]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
fc2f4246 RG |
2 | /* |
3 | * Copyright (c) 2013, Google Inc. | |
fc2f4246 RG |
4 | */ |
5 | ||
6 | #ifndef USE_HOSTCC | |
7 | #include <common.h> | |
8 | #include <fdtdec.h> | |
f7ae49fc | 9 | #include <log.h> |
fc2f4246 RG |
10 | #include <asm/types.h> |
11 | #include <asm/byteorder.h> | |
1221ce45 | 12 | #include <linux/errno.h> |
fc2f4246 RG |
13 | #include <asm/types.h> |
14 | #include <asm/unaligned.h> | |
15 | #else | |
16 | #include "fdt_host.h" | |
17 | #include "mkimage.h" | |
18 | #include <fdt_support.h> | |
19 | #endif | |
20 | #include <u-boot/rsa.h> | |
21 | #include <u-boot/rsa-mod-exp.h> | |
22 | ||
23 | #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) | |
24 | ||
25 | #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) | |
26 | #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) | |
27 | ||
28 | /* Default public exponent for backward compatibility */ | |
29 | #define RSA_DEFAULT_PUBEXP 65537 | |
30 | ||
31 | /** | |
32 | * subtract_modulus() - subtract modulus from the given value | |
33 | * | |
34 | * @key: Key containing modulus to subtract | |
35 | * @num: Number to subtract modulus from, as little endian word array | |
36 | */ | |
37 | static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) | |
38 | { | |
39 | int64_t acc = 0; | |
40 | uint i; | |
41 | ||
42 | for (i = 0; i < key->len; i++) { | |
43 | acc += (uint64_t)num[i] - key->modulus[i]; | |
44 | num[i] = (uint32_t)acc; | |
45 | acc >>= 32; | |
46 | } | |
47 | } | |
48 | ||
49 | /** | |
50 | * greater_equal_modulus() - check if a value is >= modulus | |
51 | * | |
52 | * @key: Key containing modulus to check | |
53 | * @num: Number to check against modulus, as little endian word array | |
54 | * @return 0 if num < modulus, 1 if num >= modulus | |
55 | */ | |
56 | static int greater_equal_modulus(const struct rsa_public_key *key, | |
57 | uint32_t num[]) | |
58 | { | |
59 | int i; | |
60 | ||
61 | for (i = (int)key->len - 1; i >= 0; i--) { | |
62 | if (num[i] < key->modulus[i]) | |
63 | return 0; | |
64 | if (num[i] > key->modulus[i]) | |
65 | return 1; | |
66 | } | |
67 | ||
68 | return 1; /* equal */ | |
69 | } | |
70 | ||
71 | /** | |
72 | * montgomery_mul_add_step() - Perform montgomery multiply-add step | |
73 | * | |
74 | * Operation: montgomery result[] += a * b[] / n0inv % modulus | |
75 | * | |
76 | * @key: RSA key | |
77 | * @result: Place to put result, as little endian word array | |
78 | * @a: Multiplier | |
79 | * @b: Multiplicand, as little endian word array | |
80 | */ | |
81 | static void montgomery_mul_add_step(const struct rsa_public_key *key, | |
82 | uint32_t result[], const uint32_t a, const uint32_t b[]) | |
83 | { | |
84 | uint64_t acc_a, acc_b; | |
85 | uint32_t d0; | |
86 | uint i; | |
87 | ||
88 | acc_a = (uint64_t)a * b[0] + result[0]; | |
89 | d0 = (uint32_t)acc_a * key->n0inv; | |
90 | acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; | |
91 | for (i = 1; i < key->len; i++) { | |
92 | acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; | |
93 | acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + | |
94 | (uint32_t)acc_a; | |
95 | result[i - 1] = (uint32_t)acc_b; | |
96 | } | |
97 | ||
98 | acc_a = (acc_a >> 32) + (acc_b >> 32); | |
99 | ||
100 | result[i - 1] = (uint32_t)acc_a; | |
101 | ||
102 | if (acc_a >> 32) | |
103 | subtract_modulus(key, result); | |
104 | } | |
105 | ||
106 | /** | |
107 | * montgomery_mul() - Perform montgomery mutitply | |
108 | * | |
109 | * Operation: montgomery result[] = a[] * b[] / n0inv % modulus | |
110 | * | |
111 | * @key: RSA key | |
112 | * @result: Place to put result, as little endian word array | |
113 | * @a: Multiplier, as little endian word array | |
114 | * @b: Multiplicand, as little endian word array | |
115 | */ | |
116 | static void montgomery_mul(const struct rsa_public_key *key, | |
117 | uint32_t result[], uint32_t a[], const uint32_t b[]) | |
118 | { | |
119 | uint i; | |
120 | ||
