2 * Based on drivers/usb/gadget/omap1510_udc.c
3 * TI OMAP1510 USB bus interface driver
8 * SPDX-License-Identifier: GPL-2.0+
14 #include <usbdevice.h>
16 #include <usb/designware_udc.h>
18 #include <asm/arch/hardware.h>
20 #define UDC_INIT_MDELAY 80 /* Device settle delay */
22 /* Some kind of debugging output... */
23 #ifndef DEBUG_DWUSBTTY
25 #define UDCDBGA(fmt, args...)
27 #define UDCDBG(str) serial_printf(str "\n")
28 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
31 static struct urb *ep0_urb;
32 static struct usb_device_instance *udc_device;
34 static struct plug_regs *const plug_regs_p =
35 (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
36 static struct udc_regs *const udc_regs_p =
37 (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
38 static struct udc_endp_regs *const outep_regs_p =
39 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
40 static struct udc_endp_regs *const inep_regs_p =
41 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
44 * udc_state_transition - Write the next packet to TxFIFO.
45 * @initial: Initial state.
46 * @final: Final state.
48 * Helper function to implement device state changes. The device states and
49 * the events that transition between them are:
54 * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
60 * DEVICE_RESET DEVICE_POWER_INTERRUPTION
66 * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
72 * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
77 * udc_state_transition transitions up (in the direction from STATE_ATTACHED
78 * to STATE_CONFIGURED) from the specified initial state to the specified final
79 * state, passing through each intermediate state on the way. If the initial
80 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
81 * no state transitions will take place.
83 * udc_state_transition also transitions down (in the direction from
84 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
85 * specified final state, passing through each intermediate state on the way.
86 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
87 * state, then no state transitions will take place.
89 * This function must only be called with interrupts disabled.
91 static void udc_state_transition(usb_device_state_t initial,
92 usb_device_state_t final)
94 if (initial < final) {
97 usbd_device_event_irq(udc_device,
98 DEVICE_HUB_CONFIGURED, 0);
99 if (final == STATE_POWERED)
102 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
103 if (final == STATE_DEFAULT)
106 usbd_device_event_irq(udc_device,
107 DEVICE_ADDRESS_ASSIGNED, 0);
108 if (final == STATE_ADDRESSED)
110 case STATE_ADDRESSED:
111 usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
112 case STATE_CONFIGURED:
117 } else if (initial > final) {
119 case STATE_CONFIGURED:
120 usbd_device_event_irq(udc_device,
121 DEVICE_DE_CONFIGURED, 0);
122 if (final == STATE_ADDRESSED)
124 case STATE_ADDRESSED:
125 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
126 if (final == STATE_DEFAULT)
129 usbd_device_event_irq(udc_device,
130 DEVICE_POWER_INTERRUPTION, 0);
131 if (final == STATE_POWERED)
134 usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
144 static void udc_stall_ep(u32 ep_num)
146 writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
147 &inep_regs_p[ep_num].endp_cntl);
149 writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
150 &outep_regs_p[ep_num].endp_cntl);
153 static void *get_fifo(int ep_num, int in)
155 u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
159 fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
160 /* break intentionally left out */
163 fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
164 /* break intentionally left out */
170 readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
171 /* break intentionally left out */
177 fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
178 /* break intentionally left out */
181 return (void *)fifo_ptr;
184 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
186 u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
192 if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
195 nw = len / sizeof(u32);
196 nb = len % sizeof(u32);
198 /* use tmp buf if bufp is not word aligned */
200 wrdp = (u32 *)&tmp[0];
204 for (i = 0; i < nw; i++) {
205 writel(readl(fifo_ptr), wrdp);
210 for (i = 0; i < nb; i++) {
211 writeb(readb(fifo_ptr), bytp);
215 readl(&outep_regs_p[epNum].write_done);
217 /* copy back tmp buffer to bufp if bufp is not word aligned */
219 memcpy(bufp, tmp, len);
224 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
229 u8 *fifo_ptr = get_fifo(epNum, 1);
231 nw = len / sizeof(int);
232 nb = len % sizeof(int);
234 for (i = 0; i < nw; i++) {
235 writel(*wrdp, fifo_ptr);
240 for (i = 0; i < nb; i++) {
241 writeb(*bytp, fifo_ptr);
248 * dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
249 * @endpoint: Endpoint pointer.
