1 // SPDX-License-Identifier: GPL-2.0+
3 * EFI application memory management
5 * Copyright (c) 2016 Alexander Graf
8 #define LOG_CATEGORY LOGC_EFI
10 #include <efi_loader.h>
16 #include <asm/cache.h>
17 #include <asm/global_data.h>
18 #include <asm/sections.h>
19 #include <linux/list_sort.h>
20 #include <linux/sizes.h>
22 DECLARE_GLOBAL_DATA_PTR;
24 /* Magic number identifying memory allocated from pool */
25 #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
27 efi_uintn_t efi_memory_map_key;
30 struct list_head link;
31 struct efi_mem_desc desc;
34 #define EFI_CARVE_NO_OVERLAP -1
35 #define EFI_CARVE_LOOP_AGAIN -2
36 #define EFI_CARVE_OVERLAPS_NONRAM -3
37 #define EFI_CARVE_OUT_OF_RESOURCES -4
39 /* This list contains all memory map items */
40 static LIST_HEAD(efi_mem);
42 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
43 void *efi_bounce_buffer;
47 * struct efi_pool_allocation - memory block allocated from pool
49 * @num_pages: number of pages allocated
51 * @data: allocated pool memory
53 * U-Boot services each UEFI AllocatePool() request as a separate
54 * (multiple) page allocation. We have to track the number of pages
55 * to be able to free the correct amount later.
57 * The checksum calculated in function checksum() is used in FreePool() to avoid
58 * freeing memory not allocated by AllocatePool() and duplicate freeing.
60 * EFI requires 8 byte alignment for pool allocations, so we can
61 * prepend each allocation with these header fields.
63 struct efi_pool_allocation {
66 char data[] __aligned(ARCH_DMA_MINALIGN);
70 * checksum() - calculate checksum for memory allocated from pool
72 * @alloc: allocation header
73 * Return: checksum, always non-zero
75 static u64 checksum(struct efi_pool_allocation *alloc)
77 u64 addr = (uintptr_t)alloc;
78 u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
86 * efi_mem_cmp() - comparator function for sorting memory map
88 * Sorts the memory list from highest address to lowest address
90 * When allocating memory we should always start from the highest
91 * address chunk, so sort the memory list such that the first list
92 * iterator gets the highest address and goes lower from there.
95 * @a: first memory area
96 * @b: second memory area
97 * Return: 1 if @a is before @b, -1 if @b is before @a, 0 if equal
99 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
101 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
102 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
104 if (mema->desc.physical_start == memb->desc.physical_start)
106 else if (mema->desc.physical_start < memb->desc.physical_start)
113 * desc_get_end() - get end address of memory area
115 * @desc: memory descriptor
116 * Return: end address + 1
118 static uint64_t desc_get_end(struct efi_mem_desc *desc)
120 return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
124 * efi_mem_sort() - sort memory map
126 * Sort the memory map and then try to merge adjacent memory areas.
128 static void efi_mem_sort(void)
130 struct efi_mem_list *lmem;
131 struct efi_mem_list *prevmem = NULL;
132 bool merge_again = true;
134 list_sort(NULL, &efi_mem, efi_mem_cmp);
136 /* Now merge entries that can be merged */
137 while (merge_again) {
139 list_for_each_entry(lmem, &efi_mem, link) {
140 struct efi_mem_desc *prev;
141 struct efi_mem_desc *cur;
150 prev = &prevmem->desc;
152 if ((desc_get_end(cur) == prev->physical_start) &&
153 (prev->type == cur->type) &&
154 (prev->attribute == cur->attribute)) {
155 /* There is an existing map before, reuse it */
156 pages = cur->num_pages;
157 prev->num_pages += pages;
158 prev->physical_start -= pages << EFI_PAGE_SHIFT;
159 prev->virtual_start -= pages << EFI_PAGE_SHIFT;
160 list_del(&lmem->link);
173 * efi_mem_carve_out() - unmap memory region
176 * @carve_desc: memory region to unmap
177 * @overlap_only_ram: the carved out region may only overlap RAM
178 * Return: the number of overlapping pages which have been
179 * removed from the map,
180 * EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
181 * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
182 * and the map contains anything but free ram
183 * (only when overlap_only_ram is true),
184 * EFI_CARVE_LOOP_AGAIN, if the mapping list should be
185 * traversed again, as it has been altered.
187 * Unmaps all memory occupied by the carve_desc region from the list entry
190 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
191 * to re-add the already carved out pages to the mapping.
