3 #include <asm/global_data.h>
5 #if CONFIG_IS_ENABLED(UNIT_TEST)
14 static void malloc_update_mallinfo (void);
15 void malloc_stats (void);
17 static void malloc_update_mallinfo ();
22 DECLARE_GLOBAL_DATA_PTR;
25 Emulation of sbrk for WIN32
26 All code within the ifdef WIN32 is untested by me.
28 Thanks to Martin Fong and others for supplying this.
34 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
35 ~(malloc_getpagesize-1))
36 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
38 /* resrve 64MB to insure large contiguous space */
39 #define RESERVED_SIZE (1024*1024*64)
40 #define NEXT_SIZE (2048*1024)
41 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
44 typedef struct GmListElement GmListElement;
52 static GmListElement* head = 0;
53 static unsigned int gNextAddress = 0;
54 static unsigned int gAddressBase = 0;
55 static unsigned int gAllocatedSize = 0;
58 GmListElement* makeGmListElement (void* bas)
61 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
75 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
76 if (gAddressBase && (gNextAddress - gAddressBase))
78 rval = VirtualFree ((void*)gAddressBase,
79 gNextAddress - gAddressBase,
85 GmListElement* next = head->next;
86 rval = VirtualFree (head->base, 0, MEM_RELEASE);
94 void* findRegion (void* start_address, unsigned long size)
96 MEMORY_BASIC_INFORMATION info;
97 if (size >= TOP_MEMORY) return NULL;
99 while ((unsigned long)start_address + size < TOP_MEMORY)
101 VirtualQuery (start_address, &info, sizeof (info));
102 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
103 return start_address;
106 /* Requested region is not available so see if the */
107 /* next region is available. Set 'start_address' */
108 /* to the next region and call 'VirtualQuery()' */
111 start_address = (char*)info.BaseAddress + info.RegionSize;
113 /* Make sure we start looking for the next region */
114 /* on the *next* 64K boundary. Otherwise, even if */
115 /* the new region is free according to */
116 /* 'VirtualQuery()', the subsequent call to */
117 /* 'VirtualAlloc()' (which follows the call to */
118 /* this routine in 'wsbrk()') will round *down* */
119 /* the requested address to a 64K boundary which */
120 /* we already know is an address in the */
121 /* unavailable region. Thus, the subsequent call */
122 /* to 'VirtualAlloc()' will fail and bring us back */
123 /* here, causing us to go into an infinite loop. */
126 (void *) AlignPage64K((unsigned long) start_address);
134 void* wsbrk (long size)
139 if (gAddressBase == 0)
141 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
142 gNextAddress = gAddressBase =
143 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
144 MEM_RESERVE, PAGE_NOACCESS);
145 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
148 long new_size = max (NEXT_SIZE, AlignPage (size));
149 void* new_address = (void*)(gAddressBase+gAllocatedSize);
152 new_address = findRegion (new_address, new_size);
157 gAddressBase = gNextAddress =
158 (unsigned int)VirtualAlloc (new_address, new_size,
159 MEM_RESERVE, PAGE_NOACCESS);
160 /* repeat in case of race condition */
161 /* The region that we found has been snagged */
162 /* by another thread */
164 while (gAddressBase == 0);
166 assert (new_address == (void*)gAddressBase);
168 gAllocatedSize = new_size;
170 if (!makeGmListElement ((void*)gAddressBase))
173 if ((size + gNextAddress) > AlignPage (gNextAddress))
176 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
177 (size + gNextAddress -
178 AlignPage (gNextAddress)),
179 MEM_COMMIT, PAGE_READWRITE);
183 tmp = (void*)gNextAddress;
184 gNextAddress = (unsigned int)tmp + size;
189 unsigned int alignedGoal = AlignPage (gNextAddress + size);
190 /* Trim by releasing the virtual memory */
191 if (alignedGoal >= gAddressBase)
193 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
195 gNextAddress = gNextAddress + size;
196 return (void*)gNextAddress;
200 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
202 gNextAddress = gAddressBase;
208 return (void*)gNextAddress;
223 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
224 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
225 struct malloc_chunk* fd; /* double links -- used only if free. */
226 struct malloc_chunk* bk;
227 } __attribute__((__may_alias__)) ;
229 typedef struct malloc_chunk* mchunkptr;
233 malloc_chunk details:
235 (The following includes lightly edited explanations by Colin Plumb.)
237 Chunks of memory are maintained using a `boundary tag' method as
238 described in e.g., Knuth or Standish. (See the paper by Paul
239 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
240 survey of such techniques.) Sizes of free chunks are stored both
241 in the front of each chunk and at the end. This makes
242 consolidating fragmented chunks into bigger chunks very fast. The
243 size fields also hold bits representing whether chunks are free or
246 An allocated chunk looks like this:
249 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 | Size of previous chunk, if allocated | |
251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
252 | Size of chunk, in bytes |P|
253 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
254 | User data starts here... .
256 . (malloc_usable_space() bytes) .
258 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
263 Where "chunk" is the front of the chunk for the purpose of most of
264 the malloc code, but "mem" is the pointer that is returned to the
265 user. "Nextchunk" is the beginning of the next contiguous chunk.
267 Chunks always begin on even word boundries, so the mem portion
268 (which is returned to the user) is also on an even word boundary, and
269 thus double-word aligned.
271 Free chunks are stored in circular doubly-linked lists, and look like this:
273 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 | Size of previous chunk |
275 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
276 `head:' | Size of chunk, in bytes |P|
277 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
278 | Forward pointer to next chunk in list |
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 | Back pointer to previous chunk in list |
281 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
282 | Unused space (may be 0 bytes long) .
286 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
287 `foot:' | Size of chunk, in bytes |
288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
290 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
291 chunk size (which is always a multiple of two words), is an in-use
292 bit for the *previous* chunk. If that bit is *clear*, then the
293 word before the current chunk size contains the previous chunk
294 size, and can be used to find the front of the previous chunk.
295 (The very first chunk allocated always has this bit set,
296 preventing access to non-existent (or non-owned) memory.)
298 Note that the `foot' of the current chunk is actually represented
299 as the prev_size of the NEXT chunk. (This makes it easier to
300 deal with alignments etc).
302 The two exceptions to all this are
304 1. The special chunk `top', which doesn't bother using the
305 trailing size field since there is no
306 next contiguous chunk that would have to index off it. (After
307 initialization, `top' is forced to always exist. If it would
308 become less than MINSIZE bytes long, it is replenished via
311 2. Chunks allocated via mmap, which have the second-lowest-order
312 bit (IS_MMAPPED) set in their size fields. Because they are
313 never merged or traversed from any other chunk, they have no
314 foot size or inuse information.
