1 // SPDX-License-Identifier: GPL-2.0+
5 * (C) Copyright 2008 Armadeus Systems nc
19 #include <power/regulator.h>
22 #include <linux/errno.h>
23 #include <linux/compiler.h>
25 #include <asm/arch/clock.h>
26 #include <asm/arch/imx-regs.h>
27 #include <asm/mach-imx/sys_proto.h>
28 #include <asm-generic/gpio.h>
32 DECLARE_GLOBAL_DATA_PTR;
35 * Timeout the transfer after 5 mS. This is usually a bit more, since
36 * the code in the tightloops this timeout is used in adds some overhead.
38 #define FEC_XFER_TIMEOUT 5000
41 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
42 * 64-byte alignment in the DMA RX FEC buffer.
43 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
44 * satisfies the alignment on other SoCs (32-bytes)
46 #define FEC_DMA_RX_MINALIGN 64
49 #error "CONFIG_MII has to be defined!"
52 #ifndef CONFIG_FEC_XCV_TYPE
53 #define CONFIG_FEC_XCV_TYPE MII100
57 * The i.MX28 operates with packets in big endian. We need to swap them before
58 * sending and after receiving.
61 #define CONFIG_FEC_MXC_SWAP_PACKET
64 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
66 /* Check various alignment issues at compile time */
67 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
68 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
71 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
72 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
73 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
78 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
79 static void swap_packet(uint32_t *packet, int length)
83 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
84 packet[i] = __swab32(packet[i]);
88 /* MII-interface related functions */
89 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
92 uint32_t reg; /* convenient holder for the PHY register */
93 uint32_t phy; /* convenient holder for the PHY */
98 * reading from any PHY's register is done by properly
99 * programming the FEC's MII data register.
101 writel(FEC_IEVENT_MII, ð->ievent);
102 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
103 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
105 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
106 phy | reg, ð->mii_data);
108 /* wait for the related interrupt */
109 start = get_timer(0);
110 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
111 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 printf("Read MDIO failed...\n");
117 /* clear mii interrupt bit */
118 writel(FEC_IEVENT_MII, ð->ievent);
120 /* it's now safe to read the PHY's register */
121 val = (unsigned short)readl(ð->mii_data);
122 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
127 #ifndef imx_get_fecclk
128 u32 __weak imx_get_fecclk(void)
134 static int fec_get_clk_rate(void *udev, int idx)
136 struct fec_priv *fec;
140 if (IS_ENABLED(CONFIG_IMX8) ||
141 CONFIG_IS_ENABLED(CLK_CCF)) {
144 ret = uclass_get_device(UCLASS_ETH, idx, &dev);
146 debug("Can't get FEC udev: %d\n", ret);
151 fec = dev_get_priv(dev);
153 return fec->clk_rate;
157 return imx_get_fecclk();
161 static void fec_mii_setspeed(struct ethernet_regs *eth)
164 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
165 * and do not drop the Preamble.
167 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
168 * MII_SPEED) register that defines the MDIO output hold time. Earlier
169 * versions are RAZ there, so just ignore the difference and write the
171 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
172 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
174 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
175 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
176 * holdtime cannot result in a value greater than 3.
