5991 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
5992 | continue; |
5993 | ||
b8926edc DJ |
5994 | if (fp_model != ARM_FLOAT_AUTO |
5995 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
5996 | continue; |
5997 | ||
58d6951d DJ |
5998 | /* There are various other properties in tdep that we do not |
5999 | need to check here: those derived from a target description, | |
6000 | since gdbarches with a different target description are | |
6001 | automatically disqualified. */ | |
6002 | ||
28e97307 DJ |
6003 | /* Found a match. */ |
6004 | break; | |
6005 | } | |
97e03143 | 6006 | |
28e97307 | 6007 | if (best_arch != NULL) |
123dc839 DJ |
6008 | { |
6009 | if (tdesc_data != NULL) | |
6010 | tdesc_data_cleanup (tdesc_data); | |
6011 | return best_arch->gdbarch; | |
6012 | } | |
28e97307 DJ |
6013 | |
6014 | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | |
97e03143 RE |
6015 | gdbarch = gdbarch_alloc (&info, tdep); |
6016 | ||
28e97307 DJ |
6017 | /* Record additional information about the architecture we are defining. |
6018 | These are gdbarch discriminators, like the OSABI. */ | |
6019 | tdep->arm_abi = arm_abi; | |
6020 | tdep->fp_model = fp_model; | |
ff6f572f | 6021 | tdep->have_fpa_registers = have_fpa_registers; |
58d6951d DJ |
6022 | tdep->have_vfp_registers = have_vfp_registers; |
6023 | tdep->have_vfp_pseudos = have_vfp_pseudos; | |
6024 | tdep->have_neon_pseudos = have_neon_pseudos; | |
6025 | tdep->have_neon = have_neon; | |
08216dd7 RE |
6026 | |
6027 | /* Breakpoints. */ | |
9d4fde75 | 6028 | switch (info.byte_order_for_code) |
67255d04 RE |
6029 | { |
6030 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
6031 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
6032 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
6033 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
6034 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
6035 | ||
67255d04 RE |
6036 | break; |
6037 | ||
6038 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
6039 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
6040 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
6041 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
6042 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
6043 | ||
67255d04 RE |
6044 | break; |
6045 | ||
6046 | default: | |
6047 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 6048 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
6049 | } |
6050 | ||
d7b486e7 RE |
6051 | /* On ARM targets char defaults to unsigned. */ |
6052 | set_gdbarch_char_signed (gdbarch, 0); | |
6053 | ||
cca44b1b JB |
6054 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
6055 | of additional scratch space. This setting isn't used for anything beside | |
6056 | displaced stepping at present. */ | |
6057 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
6058 | ||
9df628e0 | 6059 | /* This should be low enough for everything. */ |
97e03143 | 6060 | tdep->lowest_pc = 0x20; |
94c30b78 | 6061 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 6062 | |
7c00367c MK |
6063 | /* The default, for both APCS and AAPCS, is to return small |
6064 | structures in registers. */ | |
6065 | tdep->struct_return = reg_struct_return; | |
6066 | ||
2dd604e7 | 6067 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 6068 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 6069 | |
756fe439 DJ |
6070 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
6071 | ||
148754e5 | 6072 | /* Frame handling. */ |
a262aec2 | 6073 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
6074 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
6075 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
6076 | ||
eb5492fa | 6077 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 6078 | |
34e8f22d RE |
6079 | /* Address manipulation. */ |
6080 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
6081 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
6082 | ||
34e8f22d RE |
6083 | /* Advance PC across function entry code. */ |
6084 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
6085 | ||
190dce09 UW |
6086 | /* Skip trampolines. */ |
6087 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
6088 | ||
34e8f22d RE |
6089 | /* The stack grows downward. */ |
6090 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
6091 | ||
6092 | /* Breakpoint manipulation. */ | |
6093 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
34e8f22d RE |
6094 | |
6095 | /* Information about registers, etc. */ | |
0ba6dca9 | 6096 | set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */ |
34e8f22d RE |
6097 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
6098 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 6099 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 6100 | set_gdbarch_register_type (gdbarch, arm_register_type); |
34e8f22d | 6101 | |
ff6f572f DJ |
6102 | /* This "info float" is FPA-specific. Use the generic version if we |
6103 | do not have FPA. */ | |
6104 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
6105 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
6106 | ||
26216b98 | 6107 | /* Internal <-> external register number maps. */ |
ff6f572f | 6108 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
6109 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