193 static s64 efi_mem_carve_out(struct efi_mem_list *map,
194 struct efi_mem_desc *carve_desc,
195 bool overlap_only_ram)
197 struct efi_mem_list *newmap;
198 struct efi_mem_desc *map_desc = &map->desc;
199 uint64_t map_start = map_desc->physical_start;
200 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
201 uint64_t carve_start = carve_desc->physical_start;
202 uint64_t carve_end = carve_start +
203 (carve_desc->num_pages << EFI_PAGE_SHIFT);
205 /* check whether we're overlapping */
206 if ((carve_end <= map_start) || (carve_start >= map_end))
207 return EFI_CARVE_NO_OVERLAP;
209 /* We're overlapping with non-RAM, warn the caller if desired */
210 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
211 return EFI_CARVE_OVERLAPS_NONRAM;
213 /* Sanitize carve_start and carve_end to lie within our bounds */
214 carve_start = max(carve_start, map_start);
215 carve_end = min(carve_end, map_end);
217 /* Carving at the beginning of our map? Just move it! */
218 if (carve_start == map_start) {
219 if (map_end == carve_end) {
220 /* Full overlap, just remove map */
221 list_del(&map->link);
224 map->desc.physical_start = carve_end;
225 map->desc.virtual_start = carve_end;
226 map->desc.num_pages = (map_end - carve_end)
230 return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
234 * Overlapping maps, just split the list map at carve_start,
235 * it will get moved or removed in the next iteration.
237 * [ map_desc |__carve_start__| newmap ]
240 /* Create a new map from [ carve_start ... map_end ] */
241 newmap = calloc(1, sizeof(*newmap));
243 return EFI_CARVE_OUT_OF_RESOURCES;
244 newmap->desc = map->desc;
245 newmap->desc.physical_start = carve_start;
246 newmap->desc.virtual_start = carve_start;
247 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
248 /* Insert before current entry (descending address order) */
249 list_add_tail(&newmap->link, &map->link);
251 /* Shrink the map to [ map_start ... carve_start ] */
252 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
254 return EFI_CARVE_LOOP_AGAIN;
258 * efi_add_memory_map_pg() - add pages to the memory map
260 * @start: start address, must be a multiple of EFI_PAGE_SIZE
261 * @pages: number of pages to add
262 * @memory_type: type of memory added
263 * @overlap_only_ram: region may only overlap RAM
264 * Return: status code
266 static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
268 bool overlap_only_ram)
270 struct efi_mem_list *lmem;
271 struct efi_mem_list *newlist;
273 uint64_t carved_pages = 0;
274 struct efi_event *evt;
276 EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
277 start, pages, memory_type, overlap_only_ram ? "yes" : "no");
279 if (memory_type >= EFI_MAX_MEMORY_TYPE)
280 return EFI_INVALID_PARAMETER;
285 ++efi_memory_map_key;
286 newlist = calloc(1, sizeof(*newlist));
288 return EFI_OUT_OF_RESOURCES;
289 newlist->desc.type = memory_type;
290 newlist->desc.physical_start = start;
291 newlist->desc.virtual_start = start;
292 newlist->desc.num_pages = pages;
294 switch (memory_type) {
295 case EFI_RUNTIME_SERVICES_CODE:
296 case EFI_RUNTIME_SERVICES_DATA:
297 newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
300 newlist->desc.attribute = EFI_MEMORY_RUNTIME;
303 newlist->desc.attribute = EFI_MEMORY_WB;
307 /* Add our new map */
310 list_for_each_entry(lmem, &efi_mem, link) {
313 r = efi_mem_carve_out(lmem, &newlist->desc,
316 case EFI_CARVE_OUT_OF_RESOURCES:
318 return EFI_OUT_OF_RESOURCES;
319 case EFI_CARVE_OVERLAPS_NONRAM:
321 * The user requested to only have RAM overlaps,
322 * but we hit a non-RAM region. Error out.
325 return EFI_NO_MAPPING;
326 case EFI_CARVE_NO_OVERLAP:
327 /* Just ignore this list entry */
329 case EFI_CARVE_LOOP_AGAIN:
331 * We split an entry, but need to loop through
332 * the list again to actually carve it.
337 /* We carved a number of pages */
344 /* The list changed, we need to start over */
348 } while (carve_again);
350 if (overlap_only_ram && (carved_pages != pages)) {
352 * The payload wanted to have RAM overlaps, but we overlapped
353 * with an unallocated region. Error out.