183 ret = fec_get_clk_rate(NULL, 0);
185 printf("Can't find FEC0 clk rate: %d\n", ret);
189 speed = DIV_ROUND_UP(pclk, 5000000);
190 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
192 #ifdef FEC_QUIRK_ENET_MAC
195 writel(speed << 1 | hold << 8, ð->mii_speed);
196 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
199 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
200 uint8_t regaddr, uint16_t data)
202 uint32_t reg; /* convenient holder for the PHY register */
203 uint32_t phy; /* convenient holder for the PHY */
206 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
207 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
209 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
210 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
212 /* wait for the MII interrupt */
213 start = get_timer(0);
214 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
215 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
216 printf("Write MDIO failed...\n");
221 /* clear MII interrupt bit */
222 writel(FEC_IEVENT_MII, ð->ievent);
223 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
229 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
232 return fec_mdio_read(bus->priv, phyaddr, regaddr);
235 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
236 int regaddr, u16 data)
238 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
241 #ifndef CONFIG_PHYLIB
242 static int miiphy_restart_aneg(struct eth_device *dev)
245 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
246 struct fec_priv *fec = (struct fec_priv *)dev->priv;
247 struct ethernet_regs *eth = fec->bus->priv;
250 * Wake up from sleep if necessary
251 * Reset PHY, then delay 300ns
254 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
256 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
259 /* Set the auto-negotiation advertisement register bits */
260 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
261 LPA_100FULL | LPA_100HALF | LPA_10FULL |
262 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
263 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
264 BMCR_ANENABLE | BMCR_ANRESTART);
266 if (fec->mii_postcall)
267 ret = fec->mii_postcall(fec->phy_id);
273 #ifndef CONFIG_FEC_FIXED_SPEED
274 static int miiphy_wait_aneg(struct eth_device *dev)
278 struct fec_priv *fec = (struct fec_priv *)dev->priv;
279 struct ethernet_regs *eth = fec->bus->priv;
281 /* Wait for AN completion */
282 start = get_timer(0);
284 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
285 printf("%s: Autonegotiation timeout\n", dev->name);
289 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
291 printf("%s: Autonegotiation failed. status: %d\n",
295 } while (!(status & BMSR_LSTATUS));
299 #endif /* CONFIG_FEC_FIXED_SPEED */
302 static int fec_rx_task_enable(struct fec_priv *fec)
304 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
308 static int fec_rx_task_disable(struct fec_priv *fec)
313 static int fec_tx_task_enable(struct fec_priv *fec)
315 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
319 static int fec_tx_task_disable(struct fec_priv *fec)
325 * Initialize receive task's buffer descriptors
326 * @param[in] fec all we know about the device yet
327 * @param[in] count receive buffer count to be allocated
328 * @param[in] dsize desired size of each receive buffer
329 * @return 0 on success
331 * Init all RX descriptors to default values.
333 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
340 * Reload the RX descriptors with default values and wipe
343 size = roundup(dsize, ARCH_DMA_MINALIGN);
344 for (i = 0; i < count; i++) {
345 data = fec->rbd_base[i].data_pointer;
346 memset((void *)data, 0, dsize);
347 flush_dcache_range(data, data + size);
349 fec->rbd_base[i].status = FEC_RBD_EMPTY;
350 fec->rbd_base[i].data_length = 0;
353 /* Mark the last RBD to close the ring. */
354 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
357 flush_dcache_range((ulong)fec->rbd_base,
358 (ulong)fec->rbd_base + size);
362 * Initialize transmit task's buffer descriptors
363 * @param[in] fec all we know about the device yet
365 * Transmit buffers are created externally. We only have to init the BDs here.\n
366 * Note: There is a race condition in the hardware. When only one BD is in
367 * use it must be marked with the WRAP bit to use it for every transmitt.
368 * This bit in combination with the READY bit results into double transmit
369 * of each data buffer. It seems the state machine checks READY earlier then
370 * resetting it after the first transfer.
371 * Using two BDs solves this issue.
