1 // SPDX-License-Identifier: GPL-2.0+
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
10 #include <efi_loader.h>
19 #include <asm/global_data.h>
20 #include <asm/sections.h>
21 #include <linux/kernel.h>
22 #include <linux/sizes.h>
24 DECLARE_GLOBAL_DATA_PTR;
26 #define MAP_OP_RESERVE (u8)0x1
27 #define MAP_OP_FREE (u8)0x2
28 #define MAP_OP_ADD (u8)0x3
30 #define LMB_ALLOC_ANYWHERE 0
31 #define LMB_ALIST_INITIAL_SIZE 4
33 static struct lmb lmb;
35 static bool lmb_should_notify(enum lmb_flags flags)
37 return !lmb.test && !(flags & LMB_NONOTIFY) &&
38 CONFIG_IS_ENABLED(EFI_LOADER);
41 static int __maybe_unused lmb_map_update_notify(phys_addr_t addr,
43 u8 op, enum lmb_flags flags)
49 if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
50 log_err("Invalid map update op received (%d)\n", op);
54 if (!lmb_should_notify(flags))
57 efi_addr = (uintptr_t)map_sysmem(addr, 0);
58 pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
59 efi_addr &= ~EFI_PAGE_MASK;
61 status = efi_add_memory_map_pg(efi_addr, pages,
62 op == MAP_OP_RESERVE ?
63 EFI_BOOT_SERVICES_DATA :
64 EFI_CONVENTIONAL_MEMORY,
66 if (status != EFI_SUCCESS) {
67 log_err("%s: LMB Map notify failure %lu\n", __func__,
68 status & ~EFI_ERROR_MASK);
75 static void lmb_print_region_flags(enum lmb_flags flags)
78 const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" };
81 bitpos = flags ? fls(flags) - 1 : 0;
82 assert_noisy(bitpos < ARRAY_SIZE(flag_str));
83 printf("%s", flag_str[bitpos]);
84 flags &= ~(1ull << bitpos);
85 puts(flags ? ", " : "\n");
89 static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
91 struct lmb_region *rgn = lmb_rgn_lst->data;
92 unsigned long long base, size, end;
96 printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
98 for (i = 0; i < lmb_rgn_lst->count; i++) {
101 end = base + size - 1;
102 flags = rgn[i].flags;
104 printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ",
105 name, i, base, end, size);
106 lmb_print_region_flags(flags);
110 void lmb_dump_all_force(void)
112 printf("lmb_dump_all:\n");
113 lmb_dump_region(&lmb.free_mem, "memory");
114 lmb_dump_region(&lmb.used_mem, "reserved");
117 void lmb_dump_all(void)
120 lmb_dump_all_force();
124 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
125 phys_addr_t base2, phys_size_t size2)
127 const phys_addr_t base1_end = base1 + size1 - 1;
128 const phys_addr_t base2_end = base2 + size2 - 1;
130 return ((base1 <= base2_end) && (base2 <= base1_end));
133 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
134 phys_addr_t base2, phys_size_t size2)
136 if (base2 == base1 + size1)
138 else if (base1 == base2 + size2)
144 static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
147 struct lmb_region *rgn = lmb_rgn_lst->data;
149 phys_addr_t base1 = rgn[r1].base;
150 phys_size_t size1 = rgn[r1].size;
151 phys_addr_t base2 = rgn[r2].base;
152 phys_size_t size2 = rgn[r2].size;
154 return lmb_addrs_overlap(base1, size1, base2, size2);
157 static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
160 struct lmb_region *rgn = lmb_rgn_lst->data;
162 phys_addr_t base1 = rgn[r1].base;
163 phys_size_t size1 = rgn[r1].size;
164 phys_addr_t base2 = rgn[r2].base;
165 phys_size_t size2 = rgn[r2].size;
166 return lmb_addrs_adjacent(base1, size1, base2, size2);
169 static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
172 struct lmb_region *rgn = lmb_rgn_lst->data;
174 for (i = r; i < lmb_rgn_lst->count - 1; i++) {
175 rgn[i].base = rgn[i + 1].base;
176 rgn[i].size = rgn[i + 1].size;
177 rgn[i].flags = rgn[i + 1].flags;
179 lmb_rgn_lst->count--;
182 /* Assumption: base addr of region 1 < base addr of region 2 */