6110 | ||
34e8f22d RE |
6111 | set_gdbarch_register_name (gdbarch, arm_register_name); |
6112 | ||
6113 | /* Returning results. */ | |
2af48f68 | 6114 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 6115 | |
03d48a7d RE |
6116 | /* Disassembly. */ |
6117 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
6118 | ||
34e8f22d RE |
6119 | /* Minsymbol frobbing. */ |
6120 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
6121 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
6122 | arm_coff_make_msymbol_special); | |
60c5725c | 6123 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 6124 | |
0d5de010 DJ |
6125 | /* Virtual tables. */ |
6126 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
6127 | ||
97e03143 | 6128 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 6129 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 6130 | |
b39cc962 DJ |
6131 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
6132 | ||
eb5492fa | 6133 | /* Add some default predicates. */ |
a262aec2 DJ |
6134 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
6135 | dwarf2_append_unwinders (gdbarch); | |
6136 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); | |
eb5492fa | 6137 | |
97e03143 RE |
6138 | /* Now we have tuned the configuration, set a few final things, |
6139 | based on what the OS ABI has told us. */ | |
6140 | ||
b8926edc DJ |
6141 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
6142 | binaries are always marked. */ | |
6143 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
6144 | tdep->arm_abi = ARM_ABI_APCS; | |
6145 | ||
6146 | /* We used to default to FPA for generic ARM, but almost nobody | |
6147 | uses that now, and we now provide a way for the user to force | |
6148 | the model. So default to the most useful variant. */ | |
6149 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
6150 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
6151 | ||
9df628e0 RE |
6152 | if (tdep->jb_pc >= 0) |
6153 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
6154 | ||
08216dd7 | 6155 | /* Floating point sizes and format. */ |
8da61cc4 | 6156 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 6157 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 6158 | { |
8da61cc4 DJ |
6159 | set_gdbarch_double_format |
6160 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
6161 | set_gdbarch_long_double_format | |
6162 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
6163 | } | |
6164 | else | |
6165 | { | |
6166 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
6167 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
6168 | } |
6169 | ||
58d6951d DJ |
6170 | if (have_vfp_pseudos) |
6171 | { | |
6172 | /* NOTE: These are the only pseudo registers used by | |
6173 | the ARM target at the moment. If more are added, a | |
6174 | little more care in numbering will be needed. */ | |
6175 | ||
6176 | int num_pseudos = 32; | |
6177 | if (have_neon_pseudos) | |
6178 | num_pseudos += 16; | |
6179 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
6180 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
6181 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
6182 | } | |
6183 | ||
123dc839 | 6184 | if (tdesc_data) |
58d6951d DJ |
6185 | { |
6186 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
6187 | ||
6188 | tdesc_use_registers (gdbarch, info.target_desc, tdesc_data); | |
6189 | ||
6190 | /* Override tdesc_register_type to adjust the types of VFP | |
6191 | registers for NEON. */ | |
6192 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
6193 | } | |
123dc839 DJ |
6194 | |
6195 | /* Add standard register aliases. We add aliases even for those | |
6196 | nanes which are used by the current architecture - it's simpler, | |
6197 | and does no harm, since nothing ever lists user registers. */ | |
6198 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
6199 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
6200 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
6201 | ||
39bbf761 RE |
6202 | return gdbarch; |
6203 | } | |
6204 | ||
97e03143 | 6205 | static void |
2af46ca0 | 6206 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 6207 | { |
2af46ca0 | 6208 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
6209 | |
6210 | if (tdep == NULL) | |
6211 | return; | |
6212 | ||
edefbb7c | 6213 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
6214 | (unsigned long) tdep->lowest_pc); |
6215 | } | |
6216 | ||
a78f21af AC |
6217 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
6218 | ||
c906108c | 6219 | void |
ed9a39eb | 6220 | _initialize_arm_tdep (void) |
c906108c | 6221 | { |
bc90b915 FN |
6222 | struct ui_file *stb; |
6223 | long length; | |
26304000 | 6224 | struct cmd_list_element *new_set, *new_show; |
53904c9e AC |
6225 | const char *setname; |
6226 | const char *setdesc; | |
4bd7b427 | 6227 | const char *const *regnames; |
bc90b915 FN |
6228 | int numregs, i, j; |
6229 | static char *helptext; | |
edefbb7c AC |
6230 | char regdesc[1024], *rdptr = regdesc; |
6231 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 6232 | |
42cf1509 | 6233 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 6234 | |
60c5725c | 6235 | arm_objfile_data_key |
c1bd65d0 | 6236 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 6237 | |
70f80edf JT |