373 static void fec_tbd_init(struct fec_priv *fec)
375 ulong addr = (ulong)fec->tbd_base;
376 unsigned size = roundup(2 * sizeof(struct fec_bd),
379 memset(fec->tbd_base, 0, size);
380 fec->tbd_base[0].status = 0;
381 fec->tbd_base[1].status = FEC_TBD_WRAP;
383 flush_dcache_range(addr, addr + size);
387 * Mark the given read buffer descriptor as free
388 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
389 * @param[in] prbd buffer descriptor to mark free again
391 static void fec_rbd_clean(int last, struct fec_bd *prbd)
393 unsigned short flags = FEC_RBD_EMPTY;
395 flags |= FEC_RBD_WRAP;
396 writew(flags, &prbd->status);
397 writew(0, &prbd->data_length);
400 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
402 imx_get_mac_from_fuse(dev_id, mac);
403 return !is_valid_ethaddr(mac);
407 static int fecmxc_set_hwaddr(struct udevice *dev)
409 static int fec_set_hwaddr(struct eth_device *dev)
413 struct fec_priv *fec = dev_get_priv(dev);
414 struct eth_pdata *pdata = dev_get_platdata(dev);
415 uchar *mac = pdata->enetaddr;
417 uchar *mac = dev->enetaddr;
418 struct fec_priv *fec = (struct fec_priv *)dev->priv;
421 writel(0, &fec->eth->iaddr1);
422 writel(0, &fec->eth->iaddr2);
423 writel(0, &fec->eth->gaddr1);
424 writel(0, &fec->eth->gaddr2);
426 /* Set physical address */
427 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
429 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
434 /* Do initial configuration of the FEC registers */
435 static void fec_reg_setup(struct fec_priv *fec)
439 /* Set interrupt mask register */
440 writel(0x00000000, &fec->eth->imask);
442 /* Clear FEC-Lite interrupt event register(IEVENT) */
443 writel(0xffffffff, &fec->eth->ievent);
445 /* Set FEC-Lite receive control register(R_CNTRL): */
447 /* Start with frame length = 1518, common for all modes. */
448 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
449 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
450 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
451 if (fec->xcv_type == RGMII)
452 rcntrl |= FEC_RCNTRL_RGMII;
453 else if (fec->xcv_type == RMII)
454 rcntrl |= FEC_RCNTRL_RMII;
456 writel(rcntrl, &fec->eth->r_cntrl);
460 * Start the FEC engine
461 * @param[in] dev Our device to handle
464 static int fec_open(struct udevice *dev)
466 static int fec_open(struct eth_device *edev)
470 struct fec_priv *fec = dev_get_priv(dev);
472 struct fec_priv *fec = (struct fec_priv *)edev->priv;
478 debug("fec_open: fec_open(dev)\n");
479 /* full-duplex, heartbeat disabled */
480 writel(1 << 2, &fec->eth->x_cntrl);
483 /* Invalidate all descriptors */
484 for (i = 0; i < FEC_RBD_NUM - 1; i++)
485 fec_rbd_clean(0, &fec->rbd_base[i]);
486 fec_rbd_clean(1, &fec->rbd_base[i]);
488 /* Flush the descriptors into RAM */
489 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
491 addr = (ulong)fec->rbd_base;
492 flush_dcache_range(addr, addr + size);
494 #ifdef FEC_QUIRK_ENET_MAC
495 /* Enable ENET HW endian SWAP */
496 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
498 /* Enable ENET store and forward mode */
499 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
502 /* Enable FEC-Lite controller */
503 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
506 #ifdef FEC_ENET_ENABLE_TXC_DELAY
507 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
511 #ifdef FEC_ENET_ENABLE_RXC_DELAY
512 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
516 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
519 /* setup the MII gasket for RMII mode */
520 /* disable the gasket */
521 writew(0, &fec->eth->miigsk_enr);
523 /* wait for the gasket to be disabled */
524 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
527 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
528 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
530 /* re-enable the gasket */
531 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
533 /* wait until MII gasket is ready */
535 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
536 if (--max_loops <= 0) {
537 printf("WAIT for MII Gasket ready timed out\n");
545 /* Start up the PHY */
546 int ret = phy_startup(fec->phydev);
549 printf("Could not initialize PHY %s\n",
550 fec->phydev->dev->name);
553 speed = fec->phydev->speed;
555 #elif CONFIG_FEC_FIXED_SPEED
556 speed = CONFIG_FEC_FIXED_SPEED;
558 miiphy_wait_aneg(edev);
559 speed = miiphy_speed(edev->name, fec->phy_id);
560 miiphy_duplex(edev->name, fec->phy_id);
563 #ifdef FEC_QUIRK_ENET_MAC
