1 // SPDX-License-Identifier: GPL-2.0+
5 * (C) Copyright 2008 Armadeus Systems nc
12 #include <environment.h>
20 #include <linux/errno.h>
21 #include <linux/compiler.h>
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/mach-imx/sys_proto.h>
26 #include <asm-generic/gpio.h>
30 DECLARE_GLOBAL_DATA_PTR;
33 * Timeout the transfer after 5 mS. This is usually a bit more, since
34 * the code in the tightloops this timeout is used in adds some overhead.
36 #define FEC_XFER_TIMEOUT 5000
39 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
40 * 64-byte alignment in the DMA RX FEC buffer.
41 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
42 * satisfies the alignment on other SoCs (32-bytes)
44 #define FEC_DMA_RX_MINALIGN 64
47 #error "CONFIG_MII has to be defined!"
50 #ifndef CONFIG_FEC_XCV_TYPE
51 #define CONFIG_FEC_XCV_TYPE MII100
55 * The i.MX28 operates with packets in big endian. We need to swap them before
56 * sending and after receiving.
59 #define CONFIG_FEC_MXC_SWAP_PACKET
62 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
64 /* Check various alignment issues at compile time */
65 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
66 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
69 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
70 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
71 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
76 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
77 static void swap_packet(uint32_t *packet, int length)
81 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
82 packet[i] = __swab32(packet[i]);
86 /* MII-interface related functions */
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
90 uint32_t reg; /* convenient holder for the PHY register */
91 uint32_t phy; /* convenient holder for the PHY */
96 * reading from any PHY's register is done by properly
97 * programming the FEC's MII data register.
99 writel(FEC_IEVENT_MII, ð->ievent);
100 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
101 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
103 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 phy | reg, ð->mii_data);
106 /* wait for the related interrupt */
107 start = get_timer(0);
108 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 printf("Read MDIO failed...\n");
115 /* clear mii interrupt bit */
116 writel(FEC_IEVENT_MII, ð->ievent);
118 /* it's now safe to read the PHY's register */
119 val = (unsigned short)readl(ð->mii_data);
120 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
125 static void fec_mii_setspeed(struct ethernet_regs *eth)
128 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
129 * and do not drop the Preamble.
131 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
132 * MII_SPEED) register that defines the MDIO output hold time. Earlier
133 * versions are RAZ there, so just ignore the difference and write the
135 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
136 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
138 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
139 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
140 * holdtime cannot result in a value greater than 3.
142 u32 pclk = imx_get_fecclk();
143 u32 speed = DIV_ROUND_UP(pclk, 5000000);
144 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
145 #ifdef FEC_QUIRK_ENET_MAC
148 writel(speed << 1 | hold << 8, ð->mii_speed);
149 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
152 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
153 uint8_t regaddr, uint16_t data)
155 uint32_t reg; /* convenient holder for the PHY register */
156 uint32_t phy; /* convenient holder for the PHY */
159 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
160 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
162 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
163 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
165 /* wait for the MII interrupt */
166 start = get_timer(0);
167 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
168 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
169 printf("Write MDIO failed...\n");
174 /* clear MII interrupt bit */
175 writel(FEC_IEVENT_MII, ð->ievent);
176 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
182 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
185 return fec_mdio_read(bus->priv, phyaddr, regaddr);
188 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
189 int regaddr, u16 data)
191 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
194 #ifndef CONFIG_PHYLIB
195 static int miiphy_restart_aneg(struct eth_device *dev)
198 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
199 struct fec_priv *fec = (struct fec_priv *)dev->priv;
200 struct ethernet_regs *eth = fec->bus->priv;
203 * Wake up from sleep if necessary
204 * Reset PHY, then delay 300ns
207 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
209 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
212 /* Set the auto-negotiation advertisement register bits */
213 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
214 LPA_100FULL | LPA_100HALF | LPA_10FULL |
215 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
216 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
217 BMCR_ANENABLE | BMCR_ANRESTART);
219 if (fec->mii_postcall)
220 ret = fec->mii_postcall(fec->phy_id);
226 #ifndef CONFIG_FEC_FIXED_SPEED
227 static int miiphy_wait_aneg(struct eth_device *dev)
231 struct fec_priv *fec = (struct fec_priv *)dev->priv;
232 struct ethernet_regs *eth = fec->bus->priv;
234 /* Wait for AN completion */
235 start = get_timer(0);
237 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
238 printf("%s: Autonegotiation timeout\n", dev->name);
242 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
244 printf("%s: Autonegotiation failed. status: %d\n",
248 } while (!(status & BMSR_LSTATUS));
252 #endif /* CONFIG_FEC_FIXED_SPEED */
255 static int fec_rx_task_enable(struct fec_priv *fec)
257 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
261 static int fec_rx_task_disable(struct fec_priv *fec)
266 static int fec_tx_task_enable(struct fec_priv *fec)
268 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
272 static int fec_tx_task_disable(struct fec_priv *fec)
278 * Initialize receive task's buffer descriptors
279 * @param[in] fec all we know about the device yet
280 * @param[in] count receive buffer count to be allocated
281 * @param[in] dsize desired size of each receive buffer
282 * @return 0 on success
284 * Init all RX descriptors to default values.