121 | for (i = 0; i < key->len; ++i) | |
122 | result[i] = 0; | |
123 | for (i = 0; i < key->len; ++i) | |
124 | montgomery_mul_add_step(key, result, a[i], b); | |
125 | } | |
126 | ||
127 | /** | |
128 | * num_pub_exponent_bits() - Number of bits in the public exponent | |
129 | * | |
130 | * @key: RSA key | |
131 | * @num_bits: Storage for the number of public exponent bits | |
132 | */ | |
133 | static int num_public_exponent_bits(const struct rsa_public_key *key, | |
134 | int *num_bits) | |
135 | { | |
136 | uint64_t exponent; | |
137 | int exponent_bits; | |
138 | const uint max_bits = (sizeof(exponent) * 8); | |
139 | ||
140 | exponent = key->exponent; | |
141 | exponent_bits = 0; | |
142 | ||
143 | if (!exponent) { | |
144 | *num_bits = exponent_bits; | |
145 | return 0; | |
146 | } | |
147 | ||
148 | for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) | |
149 | if (!(exponent >>= 1)) { | |
150 | *num_bits = exponent_bits; | |
151 | return 0; | |
152 | } | |
153 | ||
154 | return -EINVAL; | |
155 | } | |
156 | ||
157 | /** | |
158 | * is_public_exponent_bit_set() - Check if a bit in the public exponent is set | |
159 | * | |
160 | * @key: RSA key | |
161 | * @pos: The bit position to check | |
162 | */ | |
163 | static int is_public_exponent_bit_set(const struct rsa_public_key *key, | |
164 | int pos) | |
165 | { | |
166 | return key->exponent & (1ULL << pos); | |
167 | } | |
168 | ||
169 | /** | |
170 | * pow_mod() - in-place public exponentiation | |
171 | * | |
172 | * @key: RSA key | |
173 | * @inout: Big-endian word array containing value and result | |
174 | */ | |
175 | static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) | |
176 | { | |
177 | uint32_t *result, *ptr; | |
178 | uint i; | |
179 | int j, k; | |
180 | ||
181 | /* Sanity check for stack size - key->len is in 32-bit words */ | |
182 | if (key->len > RSA_MAX_KEY_BITS / 32) { | |
183 | debug("RSA key words %u exceeds maximum %d\n", key->len, | |
184 | RSA_MAX_KEY_BITS / 32); | |
185 | return -EINVAL; | |
186 | } | |
187 | ||
188 | uint32_t val[key->len], acc[key->len], tmp[key->len]; | |
189 | uint32_t a_scaled[key->len]; | |
190 | result = tmp; /* Re-use location. */ | |
191 | ||
192 | /* Convert from big endian byte array to little endian word array. */ | |
193 | for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) | |
194 | val[i] = get_unaligned_be32(ptr); | |
195 | ||
196 | if (0 != num_public_exponent_bits(key, &k)) | |
197 | return -EINVAL; | |
198 | ||
199 | if (k < 2) { | |
200 | debug("Public exponent is too short (%d bits, minimum 2)\n", | |
201 | k); | |
202 | return -EINVAL; | |
203 | } | |
204 | ||
205 | if (!is_public_exponent_bit_set(key, 0)) { | |
206 | debug("LSB of RSA public exponent must be set.\n"); | |
207 | return -EINVAL; | |
208 | } | |
209 | ||
210 | /* the bit at e[k-1] is 1 by definition, so start with: C := M */ | |
211 | montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ | |
212 | /* retain scaled version for intermediate use */ | |
213 | memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); | |
214 | ||
215 | for (j = k - 2; j > 0; --j) { | |
216 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ | |
217 | ||
218 | if (is_public_exponent_bit_set(key, j)) { | |
219 | /* acc = tmp * val / R mod n */ | |
220 | montgomery_mul(key, acc, tmp, a_scaled); | |
221 | } else { | |
222 | /* e[j] == 0, copy tmp back to acc for next operation */ | |
223 | memcpy(acc, tmp, key->len * sizeof(acc[0])); | |
224 | } | |
225 | } | |
226 | ||
227 | /* the bit at e[0] is always 1 */ | |
228 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ | |
229 | montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ | |
230 | memcpy(result, acc, key->len * sizeof(result[0])); | |
231 | ||
232 | /* Make sure result < mod; result is at most 1x mod too large. */ | |
233 | if (greater_equal_modulus(key, result)) | |
234 | subtract_modulus(key, result); | |
235 | ||
236 | /* Convert to bigendian byte array */ | |