565 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
566 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
567 if (speed == _1000BASET)
568 ecr |= FEC_ECNTRL_SPEED;
569 else if (speed != _100BASET)
570 rcr |= FEC_RCNTRL_RMII_10T;
571 writel(ecr, &fec->eth->ecntrl);
572 writel(rcr, &fec->eth->r_cntrl);
575 debug("%s:Speed=%i\n", __func__, speed);
577 /* Enable SmartDMA receive task */
578 fec_rx_task_enable(fec);
585 static int fecmxc_init(struct udevice *dev)
587 static int fec_init(struct eth_device *dev, bd_t *bd)
591 struct fec_priv *fec = dev_get_priv(dev);
593 struct fec_priv *fec = (struct fec_priv *)dev->priv;
595 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
599 /* Initialize MAC address */
601 fecmxc_set_hwaddr(dev);
606 /* Setup transmit descriptors, there are two in total. */
609 /* Setup receive descriptors. */
610 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
614 if (fec->xcv_type != SEVENWIRE)
615 fec_mii_setspeed(fec->bus->priv);
617 /* Set Opcode/Pause Duration Register */
618 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
619 writel(0x2, &fec->eth->x_wmrk);
621 /* Set multicast address filter */
622 writel(0x00000000, &fec->eth->gaddr1);
623 writel(0x00000000, &fec->eth->gaddr2);
625 /* Do not access reserved register */
626 if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m()) {
628 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
631 /* FIFO receive start register */
632 writel(0x520, &fec->eth->r_fstart);
635 /* size and address of each buffer */
636 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
638 addr = (ulong)fec->tbd_base;
639 writel((uint32_t)addr, &fec->eth->etdsr);
641 addr = (ulong)fec->rbd_base;
642 writel((uint32_t)addr, &fec->eth->erdsr);
644 #ifndef CONFIG_PHYLIB
645 if (fec->xcv_type != SEVENWIRE)
646 miiphy_restart_aneg(dev);
653 * Halt the FEC engine
654 * @param[in] dev Our device to handle
657 static void fecmxc_halt(struct udevice *dev)
659 static void fec_halt(struct eth_device *dev)
663 struct fec_priv *fec = dev_get_priv(dev);
665 struct fec_priv *fec = (struct fec_priv *)dev->priv;
667 int counter = 0xffff;
669 /* issue graceful stop command to the FEC transmitter if necessary */
670 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
673 debug("eth_halt: wait for stop regs\n");
674 /* wait for graceful stop to register */
675 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
678 /* Disable SmartDMA tasks */
679 fec_tx_task_disable(fec);
680 fec_rx_task_disable(fec);
683 * Disable the Ethernet Controller
684 * Note: this will also reset the BD index counter!
686 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
690 debug("eth_halt: done\n");
695 * @param[in] dev Our ethernet device to handle
696 * @param[in] packet Pointer to the data to be transmitted
697 * @param[in] length Data count in bytes
698 * @return 0 on success
701 static int fecmxc_send(struct udevice *dev, void *packet, int length)
703 static int fec_send(struct eth_device *dev, void *packet, int length)
709 int timeout = FEC_XFER_TIMEOUT;
713 * This routine transmits one frame. This routine only accepts
714 * 6-byte Ethernet addresses.
717 struct fec_priv *fec = dev_get_priv(dev);
719 struct fec_priv *fec = (struct fec_priv *)dev->priv;
723 * Check for valid length of data.
725 if ((length > 1500) || (length <= 0)) {
726 printf("Payload (%d) too large\n", length);
731 * Setup the transmit buffer. We are always using the first buffer for
732 * transmission, the second will be empty and only used to stop the DMA
733 * engine. We also flush the packet to RAM here to avoid cache trouble.
735 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
736 swap_packet((uint32_t *)packet, length);
739 addr = (ulong)packet;
740 end = roundup(addr + length, ARCH_DMA_MINALIGN);
741 addr &= ~(ARCH_DMA_MINALIGN - 1);
742 flush_dcache_range(addr, end);
744 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
745 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
748 * update BD's status now
750 * - is always the last in a chain (means no chain)
751 * - should transmitt the CRC
752 * - might be the last BD in the list, so the address counter should
753 * wrap (-> keep the WRAP flag)
755 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
756 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
757 writew(status, &fec->tbd_base[fec->tbd_index].status);
760 * Flush data cache. This code flushes both TX descriptors to RAM.