316 Available chunks are kept in any of several places (all declared below):
318 * `av': An array of chunks serving as bin headers for consolidated
319 chunks. Each bin is doubly linked. The bins are approximately
320 proportionally (log) spaced. There are a lot of these bins
321 (128). This may look excessive, but works very well in
322 practice. All procedures maintain the invariant that no
323 consolidated chunk physically borders another one. Chunks in
324 bins are kept in size order, with ties going to the
325 approximately least recently used chunk.
327 The chunks in each bin are maintained in decreasing sorted order by
328 size. This is irrelevant for the small bins, which all contain
329 the same-sized chunks, but facilitates best-fit allocation for
330 larger chunks. (These lists are just sequential. Keeping them in
331 order almost never requires enough traversal to warrant using
332 fancier ordered data structures.) Chunks of the same size are
333 linked with the most recently freed at the front, and allocations
334 are taken from the back. This results in LRU or FIFO allocation
335 order, which tends to give each chunk an equal opportunity to be
336 consolidated with adjacent freed chunks, resulting in larger free
337 chunks and less fragmentation.
339 * `top': The top-most available chunk (i.e., the one bordering the
340 end of available memory) is treated specially. It is never
341 included in any bin, is used only if no other chunk is
342 available, and is released back to the system if it is very
343 large (see M_TRIM_THRESHOLD).
345 * `last_remainder': A bin holding only the remainder of the
346 most recently split (non-top) chunk. This bin is checked
347 before other non-fitting chunks, so as to provide better
348 locality for runs of sequentially allocated chunks.
350 * Implicitly, through the host system's memory mapping tables.
351 If supported, requests greater than a threshold are usually
352 serviced via calls to mmap, and then later released via munmap.
356 /* sizes, alignments */
358 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
359 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
360 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
361 #define MINSIZE (sizeof(struct malloc_chunk))
363 /* conversion from malloc headers to user pointers, and back */
365 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
366 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
368 /* pad request bytes into a usable size */
370 #define request2size(req) \
371 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
372 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
373 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
375 /* Check if m has acceptable alignment */
377 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
383 Physical chunk operations
387 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
389 #define PREV_INUSE 0x1
391 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
393 #define IS_MMAPPED 0x2
395 /* Bits to mask off when extracting size */
397 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
400 /* Ptr to next physical malloc_chunk. */
402 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
404 /* Ptr to previous physical malloc_chunk */
406 #define prev_chunk(p)\
407 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
410 /* Treat space at ptr + offset as a chunk */
412 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
418 Dealing with use bits
421 /* extract p's inuse bit */
424 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
426 /* extract inuse bit of previous chunk */
428 #define prev_inuse(p) ((p)->size & PREV_INUSE)
430 /* check for mmap()'ed chunk */
432 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
434 /* set/clear chunk as in use without otherwise disturbing */
436 #define set_inuse(p)\
437 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
439 #define clear_inuse(p)\
440 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
442 /* check/set/clear inuse bits in known places */
444 #define inuse_bit_at_offset(p, s)\
445 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
447 #define set_inuse_bit_at_offset(p, s)\
448 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
450 #define clear_inuse_bit_at_offset(p, s)\
451 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
457 Dealing with size fields
460 /* Get size, ignoring use bits */
462 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
464 /* Set size at head, without disturbing its use bit */
466 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
468 /* Set size/use ignoring previous bits in header */
470 #define set_head(p, s) ((p)->size = (s))
472 /* Set size at footer (only when chunk is not in use) */
474 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
483 The bins, `av_' are an array of pairs of pointers serving as the
484 heads of (initially empty) doubly-linked lists of chunks, laid out
485 in a way so that each pair can be treated as if it were in a
486 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
487 and chunks are the same).
489 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
490 8 bytes apart. Larger bins are approximately logarithmically
491 spaced. (See the table below.) The `av_' array is never mentioned
492 directly in the code, but instead via bin access macros.
501 2 bins of size 262144
502 1 bin of size what's left
504 There is actually a little bit of slop in the numbers in bin_index
505 for the sake of speed. This makes no difference elsewhere.
507 The special chunks `top' and `last_remainder' get their own bins,
508 (this is implemented via yet more trickery with the av_ array),
509 although `top' is never properly linked to its bin since it is
510 always handled specially.
514 #define NAV 128 /* number of bins */
516 typedef struct malloc_chunk* mbinptr;
520 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
521 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
522 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
525 The first 2 bins are never indexed. The corresponding av_ cells are instead
526 used for bookkeeping. This is not to save space, but to simplify
527 indexing, maintain locality, and avoid some initialization tests.
530 #define top (av_[2]) /* The topmost chunk */
531 #define last_remainder (bin_at(1)) /* remainder from last split */
535 Because top initially points to its own bin with initial
536 zero size, thus forcing extension on the first malloc request,
537 we avoid having any special code in malloc to check whether
538 it even exists yet. But we still need to in malloc_extend_top.
541 #define initial_top ((mchunkptr)(bin_at(0)))
543 /* Helper macro to initialize bins */
545 #define IAV(i) bin_at(i), bin_at(i)
547 static mbinptr av_[NAV * 2 + 2] = {
549 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
550 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
551 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
552 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
553 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
554 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
555 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
556 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
557 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
558 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
559 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
560 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
561 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
562 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
563 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
564 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
567 #ifdef CONFIG_NEEDS_MANUAL_RELOC
568 static void malloc_bin_reloc(void)
570 mbinptr *p = &av_[2];
573 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
574 *p = (mbinptr)((ulong)*p + gd->reloc_off);
577 static inline void malloc_bin_reloc(void) {}
580 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
581 static void malloc_init(void);
584 ulong mem_malloc_start = 0;
585 ulong mem_malloc_end = 0;
586 ulong mem_malloc_brk = 0;
588 void *sbrk(ptrdiff_t increment)
590 ulong old = mem_malloc_brk;
591 ulong new = old + increment;
594 * if we are giving memory back make sure we clear it out since
595 * we set MORECORE_CLEARS to 1
598 memset((void *)new, 0, -increment);
600 if ((new < mem_malloc_start) || (new > mem_malloc_end))
601 return (void *)MORECORE_FAILURE;
603 mem_malloc_brk = new;
608 void mem_malloc_init(ulong start, ulong size)
610 mem_malloc_start = start;
611 mem_malloc_end = start + size;
612 mem_malloc_brk = start;
614 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
618 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
620 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
621 memset((void *)mem_malloc_start, 0x0, size);
626 /* field-extraction macros */
628 #define first(b) ((b)->fd)
629 #define last(b) ((b)->bk)
635 #define bin_index(sz) \
636 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
637 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
638 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
639 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
640 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
641 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
644 bins for chunks < 512 are all spaced 8 bytes apart, and hold
645 identically sized chunks. This is exploited in malloc.
648 #define MAX_SMALLBIN 63
649 #define MAX_SMALLBIN_SIZE 512
650 #define SMALLBIN_WIDTH 8
652 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
655 Requests are `small' if both the corresponding and the next bin are small
658 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
663 To help compensate for the large number of bins, a one-level index
664 structure is used for bin-by-bin searching. `binblocks' is a
665 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
666 have any (possibly) non-empty bins, so they can be skipped over
667 all at once during during traversals. The bits are NOT always
668 cleared as soon as all bins in a block are empty, but instead only
669 when all are noticed to be empty during traversal in malloc.