251 * If the endpoint has an active tx_urb, then the next packet of data from the
252 * URB is written to the tx FIFO. The total amount of data in the urb is given
253 * by urb->actual_length. The maximum amount of data that can be sent in any
254 * one packet is given by endpoint->tx_packetSize. The number of data bytes
255 * from this URB that have already been transmitted is given by endpoint->sent.
256 * endpoint->last is updated by this routine with the number of data bytes
257 * transmitted in this packet.
260 static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
263 struct urb *urb = endpoint->tx_urb;
269 UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
270 urb->buffer, urb->buffer_length, urb->actual_length);
272 last = min_t(u32, urb->actual_length - endpoint->sent,
273 endpoint->tx_packetSize);
276 u8 *cp = urb->buffer + endpoint->sent;
279 * This ensures that USBD packet fifo is accessed
280 * - through word aligned pointer or
281 * - through non word aligned pointer but only
282 * with a max length to make the next packet
286 align = ((ulong)cp % sizeof(int));
288 last = min(last, sizeof(int) - align);
290 UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
291 endpoint->sent, endpoint->tx_packetSize, last);
293 usbputpcktofifo(endpoint->endpoint_address &
294 USB_ENDPOINT_NUMBER_MASK, cp, last);
296 endpoint->last = last;
301 * Handle SETUP USB interrupt.
302 * This function implements TRM Figure 14-14.
304 static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
306 u8 *datap = (u8 *)&ep0_urb->device_request;
307 int ep_addr = endpoint->endpoint_address;
309 UDCDBG("-> Entering device setup");
310 usbgetpckfromfifo(ep_addr, datap, 8);
312 /* Try to process setup packet */
313 if (ep0_recv_setup(ep0_urb)) {
314 /* Not a setup packet, stall next EP0 transaction */
316 UDCDBG("can't parse setup packet, still waiting for setup");
320 /* Check direction */
321 if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
322 == USB_REQ_HOST2DEVICE) {
323 UDCDBG("control write on EP0");
324 if (le16_to_cpu(ep0_urb->device_request.wLength)) {
325 /* Stall this request */
326 UDCDBG("Stalling unsupported EP0 control write data "
332 UDCDBG("control read on EP0");
334 * The ep0_recv_setup function has already placed our response
335 * packet data in ep0_urb->buffer and the packet length in
336 * ep0_urb->actual_length.
338 endpoint->tx_urb = ep0_urb;
341 * Write packet data to the FIFO. dw_write_noniso_tx_fifo
342 * will update endpoint->last with the number of bytes written
345 dw_write_noniso_tx_fifo(endpoint);
347 writel(0x0, &inep_regs_p[ep_addr].write_done);
350 udc_unset_nak(endpoint->endpoint_address);
352 UDCDBG("<- Leaving device setup");
356 * Handle endpoint 0 RX interrupt
358 static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
364 /* Check direction */
365 if ((ep0_urb->device_request.bmRequestType
366 & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
368 * This rx interrupt must be for a control write data
371 * We don't support control write data stages.
372 * We should never end up here.
375 UDCDBG("Stalling unexpected EP0 control write "
376 "data stage packet");
380 * This rx interrupt must be for a control read status
383 UDCDBG("ACK on EP0 control read status stage packet");
384 u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
385 usbgetpckfromfifo(0, dummy, len);
390 * Handle endpoint 0 TX interrupt
392 static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
394 struct usb_device_request *request = &ep0_urb->device_request;
399 /* Check direction */
400 if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
401 USB_REQ_HOST2DEVICE) {
403 * This tx interrupt must be for a control write status
406 UDCDBG("ACK on EP0 control write status stage packet");
409 * This tx interrupt must be for a control read data
412 int wLength = le16_to_cpu(request->wLength);
415 * Update our count of bytes sent so far in this
418 endpoint->sent += endpoint->last;
421 * We are finished with this transfer if we have sent
422 * all of the bytes in our tx urb (urb->actual_length)
423 * unless we need a zero-length terminating packet. We
424 * need a zero-length terminating packet if we returned
425 * fewer bytes than were requested (wLength) by the host,
426 * and the number of bytes we returned is an exact
427 * multiple of the packet size endpoint->tx_packetSize.
429 if ((endpoint->sent == ep0_urb->actual_length) &&
430 ((ep0_urb->actual_length == wLength) ||
431 (endpoint->last != endpoint->tx_packetSize))) {
432 /* Done with control read data stage. */
433 UDCDBG("control read data stage complete");
436 * We still have another packet of data to send
437 * in this control read data stage or else we
438 * need a zero-length terminating packet.
