2 * MTD device concatenation layer
11 #include <linux/mtd/mtd.h>
12 #include <linux/compat.h>
13 #include <linux/mtd/concat.h>
14 #include <ubi_uboot.h>
17 * Our storage structure:
18 * Subdev points to an array of pointers to struct mtd_info objects
19 * which is allocated along with this structure
25 struct mtd_info **subdev;
29 * how to calculate the size required for the above structure,
30 * including the pointer array subdev points to:
32 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
33 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
36 * Given a pointer to the MTD object in the mtd_concat structure,
37 * we can retrieve the pointer to that structure with this macro.
39 #define CONCAT(x) ((struct mtd_concat *)(x))
42 * MTD methods which look up the relevant subdevice, translate the
43 * effective address and pass through to the subdevice.
47 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
48 size_t * retlen, u_char * buf)
50 struct mtd_concat *concat = CONCAT(mtd);
56 for (i = 0; i < concat->num_subdev; i++) {
57 struct mtd_info *subdev = concat->subdev[i];
60 if (from >= subdev->size) {
61 /* Not destined for this subdev */
66 if (from + len > subdev->size)
67 /* First part goes into this subdev */
68 size = subdev->size - from;
70 /* Entire transaction goes into this subdev */
73 err = mtd_read(subdev, from, size, &retsize, buf);
75 /* Save information about bitflips! */
77 if (mtd_is_eccerr(err)) {
78 mtd->ecc_stats.failed++;
80 } else if (mtd_is_bitflip(err)) {
81 mtd->ecc_stats.corrected++;
82 /* Do not overwrite -EBADMSG !! */
101 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
102 size_t * retlen, const u_char * buf)
104 struct mtd_concat *concat = CONCAT(mtd);
110 for (i = 0; i < concat->num_subdev; i++) {
111 struct mtd_info *subdev = concat->subdev[i];
112 size_t size, retsize;
114 if (to >= subdev->size) {
119 if (to + len > subdev->size)
120 size = subdev->size - to;
124 err = mtd_write(subdev, to, size, &retsize, buf);
141 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
143 struct mtd_concat *concat = CONCAT(mtd);
144 struct mtd_oob_ops devops = *ops;
147 ops->retlen = ops->oobretlen = 0;
149 for (i = 0; i < concat->num_subdev; i++) {
150 struct mtd_info *subdev = concat->subdev[i];
152 if (from >= subdev->size) {
153 from -= subdev->size;
158 if (from + devops.len > subdev->size)
159 devops.len = subdev->size - from;
161 err = mtd_read_oob(subdev, from, &devops);
162 ops->retlen += devops.retlen;
163 ops->oobretlen += devops.oobretlen;
165 /* Save information about bitflips! */
167 if (mtd_is_eccerr(err)) {
168 mtd->ecc_stats.failed++;
170 } else if (mtd_is_bitflip(err)) {
171 mtd->ecc_stats.corrected++;
172 /* Do not overwrite -EBADMSG !! */
180 devops.len = ops->len - ops->retlen;
183 devops.datbuf += devops.retlen;
186 devops.ooblen = ops->ooblen - ops->oobretlen;
189 devops.oobbuf += ops->oobretlen;
198 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
200 struct mtd_concat *concat = CONCAT(mtd);
201 struct mtd_oob_ops devops = *ops;
204 if (!(mtd->flags & MTD_WRITEABLE))
209 for (i = 0; i < concat->num_subdev; i++) {
210 struct mtd_info *subdev = concat->subdev[i];
212 if (to >= subdev->size) {
217 /* partial write ? */
218 if (to + devops.len > subdev->size)
219 devops.len = subdev->size - to;
221 err = mtd_write_oob(subdev, to, &devops);
222 ops->retlen += devops.retlen;
227 devops.len = ops->len - ops->retlen;
230 devops.datbuf += devops.retlen;
233 devops.ooblen = ops->ooblen - ops->oobretlen;
236 devops.oobbuf += devops.oobretlen;
243 static void concat_erase_callback(struct erase_info *instr)
245 /* Nothing to do here in U-Boot */
248 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
251 wait_queue_head_t waitq;
252 DECLARE_WAITQUEUE(wait, current);
255 * This code was stol^H^H^H^Hinspired by mtdchar.c
257 init_waitqueue_head(&waitq);
260 erase->callback = concat_erase_callback;
261 erase->priv = (unsigned long) &waitq;
264 * FIXME: Allow INTERRUPTIBLE. Which means
265 * not having the wait_queue head on the stack.