672 #define BINBLOCKWIDTH 4 /* bins per block */
674 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
675 #define binblocks_w (av_[1])
677 /* bin<->block macros */
679 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
680 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
681 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
687 /* Other static bookkeeping data */
689 /* variables holding tunable values */
691 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
692 static unsigned long top_pad = DEFAULT_TOP_PAD;
693 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
694 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
696 /* The first value returned from sbrk */
697 static char* sbrk_base = (char*)(-1);
699 /* The maximum memory obtained from system via sbrk */
700 static unsigned long max_sbrked_mem = 0;
702 /* The maximum via either sbrk or mmap */
703 static unsigned long max_total_mem = 0;
705 /* internal working copy of mallinfo */
706 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
708 /* The total memory obtained from system via sbrk */
709 #define sbrked_mem (current_mallinfo.arena)
714 static unsigned int n_mmaps = 0;
716 static unsigned long mmapped_mem = 0;
718 static unsigned int max_n_mmaps = 0;
719 static unsigned long max_mmapped_mem = 0;
722 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
723 static void malloc_init(void)
727 debug("bins (av_ array) are at %p\n", (void *)av_);
729 av_[0] = NULL; av_[1] = NULL;
730 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
731 av_[i] = bin_at(j - 2);
732 av_[i + 1] = bin_at(j - 2);
734 /* Just print the first few bins so that
735 * we can see there are alright.
738 debug("av_[%d]=%lx av_[%d]=%lx\n",
740 i + 1, (ulong)av_[i + 1]);
743 /* Init the static bookkeeping as well */
744 sbrk_base = (char *)(-1);
748 memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo));
761 These routines make a number of assertions about the states
762 of data structures that should be true at all times. If any
763 are not true, it's very likely that a user program has somehow
764 trashed memory. (It's also possible that there is a coding error
765 in malloc. In which case, please report it!)
769 static void do_check_chunk(mchunkptr p)
771 static void do_check_chunk(p) mchunkptr p;
774 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
776 /* No checkable chunk is mmapped */
777 assert(!chunk_is_mmapped(p));
779 /* Check for legal address ... */
780 assert((char*)p >= sbrk_base);
782 assert((char*)p + sz <= (char*)top);
784 assert((char*)p + sz <= sbrk_base + sbrked_mem);
790 static void do_check_free_chunk(mchunkptr p)
792 static void do_check_free_chunk(p) mchunkptr p;
795 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
796 mchunkptr next = chunk_at_offset(p, sz);
800 /* Check whether it claims to be free ... */
803 /* Unless a special marker, must have OK fields */
804 if ((long)sz >= (long)MINSIZE)
806 assert((sz & MALLOC_ALIGN_MASK) == 0);
807 assert(aligned_OK(chunk2mem(p)));
808 /* ... matching footer field */
809 assert(next->prev_size == sz);
810 /* ... and is fully consolidated */
811 assert(prev_inuse(p));
812 assert (next == top || inuse(next));
814 /* ... and has minimally sane links */
815 assert(p->fd->bk == p);
816 assert(p->bk->fd == p);
818 else /* markers are always of size SIZE_SZ */
819 assert(sz == SIZE_SZ);
823 static void do_check_inuse_chunk(mchunkptr p)
825 static void do_check_inuse_chunk(p) mchunkptr p;
828 mchunkptr next = next_chunk(p);
831 /* Check whether it claims to be in use ... */
834 /* ... and is surrounded by OK chunks.
835 Since more things can be checked with free chunks than inuse ones,
836 if an inuse chunk borders them and debug is on, it's worth doing them.
840 mchunkptr prv = prev_chunk(p);
841 assert(next_chunk(prv) == p);
842 do_check_free_chunk(prv);
846 assert(prev_inuse(next));
847 assert(chunksize(next) >= MINSIZE);
849 else if (!inuse(next))
850 do_check_free_chunk(next);
855 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
857 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
860 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
863 do_check_inuse_chunk(p);
866 assert((long)sz >= (long)MINSIZE);
867 assert((sz & MALLOC_ALIGN_MASK) == 0);
869 assert(room < (long)MINSIZE);
871 /* ... and alignment */
872 assert(aligned_OK(chunk2mem(p)));
875 /* ... and was allocated at front of an available chunk */
876 assert(prev_inuse(p));
881 #define check_free_chunk(P) do_check_free_chunk(P)
882 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
883 #define check_chunk(P) do_check_chunk(P)
884 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
886 #define check_free_chunk(P)
887 #define check_inuse_chunk(P)
888 #define check_chunk(P)
889 #define check_malloced_chunk(P,N)
895 Macro-based internal utilities
900 Linking chunks in bin lists.
901 Call these only with variables, not arbitrary expressions, as arguments.
905 Place chunk p of size s in its bin, in size order,
906 putting it ahead of others of same size.
910 #define frontlink(P, S, IDX, BK, FD) \
912 if (S < MAX_SMALLBIN_SIZE) \
914 IDX = smallbin_index(S); \
915 mark_binblock(IDX); \
920 FD->bk = BK->fd = P; \
924 IDX = bin_index(S); \
927 if (FD == BK) mark_binblock(IDX); \
930 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
935 FD->bk = BK->fd = P; \
940 /* take a chunk off a list */
942 #define unlink(P, BK, FD) \
950 /* Place p as the last remainder */
952 #define link_last_remainder(P) \
954 last_remainder->fd = last_remainder->bk = P; \
955 P->fd = P->bk = last_remainder; \
958 /* Clear the last_remainder bin */
960 #define clear_last_remainder \
961 (last_remainder->fd = last_remainder->bk = last_remainder)
967 /* Routines dealing with mmap(). */
972 static mchunkptr mmap_chunk(size_t size)
974 static mchunkptr mmap_chunk(size) size_t size;
977 size_t page_mask = malloc_getpagesize - 1;
980 #ifndef MAP_ANONYMOUS
984 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
986 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
987 * there is no following chunk whose prev_size field could be used.
989 size = (size + SIZE_SZ + page_mask) & ~page_mask;
992 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
993 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
994 #else /* !MAP_ANONYMOUS */
997 fd = open("/dev/zero", O_RDWR);
1000 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1003 if(p == (mchunkptr)-1) return 0;
1006 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1008 /* We demand that eight bytes into a page must be 8-byte aligned. */
1009 assert(aligned_OK(chunk2mem(p)));
1011 /* The offset to the start of the mmapped region is stored
1012 * in the prev_size field of the chunk; normally it is zero,
1013 * but that can be changed in memalign().