356 return EFI_NO_MAPPING;
359 /* Add our new map */
360 list_add_tail(&newlist->link, &efi_mem);
362 /* And make sure memory is listed in descending order */
365 /* Notify that the memory map was changed */
366 list_for_each_entry(evt, &efi_events, link) {
369 &efi_guid_event_group_memory_map_change)) {
370 efi_signal_event(evt);
379 * efi_add_memory_map() - add memory area to the memory map
381 * @start: start address of the memory area
382 * @size: length in bytes of the memory area
383 * @memory_type: type of memory added
385 * Return: status code
387 * This function automatically aligns the start and size of the memory area
390 efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
394 pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
395 start &= ~EFI_PAGE_MASK;
397 return efi_add_memory_map_pg(start, pages, memory_type, false);
401 * efi_check_allocated() - validate address to be freed
403 * Check that the address is within allocated memory:
405 * * The address must be in a range of the memory map.
406 * * The address may not point to EFI_CONVENTIONAL_MEMORY.
408 * Page alignment is not checked as this is not a requirement of
411 * @addr: address of page to be freed
412 * @must_be_allocated: return success if the page is allocated
413 * Return: status code
415 static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
417 struct efi_mem_list *item;
419 list_for_each_entry(item, &efi_mem, link) {
420 u64 start = item->desc.physical_start;
421 u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
423 if (addr >= start && addr < end) {
424 if (must_be_allocated ^
425 (item->desc.type == EFI_CONVENTIONAL_MEMORY))
428 return EFI_NOT_FOUND;
432 return EFI_NOT_FOUND;
436 * efi_find_free_memory() - find free memory pages
438 * @len: size of memory area needed
439 * @max_addr: highest address to allocate
440 * Return: pointer to free memory area or 0
442 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
444 struct efi_mem_list *lmem;
447 * Prealign input max address, so we simplify our matching
448 * logic below and can just reuse it as return pointer.
450 max_addr &= ~EFI_PAGE_MASK;
452 list_for_each_entry(lmem, &efi_mem, link) {
453 struct efi_mem_desc *desc = &lmem->desc;
454 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
455 uint64_t desc_end = desc->physical_start + desc_len;
456 uint64_t curmax = min(max_addr, desc_end);
457 uint64_t ret = curmax - len;
459 /* We only take memory from free RAM */
460 if (desc->type != EFI_CONVENTIONAL_MEMORY)
463 /* Out of bounds for max_addr */
464 if ((ret + len) > max_addr)
467 /* Out of bounds for upper map limit */
468 if ((ret + len) > desc_end)
471 /* Out of bounds for lower map limit */
472 if (ret < desc->physical_start)
475 /* Return the highest address in this map within bounds */
483 * efi_allocate_pages - allocate memory pages
485 * @type: type of allocation to be performed
486 * @memory_type: usage type of the allocated memory
487 * @pages: number of pages to be allocated
488 * @memory: allocated memory
489 * Return: status code
491 efi_status_t efi_allocate_pages(enum efi_allocate_type type,
492 enum efi_memory_type memory_type,
493 efi_uintn_t pages, uint64_t *memory)
499 /* Check import parameters */
500 if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
501 memory_type <= 0x6FFFFFFF)
502 return EFI_INVALID_PARAMETER;
504 return EFI_INVALID_PARAMETER;
505 len = (u64)pages << EFI_PAGE_SHIFT;
506 /* Catch possible overflow on 64bit systems */
507 if (sizeof(efi_uintn_t) == sizeof(u64) &&
508 (len >> EFI_PAGE_SHIFT) != (u64)pages)
509 return EFI_OUT_OF_RESOURCES;
512 case EFI_ALLOCATE_ANY_PAGES:
514 addr = efi_find_free_memory(len, -1ULL);
516 return EFI_OUT_OF_RESOURCES;
518 case EFI_ALLOCATE_MAX_ADDRESS:
520 addr = efi_find_free_memory(len, *memory);
522 return EFI_OUT_OF_RESOURCES;
524 case EFI_ALLOCATE_ADDRESS:
525 if (*memory & EFI_PAGE_MASK)
526 return EFI_NOT_FOUND;
527 /* Exact address, reserve it. The addr is already in *memory. */
528 ret = efi_check_allocated(*memory, false);
529 if (ret != EFI_SUCCESS)
530 return EFI_NOT_FOUND;
534 /* UEFI doesn't specify other allocation types */
535 return EFI_INVALID_PARAMETER;
538 /* Reserve that map in our memory maps */
539 ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
540 if (ret != EFI_SUCCESS)
541 /* Map would overlap, bail out */
542 return EFI_OUT_OF_RESOURCES;
550 * efi_free_pages() - free memory pages
552 * @memory: start of the memory area to be freed
553 * @pages: number of pages to be freed
554 * Return: status code
556 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
560 ret = efi_check_allocated(memory, true);
561 if (ret != EFI_SUCCESS)
565 if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