440 UDCDBG("ACK control read data stage packet");
441 dw_write_noniso_tx_fifo(endpoint);
443 ep_addr = endpoint->endpoint_address;
444 writel(0x0, &inep_regs_p[ep_addr].write_done);
449 static struct usb_endpoint_instance *dw_find_ep(int ep)
453 for (i = 0; i < udc_device->bus->max_endpoints; i++) {
454 if ((udc_device->bus->endpoint_array[i].endpoint_address &
455 USB_ENDPOINT_NUMBER_MASK) == ep)
456 return &udc_device->bus->endpoint_array[i];
462 * Handle RX transaction on non-ISO endpoint.
463 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
464 * in the range 1 to 15.
466 static void dw_udc_epn_rx(int ep)
470 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
473 urb = endpoint->rcv_urb;
476 u8 *cp = urb->buffer + urb->actual_length;
478 nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
480 usbgetpckfromfifo(ep, cp, nbytes);
481 usbd_rcv_complete(endpoint, nbytes, 0);
487 * Handle TX transaction on non-ISO endpoint.
488 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
489 * in the range 16 to 30.
491 static void dw_udc_epn_tx(int ep)
493 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
499 * We need to transmit a terminating zero-length packet now if
500 * we have sent all of the data in this URB and the transfer
501 * size was an exact multiple of the packet size.
503 if (endpoint->tx_urb &&
504 (endpoint->last == endpoint->tx_packetSize) &&
505 (endpoint->tx_urb->actual_length - endpoint->sent -
506 endpoint->last == 0)) {
507 /* handle zero length packet here */
508 writel(0x0, &inep_regs_p[ep].write_done);
512 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
513 /* retire the data that was just sent */
514 usbd_tx_complete(endpoint);
516 * Check to see if we have more data ready to transmit
519 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
520 /* write data to FIFO */
521 dw_write_noniso_tx_fifo(endpoint);
522 writel(0x0, &inep_regs_p[ep].write_done);
524 } else if (endpoint->tx_urb
525 && (endpoint->tx_urb->actual_length == 0)) {
526 /* udc_set_nak(ep); */
532 * Start of public functions.
535 /* Called to start packet transmission. */
536 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
538 udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
542 /* Start to initialize h/w stuff */
552 readl(&plug_regs_p->plug_pending);
554 for (i = 0; i < UDC_INIT_MDELAY; i++)
557 plug_st = readl(&plug_regs_p->plug_state);
558 writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
560 writel(~0x0, &udc_regs_p->endp_int);
561 writel(~0x0, &udc_regs_p->dev_int_mask);
562 writel(~0x0, &udc_regs_p->endp_int_mask);
564 #ifndef CONFIG_USBD_HS
565 writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
566 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
568 writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
569 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
572 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
574 /* Clear all interrupts pending */
575 writel(DEV_INT_MSK, &udc_regs_p->dev_int);
580 int is_usbd_high_speed(void)
582 return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
586 * udc_setup_ep - setup endpoint
587 * Associate a physical endpoint with endpoint_instance
589 void udc_setup_ep(struct usb_device_instance *device,
590 u32 ep, struct usb_endpoint_instance *endpoint)
592 UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
601 if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
604 tt = getenv("usbtty");
608 ep_addr = endpoint->endpoint_address;
609 ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
611 if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
613 packet_size = endpoint->tx_packetSize;
614 buffer_size = packet_size * 2;
615 attributes = endpoint->tx_attributes;
618 packet_size = endpoint->rcv_packetSize;
619 buffer_size = packet_size * 2;
620 attributes = endpoint->rcv_attributes;
623 switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
624 case USB_ENDPOINT_XFER_CONTROL:
625 ep_type = ENDP_EPTYPE_CNTL;
627 case USB_ENDPOINT_XFER_BULK:
629 ep_type = ENDP_EPTYPE_BULK;
631 case USB_ENDPOINT_XFER_INT:
632 ep_type = ENDP_EPTYPE_INT;
634 case USB_ENDPOINT_XFER_ISOC:
635 ep_type = ENDP_EPTYPE_ISO;
639 struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
640 struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
643 /* Setup endpoint 0 */
644 buffer_size = packet_size;