267 err = mtd_erase(mtd, erase);
269 set_current_state(TASK_UNINTERRUPTIBLE);
270 add_wait_queue(&waitq, &wait);
271 if (erase->state != MTD_ERASE_DONE
272 && erase->state != MTD_ERASE_FAILED)
274 remove_wait_queue(&waitq, &wait);
275 set_current_state(TASK_RUNNING);
277 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
282 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
284 struct mtd_concat *concat = CONCAT(mtd);
285 struct mtd_info *subdev;
287 uint64_t length, offset = 0;
288 struct erase_info *erase;
291 * Check for proper erase block alignment of the to-be-erased area.
292 * It is easier to do this based on the super device's erase
293 * region info rather than looking at each particular sub-device
296 if (!concat->mtd.numeraseregions) {
297 /* the easy case: device has uniform erase block size */
298 if (instr->addr & (concat->mtd.erasesize - 1))
300 if (instr->len & (concat->mtd.erasesize - 1))
303 /* device has variable erase size */
304 struct mtd_erase_region_info *erase_regions =
305 concat->mtd.eraseregions;
308 * Find the erase region where the to-be-erased area begins:
310 for (i = 0; i < concat->mtd.numeraseregions &&
311 instr->addr >= erase_regions[i].offset; i++) ;
315 * Now erase_regions[i] is the region in which the
316 * to-be-erased area begins. Verify that the starting
317 * offset is aligned to this region's erase size:
319 if (instr->addr & (erase_regions[i].erasesize - 1))
323 * now find the erase region where the to-be-erased area ends:
325 for (; i < concat->mtd.numeraseregions &&
326 (instr->addr + instr->len) >= erase_regions[i].offset;
330 * check if the ending offset is aligned to this region's erase size
332 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
337 /* make a local copy of instr to avoid modifying the caller's struct */
338 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
347 * find the subdevice where the to-be-erased area begins, adjust
348 * starting offset to be relative to the subdevice start
350 for (i = 0; i < concat->num_subdev; i++) {
351 subdev = concat->subdev[i];
352 if (subdev->size <= erase->addr) {
353 erase->addr -= subdev->size;
354 offset += subdev->size;
360 /* must never happen since size limit has been verified above */
361 BUG_ON(i >= concat->num_subdev);
363 /* now do the erase: */
365 for (; length > 0; i++) {
366 /* loop for all subdevices affected by this request */
367 subdev = concat->subdev[i]; /* get current subdevice */
369 /* limit length to subdevice's size: */
370 if (erase->addr + length > subdev->size)
371 erase->len = subdev->size - erase->addr;
375 length -= erase->len;
376 if ((err = concat_dev_erase(subdev, erase))) {
377 /* sanity check: should never happen since
378 * block alignment has been checked above */
379 BUG_ON(err == -EINVAL);
380 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
381 instr->fail_addr = erase->fail_addr + offset;
385 * erase->addr specifies the offset of the area to be
386 * erased *within the current subdevice*. It can be
387 * non-zero only the first time through this loop, i.e.
388 * for the first subdevice where blocks need to be erased.
389 * All the following erases must begin at the start of the
390 * current subdevice, i.e. at offset zero.
