1 // SPDX-License-Identifier: GPL-2.0+
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
10 #include <efi_loader.h>
19 #include <asm/global_data.h>
20 #include <asm/sections.h>
21 #include <linux/kernel.h>
22 #include <linux/sizes.h>
24 DECLARE_GLOBAL_DATA_PTR;
26 #define MAP_OP_RESERVE (u8)0x1
27 #define MAP_OP_FREE (u8)0x2
28 #define MAP_OP_ADD (u8)0x3
30 #define LMB_ALLOC_ANYWHERE 0
31 #define LMB_ALIST_INITIAL_SIZE 4
33 static struct lmb lmb;
35 static bool lmb_should_notify(enum lmb_flags flags)
37 return !lmb.test && !(flags & LMB_NONOTIFY) &&
38 CONFIG_IS_ENABLED(EFI_LOADER);
41 static int __maybe_unused lmb_map_update_notify(phys_addr_t addr,
49 if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
50 log_err("Invalid map update op received (%d)\n", op);
54 efi_addr = (uintptr_t)map_sysmem(addr, 0);
55 pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
56 efi_addr &= ~EFI_PAGE_MASK;
58 status = efi_add_memory_map_pg(efi_addr, pages,
59 op == MAP_OP_RESERVE ?
60 EFI_BOOT_SERVICES_DATA :
61 EFI_CONVENTIONAL_MEMORY,
63 if (status != EFI_SUCCESS) {
64 log_err("%s: LMB Map notify failure %lu\n", __func__,
65 status & ~EFI_ERROR_MASK);
72 static void lmb_print_region_flags(enum lmb_flags flags)
75 const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" };
78 bitpos = flags ? fls(flags) - 1 : 0;
79 printf("%s", flag_str[bitpos]);
80 flags &= ~(1ull << bitpos);
81 puts(flags ? ", " : "\n");
85 static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
87 struct lmb_region *rgn = lmb_rgn_lst->data;
88 unsigned long long base, size, end;
92 printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
94 for (i = 0; i < lmb_rgn_lst->count; i++) {
97 end = base + size - 1;
100 printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ",
101 name, i, base, end, size);
102 lmb_print_region_flags(flags);
106 void lmb_dump_all_force(void)
108 printf("lmb_dump_all:\n");
109 lmb_dump_region(&lmb.free_mem, "memory");
110 lmb_dump_region(&lmb.used_mem, "reserved");
113 void lmb_dump_all(void)
116 lmb_dump_all_force();
120 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
121 phys_addr_t base2, phys_size_t size2)
123 const phys_addr_t base1_end = base1 + size1 - 1;
124 const phys_addr_t base2_end = base2 + size2 - 1;
126 return ((base1 <= base2_end) && (base2 <= base1_end));
129 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
130 phys_addr_t base2, phys_size_t size2)
132 if (base2 == base1 + size1)
134 else if (base1 == base2 + size2)
140 static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
143 struct lmb_region *rgn = lmb_rgn_lst->data;
145 phys_addr_t base1 = rgn[r1].base;
146 phys_size_t size1 = rgn[r1].size;
147 phys_addr_t base2 = rgn[r2].base;
148 phys_size_t size2 = rgn[r2].size;
150 return lmb_addrs_overlap(base1, size1, base2, size2);
153 static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
156 struct lmb_region *rgn = lmb_rgn_lst->data;
158 phys_addr_t base1 = rgn[r1].base;
159 phys_size_t size1 = rgn[r1].size;
160 phys_addr_t base2 = rgn[r2].base;
161 phys_size_t size2 = rgn[r2].size;
162 return lmb_addrs_adjacent(base1, size1, base2, size2);
165 static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
168 struct lmb_region *rgn = lmb_rgn_lst->data;
170 for (i = r; i < lmb_rgn_lst->count - 1; i++) {
171 rgn[i].base = rgn[i + 1].base;
172 rgn[i].size = rgn[i + 1].size;
173 rgn[i].flags = rgn[i + 1].flags;
175 lmb_rgn_lst->count--;
178 /* Assumption: base addr of region 1 < base addr of region 2 */
179 static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
182 struct lmb_region *rgn = lmb_rgn_lst->data;
184 rgn[r1].size += rgn[r2].size;
185 lmb_remove_region(lmb_rgn_lst, r2);
188 /*Assumption : base addr of region 1 < base addr of region 2*/
189 static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
190 unsigned long r1, unsigned long r2)
192 struct lmb_region *rgn = lmb_rgn_lst->data;
194 phys_addr_t base1 = rgn[r1].base;
195 phys_size_t size1 = rgn[r1].size;
196 phys_addr_t base2 = rgn[r2].base;
197 phys_size_t size2 = rgn[r2].size;
199 if (base1 + size1 > base2 + size2) {
200 printf("This will not be a case any time\n");
203 rgn[r1].size = base2 + size2 - base1;
204 lmb_remove_region(lmb_rgn_lst, r2);
207 static void lmb_reserve_uboot_region(void)
211 phys_addr_t rsv_start;
213 rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
217 * Reserve memory from aligned address below the bottom of U-Boot stack
218 * until end of RAM area to prevent LMB from overwriting that memory.