286 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
293 * Reload the RX descriptors with default values and wipe
296 size = roundup(dsize, ARCH_DMA_MINALIGN);
297 for (i = 0; i < count; i++) {
298 data = fec->rbd_base[i].data_pointer;
299 memset((void *)data, 0, dsize);
300 flush_dcache_range(data, data + size);
302 fec->rbd_base[i].status = FEC_RBD_EMPTY;
303 fec->rbd_base[i].data_length = 0;
306 /* Mark the last RBD to close the ring. */
307 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
310 flush_dcache_range((ulong)fec->rbd_base,
311 (ulong)fec->rbd_base + size);
315 * Initialize transmit task's buffer descriptors
316 * @param[in] fec all we know about the device yet
318 * Transmit buffers are created externally. We only have to init the BDs here.\n
319 * Note: There is a race condition in the hardware. When only one BD is in
320 * use it must be marked with the WRAP bit to use it for every transmitt.
321 * This bit in combination with the READY bit results into double transmit
322 * of each data buffer. It seems the state machine checks READY earlier then
323 * resetting it after the first transfer.
324 * Using two BDs solves this issue.
326 static void fec_tbd_init(struct fec_priv *fec)
328 ulong addr = (ulong)fec->tbd_base;
329 unsigned size = roundup(2 * sizeof(struct fec_bd),
332 memset(fec->tbd_base, 0, size);
333 fec->tbd_base[0].status = 0;
334 fec->tbd_base[1].status = FEC_TBD_WRAP;
336 flush_dcache_range(addr, addr + size);
340 * Mark the given read buffer descriptor as free
341 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
342 * @param[in] prbd buffer descriptor to mark free again
344 static void fec_rbd_clean(int last, struct fec_bd *prbd)
346 unsigned short flags = FEC_RBD_EMPTY;
348 flags |= FEC_RBD_WRAP;
349 writew(flags, &prbd->status);
350 writew(0, &prbd->data_length);
353 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
355 imx_get_mac_from_fuse(dev_id, mac);
356 return !is_valid_ethaddr(mac);
360 static int fecmxc_set_hwaddr(struct udevice *dev)
362 static int fec_set_hwaddr(struct eth_device *dev)
366 struct fec_priv *fec = dev_get_priv(dev);
367 struct eth_pdata *pdata = dev_get_platdata(dev);
368 uchar *mac = pdata->enetaddr;
370 uchar *mac = dev->enetaddr;
371 struct fec_priv *fec = (struct fec_priv *)dev->priv;
374 writel(0, &fec->eth->iaddr1);
375 writel(0, &fec->eth->iaddr2);
376 writel(0, &fec->eth->gaddr1);
377 writel(0, &fec->eth->gaddr2);
379 /* Set physical address */
380 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
382 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
387 /* Do initial configuration of the FEC registers */
388 static void fec_reg_setup(struct fec_priv *fec)
392 /* Set interrupt mask register */
393 writel(0x00000000, &fec->eth->imask);
395 /* Clear FEC-Lite interrupt event register(IEVENT) */
396 writel(0xffffffff, &fec->eth->ievent);
398 /* Set FEC-Lite receive control register(R_CNTRL): */
400 /* Start with frame length = 1518, common for all modes. */
401 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
402 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
403 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
404 if (fec->xcv_type == RGMII)
405 rcntrl |= FEC_RCNTRL_RGMII;
406 else if (fec->xcv_type == RMII)
407 rcntrl |= FEC_RCNTRL_RMII;
409 writel(rcntrl, &fec->eth->r_cntrl);
413 * Start the FEC engine
414 * @param[in] dev Our device to handle
417 static int fec_open(struct udevice *dev)
419 static int fec_open(struct eth_device *edev)
423 struct fec_priv *fec = dev_get_priv(dev);
425 struct fec_priv *fec = (struct fec_priv *)edev->priv;
431 debug("fec_open: fec_open(dev)\n");
432 /* full-duplex, heartbeat disabled */
433 writel(1 << 2, &fec->eth->x_cntrl);
436 /* Invalidate all descriptors */
437 for (i = 0; i < FEC_RBD_NUM - 1; i++)
438 fec_rbd_clean(0, &fec->rbd_base[i]);
439 fec_rbd_clean(1, &fec->rbd_base[i]);
441 /* Flush the descriptors into RAM */
442 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
444 addr = (ulong)fec->rbd_base;