183 static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
186 struct lmb_region *rgn = lmb_rgn_lst->data;
188 rgn[r1].size += rgn[r2].size;
189 lmb_remove_region(lmb_rgn_lst, r2);
192 /*Assumption : base addr of region 1 < base addr of region 2*/
193 static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
194 unsigned long r1, unsigned long r2)
196 struct lmb_region *rgn = lmb_rgn_lst->data;
198 phys_addr_t base1 = rgn[r1].base;
199 phys_size_t size1 = rgn[r1].size;
200 phys_addr_t base2 = rgn[r2].base;
201 phys_size_t size2 = rgn[r2].size;
203 if (base1 + size1 > base2 + size2) {
204 printf("This will not be a case any time\n");
207 rgn[r1].size = base2 + size2 - base1;
208 lmb_remove_region(lmb_rgn_lst, r2);
211 static void lmb_reserve_uboot_region(void)
215 phys_addr_t rsv_start;
217 rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
221 * Reserve memory from aligned address below the bottom of U-Boot stack
222 * until end of RAM area to prevent LMB from overwriting that memory.
224 debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
226 /* adjust sp by 16K to be safe */
228 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
229 if (!gd->bd->bi_dram[bank].size ||
230 rsv_start < gd->bd->bi_dram[bank].start)
232 /* Watch out for RAM at end of address space! */
233 bank_end = gd->bd->bi_dram[bank].start +
234 gd->bd->bi_dram[bank].size - 1;
235 if (rsv_start > bank_end)
240 lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
243 if (gd->flags & GD_FLG_SKIP_RELOC)
244 lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
245 gd->mon_len, LMB_NOOVERWRITE);
251 static void lmb_reserve_common(void *fdt_blob)
253 lmb_reserve_uboot_region();
255 if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
256 boot_fdt_add_mem_rsv_regions(fdt_blob);
259 static __maybe_unused void lmb_reserve_common_spl(void)
261 phys_addr_t rsv_start;
262 phys_size_t rsv_size;
265 * Assume a SPL stack of 16KB. This must be
266 * more than enough for the SPL stage.
268 if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
269 rsv_start = gd->start_addr_sp - 16384;
271 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
274 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
275 /* Reserve the bss region */
276 rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
277 rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
278 (phys_addr_t)(uintptr_t)__bss_start;
279 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
284 * lmb_add_memory() - Add memory range for LMB allocations
286 * Add the entire available memory range to the pool of memory that
287 * can be used by the LMB module for allocations.
291 void lmb_add_memory(void)
295 u64 ram_top = gd->ram_top;
296 struct bd_info *bd = gd->bd;
298 if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
299 return lmb_arch_add_memory();
301 /* Assume a 4GB ram_top if not defined */
303 ram_top = 0x100000000ULL;
305 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
306 size = bd->bi_dram[i].size;
308 lmb_add(bd->bi_dram[i].start, size);
311 * Reserve memory above ram_top as
312 * no-overwrite so that it cannot be
315 if (bd->bi_dram[i].start >= ram_top)
316 lmb_reserve_flags(bd->bi_dram[i].start, size,
322 static long lmb_resize_regions(struct alist *lmb_rgn_lst,
323 unsigned long idx_start,
324 phys_addr_t base, phys_size_t size)
327 unsigned long rgn_cnt, idx, idx_end;
328 phys_addr_t rgnbase, rgnend;
329 phys_addr_t mergebase, mergeend;
330 struct lmb_region *rgn = lmb_rgn_lst->data;
337 * First thing to do is to identify how many regions
338 * the requested region overlaps.