220 debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
222 /* adjust sp by 16K to be safe */
224 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
225 if (!gd->bd->bi_dram[bank].size ||
226 rsv_start < gd->bd->bi_dram[bank].start)
228 /* Watch out for RAM at end of address space! */
229 bank_end = gd->bd->bi_dram[bank].start +
230 gd->bd->bi_dram[bank].size - 1;
231 if (rsv_start > bank_end)
236 lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
239 if (gd->flags & GD_FLG_SKIP_RELOC)
240 lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
241 gd->mon_len, LMB_NOOVERWRITE);
247 static void lmb_reserve_common(void *fdt_blob)
249 lmb_reserve_uboot_region();
251 if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
252 boot_fdt_add_mem_rsv_regions(fdt_blob);
255 static __maybe_unused void lmb_reserve_common_spl(void)
257 phys_addr_t rsv_start;
258 phys_size_t rsv_size;
261 * Assume a SPL stack of 16KB. This must be
262 * more than enough for the SPL stage.
264 if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
265 rsv_start = gd->start_addr_sp - 16384;
267 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
270 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
271 /* Reserve the bss region */
272 rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
273 rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
274 (phys_addr_t)(uintptr_t)__bss_start;
275 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
280 * lmb_add_memory() - Add memory range for LMB allocations
282 * Add the entire available memory range to the pool of memory that
283 * can be used by the LMB module for allocations.
287 void lmb_add_memory(void)
291 u64 ram_top = gd->ram_top;
292 struct bd_info *bd = gd->bd;
294 if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
295 return lmb_arch_add_memory();
297 /* Assume a 4GB ram_top if not defined */
299 ram_top = 0x100000000ULL;
301 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
302 size = bd->bi_dram[i].size;
304 lmb_add(bd->bi_dram[i].start, size);
307 * Reserve memory above ram_top as
308 * no-overwrite so that it cannot be
311 if (bd->bi_dram[i].start >= ram_top)
312 lmb_reserve_flags(bd->bi_dram[i].start, size,
318 static long lmb_resize_regions(struct alist *lmb_rgn_lst,
319 unsigned long idx_start,
320 phys_addr_t base, phys_size_t size)
323 unsigned long rgn_cnt, idx, idx_end;
324 phys_addr_t rgnbase, rgnend;
325 phys_addr_t mergebase, mergeend;
326 struct lmb_region *rgn = lmb_rgn_lst->data;
333 * First thing to do is to identify how many regions
334 * the requested region overlaps.