1016 set_head(p, size|IS_MMAPPED);
1018 mmapped_mem += size;
1019 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1020 max_mmapped_mem = mmapped_mem;
1021 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1022 max_total_mem = mmapped_mem + sbrked_mem;
1027 static void munmap_chunk(mchunkptr p)
1029 static void munmap_chunk(p) mchunkptr p;
1032 INTERNAL_SIZE_T size = chunksize(p);
1035 assert (chunk_is_mmapped(p));
1036 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1037 assert((n_mmaps > 0));
1038 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1041 mmapped_mem -= (size + p->prev_size);
1043 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1045 /* munmap returns non-zero on failure */
1052 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1054 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1057 size_t page_mask = malloc_getpagesize - 1;
1058 INTERNAL_SIZE_T offset = p->prev_size;
1059 INTERNAL_SIZE_T size = chunksize(p);
1062 assert (chunk_is_mmapped(p));
1063 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1064 assert((n_mmaps > 0));
1065 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1067 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1068 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1070 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1072 if (cp == (char *)-1) return 0;
1074 p = (mchunkptr)(cp + offset);
1076 assert(aligned_OK(chunk2mem(p)));
1078 assert((p->prev_size == offset));
1079 set_head(p, (new_size - offset)|IS_MMAPPED);
1081 mmapped_mem -= size + offset;
1082 mmapped_mem += new_size;
1083 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1084 max_mmapped_mem = mmapped_mem;
1085 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1086 max_total_mem = mmapped_mem + sbrked_mem;
1090 #endif /* HAVE_MREMAP */
1092 #endif /* HAVE_MMAP */
1095 Extend the top-most chunk by obtaining memory from system.
1096 Main interface to sbrk (but see also malloc_trim).
1100 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1102 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1105 char* brk; /* return value from sbrk */
1106 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1107 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1108 char* new_brk; /* return of 2nd sbrk call */
1109 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1111 mchunkptr old_top = top; /* Record state of old top */
1112 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1113 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1115 /* Pad request with top_pad plus minimal overhead */
1117 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1118 unsigned long pagesz = malloc_getpagesize;
1120 /* If not the first time through, round to preserve page boundary */
1121 /* Otherwise, we need to correct to a page size below anyway. */
1122 /* (We also correct below if an intervening foreign sbrk call.) */
1124 if (sbrk_base != (char*)(-1))
1125 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1127 brk = (char*)(MORECORE (sbrk_size));
1129 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1130 if (brk == (char*)(MORECORE_FAILURE) ||
1131 (brk < old_end && old_top != initial_top))
1134 sbrked_mem += sbrk_size;
1136 if (brk == old_end) /* can just add bytes to current top */
1138 top_size = sbrk_size + old_top_size;
1139 set_head(top, top_size | PREV_INUSE);
1143 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1145 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1146 sbrked_mem += brk - (char*)old_end;
1148 /* Guarantee alignment of first new chunk made from this space */
1149 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1150 if (front_misalign > 0)
1152 correction = (MALLOC_ALIGNMENT) - front_misalign;
1158 /* Guarantee the next brk will be at a page boundary */
1160 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1161 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1163 /* Allocate correction */
1164 new_brk = (char*)(MORECORE (correction));
1165 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1167 sbrked_mem += correction;
1169 top = (mchunkptr)brk;
1170 top_size = new_brk - brk + correction;
1171 set_head(top, top_size | PREV_INUSE);
1173 if (old_top != initial_top)
1176 /* There must have been an intervening foreign sbrk call. */
1177 /* A double fencepost is necessary to prevent consolidation */
1179 /* If not enough space to do this, then user did something very wrong */
1180 if (old_top_size < MINSIZE)
1182 set_head(top, PREV_INUSE); /* will force null return from malloc */
1186 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1187 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1188 set_head_size(old_top, old_top_size);
1189 chunk_at_offset(old_top, old_top_size )->size =
1191 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1193 /* If possible, release the rest. */
1194 if (old_top_size >= MINSIZE)
1195 fREe(chunk2mem(old_top));
1199 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1200 max_sbrked_mem = sbrked_mem;
1201 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1202 max_total_mem = mmapped_mem + sbrked_mem;
1204 /* We always land on a page boundary */
1205 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1211 /* Main public routines */
1217 The requested size is first converted into a usable form, `nb'.
1218 This currently means to add 4 bytes overhead plus possibly more to
1219 obtain 8-byte alignment and/or to obtain a size of at least
1220 MINSIZE (currently 16 bytes), the smallest allocatable size.
1221 (All fits are considered `exact' if they are within MINSIZE bytes.)
1223 From there, the first successful of the following steps is taken:
1225 1. The bin corresponding to the request size is scanned, and if
1226 a chunk of exactly the right size is found, it is taken.
1228 2. The most recently remaindered chunk is used if it is big
1229 enough. This is a form of (roving) first fit, used only in
1230 the absence of exact fits. Runs of consecutive requests use
1231 the remainder of the chunk used for the previous such request
1232 whenever possible. This limited use of a first-fit style
1233 allocation strategy tends to give contiguous chunks
1234 coextensive lifetimes, which improves locality and can reduce
1235 fragmentation in the long run.
1237 3. Other bins are scanned in increasing size order, using a
1238 chunk big enough to fulfill the request, and splitting off
1239 any remainder. This search is strictly by best-fit; i.e.,
1240 the smallest (with ties going to approximately the least
1241 recently used) chunk that fits is selected.
1243 4. If large enough, the chunk bordering the end of memory
1244 (`top') is split off. (This use of `top' is in accord with
1245 the best-fit search rule. In effect, `top' is treated as
1246 larger (and thus less well fitting) than any other available
1247 chunk since it can be extended to be as large as necessary
1248 (up to system limitations).
1250 5. If the request size meets the mmap threshold and the
1251 system supports mmap, and there are few enough currently
1252 allocated mmapped regions, and a call to mmap succeeds,
1253 the request is allocated via direct memory mapping.
1255 6. Otherwise, the top of memory is extended by
1256 obtaining more space from the system (normally using sbrk,
1257 but definable to anything else via the MORECORE macro).
1258 Memory is gathered from the system (in system page-sized
1259 units) in a way that allows chunks obtained across different
1260 sbrk calls to be consolidated, but does not require
1261 contiguous memory. Thus, it should be safe to intersperse
1262 mallocs with other sbrk calls.
1265 All allocations are made from the the `lowest' part of any found
1266 chunk. (The implementation invariant is that prev_inuse is
1267 always true of any allocated chunk; i.e., that each allocated
1268 chunk borders either a previously allocated and still in-use chunk,
1269 or the base of its memory arena.)