393 offset += subdev->size;
395 instr->state = erase->state;
401 instr->callback(instr);
405 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
407 struct mtd_concat *concat = CONCAT(mtd);
408 int i, err = -EINVAL;
410 for (i = 0; i < concat->num_subdev; i++) {
411 struct mtd_info *subdev = concat->subdev[i];
414 if (ofs >= subdev->size) {
419 if (ofs + len > subdev->size)
420 size = subdev->size - ofs;
424 err = mtd_lock(subdev, ofs, size);
440 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
442 struct mtd_concat *concat = CONCAT(mtd);
445 for (i = 0; i < concat->num_subdev; i++) {
446 struct mtd_info *subdev = concat->subdev[i];
449 if (ofs >= subdev->size) {
454 if (ofs + len > subdev->size)
455 size = subdev->size - ofs;
459 err = mtd_unlock(subdev, ofs, size);
475 static void concat_sync(struct mtd_info *mtd)
477 struct mtd_concat *concat = CONCAT(mtd);
480 for (i = 0; i < concat->num_subdev; i++) {
481 struct mtd_info *subdev = concat->subdev[i];
486 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
488 struct mtd_concat *concat = CONCAT(mtd);
491 if (!mtd_can_have_bb(concat->subdev[0]))
494 for (i = 0; i < concat->num_subdev; i++) {
495 struct mtd_info *subdev = concat->subdev[i];
497 if (ofs >= subdev->size) {
502 res = mtd_block_isbad(subdev, ofs);
509 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
511 struct mtd_concat *concat = CONCAT(mtd);
512 int i, err = -EINVAL;
514 if (!mtd_can_have_bb(concat->subdev[0]))
517 for (i = 0; i < concat->num_subdev; i++) {
518 struct mtd_info *subdev = concat->subdev[i];
520 if (ofs >= subdev->size) {
525 err = mtd_block_markbad(subdev, ofs);
527 mtd->ecc_stats.badblocks++;
535 * This function constructs a virtual MTD device by concatenating
536 * num_devs MTD devices. A pointer to the new device object is
537 * stored to *new_dev upon success. This function does _not_
538 * register any devices: this is the caller's responsibility.
540 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
541 int num_devs, /* number of subdevices */
543 { /* name for the new device */
546 struct mtd_concat *concat;
547 uint32_t max_erasesize, curr_erasesize;
548 int num_erase_region;
550 debug("Concatenating MTD devices:\n");
551 for (i = 0; i < num_devs; i++)
552 debug("(%d): \"%s\"\n", i, subdev[i]->name);
553 debug("into device \"%s\"\n", name);
555 /* allocate the device structure */
556 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
557 concat = kzalloc(size, GFP_KERNEL);
560 ("memory allocation error while creating concatenated device \"%s\"\n",
564 concat->subdev = (struct mtd_info **) (concat + 1);
567 * Set up the new "super" device's MTD object structure, check for
568 * incompatibilites between the subdevices.
570 concat->mtd.type = subdev[0]->type;
571 concat->mtd.flags = subdev[0]->flags;
572 concat->mtd.size = subdev[0]->size;
573 concat->mtd.erasesize = subdev[0]->erasesize;
574 concat->mtd.writesize = subdev[0]->writesize;
575 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
576 concat->mtd.oobsize = subdev[0]->oobsize;
577 concat->mtd.oobavail = subdev[0]->oobavail;
578 if (subdev[0]->_read_oob)
579 concat->mtd._read_oob = concat_read_oob;
580 if (subdev[0]->_write_oob)
581 concat->mtd._write_oob = concat_write_oob;
582 if (subdev[0]->_block_isbad)
583 concat->mtd._block_isbad = concat_block_isbad;
584 if (subdev[0]->_block_markbad)
585 concat->mtd._block_markbad = concat_block_markbad;
587 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
589 concat->subdev[0] = subdev[0];
591 for (i = 1; i < num_devs; i++) {
592 if (concat->mtd.type != subdev[i]->type) {
594 printk("Incompatible device type on \"%s\"\n",
598 if (concat->mtd.flags != subdev[i]->flags) {
600 * Expect all flags except MTD_WRITEABLE to be
601 * equal on all subdevices.