335 * If the flags match, combine all these overlapping
336 * regions into a single region, and remove the merged
339 while (idx <= lmb_rgn_lst->count - 1) {
340 rgnbase = rgn[idx].base;
341 rgnsize = rgn[idx].size;
343 if (lmb_addrs_overlap(base, size, rgnbase,
345 if (rgn[idx].flags != LMB_NONE)
353 /* The merged region's base and size */
354 rgnbase = rgn[idx_start].base;
355 mergebase = min(base, rgnbase);
356 rgnend = rgn[idx_end].base + rgn[idx_end].size;
357 mergeend = max(rgnend, (base + size));
359 rgn[idx_start].base = mergebase;
360 rgn[idx_start].size = mergeend - mergebase;
362 /* Now remove the merged regions */
364 lmb_remove_region(lmb_rgn_lst, idx_start + 1);
370 * lmb_add_region_flags() - Add an lmb region to the given list
371 * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
372 * @base: Start address of the region
373 * @size: Size of the region to be added
374 * @flags: Attributes of the LMB region
376 * Add a region of memory to the list. If the region does not exist, add
377 * it to the list. Depending on the attributes of the region to be added,
378 * the function might resize an already existing region or coalesce two
382 * Returns: 0 if the region addition successful, -1 on failure
384 static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
385 phys_size_t size, enum lmb_flags flags)
387 unsigned long coalesced = 0;
389 struct lmb_region *rgn = lmb_rgn_lst->data;
391 if (alist_err(lmb_rgn_lst))
394 /* First try and coalesce this LMB with another. */
395 for (i = 0; i < lmb_rgn_lst->count; i++) {
396 phys_addr_t rgnbase = rgn[i].base;
397 phys_size_t rgnsize = rgn[i].size;
398 phys_size_t rgnflags = rgn[i].flags;
399 phys_addr_t end = base + size - 1;
400 phys_addr_t rgnend = rgnbase + rgnsize - 1;
401 if (rgnbase <= base && end <= rgnend) {
402 if (flags == rgnflags)
403 /* Already have this region, so we're done */
406 return -1; /* regions with new flags */
409 ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
411 if (flags != rgnflags)
417 } else if (ret < 0) {
418 if (flags != rgnflags)
423 } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
424 if (flags == LMB_NONE) {
425 ret = lmb_resize_regions(lmb_rgn_lst, i, base,
438 if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
439 rgn = lmb_rgn_lst->data;
440 if (rgn[i].flags == rgn[i + 1].flags) {
441 if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
442 lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
444 } else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
445 /* fix overlapping area */
446 lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
455 if (alist_full(lmb_rgn_lst) &&
456 !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
458 rgn = lmb_rgn_lst->data;
460 /* Couldn't coalesce the LMB, so add it to the sorted table. */
461 for (i = lmb_rgn_lst->count; i >= 0; i--) {
462 if (i && base < rgn[i - 1].base) {
467 rgn[i].flags = flags;
472 lmb_rgn_lst->count++;
477 static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
480 return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
483 /* This routine may be called with relocation disabled. */
484 long lmb_add(phys_addr_t base, phys_size_t size)
487 struct alist *lmb_rgn_lst = &lmb.free_mem;
489 ret = lmb_add_region(lmb_rgn_lst, base, size);
493 if (lmb_should_notify(LMB_NONE))
494 return lmb_map_update_notify(base, size, MAP_OP_ADD);
499 static long _lmb_free(phys_addr_t base, phys_size_t size)
501 struct lmb_region *rgn;
502 struct alist *lmb_rgn_lst = &lmb.used_mem;
503 phys_addr_t rgnbegin, rgnend;
504 phys_addr_t end = base + size - 1;
507 rgnbegin = rgnend = 0; /* supress gcc warnings */
508 rgn = lmb_rgn_lst->data;
509 /* Find the region where (base, size) belongs to */
510 for (i = 0; i < lmb_rgn_lst->count; i++) {
511 rgnbegin = rgn[i].base;
512 rgnend = rgnbegin + rgn[i].size - 1;
514 if ((rgnbegin <= base) && (end <= rgnend))
518 /* Didn't find the region */
519 if (i == lmb_rgn_lst->count)
522 /* Check to see if we are removing entire region */
523 if ((rgnbegin == base) && (rgnend == end)) {
524 lmb_remove_region(lmb_rgn_lst, i);
528 /* Check to see if region is matching at the front */
529 if (rgnbegin == base) {
530 rgn[i].base = end + 1;
535 /* Check to see if the region is matching at the end */
542 * We need to split the entry - adjust the current one to the
543 * beginging of the hole and add the region after hole.