566 printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
568 return EFI_INVALID_PARAMETER;
571 ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
573 if (ret != EFI_SUCCESS)
574 return EFI_NOT_FOUND;
580 * efi_alloc_aligned_pages() - allocate aligned memory pages
583 * @memory_type: usage type of the allocated memory
584 * @align: alignment in bytes
585 * Return: aligned memory or NULL
587 void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
589 u64 req_pages = efi_size_in_pages(len);
590 u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
596 /* align must be zero or a power of two */
597 if (align & (align - 1))
600 /* Check for overflow */
601 if (true_pages < req_pages)
604 if (align < EFI_PAGE_SIZE) {
605 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
607 return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
610 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
612 if (r != EFI_SUCCESS)
615 aligned_mem = ALIGN(mem, align);
616 /* Free pages before alignment */
617 free_pages = efi_size_in_pages(aligned_mem - mem);
619 efi_free_pages(mem, free_pages);
621 /* Free trailing pages */
622 free_pages = true_pages - (req_pages + free_pages);
624 mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
625 efi_free_pages(mem, free_pages);
628 return (void *)(uintptr_t)aligned_mem;
632 * efi_allocate_pool - allocate memory from pool
634 * @pool_type: type of the pool from which memory is to be allocated
635 * @size: number of bytes to be allocated
636 * @buffer: allocated memory
637 * Return: status code
639 efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
643 struct efi_pool_allocation *alloc;
644 u64 num_pages = efi_size_in_pages(size +
645 sizeof(struct efi_pool_allocation));
648 return EFI_INVALID_PARAMETER;
655 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
657 if (r == EFI_SUCCESS) {
658 alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
659 alloc->num_pages = num_pages;
660 alloc->checksum = checksum(alloc);
661 *buffer = alloc->data;
668 * efi_alloc() - allocate boot services data pool memory
670 * Allocate memory from pool and zero it out.
672 * @size: number of bytes to allocate
673 * Return: pointer to allocated memory or NULL
675 void *efi_alloc(size_t size)
679 if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) !=
681 log_err("out of memory");
684 memset(buf, 0, size);
690 * efi_free_pool() - free memory from pool
692 * @buffer: start of memory to be freed
693 * Return: status code
695 efi_status_t efi_free_pool(void *buffer)
698 struct efi_pool_allocation *alloc;
701 return EFI_INVALID_PARAMETER;
703 ret = efi_check_allocated((uintptr_t)buffer, true);
704 if (ret != EFI_SUCCESS)
707 alloc = container_of(buffer, struct efi_pool_allocation, data);
709 /* Check that this memory was allocated by efi_allocate_pool() */
710 if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
711 alloc->checksum != checksum(alloc)) {
712 printf("%s: illegal free 0x%p\n", __func__, buffer);
713 return EFI_INVALID_PARAMETER;
715 /* Avoid double free */
718 ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
724 * efi_get_memory_map() - get map describing memory usage.
726 * @memory_map_size: on entry the size, in bytes, of the memory map buffer,
727 * on exit the size of the copied memory map
728 * @memory_map: buffer to which the memory map is written
729 * @map_key: key for the memory map
730 * @descriptor_size: size of an individual memory descriptor
731 * @descriptor_version: version number of the memory descriptor structure
732 * Return: status code
734 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
735 struct efi_mem_desc *memory_map,
736 efi_uintn_t *map_key,
737 efi_uintn_t *descriptor_size,
738 uint32_t *descriptor_version)
741 efi_uintn_t map_size = 0;
742 struct efi_mem_list *lmem;
743 efi_uintn_t provided_map_size;
745 if (!memory_map_size)
746 return EFI_INVALID_PARAMETER;
748 provided_map_size = *memory_map_size;
750 map_entries = list_count_nodes(&efi_mem);
752 map_size = map_entries * sizeof(struct efi_mem_desc);
754 *memory_map_size = map_size;
757 *descriptor_size = sizeof(struct efi_mem_desc);
759 if (descriptor_version)
760 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
762 if (provided_map_size < map_size)
763 return EFI_BUFFER_TOO_SMALL;
766 return EFI_INVALID_PARAMETER;
768 /* Copy list into array */
769 /* Return the list in ascending order */
770 memory_map = &memory_map[map_entries - 1];
771 list_for_each_entry(lmem, &efi_mem, link) {
772 *memory_map = lmem->desc;
777 *map_key = efi_memory_map_key;
783 * efi_get_memory_map_alloc() - allocate map describing memory usage
785 * The caller is responsible for calling FreePool() if the call succeeds.