339 * If the flags match, combine all these overlapping
340 * regions into a single region, and remove the merged
343 while (idx <= lmb_rgn_lst->count - 1) {
344 rgnbase = rgn[idx].base;
345 rgnsize = rgn[idx].size;
347 if (lmb_addrs_overlap(base, size, rgnbase,
349 if (rgn[idx].flags != LMB_NONE)
357 /* The merged region's base and size */
358 rgnbase = rgn[idx_start].base;
359 mergebase = min(base, rgnbase);
360 rgnend = rgn[idx_end].base + rgn[idx_end].size;
361 mergeend = max(rgnend, (base + size));
363 rgn[idx_start].base = mergebase;
364 rgn[idx_start].size = mergeend - mergebase;
366 /* Now remove the merged regions */
368 lmb_remove_region(lmb_rgn_lst, idx_start + 1);
374 * lmb_add_region_flags() - Add an lmb region to the given list
375 * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
376 * @base: Start address of the region
377 * @size: Size of the region to be added
378 * @flags: Attributes of the LMB region
380 * Add a region of memory to the list. If the region does not exist, add
381 * it to the list. Depending on the attributes of the region to be added,
382 * the function might resize an already existing region or coalesce two
386 * Returns: 0 if the region addition successful, -1 on failure
388 static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
389 phys_size_t size, enum lmb_flags flags)
391 unsigned long coalesced = 0;
393 struct lmb_region *rgn = lmb_rgn_lst->data;
395 if (alist_err(lmb_rgn_lst))
398 /* First try and coalesce this LMB with another. */
399 for (i = 0; i < lmb_rgn_lst->count; i++) {
400 phys_addr_t rgnbase = rgn[i].base;
401 phys_size_t rgnsize = rgn[i].size;
402 phys_size_t rgnflags = rgn[i].flags;
403 phys_addr_t end = base + size - 1;
404 phys_addr_t rgnend = rgnbase + rgnsize - 1;
405 if (rgnbase <= base && end <= rgnend) {
406 if (flags == rgnflags)
407 /* Already have this region, so we're done */
410 return -1; /* regions with new flags */
413 ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
415 if (flags != rgnflags)
421 } else if (ret < 0) {
422 if (flags != rgnflags)
427 } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
428 if (flags == LMB_NONE) {
429 ret = lmb_resize_regions(lmb_rgn_lst, i, base,
442 if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
443 rgn = lmb_rgn_lst->data;
444 if (rgn[i].flags == rgn[i + 1].flags) {
445 if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
446 lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
448 } else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
449 /* fix overlapping area */
450 lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
459 if (alist_full(lmb_rgn_lst) &&
460 !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
462 rgn = lmb_rgn_lst->data;
464 /* Couldn't coalesce the LMB, so add it to the sorted table. */
465 for (i = lmb_rgn_lst->count; i >= 0; i--) {
466 if (i && base < rgn[i - 1].base) {
471 rgn[i].flags = flags;
476 lmb_rgn_lst->count++;
481 static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
484 return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
487 /* This routine may be called with relocation disabled. */
488 long lmb_add(phys_addr_t base, phys_size_t size)
491 struct alist *lmb_rgn_lst = &lmb.free_mem;
493 ret = lmb_add_region(lmb_rgn_lst, base, size);
497 return lmb_map_update_notify(base, size, MAP_OP_ADD, LMB_NONE);
500 static long _lmb_free(phys_addr_t base, phys_size_t size)
502 struct lmb_region *rgn;
503 struct alist *lmb_rgn_lst = &lmb.used_mem;
504 phys_addr_t rgnbegin, rgnend;
505 phys_addr_t end = base + size - 1;
508 rgnbegin = rgnend = 0; /* supress gcc warnings */
509 rgn = lmb_rgn_lst->data;
510 /* Find the region where (base, size) belongs to */
511 for (i = 0; i < lmb_rgn_lst->count; i++) {
512 rgnbegin = rgn[i].base;
513 rgnend = rgnbegin + rgn[i].size - 1;
515 if ((rgnbegin <= base) && (end <= rgnend))
519 /* Didn't find the region */
520 if (i == lmb_rgn_lst->count)
523 /* Check to see if we are removing entire region */
524 if ((rgnbegin == base) && (rgnend == end)) {
525 lmb_remove_region(lmb_rgn_lst, i);
529 /* Check to see if region is matching at the front */
530 if (rgnbegin == base) {
531 rgn[i].base = end + 1;
536 /* Check to see if the region is matching at the end */
543 * We need to split the entry - adjust the current one to the
544 * beginging of the hole and add the region after hole.
