1 // SPDX-License-Identifier: GPL-2.0+
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
10 #include <efi_loader.h>
19 #include <asm/global_data.h>
20 #include <asm/sections.h>
21 #include <linux/kernel.h>
22 #include <linux/sizes.h>
24 DECLARE_GLOBAL_DATA_PTR;
26 #define MAP_OP_RESERVE (u8)0x1
27 #define MAP_OP_FREE (u8)0x2
28 #define MAP_OP_ADD (u8)0x3
30 #define LMB_ALLOC_ANYWHERE 0
31 #define LMB_ALIST_INITIAL_SIZE 4
33 static struct lmb lmb;
35 static bool lmb_should_notify(enum lmb_flags flags)
37 return !lmb.test && !(flags & LMB_NONOTIFY) &&
38 CONFIG_IS_ENABLED(EFI_LOADER);
41 static int __maybe_unused lmb_map_update_notify(phys_addr_t addr,
49 if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
50 log_err("Invalid map update op received (%d)\n", op);
54 efi_addr = (uintptr_t)map_sysmem(addr, 0);
55 pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
56 efi_addr &= ~EFI_PAGE_MASK;
58 status = efi_add_memory_map_pg(efi_addr, pages,
59 op == MAP_OP_RESERVE ?
60 EFI_BOOT_SERVICES_DATA :
61 EFI_CONVENTIONAL_MEMORY,
63 if (status != EFI_SUCCESS) {
64 log_err("%s: LMB Map notify failure %lu\n", __func__,
65 status & ~EFI_ERROR_MASK);
72 static void lmb_print_region_flags(enum lmb_flags flags)
75 const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" };
78 bitpos = flags ? fls(flags) - 1 : 0;
79 assert_noisy(bitpos < ARRAY_SIZE(flag_str));
80 printf("%s", flag_str[bitpos]);
81 flags &= ~(1ull << bitpos);
82 puts(flags ? ", " : "\n");
86 static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
88 struct lmb_region *rgn = lmb_rgn_lst->data;
89 unsigned long long base, size, end;
93 printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
95 for (i = 0; i < lmb_rgn_lst->count; i++) {
98 end = base + size - 1;
101 printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ",
102 name, i, base, end, size);
103 lmb_print_region_flags(flags);
107 void lmb_dump_all_force(void)
109 printf("lmb_dump_all:\n");
110 lmb_dump_region(&lmb.free_mem, "memory");
111 lmb_dump_region(&lmb.used_mem, "reserved");
114 void lmb_dump_all(void)
117 lmb_dump_all_force();
121 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
122 phys_addr_t base2, phys_size_t size2)
124 const phys_addr_t base1_end = base1 + size1 - 1;
125 const phys_addr_t base2_end = base2 + size2 - 1;
127 return ((base1 <= base2_end) && (base2 <= base1_end));
130 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
131 phys_addr_t base2, phys_size_t size2)
133 if (base2 == base1 + size1)
135 else if (base1 == base2 + size2)
141 static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
144 struct lmb_region *rgn = lmb_rgn_lst->data;
146 phys_addr_t base1 = rgn[r1].base;
147 phys_size_t size1 = rgn[r1].size;
148 phys_addr_t base2 = rgn[r2].base;
149 phys_size_t size2 = rgn[r2].size;
151 return lmb_addrs_overlap(base1, size1, base2, size2);
154 static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
157 struct lmb_region *rgn = lmb_rgn_lst->data;
159 phys_addr_t base1 = rgn[r1].base;
160 phys_size_t size1 = rgn[r1].size;
161 phys_addr_t base2 = rgn[r2].base;
162 phys_size_t size2 = rgn[r2].size;
163 return lmb_addrs_adjacent(base1, size1, base2, size2);
166 static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
169 struct lmb_region *rgn = lmb_rgn_lst->data;
171 for (i = r; i < lmb_rgn_lst->count - 1; i++) {
172 rgn[i].base = rgn[i + 1].base;
173 rgn[i].size = rgn[i + 1].size;
174 rgn[i].flags = rgn[i + 1].flags;
176 lmb_rgn_lst->count--;
179 /* Assumption: base addr of region 1 < base addr of region 2 */