646 writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
649 writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
652 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
654 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
656 writel(packet_size, &in_p->endp_maxpacksize);
658 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
660 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
661 &out_p->endp_maxpacksize);
663 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
664 /* Setup the IN endpoint */
665 writel(0x0, &in_p->endp_status);
666 writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
667 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
668 writel(packet_size, &in_p->endp_maxpacksize);
670 if (!strcmp(tt, "cdc_acm")) {
671 if (ep_type == ENDP_EPTYPE_INT) {
672 /* Conf no. 1 Interface no. 0 */
673 writel((packet_size << 19) |
674 ENDP_EPDIR_IN | (1 << 7) |
675 (0 << 11) | (ep_type << 5) | ep_num,
676 &udc_regs_p->udc_endp_reg[ep_num]);
678 /* Conf no. 1 Interface no. 1 */
679 writel((packet_size << 19) |
680 ENDP_EPDIR_IN | (1 << 7) |
681 (1 << 11) | (ep_type << 5) | ep_num,
682 &udc_regs_p->udc_endp_reg[ep_num]);
685 /* Conf no. 1 Interface no. 0 */
686 writel((packet_size << 19) |
687 ENDP_EPDIR_IN | (1 << 7) |
688 (0 << 11) | (ep_type << 5) | ep_num,
689 &udc_regs_p->udc_endp_reg[ep_num]);
693 /* Setup the OUT endpoint */
694 writel(0x0, &out_p->endp_status);
695 writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
696 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
697 &out_p->endp_maxpacksize);
699 if (!strcmp(tt, "cdc_acm")) {
700 writel((packet_size << 19) |
701 ENDP_EPDIR_OUT | (1 << 7) |
702 (1 << 11) | (ep_type << 5) | ep_num,
703 &udc_regs_p->udc_endp_reg[ep_num]);
705 writel((packet_size << 19) |
706 ENDP_EPDIR_OUT | (1 << 7) |
707 (0 << 11) | (ep_type << 5) | ep_num,
708 &udc_regs_p->udc_endp_reg[ep_num]);
713 endp_intmask = readl(&udc_regs_p->endp_int_mask);
714 endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
715 writel(endp_intmask, &udc_regs_p->endp_int_mask);
718 /* Turn on the USB connection by enabling the pullup resistor */
719 void udc_connect(void)
721 u32 plug_st, dev_cntl;
723 dev_cntl = readl(&udc_regs_p->dev_cntl);
724 dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
725 writel(dev_cntl, &udc_regs_p->dev_cntl);
729 dev_cntl = readl(&udc_regs_p->dev_cntl);
730 dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
731 writel(dev_cntl, &udc_regs_p->dev_cntl);
733 plug_st = readl(&plug_regs_p->plug_state);
734 plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
735 writel(plug_st, &plug_regs_p->plug_state);
738 /* Turn off the USB connection by disabling the pullup resistor */
739 void udc_disconnect(void)
743 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
745 plug_st = readl(&plug_regs_p->plug_state);
746 plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
747 writel(plug_st, &plug_regs_p->plug_state);
750 /* Switch on the UDC */
751 void udc_enable(struct usb_device_instance *device)
753 UDCDBGA("enable device %p, status %d", device, device->status);
755 /* Save the device structure pointer */
761 usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
763 serial_printf("udc_enable: ep0_urb already allocated %p\n",
767 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
771 * udc_startup - allow udc code to do any additional startup
773 void udc_startup_events(struct usb_device_instance *device)
775 /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
776 usbd_device_event_irq(device, DEVICE_INIT, 0);
779 * The DEVICE_CREATE event puts the USB device in the state
782 usbd_device_event_irq(device, DEVICE_CREATE, 0);
785 * Some USB controller driver implementations signal
786 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
787 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
788 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
789 * The DW USB client controller has the capability to detect when the
790 * USB cable is connected to a powered USB bus, so we will defer the
791 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
798 * Plug detection interrupt handling
800 static void dw_udc_plug_irq(void)
802 if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
805 * Turn off PHY reset bit (PLUG detect).
806 * Switch PHY opmode to normal operation (PLUG detect).