546 rgn[i].size = base - rgn[i].base;
547 return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
552 * lmb_free_flags() - Free up a region of memory
553 * @base: Base Address of region to be freed
554 * @size: Size of the region to be freed
555 * @flags: Memory region attributes
557 * Free up a region of memory.
559 * Return: 0 if successful, -1 on failure
561 long lmb_free_flags(phys_addr_t base, phys_size_t size,
566 ret = _lmb_free(base, size);
570 return lmb_map_update_notify(base, size, MAP_OP_FREE, flags);
573 long lmb_free(phys_addr_t base, phys_size_t size)
575 return lmb_free_flags(base, size, LMB_NONE);
578 long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
581 struct alist *lmb_rgn_lst = &lmb.used_mem;
583 ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
587 return lmb_map_update_notify(base, size, MAP_OP_RESERVE, flags);
590 long lmb_reserve(phys_addr_t base, phys_size_t size)
592 return lmb_reserve_flags(base, size, LMB_NONE);
595 static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
599 struct lmb_region *rgn = lmb_rgn_lst->data;
601 for (i = 0; i < lmb_rgn_lst->count; i++) {
602 phys_addr_t rgnbase = rgn[i].base;
603 phys_size_t rgnsize = rgn[i].size;
604 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
608 return (i < lmb_rgn_lst->count) ? i : -1;
611 static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
613 return addr & ~(size - 1);
616 static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
617 phys_addr_t max_addr, enum lmb_flags flags)
621 phys_addr_t base = 0;
622 phys_addr_t res_base;
623 struct lmb_region *lmb_used = lmb.used_mem.data;
624 struct lmb_region *lmb_memory = lmb.free_mem.data;
626 for (i = lmb.free_mem.count - 1; i >= 0; i--) {
627 phys_addr_t lmbbase = lmb_memory[i].base;
628 phys_size_t lmbsize = lmb_memory[i].size;
632 if (max_addr == LMB_ALLOC_ANYWHERE)
633 base = lmb_align_down(lmbbase + lmbsize - size, align);
634 else if (lmbbase < max_addr) {
635 base = lmbbase + lmbsize;
638 base = min(base, max_addr);
639 base = lmb_align_down(base - size, align);
643 while (base && lmbbase <= base) {
644 rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
646 /* This area isn't reserved, take it */
647 if (lmb_add_region_flags(&lmb.used_mem, base,
651 ret = lmb_map_update_notify(base, size,
660 res_base = lmb_used[rgn].base;
663 base = lmb_align_down(res_base - size, align);
669 phys_addr_t lmb_alloc(phys_size_t size, ulong align)
671 return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
675 * lmb_alloc_flags() - Allocate memory region with specified attributes
676 * @size: Size of the region requested
677 * @align: Alignment of the memory region requested
678 * @flags: Memory region attributes to be set
680 * Allocate a region of memory with the attributes specified through the
683 * Return: base address on success, 0 on error
685 phys_addr_t lmb_alloc_flags(phys_size_t size, ulong align, uint flags)
687 return _lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE,
691 phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
695 alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE);
698 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
699 (ulong)size, (ulong)max_addr);
705 * lmb_alloc_base_flags() - Allocate specified memory region with specified attributes
706 * @size: Size of the region requested
707 * @align: Alignment of the memory region requested
708 * @max_addr: Maximum address of the requested region
709 * @flags: Memory region attributes to be set
711 * Allocate a region of memory with the attributes specified through the
712 * parameter. The max_addr parameter is used to specify the maximum address
713 * below which the requested region should be allocated.