1274 Void_t* mALLOc(size_t bytes)
1276 Void_t* mALLOc(bytes) size_t bytes;
1279 mchunkptr victim; /* inspected/selected chunk */
1280 INTERNAL_SIZE_T victim_size; /* its size */
1281 int idx; /* index for bin traversal */
1282 mbinptr bin; /* associated bin */
1283 mchunkptr remainder; /* remainder from a split */
1284 long remainder_size; /* its size */
1285 int remainder_index; /* its bin index */
1286 unsigned long block; /* block traverser bit */
1287 int startidx; /* first bin of a traversed block */
1288 mchunkptr fwd; /* misc temp for linking */
1289 mchunkptr bck; /* misc temp for linking */
1290 mbinptr q; /* misc temp */
1294 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1295 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1296 return malloc_simple(bytes);
1299 /* check if mem_malloc_init() was run */
1300 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1301 /* not initialized yet */
1305 if ((long)bytes < 0) return NULL;
1307 nb = request2size(bytes); /* padded request size; */
1309 /* Check for exact match in a bin */
1311 if (is_small_request(nb)) /* Faster version for small requests */
1313 idx = smallbin_index(nb);
1315 /* No traversal or size check necessary for small bins. */
1320 /* Also scan the next one, since it would have a remainder < MINSIZE */
1328 victim_size = chunksize(victim);
1329 unlink(victim, bck, fwd);
1330 set_inuse_bit_at_offset(victim, victim_size);
1331 check_malloced_chunk(victim, nb);
1332 return chunk2mem(victim);
1335 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1340 idx = bin_index(nb);
1343 for (victim = last(bin); victim != bin; victim = victim->bk)
1345 victim_size = chunksize(victim);
1346 remainder_size = victim_size - nb;
1348 if (remainder_size >= (long)MINSIZE) /* too big */
1350 --idx; /* adjust to rescan below after checking last remainder */
1354 else if (remainder_size >= 0) /* exact fit */
1356 unlink(victim, bck, fwd);
1357 set_inuse_bit_at_offset(victim, victim_size);
1358 check_malloced_chunk(victim, nb);
1359 return chunk2mem(victim);
1367 /* Try to use the last split-off remainder */
1369 if ( (victim = last_remainder->fd) != last_remainder)
1371 victim_size = chunksize(victim);
1372 remainder_size = victim_size - nb;
1374 if (remainder_size >= (long)MINSIZE) /* re-split */
1376 remainder = chunk_at_offset(victim, nb);
1377 set_head(victim, nb | PREV_INUSE);
1378 link_last_remainder(remainder);
1379 set_head(remainder, remainder_size | PREV_INUSE);
1380 set_foot(remainder, remainder_size);
1381 check_malloced_chunk(victim, nb);
1382 return chunk2mem(victim);
1385 clear_last_remainder;
1387 if (remainder_size >= 0) /* exhaust */
1389 set_inuse_bit_at_offset(victim, victim_size);
1390 check_malloced_chunk(victim, nb);
1391 return chunk2mem(victim);
1394 /* Else place in bin */
1396 frontlink(victim, victim_size, remainder_index, bck, fwd);
1400 If there are any possibly nonempty big-enough blocks,
1401 search for best fitting chunk by scanning bins in blockwidth units.
1404 if ( (block = idx2binblock(idx)) <= binblocks_r)
1407 /* Get to the first marked block */
1409 if ( (block & binblocks_r) == 0)
1411 /* force to an even block boundary */
1412 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1414 while ((block & binblocks_r) == 0)
1416 idx += BINBLOCKWIDTH;
1421 /* For each possibly nonempty block ... */
1424 startidx = idx; /* (track incomplete blocks) */
1425 q = bin = bin_at(idx);
1427 /* For each bin in this block ... */
1430 /* Find and use first big enough chunk ... */
1432 for (victim = last(bin); victim != bin; victim = victim->bk)
1434 victim_size = chunksize(victim);
1435 remainder_size = victim_size - nb;
1437 if (remainder_size >= (long)MINSIZE) /* split */
1439 remainder = chunk_at_offset(victim, nb);
1440 set_head(victim, nb | PREV_INUSE);
1441 unlink(victim, bck, fwd);
1442 link_last_remainder(remainder);
1443 set_head(remainder, remainder_size | PREV_INUSE);
1444 set_foot(remainder, remainder_size);
1445 check_malloced_chunk(victim, nb);
1446 return chunk2mem(victim);
1449 else if (remainder_size >= 0) /* take */
1451 set_inuse_bit_at_offset(victim, victim_size);
1452 unlink(victim, bck, fwd);
1453 check_malloced_chunk(victim, nb);
1454 return chunk2mem(victim);
1459 bin = next_bin(bin);
1461 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1463 /* Clear out the block bit. */
1465 do /* Possibly backtrack to try to clear a partial block */
1467 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1469 av_[1] = (mbinptr)(binblocks_r & ~block);
1474 } while (first(q) == q);
1476 /* Get to the next possibly nonempty block */
1478 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1480 while ((block & binblocks_r) == 0)
1482 idx += BINBLOCKWIDTH;
1492 /* Try to use top chunk */
1494 /* Require that there be a remainder, ensuring top always exists */
1495 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1499 /* If big and would otherwise need to extend, try to use mmap instead */
1500 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1501 (victim = mmap_chunk(nb)))
1502 return chunk2mem(victim);
1506 malloc_extend_top(nb);
1507 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1508 return NULL; /* propagate failure */
1512 set_head(victim, nb | PREV_INUSE);
1513 top = chunk_at_offset(victim, nb);
1514 set_head(top, remainder_size | PREV_INUSE);
1515 check_malloced_chunk(victim, nb);
1516 return chunk2mem(victim);
1529 1. free(0) has no effect.
1531 2. If the chunk was allocated via mmap, it is release via munmap().
1533 3. If a returned chunk borders the current high end of memory,
1534 it is consolidated into the top, and if the total unused
1535 topmost memory exceeds the trim threshold, malloc_trim is
1538 4. Other chunks are consolidated as they arrive, and
1539 placed in corresponding bins. (This includes the case of
1540 consolidating with the current `last_remainder').
1546 void fREe(Void_t* mem)
1548 void fREe(mem) Void_t* mem;
1551 mchunkptr p; /* chunk corresponding to mem */
1552 INTERNAL_SIZE_T hd; /* its head field */
1553 INTERNAL_SIZE_T sz; /* its size */
1554 int idx; /* its bin index */
1555 mchunkptr next; /* next contiguous chunk */
1556 INTERNAL_SIZE_T nextsz; /* its size */
1557 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1558 mchunkptr bck; /* misc temp for linking */
1559 mchunkptr fwd; /* misc temp for linking */
1560 int islr; /* track whether merging with last_remainder */
1562 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1563 /* free() is a no-op - all the memory will be freed on relocation */
1564 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1568 if (mem == NULL) /* free(0) has no effect */
1575 if (hd & IS_MMAPPED) /* release mmapped memory. */
1582 check_inuse_chunk(p);
1584 sz = hd & ~PREV_INUSE;
1585 next = chunk_at_offset(p, sz);
1586 nextsz = chunksize(next);
1588 if (next == top) /* merge with top */
1592 if (!(hd & PREV_INUSE)) /* consolidate backward */
1594 prevsz = p->prev_size;
1595 p = chunk_at_offset(p, -((long) prevsz));
1597 unlink(p, bck, fwd);
1600 set_head(p, sz | PREV_INUSE);
1602 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1603 malloc_trim(top_pad);
1607 set_head(next, nextsz); /* clear inuse bit */
1611 if (!(hd & PREV_INUSE)) /* consolidate backward */
1613 prevsz = p->prev_size;
1614 p = chunk_at_offset(p, -((long) prevsz));
1617 if (p->fd == last_remainder) /* keep as last_remainder */
1620 unlink(p, bck, fwd);
1623 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1627 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1630 link_last_remainder(p);
1633 unlink(next, bck, fwd);
1637 set_head(p, sz | PREV_INUSE);
1640 frontlink(p, sz, idx, bck, fwd);
1651 Chunks that were obtained via mmap cannot be extended or shrunk
1652 unless HAVE_MREMAP is defined, in which case mremap is used.