445 flush_dcache_range(addr, addr + size);
447 #ifdef FEC_QUIRK_ENET_MAC
448 /* Enable ENET HW endian SWAP */
449 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
451 /* Enable ENET store and forward mode */
452 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
455 /* Enable FEC-Lite controller */
456 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
459 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
462 /* setup the MII gasket for RMII mode */
463 /* disable the gasket */
464 writew(0, &fec->eth->miigsk_enr);
466 /* wait for the gasket to be disabled */
467 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
470 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
471 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
473 /* re-enable the gasket */
474 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
476 /* wait until MII gasket is ready */
478 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
479 if (--max_loops <= 0) {
480 printf("WAIT for MII Gasket ready timed out\n");
488 /* Start up the PHY */
489 int ret = phy_startup(fec->phydev);
492 printf("Could not initialize PHY %s\n",
493 fec->phydev->dev->name);
496 speed = fec->phydev->speed;
498 #elif CONFIG_FEC_FIXED_SPEED
499 speed = CONFIG_FEC_FIXED_SPEED;
501 miiphy_wait_aneg(edev);
502 speed = miiphy_speed(edev->name, fec->phy_id);
503 miiphy_duplex(edev->name, fec->phy_id);
506 #ifdef FEC_QUIRK_ENET_MAC
508 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
509 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
510 if (speed == _1000BASET)
511 ecr |= FEC_ECNTRL_SPEED;
512 else if (speed != _100BASET)
513 rcr |= FEC_RCNTRL_RMII_10T;
514 writel(ecr, &fec->eth->ecntrl);
515 writel(rcr, &fec->eth->r_cntrl);
518 debug("%s:Speed=%i\n", __func__, speed);
520 /* Enable SmartDMA receive task */
521 fec_rx_task_enable(fec);
528 static int fecmxc_init(struct udevice *dev)
530 static int fec_init(struct eth_device *dev, bd_t *bd)
534 struct fec_priv *fec = dev_get_priv(dev);
536 struct fec_priv *fec = (struct fec_priv *)dev->priv;
538 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
542 /* Initialize MAC address */
544 fecmxc_set_hwaddr(dev);
549 /* Setup transmit descriptors, there are two in total. */
552 /* Setup receive descriptors. */
553 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
557 if (fec->xcv_type != SEVENWIRE)
558 fec_mii_setspeed(fec->bus->priv);
560 /* Set Opcode/Pause Duration Register */
561 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
562 writel(0x2, &fec->eth->x_wmrk);
564 /* Set multicast address filter */
565 writel(0x00000000, &fec->eth->gaddr1);
566 writel(0x00000000, &fec->eth->gaddr2);
568 /* Do not access reserved register */
569 if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) {
571 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
574 /* FIFO receive start register */
575 writel(0x520, &fec->eth->r_fstart);
578 /* size and address of each buffer */
579 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
581 addr = (ulong)fec->tbd_base;
582 writel((uint32_t)addr, &fec->eth->etdsr);
584 addr = (ulong)fec->rbd_base;
585 writel((uint32_t)addr, &fec->eth->erdsr);
587 #ifndef CONFIG_PHYLIB
588 if (fec->xcv_type != SEVENWIRE)
589 miiphy_restart_aneg(dev);
596 * Halt the FEC engine
597 * @param[in] dev Our device to handle
600 static void fecmxc_halt(struct udevice *dev)
602 static void fec_halt(struct eth_device *dev)
606 struct fec_priv *fec = dev_get_priv(dev);
608 struct fec_priv *fec = (struct fec_priv *)dev->priv;
610 int counter = 0xffff;
612 /* issue graceful stop command to the FEC transmitter if necessary */
613 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
616 debug("eth_halt: wait for stop regs\n");
617 /* wait for graceful stop to register */
618 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
621 /* Disable SmartDMA tasks */
622 fec_tx_task_disable(fec);
623 fec_rx_task_disable(fec);
626 * Disable the Ethernet Controller
627 * Note: this will also reset the BD index counter!
