1 // SPDX-License-Identifier: GPL-2.0+
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
10 #include <efi_loader.h>
18 #include <asm/global_data.h>
19 #include <asm/sections.h>
20 #include <linux/kernel.h>
22 DECLARE_GLOBAL_DATA_PTR;
24 #define LMB_ALLOC_ANYWHERE 0
25 #define LMB_ALIST_INITIAL_SIZE 4
27 static struct lmb lmb;
29 static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
31 struct lmb_region *rgn = lmb_rgn_lst->data;
32 unsigned long long base, size, end;
36 printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
38 for (i = 0; i < lmb_rgn_lst->count; i++) {
41 end = base + size - 1;
44 printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
45 name, i, base, end, size, flags);
49 void lmb_dump_all_force(void)
51 printf("lmb_dump_all:\n");
52 lmb_dump_region(&lmb.free_mem, "memory");
53 lmb_dump_region(&lmb.used_mem, "reserved");
56 void lmb_dump_all(void)
63 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
64 phys_addr_t base2, phys_size_t size2)
66 const phys_addr_t base1_end = base1 + size1 - 1;
67 const phys_addr_t base2_end = base2 + size2 - 1;
69 return ((base1 <= base2_end) && (base2 <= base1_end));
72 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
73 phys_addr_t base2, phys_size_t size2)
75 if (base2 == base1 + size1)
77 else if (base1 == base2 + size2)
83 static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
86 struct lmb_region *rgn = lmb_rgn_lst->data;
88 phys_addr_t base1 = rgn[r1].base;
89 phys_size_t size1 = rgn[r1].size;
90 phys_addr_t base2 = rgn[r2].base;
91 phys_size_t size2 = rgn[r2].size;
93 return lmb_addrs_overlap(base1, size1, base2, size2);
96 static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
99 struct lmb_region *rgn = lmb_rgn_lst->data;
101 phys_addr_t base1 = rgn[r1].base;
102 phys_size_t size1 = rgn[r1].size;
103 phys_addr_t base2 = rgn[r2].base;
104 phys_size_t size2 = rgn[r2].size;
105 return lmb_addrs_adjacent(base1, size1, base2, size2);
108 static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
111 struct lmb_region *rgn = lmb_rgn_lst->data;
113 for (i = r; i < lmb_rgn_lst->count - 1; i++) {
114 rgn[i].base = rgn[i + 1].base;
115 rgn[i].size = rgn[i + 1].size;
116 rgn[i].flags = rgn[i + 1].flags;
118 lmb_rgn_lst->count--;
121 /* Assumption: base addr of region 1 < base addr of region 2 */
122 static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
125 struct lmb_region *rgn = lmb_rgn_lst->data;
127 rgn[r1].size += rgn[r2].size;
128 lmb_remove_region(lmb_rgn_lst, r2);
131 /*Assumption : base addr of region 1 < base addr of region 2*/
132 static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
133 unsigned long r1, unsigned long r2)
135 struct lmb_region *rgn = lmb_rgn_lst->data;
137 phys_addr_t base1 = rgn[r1].base;
138 phys_size_t size1 = rgn[r1].size;
139 phys_addr_t base2 = rgn[r2].base;
140 phys_size_t size2 = rgn[r2].size;
142 if (base1 + size1 > base2 + size2) {
143 printf("This will not be a case any time\n");
146 rgn[r1].size = base2 + size2 - base1;
147 lmb_remove_region(lmb_rgn_lst, r2);
150 void arch_lmb_reserve_generic(ulong sp, ulong end, ulong align)
156 * Reserve memory from aligned address below the bottom of U-Boot stack
157 * until end of U-Boot area using LMB to prevent U-Boot from overwriting
160 debug("## Current stack ends at 0x%08lx ", sp);
162 /* adjust sp by 4K to be safe */
164 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
165 if (!gd->bd->bi_dram[bank].size ||
166 sp < gd->bd->bi_dram[bank].start)
168 /* Watch out for RAM at end of address space! */
169 bank_end = gd->bd->bi_dram[bank].start +
170 gd->bd->bi_dram[bank].size - 1;
176 lmb_reserve_flags(sp, bank_end - sp + 1, LMB_NOOVERWRITE);
178 if (gd->flags & GD_FLG_SKIP_RELOC)
179 lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
180 gd->mon_len, LMB_NOOVERWRITE);
187 * efi_lmb_reserve() - add reservations for EFI memory
189 * Add reservations for all EFI memory areas that are not
190 * EFI_CONVENTIONAL_MEMORY.