1653 Otherwise, if their reallocation is for additional space, they are
1654 copied. If for less, they are just left alone.
1656 Otherwise, if the reallocation is for additional space, and the
1657 chunk can be extended, it is, else a malloc-copy-free sequence is
1658 taken. There are several different ways that a chunk could be
1659 extended. All are tried:
1661 * Extending forward into following adjacent free chunk.
1662 * Shifting backwards, joining preceding adjacent space
1663 * Both shifting backwards and extending forward.
1664 * Extending into newly sbrked space
1666 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1667 size argument of zero (re)allocates a minimum-sized chunk.
1669 If the reallocation is for less space, and the new request is for
1670 a `small' (<512 bytes) size, then the newly unused space is lopped
1673 The old unix realloc convention of allowing the last-free'd chunk
1674 to be used as an argument to realloc is no longer supported.
1675 I don't know of any programs still relying on this feature,
1676 and allowing it would also allow too many other incorrect
1677 usages of realloc to be sensible.
1684 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1686 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1689 INTERNAL_SIZE_T nb; /* padded request size */
1691 mchunkptr oldp; /* chunk corresponding to oldmem */
1692 INTERNAL_SIZE_T oldsize; /* its size */
1694 mchunkptr newp; /* chunk to return */
1695 INTERNAL_SIZE_T newsize; /* its size */
1696 Void_t* newmem; /* corresponding user mem */
1698 mchunkptr next; /* next contiguous chunk after oldp */
1699 INTERNAL_SIZE_T nextsize; /* its size */
1701 mchunkptr prev; /* previous contiguous chunk before oldp */
1702 INTERNAL_SIZE_T prevsize; /* its size */
1704 mchunkptr remainder; /* holds split off extra space from newp */
1705 INTERNAL_SIZE_T remainder_size; /* its size */
1707 mchunkptr bck; /* misc temp for linking */
1708 mchunkptr fwd; /* misc temp for linking */
1710 #ifdef REALLOC_ZERO_BYTES_FREES
1717 if ((long)bytes < 0) return NULL;
1719 /* realloc of null is supposed to be same as malloc */
1720 if (oldmem == NULL) return mALLOc(bytes);
1722 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1723 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1724 /* This is harder to support and should not be needed */
1725 panic("pre-reloc realloc() is not supported");
1729 newp = oldp = mem2chunk(oldmem);
1730 newsize = oldsize = chunksize(oldp);
1733 nb = request2size(bytes);
1736 if (chunk_is_mmapped(oldp))
1739 newp = mremap_chunk(oldp, nb);
1740 if(newp) return chunk2mem(newp);
1742 /* Note the extra SIZE_SZ overhead. */
1743 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1744 /* Must alloc, copy, free. */
1745 newmem = mALLOc(bytes);
1747 return NULL; /* propagate failure */
1748 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1754 check_inuse_chunk(oldp);
1756 if ((long)(oldsize) < (long)(nb))
1759 /* Try expanding forward */
1761 next = chunk_at_offset(oldp, oldsize);
1762 if (next == top || !inuse(next))
1764 nextsize = chunksize(next);
1766 /* Forward into top only if a remainder */
1769 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1771 newsize += nextsize;
1772 top = chunk_at_offset(oldp, nb);
1773 set_head(top, (newsize - nb) | PREV_INUSE);
1774 set_head_size(oldp, nb);
1775 return chunk2mem(oldp);
1779 /* Forward into next chunk */
1780 else if (((long)(nextsize + newsize) >= (long)(nb)))
1782 unlink(next, bck, fwd);
1783 newsize += nextsize;
1793 /* Try shifting backwards. */
1795 if (!prev_inuse(oldp))
1797 prev = prev_chunk(oldp);
1798 prevsize = chunksize(prev);
1800 /* try forward + backward first to save a later consolidation */
1807 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1809 unlink(prev, bck, fwd);
1811 newsize += prevsize + nextsize;
1812 newmem = chunk2mem(newp);
1813 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1814 top = chunk_at_offset(newp, nb);
1815 set_head(top, (newsize - nb) | PREV_INUSE);
1816 set_head_size(newp, nb);
1821 /* into next chunk */
1822 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1824 unlink(next, bck, fwd);
1825 unlink(prev, bck, fwd);
1827 newsize += nextsize + prevsize;
1828 newmem = chunk2mem(newp);
1829 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1835 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1837 unlink(prev, bck, fwd);
1839 newsize += prevsize;
1840 newmem = chunk2mem(newp);
1841 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1848 newmem = mALLOc (bytes);
1850 if (newmem == NULL) /* propagate failure */
1853 /* Avoid copy if newp is next chunk after oldp. */
1854 /* (This can only happen when new chunk is sbrk'ed.) */
1856 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1858 newsize += chunksize(newp);
1863 /* Otherwise copy, free, and exit */
1864 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1870 split: /* split off extra room in old or expanded chunk */
1872 if (newsize - nb >= MINSIZE) /* split off remainder */
1874 remainder = chunk_at_offset(newp, nb);
1875 remainder_size = newsize - nb;
1876 set_head_size(newp, nb);
1877 set_head(remainder, remainder_size | PREV_INUSE);
1878 set_inuse_bit_at_offset(remainder, remainder_size);
1879 fREe(chunk2mem(remainder)); /* let free() deal with it */
1883 set_head_size(newp, newsize);
1884 set_inuse_bit_at_offset(newp, newsize);
1887 check_inuse_chunk(newp);
1888 return chunk2mem(newp);
1898 memalign requests more than enough space from malloc, finds a spot
1899 within that chunk that meets the alignment request, and then
1900 possibly frees the leading and trailing space.
1902 The alignment argument must be a power of two. This property is not
1903 checked by memalign, so misuse may result in random runtime errors.
1905 8-byte alignment is guaranteed by normal malloc calls, so don't
1906 bother calling memalign with an argument of 8 or less.