761 * After this code, the descriptors will be safely in RAM and we
764 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
765 addr = (ulong)fec->tbd_base;
766 flush_dcache_range(addr, addr + size);
769 * Below we read the DMA descriptor's last four bytes back from the
770 * DRAM. This is important in order to make sure that all WRITE
771 * operations on the bus that were triggered by previous cache FLUSH
774 * Otherwise, on MX28, it is possible to observe a corruption of the
775 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
776 * for the bus structure of MX28. The scenario is as follows:
778 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
779 * to DRAM due to flush_dcache_range()
780 * 2) ARM core writes the FEC registers via AHB_ARB2
781 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
783 * Note that 2) does sometimes finish before 1) due to reordering of
784 * WRITE accesses on the AHB bus, therefore triggering 3) before the
785 * DMA descriptor is fully written into DRAM. This results in occasional
786 * corruption of the DMA descriptor.
788 readl(addr + size - 4);
790 /* Enable SmartDMA transmit task */
791 fec_tx_task_enable(fec);
794 * Wait until frame is sent. On each turn of the wait cycle, we must
795 * invalidate data cache to see what's really in RAM. Also, we need
799 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
809 * The TDAR bit is cleared when the descriptors are all out from TX
810 * but on mx6solox we noticed that the READY bit is still not cleared
812 * These are two distinct signals, and in IC simulation, we found that
813 * TDAR always gets cleared prior than the READY bit of last BD becomes
815 * In mx6solox, we use a later version of FEC IP. It looks like that
816 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
819 * Fix this by polling the READY bit of BD after the TDAR polling,
820 * which covers the mx6solox case and does not harm the other SoCs.
822 timeout = FEC_XFER_TIMEOUT;
824 invalidate_dcache_range(addr, addr + size);
825 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
834 debug("fec_send: status 0x%x index %d ret %i\n",
835 readw(&fec->tbd_base[fec->tbd_index].status),
836 fec->tbd_index, ret);
837 /* for next transmission use the other buffer */
847 * Pull one frame from the card
848 * @param[in] dev Our ethernet device to handle
849 * @return Length of packet read
852 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
854 static int fec_recv(struct eth_device *dev)
858 struct fec_priv *fec = dev_get_priv(dev);
860 struct fec_priv *fec = (struct fec_priv *)dev->priv;
862 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
863 unsigned long ievent;
864 int frame_length, len = 0;
866 ulong addr, size, end;
870 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
872 printf("%s: error allocating packetp\n", __func__);
876 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
879 /* Check if any critical events have happened */
880 ievent = readl(&fec->eth->ievent);
881 writel(ievent, &fec->eth->ievent);
882 debug("fec_recv: ievent 0x%lx\n", ievent);
883 if (ievent & FEC_IEVENT_BABR) {
889 fec_init(dev, fec->bd);
891 printf("some error: 0x%08lx\n", ievent);
894 if (ievent & FEC_IEVENT_HBERR) {
895 /* Heartbeat error */
896 writel(0x00000001 | readl(&fec->eth->x_cntrl),
899 if (ievent & FEC_IEVENT_GRA) {
900 /* Graceful stop complete */
901 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
907 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
912 fec_init(dev, fec->bd);
918 * Read the buffer status. Before the status can be read, the data cache
919 * must be invalidated, because the data in RAM might have been changed
920 * by DMA. The descriptors are properly aligned to cachelines so there's
921 * no need to worry they'd overlap.
923 * WARNING: By invalidating the descriptor here, we also invalidate
924 * the descriptors surrounding this one. Therefore we can NOT change the
925 * contents of this descriptor nor the surrounding ones. The problem is
926 * that in order to mark the descriptor as processed, we need to change
927 * the descriptor. The solution is to mark the whole cache line when all
928 * descriptors in the cache line are processed.