180 static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
183 struct lmb_region *rgn = lmb_rgn_lst->data;
185 rgn[r1].size += rgn[r2].size;
186 lmb_remove_region(lmb_rgn_lst, r2);
189 /*Assumption : base addr of region 1 < base addr of region 2*/
190 static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
191 unsigned long r1, unsigned long r2)
193 struct lmb_region *rgn = lmb_rgn_lst->data;
195 phys_addr_t base1 = rgn[r1].base;
196 phys_size_t size1 = rgn[r1].size;
197 phys_addr_t base2 = rgn[r2].base;
198 phys_size_t size2 = rgn[r2].size;
200 if (base1 + size1 > base2 + size2) {
201 printf("This will not be a case any time\n");
204 rgn[r1].size = base2 + size2 - base1;
205 lmb_remove_region(lmb_rgn_lst, r2);
208 static void lmb_reserve_uboot_region(void)
212 phys_addr_t rsv_start;
214 rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
218 * Reserve memory from aligned address below the bottom of U-Boot stack
219 * until end of RAM area to prevent LMB from overwriting that memory.
221 debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
223 /* adjust sp by 16K to be safe */
225 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
226 if (!gd->bd->bi_dram[bank].size ||
227 rsv_start < gd->bd->bi_dram[bank].start)
229 /* Watch out for RAM at end of address space! */
230 bank_end = gd->bd->bi_dram[bank].start +
231 gd->bd->bi_dram[bank].size - 1;
232 if (rsv_start > bank_end)
237 lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
240 if (gd->flags & GD_FLG_SKIP_RELOC)
241 lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
242 gd->mon_len, LMB_NOOVERWRITE);
248 static void lmb_reserve_common(void *fdt_blob)
250 lmb_reserve_uboot_region();
252 if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
253 boot_fdt_add_mem_rsv_regions(fdt_blob);
256 static __maybe_unused void lmb_reserve_common_spl(void)
258 phys_addr_t rsv_start;
259 phys_size_t rsv_size;
262 * Assume a SPL stack of 16KB. This must be
263 * more than enough for the SPL stage.
265 if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
266 rsv_start = gd->start_addr_sp - 16384;
268 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
271 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
272 /* Reserve the bss region */
273 rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
274 rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
275 (phys_addr_t)(uintptr_t)__bss_start;
276 lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
281 * lmb_add_memory() - Add memory range for LMB allocations
283 * Add the entire available memory range to the pool of memory that
284 * can be used by the LMB module for allocations.
288 void lmb_add_memory(void)
292 u64 ram_top = gd->ram_top;
293 struct bd_info *bd = gd->bd;
295 if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
296 return lmb_arch_add_memory();
298 /* Assume a 4GB ram_top if not defined */
300 ram_top = 0x100000000ULL;
302 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
303 size = bd->bi_dram[i].size;
305 lmb_add(bd->bi_dram[i].start, size);
308 * Reserve memory above ram_top as
309 * no-overwrite so that it cannot be
312 if (bd->bi_dram[i].start >= ram_top)
313 lmb_reserve_flags(bd->bi_dram[i].start, size,
319 static long lmb_resize_regions(struct alist *lmb_rgn_lst,
320 unsigned long idx_start,
321 phys_addr_t base, phys_size_t size)
324 unsigned long rgn_cnt, idx, idx_end;
325 phys_addr_t rgnbase, rgnend;
326 phys_addr_t mergebase, mergeend;
327 struct lmb_region *rgn = lmb_rgn_lst->data;
334 * First thing to do is to identify how many regions
335 * the requested region overlaps.