1908 Overreliance on memalign is a sure way to fragment space.
1914 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1916 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1919 INTERNAL_SIZE_T nb; /* padded request size */
1920 char* m; /* memory returned by malloc call */
1921 mchunkptr p; /* corresponding chunk */
1922 char* brk; /* alignment point within p */
1923 mchunkptr newp; /* chunk to return */
1924 INTERNAL_SIZE_T newsize; /* its size */
1925 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1926 mchunkptr remainder; /* spare room at end to split off */
1927 long remainder_size; /* its size */
1929 if ((long)bytes < 0) return NULL;
1931 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1932 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1933 return memalign_simple(alignment, bytes);
1937 /* If need less alignment than we give anyway, just relay to malloc */
1939 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1941 /* Otherwise, ensure that it is at least a minimum chunk size */
1943 if (alignment < MINSIZE) alignment = MINSIZE;
1945 /* Call malloc with worst case padding to hit alignment. */
1947 nb = request2size(bytes);
1948 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1951 * The attempt to over-allocate (with a size large enough to guarantee the
1952 * ability to find an aligned region within allocated memory) failed.
1954 * Try again, this time only allocating exactly the size the user wants. If
1955 * the allocation now succeeds and just happens to be aligned, we can still
1956 * fulfill the user's request.
1959 size_t extra, extra2;
1961 * Use bytes not nb, since mALLOc internally calls request2size too, and
1962 * each call increases the size to allocate, to account for the header.
1964 m = (char*)(mALLOc(bytes));
1965 /* Aligned -> return it */
1966 if ((((unsigned long)(m)) % alignment) == 0)
1969 * Otherwise, try again, requesting enough extra space to be able to
1970 * acquire alignment.
1973 /* Add in extra bytes to match misalignment of unexpanded allocation */
1974 extra = alignment - (((unsigned long)(m)) % alignment);
1975 m = (char*)(mALLOc(bytes + extra));
1977 * m might not be the same as before. Validate that the previous value of
1978 * extra still works for the current value of m.
1979 * If (!m), extra2=alignment so
1982 extra2 = alignment - (((unsigned long)(m)) % alignment);
1983 if (extra2 > extra) {
1988 /* Fall through to original NULL check and chunk splitting logic */
1991 if (m == NULL) return NULL; /* propagate failure */
1995 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1998 if(chunk_is_mmapped(p))
1999 return chunk2mem(p); /* nothing more to do */
2002 else /* misaligned */
2005 Find an aligned spot inside chunk.
2006 Since we need to give back leading space in a chunk of at
2007 least MINSIZE, if the first calculation places us at
2008 a spot with less than MINSIZE leader, we can move to the
2009 next aligned spot -- we've allocated enough total room so that
2010 this is always possible.
2013 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2014 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2016 newp = (mchunkptr)brk;
2017 leadsize = brk - (char*)(p);
2018 newsize = chunksize(p) - leadsize;
2021 if(chunk_is_mmapped(p))
2023 newp->prev_size = p->prev_size + leadsize;
2024 set_head(newp, newsize|IS_MMAPPED);
2025 return chunk2mem(newp);
2029 /* give back leader, use the rest */
2031 set_head(newp, newsize | PREV_INUSE);
2032 set_inuse_bit_at_offset(newp, newsize);
2033 set_head_size(p, leadsize);
2037 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2040 /* Also give back spare room at the end */
2042 remainder_size = chunksize(p) - nb;
2044 if (remainder_size >= (long)MINSIZE)
2046 remainder = chunk_at_offset(p, nb);
2047 set_head(remainder, remainder_size | PREV_INUSE);
2048 set_head_size(p, nb);
2049 fREe(chunk2mem(remainder));
2052 check_inuse_chunk(p);
2053 return chunk2mem(p);
2061 valloc just invokes memalign with alignment argument equal
2062 to the page size of the system (or as near to this as can
2063 be figured out from all the includes/defines above.)
2067 Void_t* vALLOc(size_t bytes)
2069 Void_t* vALLOc(bytes) size_t bytes;
2072 return mEMALIGn (malloc_getpagesize, bytes);
2076 pvalloc just invokes valloc for the nearest pagesize
2077 that will accommodate request
2082 Void_t* pvALLOc(size_t bytes)
2084 Void_t* pvALLOc(bytes) size_t bytes;
2087 size_t pagesize = malloc_getpagesize;
2088 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2093 calloc calls malloc, then zeroes out the allocated chunk.
2098 Void_t* cALLOc(size_t n, size_t elem_size)
2100 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2104 INTERNAL_SIZE_T csz;
2106 INTERNAL_SIZE_T sz = n * elem_size;
2109 /* check if expand_top called, in which case don't need to clear */
2110 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2112 mchunkptr oldtop = top;
2113 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2116 Void_t* mem = mALLOc (sz);
2118 if ((long)n < 0) return NULL;
2124 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2125 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2132 /* Two optional cases in which clearing not necessary */
2136 if (chunk_is_mmapped(p)) return mem;
2141 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2143 if (p == oldtop && csz > oldtopsize)
2145 /* clear only the bytes from non-freshly-sbrked memory */
2151 MALLOC_ZERO(mem, csz - SIZE_SZ);
2158 cfree just calls free. It is needed/defined on some systems
2159 that pair it with calloc, presumably for odd historical reasons.
2163 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2165 void cfree(Void_t *mem)
2167 void cfree(mem) Void_t *mem;
2178 Malloc_trim gives memory back to the system (via negative
2179 arguments to sbrk) if there is unused memory at the `high' end of
2180 the malloc pool. You can call this after freeing large blocks of
2181 memory to potentially reduce the system-level memory requirements
2182 of a program. However, it cannot guarantee to reduce memory. Under
2183 some allocation patterns, some large free blocks of memory will be
2184 locked between two used chunks, so they cannot be given back to
2187 The `pad' argument to malloc_trim represents the amount of free
2188 trailing space to leave untrimmed. If this argument is zero,
2189 only the minimum amount of memory to maintain internal data
2190 structures will be left (one page or less). Non-zero arguments
2191 can be supplied to maintain enough trailing space to service
2192 future expected allocations without having to re-obtain memory
2195 Malloc_trim returns 1 if it actually released any memory, else 0.
2200 int malloc_trim(size_t pad)
2202 int malloc_trim(pad) size_t pad;
2205 long top_size; /* Amount of top-most memory */
2206 long extra; /* Amount to release */
2207 char* current_brk; /* address returned by pre-check sbrk call */
2208 char* new_brk; /* address returned by negative sbrk call */
2210 unsigned long pagesz = malloc_getpagesize;
2212 top_size = chunksize(top);
2213 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2215 if (extra < (long)pagesz) /* Not enough memory to release */
2220 /* Test to make sure no one else called sbrk */
2221 current_brk = (char*)(MORECORE (0));
2222 if (current_brk != (char*)(top) + top_size)
2223 return 0; /* Apparently we don't own memory; must fail */
2227 new_brk = (char*)(MORECORE (-extra));
2229 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2231 /* Try to figure out what we have */
2232 current_brk = (char*)(MORECORE (0));
2233 top_size = current_brk - (char*)top;
2234 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2236 sbrked_mem = current_brk - sbrk_base;
2237 set_head(top, top_size | PREV_INUSE);
2245 /* Success. Adjust top accordingly. */
2246 set_head(top, (top_size - extra) | PREV_INUSE);
2247 sbrked_mem -= extra;
2260 This routine tells you how many bytes you can actually use in an
2261 allocated chunk, which may be more than you requested (although
2262 often not). You can use this many bytes without worrying about
2263 overwriting other allocated objects. Not a particularly great
2264 programming practice, but still sometimes useful.