545 rgn[i].size = base - rgn[i].base;
546 return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
551 * lmb_free_flags() - Free up a region of memory
552 * @base: Base Address of region to be freed
553 * @size: Size of the region to be freed
554 * @flags: Memory region attributes
556 * Free up a region of memory.
558 * Return: 0 if successful, -1 on failure
560 long lmb_free_flags(phys_addr_t base, phys_size_t size,
565 ret = _lmb_free(base, size);
569 if (lmb_should_notify(flags))
570 return lmb_map_update_notify(base, size, MAP_OP_FREE);
575 long lmb_free(phys_addr_t base, phys_size_t size)
577 return lmb_free_flags(base, size, LMB_NONE);
580 long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
583 struct alist *lmb_rgn_lst = &lmb.used_mem;
585 ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
589 if (lmb_should_notify(flags))
590 return lmb_map_update_notify(base, size, MAP_OP_RESERVE);
595 long lmb_reserve(phys_addr_t base, phys_size_t size)
597 return lmb_reserve_flags(base, size, LMB_NONE);
600 static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
604 struct lmb_region *rgn = lmb_rgn_lst->data;
606 for (i = 0; i < lmb_rgn_lst->count; i++) {
607 phys_addr_t rgnbase = rgn[i].base;
608 phys_size_t rgnsize = rgn[i].size;
609 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
613 return (i < lmb_rgn_lst->count) ? i : -1;
616 static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
618 return addr & ~(size - 1);
621 static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
622 phys_addr_t max_addr, enum lmb_flags flags)
627 phys_addr_t base = 0;
628 phys_addr_t res_base;
629 struct lmb_region *lmb_used = lmb.used_mem.data;
630 struct lmb_region *lmb_memory = lmb.free_mem.data;
632 for (i = lmb.free_mem.count - 1; i >= 0; i--) {
633 phys_addr_t lmbbase = lmb_memory[i].base;
634 phys_size_t lmbsize = lmb_memory[i].size;
638 if (max_addr == LMB_ALLOC_ANYWHERE)
639 base = lmb_align_down(lmbbase + lmbsize - size, align);
640 else if (lmbbase < max_addr) {
641 base = lmbbase + lmbsize;
644 base = min(base, max_addr);
645 base = lmb_align_down(base - size, align);
649 while (base && lmbbase <= base) {
650 rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
652 /* This area isn't reserved, take it */
653 if (lmb_add_region_flags(&lmb.used_mem, base,
657 if (lmb_should_notify(flags)) {
659 ret = lmb_map_update_notify(base, size,
668 res_base = lmb_used[rgn].base;
671 base = lmb_align_down(res_base - size, align);
677 phys_addr_t lmb_alloc(phys_size_t size, ulong align)
679 return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
683 * lmb_alloc_flags() - Allocate memory region with specified attributes
684 * @size: Size of the region requested
685 * @align: Alignment of the memory region requested
686 * @flags: Memory region attributes to be set
688 * Allocate a region of memory with the attributes specified through the
691 * Return: base address on success, 0 on error
693 phys_addr_t lmb_alloc_flags(phys_size_t size, ulong align, uint flags)
695 return _lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE,
699 phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
703 alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE);
706 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
707 (ulong)size, (ulong)max_addr);
713 * lmb_alloc_base_flags() - Allocate specified memory region with specified attributes
714 * @size: Size of the region requested
715 * @align: Alignment of the memory region requested
716 * @max_addr: Maximum address of the requested region
717 * @flags: Memory region attributes to be set
719 * Allocate a region of memory with the attributes specified through the
720 * parameter. The max_addr parameter is used to specify the maximum address
721 * below which the requested region should be allocated.