336 * If the flags match, combine all these overlapping
337 * regions into a single region, and remove the merged
340 while (idx <= lmb_rgn_lst->count - 1) {
341 rgnbase = rgn[idx].base;
342 rgnsize = rgn[idx].size;
344 if (lmb_addrs_overlap(base, size, rgnbase,
346 if (rgn[idx].flags != LMB_NONE)
354 /* The merged region's base and size */
355 rgnbase = rgn[idx_start].base;
356 mergebase = min(base, rgnbase);
357 rgnend = rgn[idx_end].base + rgn[idx_end].size;
358 mergeend = max(rgnend, (base + size));
360 rgn[idx_start].base = mergebase;
361 rgn[idx_start].size = mergeend - mergebase;
363 /* Now remove the merged regions */
365 lmb_remove_region(lmb_rgn_lst, idx_start + 1);
371 * lmb_add_region_flags() - Add an lmb region to the given list
372 * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
373 * @base: Start address of the region
374 * @size: Size of the region to be added
375 * @flags: Attributes of the LMB region
377 * Add a region of memory to the list. If the region does not exist, add
378 * it to the list. Depending on the attributes of the region to be added,
379 * the function might resize an already existing region or coalesce two
383 * Returns: 0 if the region addition successful, -1 on failure
385 static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
386 phys_size_t size, enum lmb_flags flags)
388 unsigned long coalesced = 0;
390 struct lmb_region *rgn = lmb_rgn_lst->data;
392 if (alist_err(lmb_rgn_lst))
395 /* First try and coalesce this LMB with another. */
396 for (i = 0; i < lmb_rgn_lst->count; i++) {
397 phys_addr_t rgnbase = rgn[i].base;
398 phys_size_t rgnsize = rgn[i].size;
399 phys_size_t rgnflags = rgn[i].flags;
400 phys_addr_t end = base + size - 1;
401 phys_addr_t rgnend = rgnbase + rgnsize - 1;
402 if (rgnbase <= base && end <= rgnend) {
403 if (flags == rgnflags)
404 /* Already have this region, so we're done */
407 return -1; /* regions with new flags */
410 ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
412 if (flags != rgnflags)
418 } else if (ret < 0) {
419 if (flags != rgnflags)
424 } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
425 if (flags == LMB_NONE) {
426 ret = lmb_resize_regions(lmb_rgn_lst, i, base,
439 if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
440 rgn = lmb_rgn_lst->data;
441 if (rgn[i].flags == rgn[i + 1].flags) {
442 if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
443 lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
445 } else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
446 /* fix overlapping area */
447 lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
456 if (alist_full(lmb_rgn_lst) &&
457 !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
459 rgn = lmb_rgn_lst->data;
461 /* Couldn't coalesce the LMB, so add it to the sorted table. */
462 for (i = lmb_rgn_lst->count; i >= 0; i--) {
463 if (i && base < rgn[i - 1].base) {
468 rgn[i].flags = flags;
473 lmb_rgn_lst->count++;
478 static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
481 return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
484 /* This routine may be called with relocation disabled. */
485 long lmb_add(phys_addr_t base, phys_size_t size)
488 struct alist *lmb_rgn_lst = &lmb.free_mem;
490 ret = lmb_add_region(lmb_rgn_lst, base, size);
494 if (lmb_should_notify(LMB_NONE))
495 return lmb_map_update_notify(base, size, MAP_OP_ADD);
500 static long _lmb_free(phys_addr_t base, phys_size_t size)
502 struct lmb_region *rgn;
503 struct alist *lmb_rgn_lst = &lmb.used_mem;
504 phys_addr_t rgnbegin, rgnend;
505 phys_addr_t end = base + size - 1;
508 rgnbegin = rgnend = 0; /* supress gcc warnings */
509 rgn = lmb_rgn_lst->data;
510 /* Find the region where (base, size) belongs to */
511 for (i = 0; i < lmb_rgn_lst->count; i++) {
512 rgnbegin = rgn[i].base;
513 rgnend = rgnbegin + rgn[i].size - 1;
515 if ((rgnbegin <= base) && (end <= rgnend))
519 /* Didn't find the region */
520 if (i == lmb_rgn_lst->count)
523 /* Check to see if we are removing entire region */
524 if ((rgnbegin == base) && (rgnend == end)) {
525 lmb_remove_region(lmb_rgn_lst, i);
529 /* Check to see if region is matching at the front */
530 if (rgnbegin == base) {
531 rgn[i].base = end + 1;
536 /* Check to see if the region is matching at the end */
543 * We need to split the entry - adjust the current one to the
544 * beginging of the hole and add the region after hole.