629 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
633 debug("eth_halt: done\n");
638 * @param[in] dev Our ethernet device to handle
639 * @param[in] packet Pointer to the data to be transmitted
640 * @param[in] length Data count in bytes
641 * @return 0 on success
644 static int fecmxc_send(struct udevice *dev, void *packet, int length)
646 static int fec_send(struct eth_device *dev, void *packet, int length)
652 int timeout = FEC_XFER_TIMEOUT;
656 * This routine transmits one frame. This routine only accepts
657 * 6-byte Ethernet addresses.
660 struct fec_priv *fec = dev_get_priv(dev);
662 struct fec_priv *fec = (struct fec_priv *)dev->priv;
666 * Check for valid length of data.
668 if ((length > 1500) || (length <= 0)) {
669 printf("Payload (%d) too large\n", length);
674 * Setup the transmit buffer. We are always using the first buffer for
675 * transmission, the second will be empty and only used to stop the DMA
676 * engine. We also flush the packet to RAM here to avoid cache trouble.
678 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
679 swap_packet((uint32_t *)packet, length);
682 addr = (ulong)packet;
683 end = roundup(addr + length, ARCH_DMA_MINALIGN);
684 addr &= ~(ARCH_DMA_MINALIGN - 1);
685 flush_dcache_range(addr, end);
687 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
688 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
691 * update BD's status now
693 * - is always the last in a chain (means no chain)
694 * - should transmitt the CRC
695 * - might be the last BD in the list, so the address counter should
696 * wrap (-> keep the WRAP flag)
698 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
699 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
700 writew(status, &fec->tbd_base[fec->tbd_index].status);
703 * Flush data cache. This code flushes both TX descriptors to RAM.
704 * After this code, the descriptors will be safely in RAM and we
707 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
708 addr = (ulong)fec->tbd_base;
709 flush_dcache_range(addr, addr + size);
712 * Below we read the DMA descriptor's last four bytes back from the
713 * DRAM. This is important in order to make sure that all WRITE
714 * operations on the bus that were triggered by previous cache FLUSH
717 * Otherwise, on MX28, it is possible to observe a corruption of the
718 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
719 * for the bus structure of MX28. The scenario is as follows:
721 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
722 * to DRAM due to flush_dcache_range()
723 * 2) ARM core writes the FEC registers via AHB_ARB2
724 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
726 * Note that 2) does sometimes finish before 1) due to reordering of
727 * WRITE accesses on the AHB bus, therefore triggering 3) before the
728 * DMA descriptor is fully written into DRAM. This results in occasional
729 * corruption of the DMA descriptor.
731 readl(addr + size - 4);
733 /* Enable SmartDMA transmit task */
734 fec_tx_task_enable(fec);
737 * Wait until frame is sent. On each turn of the wait cycle, we must
738 * invalidate data cache to see what's really in RAM. Also, we need
742 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
752 * The TDAR bit is cleared when the descriptors are all out from TX
753 * but on mx6solox we noticed that the READY bit is still not cleared
755 * These are two distinct signals, and in IC simulation, we found that
756 * TDAR always gets cleared prior than the READY bit of last BD becomes
758 * In mx6solox, we use a later version of FEC IP. It looks like that
759 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
762 * Fix this by polling the READY bit of BD after the TDAR polling,
763 * which covers the mx6solox case and does not harm the other SoCs.