192 * Return: 0 on success, 1 on failure
194 static __maybe_unused int efi_lmb_reserve(void)
196 struct efi_mem_desc *memmap = NULL, *map;
197 efi_uintn_t i, map_size = 0;
200 ret = efi_get_memory_map_alloc(&map_size, &memmap);
201 if (ret != EFI_SUCCESS)
204 for (i = 0, map = memmap; i < map_size / sizeof(*map); ++map, ++i) {
205 if (map->type != EFI_CONVENTIONAL_MEMORY) {
206 lmb_reserve_flags(map_to_sysmem((void *)(uintptr_t)
207 map->physical_start),
208 map->num_pages * EFI_PAGE_SIZE,
209 map->type == EFI_RESERVED_MEMORY_TYPE
210 ? LMB_NOMAP : LMB_NONE);
213 efi_free_pool(memmap);
218 static void lmb_reserve_common(void *fdt_blob)
223 if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
224 boot_fdt_add_mem_rsv_regions(fdt_blob);
226 if (CONFIG_IS_ENABLED(EFI_LOADER))
230 static __maybe_unused void lmb_reserve_common_spl(void)
232 phys_addr_t rsv_start;
233 phys_size_t rsv_size;
236 * Assume a SPL stack of 16KB. This must be
237 * more than enough for the SPL stage.
239 if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
240 rsv_start = gd->start_addr_sp - 16384;
242 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
245 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
246 /* Reserve the bss region */
247 rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
248 rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
249 (phys_addr_t)(uintptr_t)__bss_start;
250 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
255 * lmb_add_memory() - Add memory range for LMB allocations
257 * Add the entire available memory range to the pool of memory that
258 * can be used by the LMB module for allocations.
262 void lmb_add_memory(void)
267 u64 ram_top = gd->ram_top;
268 struct bd_info *bd = gd->bd;
270 /* Assume a 4GB ram_top if not defined */
272 ram_top = 0x100000000ULL;
274 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
275 size = bd->bi_dram[i].size;
277 if (bd->bi_dram[i].start > ram_top)
280 rgn_top = bd->bi_dram[i].start +
283 if (rgn_top > ram_top)
284 size -= rgn_top - ram_top;
286 lmb_add(bd->bi_dram[i].start, size);
291 static long lmb_resize_regions(struct alist *lmb_rgn_lst,
292 unsigned long idx_start,
293 phys_addr_t base, phys_size_t size)
296 unsigned long rgn_cnt, idx, idx_end;
297 phys_addr_t rgnbase, rgnend;
298 phys_addr_t mergebase, mergeend;
299 struct lmb_region *rgn = lmb_rgn_lst->data;
306 * First thing to do is to identify how many regions
307 * the requested region overlaps.
308 * If the flags match, combine all these overlapping
309 * regions into a single region, and remove the merged
312 while (idx <= lmb_rgn_lst->count - 1) {
313 rgnbase = rgn[idx].base;
314 rgnsize = rgn[idx].size;
316 if (lmb_addrs_overlap(base, size, rgnbase,
318 if (rgn[idx].flags != LMB_NONE)
326 /* The merged region's base and size */
327 rgnbase = rgn[idx_start].base;
328 mergebase = min(base, rgnbase);
329 rgnend = rgn[idx_end].base + rgn[idx_end].size;
330 mergeend = max(rgnend, (base + size));
332 rgn[idx_start].base = mergebase;
333 rgn[idx_start].size = mergeend - mergebase;
335 /* Now remove the merged regions */
337 lmb_remove_region(lmb_rgn_lst, idx_start + 1);
343 * lmb_add_region_flags() - Add an lmb region to the given list
344 * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
345 * @base: Start address of the region
346 * @size: Size of the region to be added
347 * @flags: Attributes of the LMB region
349 * Add a region of memory to the list. If the region does not exist, add
350 * it to the list. Depending on the attributes of the region to be added,
351 * the function might resize an already existing region or coalesce two
355 * Returns: 0 if the region addition successful, -1 on failure
357 static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
358 phys_size_t size, enum lmb_flags flags)
360 unsigned long coalesced = 0;
362 struct lmb_region *rgn = lmb_rgn_lst->data;
364 if (alist_err(lmb_rgn_lst))
367 /* First try and coalesce this LMB with another. */
368 for (i = 0; i < lmb_rgn_lst->count; i++) {
369 phys_addr_t rgnbase = rgn[i].base;