931 addr &= ~(ARCH_DMA_MINALIGN - 1);
932 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
933 invalidate_dcache_range(addr, addr + size);
935 bd_status = readw(&rbd->status);
936 debug("fec_recv: status 0x%x\n", bd_status);
938 if (!(bd_status & FEC_RBD_EMPTY)) {
939 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
940 ((readw(&rbd->data_length) - 4) > 14)) {
941 /* Get buffer address and size */
942 addr = readl(&rbd->data_pointer);
943 frame_length = readw(&rbd->data_length) - 4;
944 /* Invalidate data cache over the buffer */
945 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
946 addr &= ~(ARCH_DMA_MINALIGN - 1);
947 invalidate_dcache_range(addr, end);
949 /* Fill the buffer and pass it to upper layers */
950 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
951 swap_packet((uint32_t *)addr, frame_length);
955 memcpy(*packetp, (char *)addr, frame_length);
957 memcpy(buff, (char *)addr, frame_length);
958 net_process_received_packet(buff, frame_length);
962 if (bd_status & FEC_RBD_ERR)
963 debug("error frame: 0x%08lx 0x%08x\n",
968 * Free the current buffer, restart the engine and move forward
969 * to the next buffer. Here we check if the whole cacheline of
970 * descriptors was already processed and if so, we mark it free
973 size = RXDESC_PER_CACHELINE - 1;
974 if ((fec->rbd_index & size) == size) {
975 i = fec->rbd_index - size;
976 addr = (ulong)&fec->rbd_base[i];
977 for (; i <= fec->rbd_index ; i++) {
978 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
981 flush_dcache_range(addr,
982 addr + ARCH_DMA_MINALIGN);
985 fec_rx_task_enable(fec);
986 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
988 debug("fec_recv: stop\n");
993 static void fec_set_dev_name(char *dest, int dev_id)
995 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
998 static int fec_alloc_descs(struct fec_priv *fec)
1005 /* Allocate TX descriptors. */
1006 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1007 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
1011 /* Allocate RX descriptors. */
1012 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1013 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
1017 memset(fec->rbd_base, 0, size);
1019 /* Allocate RX buffers. */
1021 /* Maximum RX buffer size. */
1022 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
1023 for (i = 0; i < FEC_RBD_NUM; i++) {
1024 data = memalign(FEC_DMA_RX_MINALIGN, size);
1026 printf("%s: error allocating rxbuf %d\n", __func__, i);
1030 memset(data, 0, size);
1033 fec->rbd_base[i].data_pointer = (uint32_t)addr;
1034 fec->rbd_base[i].status = FEC_RBD_EMPTY;
1035 fec->rbd_base[i].data_length = 0;
1036 /* Flush the buffer to memory. */
1037 flush_dcache_range(addr, addr + size);
1040 /* Mark the last RBD to close the ring. */
1041 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1049 for (; i >= 0; i--) {
1050 addr = fec->rbd_base[i].data_pointer;
1053 free(fec->rbd_base);
1055 free(fec->tbd_base);
1060 static void fec_free_descs(struct fec_priv *fec)
1065 for (i = 0; i < FEC_RBD_NUM; i++) {
1066 addr = fec->rbd_base[i].data_pointer;
1069 free(fec->rbd_base);
1070 free(fec->tbd_base);
1073 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1075 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1076 struct mii_dev *bus;
1081 printf("mdio_alloc failed\n");
1084 bus->read = fec_phy_read;
1085 bus->write = fec_phy_write;
1087 fec_set_dev_name(bus->name, dev_id);
1089 ret = mdio_register(bus);
1091 printf("mdio_register failed\n");
1095 fec_mii_setspeed(eth);
1099 #ifndef CONFIG_DM_ETH
1100 #ifdef CONFIG_PHYLIB
1101 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1102 struct mii_dev *bus, struct phy_device *phydev)
1104 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1105 struct mii_dev *bus, int phy_id)
1108 struct eth_device *edev;
1109 struct fec_priv *fec;
1110 unsigned char ethaddr[6];
1115 /* create and fill edev struct */
1116 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1118 puts("fec_mxc: not enough malloc memory for eth_device\n");
1123 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1125 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1130 memset(edev, 0, sizeof(*edev));
1131 memset(fec, 0, sizeof(*fec));
1133 ret = fec_alloc_descs(fec);
1138 edev->init = fec_init;
1139 edev->send = fec_send;
1140 edev->recv = fec_recv;
1141 edev->halt = fec_halt;
1142 edev->write_hwaddr = fec_set_hwaddr;
1144 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1147 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1150 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1151 start = get_timer(0);
1152 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1153 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1154 printf("FEC MXC: Timeout resetting chip\n");
1161 fec_set_dev_name(edev->name, dev_id);
1162 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1164 fec_mii_setspeed(bus->priv);
1165 #ifdef CONFIG_PHYLIB
1166 fec->phydev = phydev;
1167 phy_connect_dev(phydev, edev);
1171 fec->phy_id = phy_id;
1174 /* only support one eth device, the index number pointed by dev_id */
1175 edev->index = fec->dev_id;
1177 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1178 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1179 memcpy(edev->enetaddr, ethaddr, 6);
1181 sprintf(mac, "eth%daddr", fec->dev_id);
1183 strcpy(mac, "ethaddr");
1185 eth_env_set_enetaddr(mac, ethaddr);
1189 fec_free_descs(fec);
1198 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1201 struct mii_dev *bus = NULL;
1202 #ifdef CONFIG_PHYLIB
1203 struct phy_device *phydev = NULL;
1207 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1209 * The i.MX28 has two ethernet interfaces, but they are not equal.