603 if ((concat->mtd.flags ^ subdev[i]->
604 flags) & ~MTD_WRITEABLE) {
606 printk("Incompatible device flags on \"%s\"\n",
610 /* if writeable attribute differs,
611 make super device writeable */
613 subdev[i]->flags & MTD_WRITEABLE;
616 concat->mtd.size += subdev[i]->size;
617 concat->mtd.ecc_stats.badblocks +=
618 subdev[i]->ecc_stats.badblocks;
619 if (concat->mtd.writesize != subdev[i]->writesize ||
620 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
621 concat->mtd.oobsize != subdev[i]->oobsize ||
622 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
623 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
625 printk("Incompatible OOB or ECC data on \"%s\"\n",
629 concat->subdev[i] = subdev[i];
633 concat->mtd.ecclayout = subdev[0]->ecclayout;
635 concat->num_subdev = num_devs;
636 concat->mtd.name = name;
638 concat->mtd._erase = concat_erase;
639 concat->mtd._read = concat_read;
640 concat->mtd._write = concat_write;
641 concat->mtd._sync = concat_sync;
642 concat->mtd._lock = concat_lock;
643 concat->mtd._unlock = concat_unlock;
646 * Combine the erase block size info of the subdevices:
648 * first, walk the map of the new device and see how
649 * many changes in erase size we have
651 max_erasesize = curr_erasesize = subdev[0]->erasesize;
652 num_erase_region = 1;
653 for (i = 0; i < num_devs; i++) {
654 if (subdev[i]->numeraseregions == 0) {
655 /* current subdevice has uniform erase size */
656 if (subdev[i]->erasesize != curr_erasesize) {
657 /* if it differs from the last subdevice's erase size, count it */
659 curr_erasesize = subdev[i]->erasesize;
660 if (curr_erasesize > max_erasesize)
661 max_erasesize = curr_erasesize;
664 /* current subdevice has variable erase size */
666 for (j = 0; j < subdev[i]->numeraseregions; j++) {
668 /* walk the list of erase regions, count any changes */
669 if (subdev[i]->eraseregions[j].erasesize !=
673 subdev[i]->eraseregions[j].
675 if (curr_erasesize > max_erasesize)
676 max_erasesize = curr_erasesize;
682 if (num_erase_region == 1) {
684 * All subdevices have the same uniform erase size.
687 concat->mtd.erasesize = curr_erasesize;
688 concat->mtd.numeraseregions = 0;
693 * erase block size varies across the subdevices: allocate
694 * space to store the data describing the variable erase regions
696 struct mtd_erase_region_info *erase_region_p;
697 uint64_t begin, position;
699 concat->mtd.erasesize = max_erasesize;
700 concat->mtd.numeraseregions = num_erase_region;
701 concat->mtd.eraseregions = erase_region_p =
702 kmalloc(num_erase_region *
703 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
704 if (!erase_region_p) {
707 ("memory allocation error while creating erase region list"
708 " for device \"%s\"\n", name);
713 * walk the map of the new device once more and fill in
714 * in erase region info:
716 curr_erasesize = subdev[0]->erasesize;
717 begin = position = 0;
718 for (i = 0; i < num_devs; i++) {
719 if (subdev[i]->numeraseregions == 0) {
720 /* current subdevice has uniform erase size */
721 if (subdev[i]->erasesize != curr_erasesize) {
723 * fill in an mtd_erase_region_info structure for the area
724 * we have walked so far:
726 erase_region_p->offset = begin;
727 erase_region_p->erasesize =
729 tmp64 = position - begin;
730 do_div(tmp64, curr_erasesize);
731 erase_region_p->numblocks = tmp64;
734 curr_erasesize = subdev[i]->erasesize;
737 position += subdev[i]->size;
739 /* current subdevice has variable erase size */
741 for (j = 0; j < subdev[i]->numeraseregions; j++) {
742 /* walk the list of erase regions, count any changes */
743 if (subdev[i]->eraseregions[j].
744 erasesize != curr_erasesize) {
745 erase_region_p->offset = begin;
746 erase_region_p->erasesize =
748 tmp64 = position - begin;
749 do_div(tmp64, curr_erasesize);
750 erase_region_p->numblocks = tmp64;
754 subdev[i]->eraseregions[j].
759 subdev[i]->eraseregions[j].
760 numblocks * (uint64_t)curr_erasesize;
764 /* Now write the final entry */
765 erase_region_p->offset = begin;
766 erase_region_p->erasesize = curr_erasesize;
767 tmp64 = position - begin;
768 do_div(tmp64, curr_erasesize);
769 erase_region_p->numblocks = tmp64;