723 * Return: base address on success, 0 on error
725 phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align,
726 phys_addr_t max_addr, uint flags)
730 alloc = _lmb_alloc_base(size, align, max_addr, flags);
733 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
734 (ulong)size, (ulong)max_addr);
739 static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size,
740 enum lmb_flags flags)
743 struct lmb_region *lmb_memory = lmb.free_mem.data;
745 /* Check if the requested address is in one of the memory regions */
746 rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
749 * Check if the requested end address is in the same memory
752 if (lmb_addrs_overlap(lmb_memory[rgn].base,
753 lmb_memory[rgn].size,
754 base + size - 1, 1)) {
755 /* ok, reserve the memory */
756 if (lmb_reserve_flags(base, size, flags) >= 0)
765 * Try to allocate a specific address range: must be in defined memory but not
768 phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
770 return _lmb_alloc_addr(base, size, LMB_NONE);
774 * lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes
775 * @base: Base Address requested
776 * @size: Size of the region requested
777 * @flags: Memory region attributes to be set
779 * Allocate a region of memory with the attributes specified through the
780 * parameter. The base parameter is used to specify the base address
781 * of the requested region.
783 * Return: base address on success, 0 on error
785 phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size,
788 return _lmb_alloc_addr(base, size, flags);
791 /* Return number of bytes from a given address that are free */
792 phys_size_t lmb_get_free_size(phys_addr_t addr)
796 struct lmb_region *lmb_used = lmb.used_mem.data;
797 struct lmb_region *lmb_memory = lmb.free_mem.data;
799 /* check if the requested address is in the memory regions */
800 rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
802 for (i = 0; i < lmb.used_mem.count; i++) {
803 if (addr < lmb_used[i].base) {
804 /* first reserved range > requested address */
805 return lmb_used[i].base - addr;
807 if (lmb_used[i].base +
808 lmb_used[i].size > addr) {
809 /* requested addr is in this reserved range */
813 /* if we come here: no reserved ranges above requested addr */
814 return lmb_memory[lmb.free_mem.count - 1].base +
815 lmb_memory[lmb.free_mem.count - 1].size - addr;
820 int lmb_is_reserved_flags(phys_addr_t addr, int flags)
823 struct lmb_region *lmb_used = lmb.used_mem.data;
825 for (i = 0; i < lmb.used_mem.count; i++) {
826 phys_addr_t upper = lmb_used[i].base +
827 lmb_used[i].size - 1;
828 if (addr >= lmb_used[i].base && addr <= upper)
829 return (lmb_used[i].flags & flags) == flags;
834 static int lmb_setup(bool test)
838 ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
839 (uint)LMB_ALIST_INITIAL_SIZE);
841 log_debug("Unable to initialise the list for LMB free memory\n");
845 ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
846 (uint)LMB_ALIST_INITIAL_SIZE);
848 log_debug("Unable to initialise the list for LMB used memory\n");
858 * lmb_init() - Initialise the LMB module
860 * Initialise the LMB lists needed for keeping the memory map. There
861 * are two lists, in form of alloced list data structure. One for the
862 * available memory, and one for the used memory. Initialise the two
863 * lists as part of board init. Add memory to the available memory
864 * list and reserve common areas by adding them to the used memory
867 * Return: 0 on success, -ve on error
873 ret = lmb_setup(false);
875 log_info("Unable to init LMB\n");
881 /* Reserve the U-Boot image region once U-Boot has relocated */
882 if (xpl_phase() == PHASE_SPL)
883 lmb_reserve_common_spl();
884 else if (xpl_phase() == PHASE_BOARD_R)
885 lmb_reserve_common((void *)gd->fdt_blob);
890 struct lmb *lmb_get(void)
895 #if CONFIG_IS_ENABLED(UNIT_TEST)
896 int lmb_push(struct lmb *store)
901 ret = lmb_setup(true);
908 void lmb_pop(struct lmb *store)
910 alist_uninit(&lmb.free_mem);
911 alist_uninit(&lmb.used_mem);
914 #endif /* UNIT_TEST */