809 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
811 UDCDBG("device attached and powered");
812 udc_state_transition(udc_device->device_state, STATE_POWERED);
814 writel(~0x0, &udc_regs_p->dev_int_mask);
816 UDCDBG("device detached or unpowered");
817 udc_state_transition(udc_device->device_state, STATE_ATTACHED);
822 * Device interrupt handling
824 static void dw_udc_dev_irq(void)
826 if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
827 writel(~0x0, &udc_regs_p->endp_int_mask);
829 writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
830 &inep_regs_p[0].endp_cntl);
832 writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
835 * This endpoint0 specific register can be programmed only
836 * after the phy clock is initialized
838 writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
839 &udc_regs_p->udc_endp_reg[0]);
841 UDCDBG("device reset in progess");
842 udc_state_transition(udc_device->device_state, STATE_DEFAULT);
845 /* Device Enumeration completed */
846 if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
847 writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
849 /* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
850 writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
851 &udc_regs_p->endp_int_mask);
853 UDCDBG("default -> addressed");
854 udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
857 /* The USB will be in SUSPEND in 3 ms */
858 if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
859 writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
861 UDCDBG("entering inactive state");
862 /* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
865 /* SetConfiguration command received */
866 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
867 writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
869 UDCDBG("entering configured state");
870 udc_state_transition(udc_device->device_state,
874 /* SetInterface command received */
875 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
876 writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
878 /* USB Suspend detected on cable */
879 if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
880 writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
882 UDCDBG("entering suspended state");
883 usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
886 /* USB Start-Of-Frame detected on cable */
887 if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
888 writel(DEV_INT_SOF, &udc_regs_p->dev_int);
892 * Endpoint interrupt handling
894 static void dw_udc_endpoint_irq(void)
896 while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
898 writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
900 if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
901 == ENDP_STATUS_OUT_SETUP) {
902 dw_udc_setup(udc_device->bus->endpoint_array + 0);
903 writel(ENDP_STATUS_OUT_SETUP,
904 &outep_regs_p[0].endp_status);
906 } else if ((readl(&outep_regs_p[0].endp_status) &
907 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
908 dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
909 writel(ENDP_STATUS_OUT_DATA,
910 &outep_regs_p[0].endp_status);
912 } else if ((readl(&outep_regs_p[0].endp_status) &
913 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
917 writel(0x0, &outep_regs_p[0].endp_status);
920 if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
921 dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
923 writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
924 writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
927 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
929 u32 ep_int = readl(&udc_regs_p->endp_int) &
930 ENDP_INT_NONISOOUT_MSK;
933 while (0x0 == (ep_int & 0x1)) {
938 writel((1 << 16) << epnum, &udc_regs_p->endp_int);
940 if ((readl(&outep_regs_p[epnum].endp_status) &
941 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
943 dw_udc_epn_rx(epnum);
944 writel(ENDP_STATUS_OUT_DATA,
945 &outep_regs_p[epnum].endp_status);
946 } else if ((readl(&outep_regs_p[epnum].endp_status) &
947 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
948 writel(0x0, &outep_regs_p[epnum].endp_status);
952 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
954 u32 ep_int = readl(&udc_regs_p->endp_int) &
955 ENDP_INT_NONISOIN_MSK;
957 while (0x0 == (ep_int & 0x1)) {
962 if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
963 writel(ENDP_STATUS_IN,
964 &outep_regs_p[epnum].endp_status);
965 dw_udc_epn_tx(epnum);
967 writel(ENDP_STATUS_IN,
968 &outep_regs_p[epnum].endp_status);
971 writel((1 << epnum), &udc_regs_p->endp_int);
981 * Loop while we have interrupts.
982 * If we don't do this, the input chain
983 * polling delay is likely to miss
986 while (readl(&plug_regs_p->plug_pending))
989 while (readl(&udc_regs_p->dev_int))
992 if (readl(&udc_regs_p->endp_int))
993 dw_udc_endpoint_irq();
997 void udc_set_nak(int epid)
999 writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1000 &inep_regs_p[epid].endp_cntl);
1002 writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1003 &outep_regs_p[epid].endp_cntl);
1006 void udc_unset_nak(int epid)
1010 val = readl(&inep_regs_p[epid].endp_cntl);
1011 val &= ~ENDP_CNTL_SNAK;
1012 val |= ENDP_CNTL_CNAK;
1013 writel(val, &inep_regs_p[epid].endp_cntl);
1015 val = readl(&outep_regs_p[epid].endp_cntl);
1016 val &= ~ENDP_CNTL_SNAK;
1017 val |= ENDP_CNTL_CNAK;
1018 writel(val, &outep_regs_p[epid].endp_cntl);