765 timeout = FEC_XFER_TIMEOUT;
767 invalidate_dcache_range(addr, addr + size);
768 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
777 debug("fec_send: status 0x%x index %d ret %i\n",
778 readw(&fec->tbd_base[fec->tbd_index].status),
779 fec->tbd_index, ret);
780 /* for next transmission use the other buffer */
790 * Pull one frame from the card
791 * @param[in] dev Our ethernet device to handle
792 * @return Length of packet read
795 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
797 static int fec_recv(struct eth_device *dev)
801 struct fec_priv *fec = dev_get_priv(dev);
803 struct fec_priv *fec = (struct fec_priv *)dev->priv;
805 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
806 unsigned long ievent;
807 int frame_length, len = 0;
809 ulong addr, size, end;
813 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
815 printf("%s: error allocating packetp\n", __func__);
819 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
822 /* Check if any critical events have happened */
823 ievent = readl(&fec->eth->ievent);
824 writel(ievent, &fec->eth->ievent);
825 debug("fec_recv: ievent 0x%lx\n", ievent);
826 if (ievent & FEC_IEVENT_BABR) {
832 fec_init(dev, fec->bd);
834 printf("some error: 0x%08lx\n", ievent);
837 if (ievent & FEC_IEVENT_HBERR) {
838 /* Heartbeat error */
839 writel(0x00000001 | readl(&fec->eth->x_cntrl),
842 if (ievent & FEC_IEVENT_GRA) {
843 /* Graceful stop complete */
844 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
850 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
855 fec_init(dev, fec->bd);
861 * Read the buffer status. Before the status can be read, the data cache
862 * must be invalidated, because the data in RAM might have been changed
863 * by DMA. The descriptors are properly aligned to cachelines so there's
864 * no need to worry they'd overlap.
866 * WARNING: By invalidating the descriptor here, we also invalidate
867 * the descriptors surrounding this one. Therefore we can NOT change the
868 * contents of this descriptor nor the surrounding ones. The problem is
869 * that in order to mark the descriptor as processed, we need to change
870 * the descriptor. The solution is to mark the whole cache line when all
871 * descriptors in the cache line are processed.
874 addr &= ~(ARCH_DMA_MINALIGN - 1);
875 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
876 invalidate_dcache_range(addr, addr + size);
878 bd_status = readw(&rbd->status);
879 debug("fec_recv: status 0x%x\n", bd_status);
881 if (!(bd_status & FEC_RBD_EMPTY)) {
882 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
883 ((readw(&rbd->data_length) - 4) > 14)) {
884 /* Get buffer address and size */
885 addr = readl(&rbd->data_pointer);
886 frame_length = readw(&rbd->data_length) - 4;
887 /* Invalidate data cache over the buffer */
888 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
889 addr &= ~(ARCH_DMA_MINALIGN - 1);
890 invalidate_dcache_range(addr, end);
892 /* Fill the buffer and pass it to upper layers */
893 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
894 swap_packet((uint32_t *)addr, frame_length);
898 memcpy(*packetp, (char *)addr, frame_length);
900 memcpy(buff, (char *)addr, frame_length);
901 net_process_received_packet(buff, frame_length);
905 if (bd_status & FEC_RBD_ERR)
906 debug("error frame: 0x%08lx 0x%08x\n",
911 * Free the current buffer, restart the engine and move forward
912 * to the next buffer. Here we check if the whole cacheline of
913 * descriptors was already processed and if so, we mark it free
916 size = RXDESC_PER_CACHELINE - 1;
917 if ((fec->rbd_index & size) == size) {
918 i = fec->rbd_index - size;
919 addr = (ulong)&fec->rbd_base[i];
920 for (; i <= fec->rbd_index ; i++) {
921 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
924 flush_dcache_range(addr,
925 addr + ARCH_DMA_MINALIGN);
928 fec_rx_task_enable(fec);
929 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
931 debug("fec_recv: stop\n");