1210 * Only the first one can access the MDIO bus.
1212 base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1216 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1217 bus = fec_get_miibus(base_mii, dev_id);
1220 #ifdef CONFIG_PHYLIB
1221 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1223 mdio_unregister(bus);
1227 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1229 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1232 #ifdef CONFIG_PHYLIB
1235 mdio_unregister(bus);
1241 #ifdef CONFIG_FEC_MXC_PHYADDR
1242 int fecmxc_initialize(bd_t *bd)
1244 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1249 #ifndef CONFIG_PHYLIB
1250 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1252 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1253 fec->mii_postcall = cb;
1260 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1262 struct fec_priv *priv = dev_get_priv(dev);
1263 struct eth_pdata *pdata = dev_get_platdata(dev);
1265 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1268 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1276 static const struct eth_ops fecmxc_ops = {
1277 .start = fecmxc_init,
1278 .send = fecmxc_send,
1279 .recv = fecmxc_recv,
1280 .free_pkt = fecmxc_free_pkt,
1281 .stop = fecmxc_halt,
1282 .write_hwaddr = fecmxc_set_hwaddr,
1283 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
1286 static int device_get_phy_addr(struct udevice *dev)
1288 struct ofnode_phandle_args phandle_args;
1291 if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1293 debug("Failed to find phy-handle");
1297 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1302 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1304 struct phy_device *phydev;
1307 addr = device_get_phy_addr(dev);
1308 #ifdef CONFIG_FEC_MXC_PHYADDR
1309 addr = CONFIG_FEC_MXC_PHYADDR;
1312 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1316 priv->phydev = phydev;
1322 #if CONFIG_IS_ENABLED(DM_GPIO)
1323 /* FEC GPIO reset */
1324 static void fec_gpio_reset(struct fec_priv *priv)
1326 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1327 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1328 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1329 mdelay(priv->reset_delay);
1330 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1331 if (priv->reset_post_delay)
1332 mdelay(priv->reset_post_delay);
1337 static int fecmxc_probe(struct udevice *dev)
1339 struct eth_pdata *pdata = dev_get_platdata(dev);
1340 struct fec_priv *priv = dev_get_priv(dev);
1341 struct mii_dev *bus = NULL;
1345 if (IS_ENABLED(CONFIG_IMX8)) {
1346 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1348 debug("Can't get FEC ipg clk: %d\n", ret);
1351 ret = clk_enable(&priv->ipg_clk);
1353 debug("Can't enable FEC ipg clk: %d\n", ret);
1357 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1358 } else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1359 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1361 debug("Can't get FEC ipg clk: %d\n", ret);
1364 ret = clk_enable(&priv->ipg_clk);
1368 ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1370 debug("Can't get FEC ahb clk: %d\n", ret);
1373 ret = clk_enable(&priv->ahb_clk);
1377 ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1379 ret = clk_enable(&priv->clk_enet_out);
1384 ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1386 ret = clk_enable(&priv->clk_ref);
1391 ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1393 ret = clk_enable(&priv->clk_ptp);
1398 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1401 ret = fec_alloc_descs(priv);
1405 #ifdef CONFIG_DM_REGULATOR
1406 if (priv->phy_supply) {