715 * Return: base address on success, 0 on error
717 phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align,
718 phys_addr_t max_addr, uint flags)
722 alloc = _lmb_alloc_base(size, align, max_addr, flags);
725 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
726 (ulong)size, (ulong)max_addr);
731 static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size,
732 enum lmb_flags flags)
735 struct lmb_region *lmb_memory = lmb.free_mem.data;
737 /* Check if the requested address is in one of the memory regions */
738 rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
741 * Check if the requested end address is in the same memory
744 if (lmb_addrs_overlap(lmb_memory[rgn].base,
745 lmb_memory[rgn].size,
746 base + size - 1, 1)) {
747 /* ok, reserve the memory */
748 if (lmb_reserve_flags(base, size, flags) >= 0)
757 * Try to allocate a specific address range: must be in defined memory but not
760 phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
762 return _lmb_alloc_addr(base, size, LMB_NONE);
766 * lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes
767 * @base: Base Address requested
768 * @size: Size of the region requested
769 * @flags: Memory region attributes to be set
771 * Allocate a region of memory with the attributes specified through the
772 * parameter. The base parameter is used to specify the base address
773 * of the requested region.
775 * Return: base address on success, 0 on error
777 phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size,
780 return _lmb_alloc_addr(base, size, flags);
783 /* Return number of bytes from a given address that are free */
784 phys_size_t lmb_get_free_size(phys_addr_t addr)
788 struct lmb_region *lmb_used = lmb.used_mem.data;
789 struct lmb_region *lmb_memory = lmb.free_mem.data;
791 /* check if the requested address is in the memory regions */
792 rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
794 for (i = 0; i < lmb.used_mem.count; i++) {
795 if (addr < lmb_used[i].base) {
796 /* first reserved range > requested address */
797 return lmb_used[i].base - addr;
799 if (lmb_used[i].base +
800 lmb_used[i].size > addr) {
801 /* requested addr is in this reserved range */
805 /* if we come here: no reserved ranges above requested addr */
806 return lmb_memory[lmb.free_mem.count - 1].base +
807 lmb_memory[lmb.free_mem.count - 1].size - addr;
812 int lmb_is_reserved_flags(phys_addr_t addr, int flags)
815 struct lmb_region *lmb_used = lmb.used_mem.data;
817 for (i = 0; i < lmb.used_mem.count; i++) {
818 phys_addr_t upper = lmb_used[i].base +
819 lmb_used[i].size - 1;
820 if (addr >= lmb_used[i].base && addr <= upper)
821 return (lmb_used[i].flags & flags) == flags;
826 static int lmb_setup(bool test)
830 ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
831 (uint)LMB_ALIST_INITIAL_SIZE);
833 log_debug("Unable to initialise the list for LMB free memory\n");
837 ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
838 (uint)LMB_ALIST_INITIAL_SIZE);
840 log_debug("Unable to initialise the list for LMB used memory\n");
850 * lmb_init() - Initialise the LMB module
852 * Initialise the LMB lists needed for keeping the memory map. There
853 * are two lists, in form of alloced list data structure. One for the
854 * available memory, and one for the used memory. Initialise the two
855 * lists as part of board init. Add memory to the available memory
856 * list and reserve common areas by adding them to the used memory
859 * Return: 0 on success, -ve on error
865 ret = lmb_setup(false);
867 log_info("Unable to init LMB\n");
873 /* Reserve the U-Boot image region once U-Boot has relocated */
874 if (xpl_phase() == PHASE_SPL)
875 lmb_reserve_common_spl();
876 else if (xpl_phase() == PHASE_BOARD_R)
877 lmb_reserve_common((void *)gd->fdt_blob);
882 struct lmb *lmb_get(void)
887 #if CONFIG_IS_ENABLED(UNIT_TEST)
888 int lmb_push(struct lmb *store)
893 ret = lmb_setup(true);
900 void lmb_pop(struct lmb *store)
902 alist_uninit(&lmb.free_mem);
903 alist_uninit(&lmb.used_mem);
906 #endif /* UNIT_TEST */