936 static void fec_set_dev_name(char *dest, int dev_id)
938 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
941 static int fec_alloc_descs(struct fec_priv *fec)
948 /* Allocate TX descriptors. */
949 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
950 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
954 /* Allocate RX descriptors. */
955 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
956 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
960 memset(fec->rbd_base, 0, size);
962 /* Allocate RX buffers. */
964 /* Maximum RX buffer size. */
965 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
966 for (i = 0; i < FEC_RBD_NUM; i++) {
967 data = memalign(FEC_DMA_RX_MINALIGN, size);
969 printf("%s: error allocating rxbuf %d\n", __func__, i);
973 memset(data, 0, size);
976 fec->rbd_base[i].data_pointer = (uint32_t)addr;
977 fec->rbd_base[i].status = FEC_RBD_EMPTY;
978 fec->rbd_base[i].data_length = 0;
979 /* Flush the buffer to memory. */
980 flush_dcache_range(addr, addr + size);
983 /* Mark the last RBD to close the ring. */
984 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
992 for (; i >= 0; i--) {
993 addr = fec->rbd_base[i].data_pointer;
1003 static void fec_free_descs(struct fec_priv *fec)
1008 for (i = 0; i < FEC_RBD_NUM; i++) {
1009 addr = fec->rbd_base[i].data_pointer;
1012 free(fec->rbd_base);
1013 free(fec->tbd_base);
1016 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1018 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1019 struct mii_dev *bus;
1024 printf("mdio_alloc failed\n");
1027 bus->read = fec_phy_read;
1028 bus->write = fec_phy_write;
1030 fec_set_dev_name(bus->name, dev_id);
1032 ret = mdio_register(bus);
1034 printf("mdio_register failed\n");
1038 fec_mii_setspeed(eth);
1042 #ifndef CONFIG_DM_ETH
1043 #ifdef CONFIG_PHYLIB
1044 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1045 struct mii_dev *bus, struct phy_device *phydev)
1047 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1048 struct mii_dev *bus, int phy_id)
1051 struct eth_device *edev;
1052 struct fec_priv *fec;
1053 unsigned char ethaddr[6];
1058 /* create and fill edev struct */
1059 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1061 puts("fec_mxc: not enough malloc memory for eth_device\n");
1066 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1068 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1073 memset(edev, 0, sizeof(*edev));
1074 memset(fec, 0, sizeof(*fec));
1076 ret = fec_alloc_descs(fec);
1081 edev->init = fec_init;
1082 edev->send = fec_send;
1083 edev->recv = fec_recv;
1084 edev->halt = fec_halt;
1085 edev->write_hwaddr = fec_set_hwaddr;
1087 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1090 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1093 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1094 start = get_timer(0);
1095 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1096 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1097 printf("FEC MXC: Timeout resetting chip\n");
1104 fec_set_dev_name(edev->name, dev_id);
1105 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1107 fec_mii_setspeed(bus->priv);
1108 #ifdef CONFIG_PHYLIB
1109 fec->phydev = phydev;
1110 phy_connect_dev(phydev, edev);
1114 fec->phy_id = phy_id;
1117 /* only support one eth device, the index number pointed by dev_id */
1118 edev->index = fec->dev_id;
1120 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1121 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1122 memcpy(edev->enetaddr, ethaddr, 6);
1124 sprintf(mac, "eth%daddr", fec->dev_id);
1126 strcpy(mac, "ethaddr");
1128 eth_env_set_enetaddr(mac, ethaddr);
1132 fec_free_descs(fec);
1141 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1144 struct mii_dev *bus = NULL;
1145 #ifdef CONFIG_PHYLIB
1146 struct phy_device *phydev = NULL;
1150 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1152 * The i.MX28 has two ethernet interfaces, but they are not equal.
1153 * Only the first one can access the MDIO bus.