1407 ret = regulator_set_enable(priv->phy_supply, true);
1409 printf("%s: Error enabling phy supply\n", dev->name);
1415 #if CONFIG_IS_ENABLED(DM_GPIO)
1416 fec_gpio_reset(priv);
1419 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1420 &priv->eth->ecntrl);
1421 start = get_timer(0);
1422 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1423 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1424 printf("FEC MXC: Timeout reseting chip\n");
1430 fec_reg_setup(priv);
1432 priv->dev_id = dev->seq;
1433 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1434 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1436 bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1444 priv->interface = pdata->phy_interface;
1445 switch (priv->interface) {
1446 case PHY_INTERFACE_MODE_MII:
1447 priv->xcv_type = MII100;
1449 case PHY_INTERFACE_MODE_RMII:
1450 priv->xcv_type = RMII;
1452 case PHY_INTERFACE_MODE_RGMII:
1453 case PHY_INTERFACE_MODE_RGMII_ID:
1454 case PHY_INTERFACE_MODE_RGMII_RXID:
1455 case PHY_INTERFACE_MODE_RGMII_TXID:
1456 priv->xcv_type = RGMII;
1459 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1460 printf("Unsupported interface type %d defaulting to %d\n",
1461 priv->interface, priv->xcv_type);
1465 ret = fec_phy_init(priv, dev);
1472 mdio_unregister(bus);
1476 fec_free_descs(priv);
1480 static int fecmxc_remove(struct udevice *dev)
1482 struct fec_priv *priv = dev_get_priv(dev);
1485 fec_free_descs(priv);
1486 mdio_unregister(priv->bus);
1487 mdio_free(priv->bus);
1489 #ifdef CONFIG_DM_REGULATOR
1490 if (priv->phy_supply)
1491 regulator_set_enable(priv->phy_supply, false);
1497 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1500 struct eth_pdata *pdata = dev_get_platdata(dev);
1501 struct fec_priv *priv = dev_get_priv(dev);
1502 const char *phy_mode;
1504 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1505 priv->eth = (struct ethernet_regs *)pdata->iobase;
1507 pdata->phy_interface = -1;
1508 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1511 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1512 if (pdata->phy_interface == -1) {
1513 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1517 #ifdef CONFIG_DM_REGULATOR
1518 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1521 #if CONFIG_IS_ENABLED(DM_GPIO)
1522 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1523 &priv->phy_reset_gpio, GPIOD_IS_OUT);
1525 return 0; /* property is optional, don't return error! */
1527 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1528 if (priv->reset_delay > 1000) {
1529 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1530 /* property value wrong, use default value */
1531 priv->reset_delay = 1;
1534 priv->reset_post_delay = dev_read_u32_default(dev,
1535 "phy-reset-post-delay",
1537 if (priv->reset_post_delay > 1000) {
1538 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1539 /* property value wrong, use default value */
1540 priv->reset_post_delay = 0;
1547 static const struct udevice_id fecmxc_ids[] = {
1548 { .compatible = "fsl,imx28-fec" },
1549 { .compatible = "fsl,imx6q-fec" },
1550 { .compatible = "fsl,imx6sl-fec" },
1551 { .compatible = "fsl,imx6sx-fec" },
1552 { .compatible = "fsl,imx6ul-fec" },
1553 { .compatible = "fsl,imx53-fec" },
1554 { .compatible = "fsl,imx7d-fec" },
1555 { .compatible = "fsl,mvf600-fec" },
1559 U_BOOT_DRIVER(fecmxc_gem) = {
1562 .of_match = fecmxc_ids,
1563 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1564 .probe = fecmxc_probe,
1565 .remove = fecmxc_remove,
1567 .priv_auto_alloc_size = sizeof(struct fec_priv),
1568 .platdata_auto_alloc_size = sizeof(struct eth_pdata),