370 phys_size_t rgnsize = rgn[i].size;
371 phys_size_t rgnflags = rgn[i].flags;
372 phys_addr_t end = base + size - 1;
373 phys_addr_t rgnend = rgnbase + rgnsize - 1;
374 if (rgnbase <= base && end <= rgnend) {
375 if (flags == rgnflags)
376 /* Already have this region, so we're done */
379 return -1; /* regions with new flags */
382 ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
384 if (flags != rgnflags)
390 } else if (ret < 0) {
391 if (flags != rgnflags)
396 } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
397 if (flags == LMB_NONE) {
398 ret = lmb_resize_regions(lmb_rgn_lst, i, base,
411 if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
412 rgn = lmb_rgn_lst->data;
413 if (rgn[i].flags == rgn[i + 1].flags) {
414 if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
415 lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
417 } else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
418 /* fix overlapping area */
419 lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
428 if (alist_full(lmb_rgn_lst) &&
429 !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
431 rgn = lmb_rgn_lst->data;
433 /* Couldn't coalesce the LMB, so add it to the sorted table. */
434 for (i = lmb_rgn_lst->count; i >= 0; i--) {
435 if (i && base < rgn[i - 1].base) {
440 rgn[i].flags = flags;
445 lmb_rgn_lst->count++;
450 static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
453 return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
456 /* This routine may be called with relocation disabled. */
457 long lmb_add(phys_addr_t base, phys_size_t size)
459 struct alist *lmb_rgn_lst = &lmb.free_mem;
461 return lmb_add_region(lmb_rgn_lst, base, size);
464 long lmb_free(phys_addr_t base, phys_size_t size)
466 struct lmb_region *rgn;
467 struct alist *lmb_rgn_lst = &lmb.used_mem;
468 phys_addr_t rgnbegin, rgnend;
469 phys_addr_t end = base + size - 1;
472 rgnbegin = rgnend = 0; /* supress gcc warnings */
473 rgn = lmb_rgn_lst->data;
474 /* Find the region where (base, size) belongs to */
475 for (i = 0; i < lmb_rgn_lst->count; i++) {
476 rgnbegin = rgn[i].base;
477 rgnend = rgnbegin + rgn[i].size - 1;
479 if ((rgnbegin <= base) && (end <= rgnend))
483 /* Didn't find the region */
484 if (i == lmb_rgn_lst->count)
487 /* Check to see if we are removing entire region */
488 if ((rgnbegin == base) && (rgnend == end)) {
489 lmb_remove_region(lmb_rgn_lst, i);
493 /* Check to see if region is matching at the front */
494 if (rgnbegin == base) {
495 rgn[i].base = end + 1;
500 /* Check to see if the region is matching at the end */
507 * We need to split the entry - adjust the current one to the
508 * beginging of the hole and add the region after hole.
510 rgn[i].size = base - rgn[i].base;
511 return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
515 long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
517 struct alist *lmb_rgn_lst = &lmb.used_mem;
519 return lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
522 long lmb_reserve(phys_addr_t base, phys_size_t size)
524 return lmb_reserve_flags(base, size, LMB_NONE);
527 static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
531 struct lmb_region *rgn = lmb_rgn_lst->data;
533 for (i = 0; i < lmb_rgn_lst->count; i++) {
534 phys_addr_t rgnbase = rgn[i].base;
535 phys_size_t rgnsize = rgn[i].size;
536 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
540 return (i < lmb_rgn_lst->count) ? i : -1;
543 static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
545 return addr & ~(size - 1);
548 static phys_addr_t __lmb_alloc_base(phys_size_t size, ulong align,
549 phys_addr_t max_addr, enum lmb_flags flags)
552 phys_addr_t base = 0;
553 phys_addr_t res_base;
554 struct lmb_region *lmb_used = lmb.used_mem.data;
555 struct lmb_region *lmb_memory = lmb.free_mem.data;
557 for (i = lmb.free_mem.count - 1; i >= 0; i--) {
558 phys_addr_t lmbbase = lmb_memory[i].base;
559 phys_size_t lmbsize = lmb_memory[i].size;
563 if (max_addr == LMB_ALLOC_ANYWHERE)
564 base = lmb_align_down(lmbbase + lmbsize - size, align);
565 else if (lmbbase < max_addr) {