1155 base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1159 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1160 bus = fec_get_miibus(base_mii, dev_id);
1163 #ifdef CONFIG_PHYLIB
1164 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1166 mdio_unregister(bus);
1170 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1172 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1175 #ifdef CONFIG_PHYLIB
1178 mdio_unregister(bus);
1184 #ifdef CONFIG_FEC_MXC_PHYADDR
1185 int fecmxc_initialize(bd_t *bd)
1187 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1192 #ifndef CONFIG_PHYLIB
1193 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1195 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1196 fec->mii_postcall = cb;
1203 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1205 struct fec_priv *priv = dev_get_priv(dev);
1206 struct eth_pdata *pdata = dev_get_platdata(dev);
1208 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1211 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1219 static const struct eth_ops fecmxc_ops = {
1220 .start = fecmxc_init,
1221 .send = fecmxc_send,
1222 .recv = fecmxc_recv,
1223 .free_pkt = fecmxc_free_pkt,
1224 .stop = fecmxc_halt,
1225 .write_hwaddr = fecmxc_set_hwaddr,
1226 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
1229 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1231 struct phy_device *phydev;
1232 int mask = 0xffffffff;
1234 #ifdef CONFIG_FEC_MXC_PHYADDR
1235 mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1238 phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1242 phy_connect_dev(phydev, dev);
1244 priv->phydev = phydev;
1250 #ifdef CONFIG_DM_GPIO
1251 /* FEC GPIO reset */
1252 static void fec_gpio_reset(struct fec_priv *priv)
1254 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1255 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1256 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1257 udelay(priv->reset_delay);
1258 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1263 static int fecmxc_probe(struct udevice *dev)
1265 struct eth_pdata *pdata = dev_get_platdata(dev);
1266 struct fec_priv *priv = dev_get_priv(dev);
1267 struct mii_dev *bus = NULL;
1271 ret = fec_alloc_descs(priv);
1275 #ifdef CONFIG_DM_GPIO
1276 fec_gpio_reset(priv);
1279 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1280 &priv->eth->ecntrl);
1281 start = get_timer(0);
1282 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1283 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1284 printf("FEC MXC: Timeout reseting chip\n");
1290 fec_reg_setup(priv);
1292 priv->dev_id = dev->seq;
1293 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1294 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1296 bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1304 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1305 priv->interface = pdata->phy_interface;
1306 ret = fec_phy_init(priv, dev);
1313 mdio_unregister(bus);
1317 fec_free_descs(priv);
1321 static int fecmxc_remove(struct udevice *dev)
1323 struct fec_priv *priv = dev_get_priv(dev);
1326 fec_free_descs(priv);
1327 mdio_unregister(priv->bus);
1328 mdio_free(priv->bus);
1333 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1336 struct eth_pdata *pdata = dev_get_platdata(dev);
1337 struct fec_priv *priv = dev_get_priv(dev);
1338 const char *phy_mode;
1340 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1341 priv->eth = (struct ethernet_regs *)pdata->iobase;
1343 pdata->phy_interface = -1;
1344 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1347 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1348 if (pdata->phy_interface == -1) {
1349 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1353 #ifdef CONFIG_DM_GPIO
1354 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1355 &priv->phy_reset_gpio, GPIOD_IS_OUT);
1357 ret = dev_read_u32_array(dev, "phy-reset-duration",
1358 &priv->reset_delay, 1);
1359 } else if (ret == -ENOENT) {
1360 priv->reset_delay = 1000;
1364 if (priv->reset_delay > 1000) {
1365 printf("FEX MXC: gpio reset timeout should be less the 1000\n");
1366 priv->reset_delay = 1000;
1373 static const struct udevice_id fecmxc_ids[] = {
1374 { .compatible = "fsl,imx6q-fec" },
1375 { .compatible = "fsl,imx6sl-fec" },
1376 { .compatible = "fsl,imx6sx-fec" },
1377 { .compatible = "fsl,imx6ul-fec" },
1378 { .compatible = "fsl,imx53-fec" },
1382 U_BOOT_DRIVER(fecmxc_gem) = {
1385 .of_match = fecmxc_ids,
1386 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1387 .probe = fecmxc_probe,
1388 .remove = fecmxc_remove,
1390 .priv_auto_alloc_size = sizeof(struct fec_priv),
1391 .platdata_auto_alloc_size = sizeof(struct eth_pdata),