6238 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
6239 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
6240 | bfd_target_elf_flavour, | |
6241 | arm_elf_osabi_sniffer); | |
6242 | ||
94c30b78 | 6243 | /* Get the number of possible sets of register names defined in opcodes. */ |
afd7eef0 RE |
6244 | num_disassembly_options = get_arm_regname_num_options (); |
6245 | ||
6246 | /* Add root prefix command for all "set arm"/"show arm" commands. */ | |
6247 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 6248 | _("Various ARM-specific commands."), |
afd7eef0 RE |
6249 | &setarmcmdlist, "set arm ", 0, &setlist); |
6250 | ||
6251 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 6252 | _("Various ARM-specific commands."), |
afd7eef0 | 6253 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 6254 | |
94c30b78 | 6255 | /* Sync the opcode insn printer with our register viewer. */ |
bc90b915 | 6256 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 6257 | |
eefe576e AC |
6258 | /* Initialize the array that will be passed to |
6259 | add_setshow_enum_cmd(). */ | |
afd7eef0 RE |
6260 | valid_disassembly_styles |
6261 | = xmalloc ((num_disassembly_options + 1) * sizeof (char *)); | |
6262 | for (i = 0; i < num_disassembly_options; i++) | |
bc90b915 FN |
6263 | { |
6264 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
afd7eef0 | 6265 | valid_disassembly_styles[i] = setname; |
edefbb7c AC |
6266 | length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc); |
6267 | rdptr += length; | |
6268 | rest -= length; | |
123dc839 DJ |
6269 | /* When we find the default names, tell the disassembler to use |
6270 | them. */ | |
bc90b915 FN |
6271 | if (!strcmp (setname, "std")) |
6272 | { | |
afd7eef0 | 6273 | disassembly_style = setname; |
bc90b915 FN |
6274 | set_arm_regname_option (i); |
6275 | } | |
6276 | } | |
94c30b78 | 6277 | /* Mark the end of valid options. */ |
afd7eef0 | 6278 | valid_disassembly_styles[num_disassembly_options] = NULL; |
c906108c | 6279 | |
edefbb7c AC |
6280 | /* Create the help text. */ |
6281 | stb = mem_fileopen (); | |
6282 | fprintf_unfiltered (stb, "%s%s%s", | |
6283 | _("The valid values are:\n"), | |
6284 | regdesc, | |
6285 | _("The default is \"std\".")); | |
759ef836 | 6286 | helptext = ui_file_xstrdup (stb, NULL); |
bc90b915 | 6287 | ui_file_delete (stb); |
ed9a39eb | 6288 | |
edefbb7c AC |
6289 | add_setshow_enum_cmd("disassembler", no_class, |
6290 | valid_disassembly_styles, &disassembly_style, | |
6291 | _("Set the disassembly style."), | |
6292 | _("Show the disassembly style."), | |
6293 | helptext, | |
2c5b56ce | 6294 | set_disassembly_style_sfunc, |
7915a72c | 6295 | NULL, /* FIXME: i18n: The disassembly style is \"%s\". */ |
7376b4c2 | 6296 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
6297 | |
6298 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
6299 | _("Set usage of ARM 32-bit mode."), | |
6300 | _("Show usage of ARM 32-bit mode."), | |
6301 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 6302 | NULL, |
7915a72c | 6303 | NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */ |
26304000 | 6304 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 6305 | |
fd50bc42 | 6306 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
6307 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
6308 | _("Set the floating point type."), | |
6309 | _("Show the floating point type."), | |
6310 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
6311 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
6312 | fpa - FPA co-processor (GCC compiled).\n\ | |
6313 | softvfp - Software FP with pure-endian doubles.\n\ | |
6314 | vfp - VFP co-processor."), | |
edefbb7c | 6315 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 6316 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 6317 | |
28e97307 DJ |
6318 | /* Add a command to allow the user to force the ABI. */ |
6319 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
6320 | _("Set the ABI."), | |
6321 | _("Show the ABI."), | |
6322 | NULL, arm_set_abi, arm_show_abi, | |
6323 | &setarmcmdlist, &showarmcmdlist); | |
6324 | ||
0428b8f5 DJ |
6325 | /* Add two commands to allow the user to force the assumed |
6326 | execution mode. */ | |
6327 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
6328 | arm_mode_strings, &arm_fallback_mode_string, | |
6329 | _("Set the mode assumed when symbols are unavailable."), | |
6330 | _("Show the mode assumed when symbols are unavailable."), | |
6331 | NULL, NULL, arm_show_fallback_mode, | |
6332 | &setarmcmdlist, &showarmcmdlist); | |
6333 | add_setshow_enum_cmd ("force-mode", class_support, | |
6334 | arm_mode_strings, &arm_force_mode_string, | |
6335 | _("Set the mode assumed even when symbols are available."), | |
6336 | _("Show the mode assumed even when symbols are available."), | |
6337 | NULL, NULL, arm_show_force_mode, | |
6338 | &setarmcmdlist, &showarmcmdlist); | |
6339 | ||
6529d2dd | 6340 | /* Debugging flag. */ |
edefbb7c AC |
6341 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
6342 | _("Set ARM debugging."), | |
6343 | _("Show ARM debugging."), | |
6344 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 6345 | NULL, |
7915a72c | 6346 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 6347 | &setdebuglist, &showdebuglist); |
c906108c | 6348 | } |