787 * @map_size: size of the memory map
788 * @memory_map: buffer to which the memory map is written
789 * Return: status code
791 efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size,
792 struct efi_mem_desc **memory_map)
798 ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL);
799 if (ret == EFI_BUFFER_TOO_SMALL) {
800 *map_size += sizeof(struct efi_mem_desc); /* for the map */
801 ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size,
802 (void **)memory_map);
803 if (ret != EFI_SUCCESS)
805 ret = efi_get_memory_map(map_size, *memory_map,
807 if (ret != EFI_SUCCESS) {
808 efi_free_pool(*memory_map);
817 * efi_add_conventional_memory_map() - add a RAM memory area to the map
819 * @ram_start: start address of a RAM memory area
820 * @ram_end: end address of a RAM memory area
821 * @ram_top: max address to be used as conventional memory
822 * Return: status code
824 efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
829 /* Remove partial pages */
830 ram_end &= ~EFI_PAGE_MASK;
831 ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
833 if (ram_end <= ram_start) {
834 /* Invalid mapping */
835 return EFI_INVALID_PARAMETER;
838 pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
840 efi_add_memory_map_pg(ram_start, pages,
841 EFI_CONVENTIONAL_MEMORY, false);
844 * Boards may indicate to the U-Boot memory core that they
845 * can not support memory above ram_top. Let's honor this
846 * in the efi_loader subsystem too by declaring any memory
847 * above ram_top as "already occupied by firmware".
849 if (ram_top < ram_start) {
850 /* ram_top is before this region, reserve all */
851 efi_add_memory_map_pg(ram_start, pages,
852 EFI_BOOT_SERVICES_DATA, true);
853 } else if (ram_top < ram_end) {
854 /* ram_top is inside this region, reserve parts */
855 pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
857 efi_add_memory_map_pg(ram_top, pages,
858 EFI_BOOT_SERVICES_DATA, true);
865 * efi_add_known_memory() - add memory banks to map
867 * This function may be overridden for specific architectures.
869 __weak void efi_add_known_memory(void)
871 u64 ram_top = gd->ram_top & ~EFI_PAGE_MASK;
875 * ram_top is just outside mapped memory. So use an offset of one for
876 * mapping the sandbox address.
878 ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
880 /* Fix for 32bit targets with ram_top at 4G */
882 ram_top = 0x100000000ULL;
885 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
886 u64 ram_end, ram_start;
888 ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
889 ram_end = ram_start + gd->bd->bi_dram[i].size;
891 efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
896 * add_u_boot_and_runtime() - add U-Boot code to memory map
898 * Add memory regions for U-Boot's memory and for the runtime services code.
900 static void add_u_boot_and_runtime(void)
902 unsigned long runtime_start, runtime_end, runtime_pages;
903 unsigned long runtime_mask = EFI_PAGE_MASK;
904 unsigned long uboot_start, uboot_pages;
905 unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
908 uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
909 uboot_stack_size) & ~EFI_PAGE_MASK;
910 uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
911 uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
912 efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE,
915 #if defined(__aarch64__)
917 * Runtime Services must be 64KiB aligned according to the
918 * "AArch64 Platforms" section in the UEFI spec (2.7+).
921 runtime_mask = SZ_64K - 1;
925 * Add Runtime Services. We mark surrounding boottime code as runtime as
926 * well to fulfill the runtime alignment constraints but avoid padding.
928 runtime_start = (uintptr_t)__efi_runtime_start & ~runtime_mask;
929 runtime_end = (uintptr_t)__efi_runtime_stop;
930 runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
931 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
932 efi_add_memory_map_pg(runtime_start, runtime_pages,
933 EFI_RUNTIME_SERVICES_CODE, false);
936 int efi_memory_init(void)
938 efi_add_known_memory();
940 add_u_boot_and_runtime();
942 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
943 /* Request a 32bit 64MB bounce buffer region */
944 uint64_t efi_bounce_buffer_addr = 0xffffffff;
946 if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA,
947 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
948 &efi_bounce_buffer_addr) != EFI_SUCCESS)
951 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;