546 rgn[i].size = base - rgn[i].base;
547 return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
552 * lmb_free_flags() - Free up a region of memory
553 * @base: Base Address of region to be freed
554 * @size: Size of the region to be freed
555 * @flags: Memory region attributes
557 * Free up a region of memory.
559 * Return: 0 if successful, -1 on failure
561 long lmb_free_flags(phys_addr_t base, phys_size_t size,
566 ret = _lmb_free(base, size);
570 if (lmb_should_notify(flags))
571 return lmb_map_update_notify(base, size, MAP_OP_FREE);
576 long lmb_free(phys_addr_t base, phys_size_t size)
578 return lmb_free_flags(base, size, LMB_NONE);
581 long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
584 struct alist *lmb_rgn_lst = &lmb.used_mem;
586 ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
590 if (lmb_should_notify(flags))
591 return lmb_map_update_notify(base, size, MAP_OP_RESERVE);
596 long lmb_reserve(phys_addr_t base, phys_size_t size)
598 return lmb_reserve_flags(base, size, LMB_NONE);
601 static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
605 struct lmb_region *rgn = lmb_rgn_lst->data;
607 for (i = 0; i < lmb_rgn_lst->count; i++) {
608 phys_addr_t rgnbase = rgn[i].base;
609 phys_size_t rgnsize = rgn[i].size;
610 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
614 return (i < lmb_rgn_lst->count) ? i : -1;
617 static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
619 return addr & ~(size - 1);
622 static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
623 phys_addr_t max_addr, enum lmb_flags flags)
628 phys_addr_t base = 0;
629 phys_addr_t res_base;
630 struct lmb_region *lmb_used = lmb.used_mem.data;
631 struct lmb_region *lmb_memory = lmb.free_mem.data;
633 for (i = lmb.free_mem.count - 1; i >= 0; i--) {
634 phys_addr_t lmbbase = lmb_memory[i].base;
635 phys_size_t lmbsize = lmb_memory[i].size;
639 if (max_addr == LMB_ALLOC_ANYWHERE)
640 base = lmb_align_down(lmbbase + lmbsize - size, align);
641 else if (lmbbase < max_addr) {
642 base = lmbbase + lmbsize;
645 base = min(base, max_addr);
646 base = lmb_align_down(base - size, align);
650 while (base && lmbbase <= base) {
651 rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
653 /* This area isn't reserved, take it */
654 if (lmb_add_region_flags(&lmb.used_mem, base,
658 if (lmb_should_notify(flags)) {
660 ret = lmb_map_update_notify(base, size,
669 res_base = lmb_used[rgn].base;
672 base = lmb_align_down(res_base - size, align);
678 phys_addr_t lmb_alloc(phys_size_t size, ulong align)
680 return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
684 * lmb_alloc_flags() - Allocate memory region with specified attributes
685 * @size: Size of the region requested
686 * @align: Alignment of the memory region requested
687 * @flags: Memory region attributes to be set
689 * Allocate a region of memory with the attributes specified through the
692 * Return: base address on success, 0 on error
694 phys_addr_t lmb_alloc_flags(phys_size_t size, ulong align, uint flags)
696 return _lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE,
700 phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
704 alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE);
707 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
708 (ulong)size, (ulong)max_addr);
714 * lmb_alloc_base_flags() - Allocate specified memory region with specified attributes
715 * @size: Size of the region requested
716 * @align: Alignment of the memory region requested
717 * @max_addr: Maximum address of the requested region
718 * @flags: Memory region attributes to be set
720 * Allocate a region of memory with the attributes specified through the
721 * parameter. The max_addr parameter is used to specify the maximum address
722 * below which the requested region should be allocated.