237 | for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) | |
238 | put_unaligned_be32(result[i], ptr); | |
239 | return 0; | |
240 | } | |
241 | ||
242 | static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) | |
243 | { | |
244 | int i; | |
245 | ||
246 | for (i = 0; i < len; i++) | |
247 | dst[i] = fdt32_to_cpu(src[len - 1 - i]); | |
248 | } | |
249 | ||
250 | int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, | |
251 | struct key_prop *prop, uint8_t *out) | |
252 | { | |
253 | struct rsa_public_key key; | |
254 | int ret; | |
255 | ||
256 | if (!prop) { | |
257 | debug("%s: Skipping invalid prop", __func__); | |
258 | return -EBADF; | |
259 | } | |
260 | key.n0inv = prop->n0inv; | |
261 | key.len = prop->num_bits; | |
262 | ||
263 | if (!prop->public_exponent) | |
264 | key.exponent = RSA_DEFAULT_PUBEXP; | |
265 | else | |
fdf0819a HS |
266 | rsa_convert_big_endian((uint32_t *)&key.exponent, |
267 | prop->public_exponent, 2); | |
fc2f4246 RG |
268 | |
269 | if (!key.len || !prop->modulus || !prop->rr) { | |
270 | debug("%s: Missing RSA key info", __func__); | |
271 | return -EFAULT; | |
272 | } | |
273 | ||
274 | /* Sanity check for stack size */ | |
275 | if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { | |
276 | debug("RSA key bits %u outside allowed range %d..%d\n", | |
277 | key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); | |
278 | return -EFAULT; | |
279 | } | |
280 | key.len /= sizeof(uint32_t) * 8; | |
281 | uint32_t key1[key.len], key2[key.len]; | |
282 | ||
283 | key.modulus = key1; | |
284 | key.rr = key2; | |
285 | rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); | |
286 | rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); | |
287 | if (!key.modulus || !key.rr) { | |
288 | debug("%s: Out of memory", __func__); | |
289 | return -ENOMEM; | |
290 | } | |
291 | ||
292 | uint32_t buf[sig_len / sizeof(uint32_t)]; | |
293 | ||
294 | memcpy(buf, sig, sig_len); | |
295 | ||
296 | ret = pow_mod(&key, buf); | |
297 | if (ret) | |
298 | return ret; | |
299 | ||
300 | memcpy(out, buf, sig_len); | |
301 | ||
302 | return 0; | |
303 | } | |
37e3a36a SDPP |
304 | |
305 | #if defined(CONFIG_CMD_ZYNQ_RSA) | |
306 | /** | |
307 | * zynq_pow_mod - in-place public exponentiation | |
308 | * | |
309 | * @keyptr: RSA key | |
310 | * @inout: Big-endian word array containing value and result | |
311 | * @return 0 on successful calculation, otherwise failure error code | |
312 | * | |
313 | * FIXME: Use pow_mod() instead of zynq_pow_mod() | |
314 | * pow_mod calculation required for zynq is bit different from | |
315 | * pw_mod above here, hence defined zynq specific routine. | |
316 | */ | |
317 | int zynq_pow_mod(u32 *keyptr, u32 *inout) | |
318 | { | |
319 | u32 *result, *ptr; | |
320 | uint i; | |
321 | struct rsa_public_key *key; | |
322 | u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES]; | |
323 | ||
324 | key = (struct rsa_public_key *)keyptr; | |
325 | ||
326 | /* Sanity check for stack size - key->len is in 32-bit words */ | |
327 | if (key->len > RSA_MAX_KEY_BITS / 32) { | |
328 | debug("RSA key words %u exceeds maximum %d\n", key->len, | |
329 | RSA_MAX_KEY_BITS / 32); | |
330 | return -EINVAL; | |
331 | } | |
332 | ||
333 | result = tmp; /* Re-use location. */ | |
334 | ||
335 | for (i = 0, ptr = inout; i < key->len; i++, ptr++) | |
336 | val[i] = *(ptr); | |
337 | ||
338 | montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ | |
339 | for (i = 0; i < 16; i += 2) { | |
340 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ | |
341 | montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ | |
342 | } | |
343 | montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ | |
344 | ||
345 | /* Make sure result < mod; result is at most 1x mod too large. */ | |
346 | if (greater_equal_modulus(key, result)) | |
347 | subtract_modulus(key, result); | |
348 | ||
349 | for (i = 0, ptr = inout; i < key->len; i++, ptr++) | |
350 | *ptr = result[i]; | |
351 | ||
352 | return 0; | |
353 | } | |
354 | #endif |