2269 size_t malloc_usable_size(Void_t* mem)
2271 size_t malloc_usable_size(mem) Void_t* mem;
2280 if(!chunk_is_mmapped(p))
2282 if (!inuse(p)) return 0;
2283 check_inuse_chunk(p);
2284 return chunksize(p) - SIZE_SZ;
2286 return chunksize(p) - 2*SIZE_SZ;
2293 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2296 static void malloc_update_mallinfo()
2305 INTERNAL_SIZE_T avail = chunksize(top);
2306 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2308 for (i = 1; i < NAV; ++i)
2311 for (p = last(b); p != b; p = p->bk)
2314 check_free_chunk(p);
2315 for (q = next_chunk(p);
2316 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2318 check_inuse_chunk(q);
2320 avail += chunksize(p);
2325 current_mallinfo.ordblks = navail;
2326 current_mallinfo.uordblks = sbrked_mem - avail;
2327 current_mallinfo.fordblks = avail;
2328 current_mallinfo.hblks = n_mmaps;
2329 current_mallinfo.hblkhd = mmapped_mem;
2330 current_mallinfo.keepcost = chunksize(top);
2341 Prints on the amount of space obtain from the system (both
2342 via sbrk and mmap), the maximum amount (which may be more than
2343 current if malloc_trim and/or munmap got called), the maximum
2344 number of simultaneous mmap regions used, and the current number
2345 of bytes allocated via malloc (or realloc, etc) but not yet
2346 freed. (Note that this is the number of bytes allocated, not the
2347 number requested. It will be larger than the number requested
2348 because of alignment and bookkeeping overhead.)
2355 malloc_update_mallinfo();
2356 printf("max system bytes = %10u\n",
2357 (unsigned int)(max_total_mem));
2358 printf("system bytes = %10u\n",
2359 (unsigned int)(sbrked_mem + mmapped_mem));
2360 printf("in use bytes = %10u\n",
2361 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2363 printf("max mmap regions = %10u\n",
2364 (unsigned int)max_n_mmaps);
2370 mallinfo returns a copy of updated current mallinfo.
2374 struct mallinfo mALLINFo()
2376 malloc_update_mallinfo();
2377 return current_mallinfo;
2387 mallopt is the general SVID/XPG interface to tunable parameters.
2388 The format is to provide a (parameter-number, parameter-value) pair.
2389 mallopt then sets the corresponding parameter to the argument
2390 value if it can (i.e., so long as the value is meaningful),
2391 and returns 1 if successful else 0.
2393 See descriptions of tunable parameters above.
2398 int mALLOPt(int param_number, int value)
2400 int mALLOPt(param_number, value) int param_number; int value;
2403 switch(param_number)
2405 case M_TRIM_THRESHOLD:
2406 trim_threshold = value; return 1;
2408 top_pad = value; return 1;
2409 case M_MMAP_THRESHOLD:
2410 mmap_threshold = value; return 1;
2413 n_mmaps_max = value; return 1;
2415 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2423 int initf_malloc(void)
2425 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2426 assert(gd->malloc_base); /* Set up by crt0.S */
2427 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2438 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2439 * return null for negative arguments
2441 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2442 (e.g. WIN32 platforms)
2443 * Cleanup up header file inclusion for WIN32 platforms
2444 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2445 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2446 memory allocation routines
2447 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2448 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2449 usage of 'assert' in non-WIN32 code
2450 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2452 * Always call 'fREe()' rather than 'free()'
2454 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2455 * Fixed ordering problem with boundary-stamping
2457 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2458 * Added pvalloc, as recommended by H.J. Liu
2459 * Added 64bit pointer support mainly from Wolfram Gloger
2460 * Added anonymously donated WIN32 sbrk emulation
2461 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2462 * malloc_extend_top: fix mask error that caused wastage after
2464 * Add linux mremap support code from HJ Liu
2466 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2467 * Integrated most documentation with the code.
2468 * Add support for mmap, with help from
2470 * Use last_remainder in more cases.
2472 * Use ordered bins instead of best-fit threshhold
2473 * Eliminate block-local decls to simplify tracing and debugging.
2474 * Support another case of realloc via move into top
2475 * Fix error occuring when initial sbrk_base not word-aligned.
2476 * Rely on page size for units instead of SBRK_UNIT to
2477 avoid surprises about sbrk alignment conventions.
2478 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2480 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2481 * More precautions for cases where other routines call sbrk,
2483 * Added macros etc., allowing use in linux libc from
2485 * Inverted this history list
2487 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2488 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2489 * Removed all preallocation code since under current scheme
2490 the work required to undo bad preallocations exceeds
2491 the work saved in good cases for most test programs.
2492 * No longer use return list or unconsolidated bins since
2493 no scheme using them consistently outperforms those that don't
2494 given above changes.
2495 * Use best fit for very large chunks to prevent some worst-cases.
2496 * Added some support for debugging
2498 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2499 * Removed footers when chunks are in use. Thanks to
2502 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2503 * Added malloc_trim, with help from Wolfram Gloger
2506 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2508 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2509 * realloc: try to expand in both directions
2510 * malloc: swap order of clean-bin strategy;
2511 * realloc: only conditionally expand backwards
2512 * Try not to scavenge used bins
2513 * Use bin counts as a guide to preallocation
2514 * Occasionally bin return list chunks in first scan
2517 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2518 * faster bin computation & slightly different binning
2519 * merged all consolidations to one part of malloc proper
2520 (eliminating old malloc_find_space & malloc_clean_bin)
2521 * Scan 2 returns chunks (not just 1)
2522 * Propagate failure in realloc if malloc returns 0
2523 * Add stuff to allow compilation on non-ANSI compilers
2526 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2527 * removed potential for odd address access in prev_chunk
2528 * removed dependency on getpagesize.h
2529 * misc cosmetics and a bit more internal documentation
2530 * anticosmetics: mangled names in macros to evade debugger strangeness
2531 * tested on sparc, hp-700, dec-mips, rs6000
2532 with gcc & native cc (hp, dec only) allowing
2533 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2535 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2536 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2537 structure of old version, but most details differ.)