566 base = lmbbase + lmbsize;
569 base = min(base, max_addr);
570 base = lmb_align_down(base - size, align);
574 while (base && lmbbase <= base) {
575 rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
577 /* This area isn't reserved, take it */
578 if (lmb_add_region_flags(&lmb.used_mem, base,
584 res_base = lmb_used[rgn].base;
587 base = lmb_align_down(res_base - size, align);
593 phys_addr_t lmb_alloc(phys_size_t size, ulong align)
595 return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
598 phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
602 alloc = __lmb_alloc_base(size, align, max_addr, LMB_NONE);
605 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
606 (ulong)size, (ulong)max_addr);
611 static phys_addr_t __lmb_alloc_addr(phys_addr_t base, phys_size_t size,
612 enum lmb_flags flags)
615 struct lmb_region *lmb_memory = lmb.free_mem.data;
617 /* Check if the requested address is in one of the memory regions */
618 rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
621 * Check if the requested end address is in the same memory
624 if (lmb_addrs_overlap(lmb_memory[rgn].base,
625 lmb_memory[rgn].size,
626 base + size - 1, 1)) {
627 /* ok, reserve the memory */
628 if (lmb_reserve_flags(base, size, flags) >= 0)
637 * Try to allocate a specific address range: must be in defined memory but not
640 phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
642 return __lmb_alloc_addr(base, size, LMB_NONE);
645 /* Return number of bytes from a given address that are free */
646 phys_size_t lmb_get_free_size(phys_addr_t addr)
650 struct lmb_region *lmb_used = lmb.used_mem.data;
651 struct lmb_region *lmb_memory = lmb.free_mem.data;
653 /* check if the requested address is in the memory regions */
654 rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
656 for (i = 0; i < lmb.used_mem.count; i++) {
657 if (addr < lmb_used[i].base) {
658 /* first reserved range > requested address */
659 return lmb_used[i].base - addr;
661 if (lmb_used[i].base +
662 lmb_used[i].size > addr) {
663 /* requested addr is in this reserved range */
667 /* if we come here: no reserved ranges above requested addr */
668 return lmb_memory[lmb.free_mem.count - 1].base +
669 lmb_memory[lmb.free_mem.count - 1].size - addr;
674 int lmb_is_reserved_flags(phys_addr_t addr, int flags)
677 struct lmb_region *lmb_used = lmb.used_mem.data;
679 for (i = 0; i < lmb.used_mem.count; i++) {
680 phys_addr_t upper = lmb_used[i].base +
681 lmb_used[i].size - 1;
682 if (addr >= lmb_used[i].base && addr <= upper)
683 return (lmb_used[i].flags & flags) == flags;
688 __weak void board_lmb_reserve(void)
690 /* please define platform specific board_lmb_reserve() */
693 __weak void arch_lmb_reserve(void)
695 /* please define platform specific arch_lmb_reserve() */
698 static int lmb_setup(void)
702 ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
703 (uint)LMB_ALIST_INITIAL_SIZE);
705 log_debug("Unable to initialise the list for LMB free memory\n");
709 ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
710 (uint)LMB_ALIST_INITIAL_SIZE);
712 log_debug("Unable to initialise the list for LMB used memory\n");
720 * lmb_init() - Initialise the LMB module
722 * Initialise the LMB lists needed for keeping the memory map. There
723 * are two lists, in form of alloced list data structure. One for the
724 * available memory, and one for the used memory. Initialise the two
725 * lists as part of board init. Add memory to the available memory
726 * list and reserve common areas by adding them to the used memory
729 * Return: 0 on success, -ve on error
737 log_info("Unable to init LMB\n");
743 /* Reserve the U-Boot image region once U-Boot has relocated */
744 if (spl_phase() == PHASE_SPL)
745 lmb_reserve_common_spl();
746 else if (spl_phase() == PHASE_BOARD_R)
747 lmb_reserve_common((void *)gd->fdt_blob);
752 #if CONFIG_IS_ENABLED(UNIT_TEST)
753 struct lmb *lmb_get(void)
758 int lmb_push(struct lmb *store)
770 void lmb_pop(struct lmb *store)
772 alist_uninit(&lmb.free_mem);
773 alist_uninit(&lmb.used_mem);
776 #endif /* UNIT_TEST */