724 * Return: base address on success, 0 on error
726 phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align,
727 phys_addr_t max_addr, uint flags)
731 alloc = _lmb_alloc_base(size, align, max_addr, flags);
734 printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
735 (ulong)size, (ulong)max_addr);
740 static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size,
741 enum lmb_flags flags)
744 struct lmb_region *lmb_memory = lmb.free_mem.data;
746 /* Check if the requested address is in one of the memory regions */
747 rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
750 * Check if the requested end address is in the same memory
753 if (lmb_addrs_overlap(lmb_memory[rgn].base,
754 lmb_memory[rgn].size,
755 base + size - 1, 1)) {
756 /* ok, reserve the memory */
757 if (lmb_reserve_flags(base, size, flags) >= 0)
766 * Try to allocate a specific address range: must be in defined memory but not
769 phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
771 return _lmb_alloc_addr(base, size, LMB_NONE);
775 * lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes
776 * @base: Base Address requested
777 * @size: Size of the region requested
778 * @flags: Memory region attributes to be set
780 * Allocate a region of memory with the attributes specified through the
781 * parameter. The base parameter is used to specify the base address
782 * of the requested region.
784 * Return: base address on success, 0 on error
786 phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size,
789 return _lmb_alloc_addr(base, size, flags);
792 /* Return number of bytes from a given address that are free */
793 phys_size_t lmb_get_free_size(phys_addr_t addr)
797 struct lmb_region *lmb_used = lmb.used_mem.data;
798 struct lmb_region *lmb_memory = lmb.free_mem.data;
800 /* check if the requested address is in the memory regions */
801 rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
803 for (i = 0; i < lmb.used_mem.count; i++) {
804 if (addr < lmb_used[i].base) {
805 /* first reserved range > requested address */
806 return lmb_used[i].base - addr;
808 if (lmb_used[i].base +
809 lmb_used[i].size > addr) {
810 /* requested addr is in this reserved range */
814 /* if we come here: no reserved ranges above requested addr */
815 return lmb_memory[lmb.free_mem.count - 1].base +
816 lmb_memory[lmb.free_mem.count - 1].size - addr;
821 int lmb_is_reserved_flags(phys_addr_t addr, int flags)
824 struct lmb_region *lmb_used = lmb.used_mem.data;
826 for (i = 0; i < lmb.used_mem.count; i++) {
827 phys_addr_t upper = lmb_used[i].base +
828 lmb_used[i].size - 1;
829 if (addr >= lmb_used[i].base && addr <= upper)
830 return (lmb_used[i].flags & flags) == flags;
835 static int lmb_setup(bool test)
839 ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
840 (uint)LMB_ALIST_INITIAL_SIZE);
842 log_debug("Unable to initialise the list for LMB free memory\n");
846 ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
847 (uint)LMB_ALIST_INITIAL_SIZE);
849 log_debug("Unable to initialise the list for LMB used memory\n");
859 * lmb_init() - Initialise the LMB module
861 * Initialise the LMB lists needed for keeping the memory map. There
862 * are two lists, in form of alloced list data structure. One for the
863 * available memory, and one for the used memory. Initialise the two
864 * lists as part of board init. Add memory to the available memory
865 * list and reserve common areas by adding them to the used memory
868 * Return: 0 on success, -ve on error
874 ret = lmb_setup(false);
876 log_info("Unable to init LMB\n");
882 /* Reserve the U-Boot image region once U-Boot has relocated */
883 if (xpl_phase() == PHASE_SPL)
884 lmb_reserve_common_spl();
885 else if (xpl_phase() == PHASE_BOARD_R)
886 lmb_reserve_common((void *)gd->fdt_blob);
891 struct lmb *lmb_get(void)
896 #if CONFIG_IS_ENABLED(UNIT_TEST)
897 int lmb_push(struct lmb *store)
902 ret = lmb_setup(true);
909 void lmb_pop(struct lmb *store)
911 alist_uninit(&lmb.free_mem);
912 alist_uninit(&lmb.used_mem);
915 #endif /* UNIT_TEST */