]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
fc2f4246 RG |
2 | /* |
3 | * Copyright (c) 2013, Google Inc. | |
fc2f4246 RG |
4 | */ |
5 | ||
6 | #ifndef USE_HOSTCC | |
7 | #include <common.h> | |
8 | #include <fdtdec.h> | |
9 | #include <asm/types.h> | |
10 | #include <asm/byteorder.h> | |
1221ce45 | 11 | #include <linux/errno.h> |
fc2f4246 RG |
12 | #include <asm/types.h> |
13 | #include <asm/unaligned.h> | |
14 | #else | |
15 | #include "fdt_host.h" | |
16 | #include "mkimage.h" | |
17 | #include <fdt_support.h> | |
18 | #endif | |
19 | #include <u-boot/rsa.h> | |
20 | #include <u-boot/rsa-mod-exp.h> | |
21 | ||
22 | #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) | |
23 | ||
24 | #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) | |
25 | #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) | |
26 | ||
27 | /* Default public exponent for backward compatibility */ | |
28 | #define RSA_DEFAULT_PUBEXP 65537 | |
29 | ||
30 | /** | |
31 | * subtract_modulus() - subtract modulus from the given value | |
32 | * | |
33 | * @key: Key containing modulus to subtract | |
34 | * @num: Number to subtract modulus from, as little endian word array | |
35 | */ | |
36 | static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) | |
37 | { | |
38 | int64_t acc = 0; | |
39 | uint i; | |
40 | ||
41 | for (i = 0; i < key->len; i++) { | |
42 | acc += (uint64_t)num[i] - key->modulus[i]; | |
43 | num[i] = (uint32_t)acc; | |
44 | acc >>= 32; | |
45 | } | |
46 | } | |
47 | ||
48 | /** | |
49 | * greater_equal_modulus() - check if a value is >= modulus | |
50 | * | |
51 | * @key: Key containing modulus to check | |
52 | * @num: Number to check against modulus, as little endian word array | |
53 | * @return 0 if num < modulus, 1 if num >= modulus | |
54 | */ | |
55 | static int greater_equal_modulus(const struct rsa_public_key *key, | |
56 | uint32_t num[]) | |
57 | { | |
58 | int i; | |
59 | ||
60 | for (i = (int)key->len - 1; i >= 0; i--) { | |
61 | if (num[i] < key->modulus[i]) | |
62 | return 0; | |
63 | if (num[i] > key->modulus[i]) | |
64 | return 1; | |
65 | } | |
66 | ||
67 | return 1; /* equal */ | |
68 | } | |
69 | ||
70 | /** | |
71 | * montgomery_mul_add_step() - Perform montgomery multiply-add step | |
72 | * | |
73 | * Operation: montgomery result[] += a * b[] / n0inv % modulus | |
74 | * | |
75 | * @key: RSA key | |
76 | * @result: Place to put result, as little endian word array | |
77 | * @a: Multiplier | |
78 | * @b: Multiplicand, as little endian word array | |
79 | */ | |
80 | static void montgomery_mul_add_step(const struct rsa_public_key *key, | |
81 | uint32_t result[], const uint32_t a, const uint32_t b[]) | |
82 | { | |
83 | uint64_t acc_a, acc_b; | |
84 | uint32_t d0; | |
85 | uint i; | |
86 | ||
87 | acc_a = (uint64_t)a * b[0] + result[0]; | |
88 | d0 = (uint32_t)acc_a * key->n0inv; | |
89 | acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; | |
90 | for (i = 1; i < key->len; i++) { | |
91 | acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; | |
92 | acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + | |
93 | (uint32_t)acc_a; | |
94 | result[i - 1] = (uint32_t)acc_b; | |
95 | } | |
96 | ||
97 | acc_a = (acc_a >> 32) + (acc_b >> 32); | |
98 | ||
99 | result[i - 1] = (uint32_t)acc_a; | |
100 | ||
101 | if (acc_a >> 32) | |
102 | subtract_modulus(key, result); | |
103 | } | |
104 | ||
105 | /** | |
106 | * montgomery_mul() - Perform montgomery mutitply | |
107 | * | |
108 | * Operation: montgomery result[] = a[] * b[] / n0inv % modulus | |
109 | * | |
110 | * @key: RSA key | |
111 | * @result: Place to put result, as little endian word array | |
112 | * @a: Multiplier, as little endian word array | |
113 | * @b: Multiplicand, as little endian word array | |
114 | */ | |
115 | static void montgomery_mul(const struct rsa_public_key *key, | |
116 | uint32_t result[], uint32_t a[], const uint32_t b[]) | |
117 | { | |
118 | uint i; | |
119 | ||
120 | for (i = 0; i < key->len; ++i) | |
121 | result[i] = 0; | |
122 | for (i = 0; i < key->len; ++i) | |
123 | montgomery_mul_add_step(key, result, a[i], b); | |
124 | } | |
125 | ||
126 | /** | |
127 | * num_pub_exponent_bits() - Number of bits in the public exponent | |
128 | * | |
129 | * @key: RSA key | |
130 | * @num_bits: Storage for the number of public exponent bits | |
131 | */ | |
132 | static int num_public_exponent_bits(const struct rsa_public_key *key, | |
133 | int *num_bits) | |
134 | { | |
135 | uint64_t exponent; | |
136 | int exponent_bits; | |
137 | const uint max_bits = (sizeof(exponent) * 8); | |
138 | ||
139 | exponent = key->exponent; | |
140 | exponent_bits = 0; | |
141 | ||
142 | if (!exponent) { | |
143 | *num_bits = exponent_bits; | |
144 | return 0; | |
145 | } | |
146 | ||
147 | for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) | |
148 | if (!(exponent >>= 1)) { | |
149 | *num_bits = exponent_bits; | |
150 | return 0; | |
151 | } | |
152 | ||
153 | return -EINVAL; | |
154 | } | |
155 | ||
156 | /** | |
157 | * is_public_exponent_bit_set() - Check if a bit in the public exponent is set | |
158 | * | |
159 | * @key: RSA key | |
160 | * @pos: The bit position to check | |
161 | */ | |
162 | static int is_public_exponent_bit_set(const struct rsa_public_key *key, | |
163 | int pos) | |
164 | { | |
165 | return key->exponent & (1ULL << pos); | |
166 | } | |
167 | ||
168 | /** | |
169 | * pow_mod() - in-place public exponentiation | |
170 | * | |
171 | * @key: RSA key | |
172 | * @inout: Big-endian word array containing value and result | |
173 | */ | |
174 | static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) | |
175 | { | |
176 | uint32_t *result, *ptr; | |
177 | uint i; | |
178 | int j, k; | |
179 | ||
180 | /* Sanity check for stack size - key->len is in 32-bit words */ | |
181 | if (key->len > RSA_MAX_KEY_BITS / 32) { | |
182 | debug("RSA key words %u exceeds maximum %d\n", key->len, | |
183 | RSA_MAX_KEY_BITS / 32); | |
184 | return -EINVAL; | |
185 | } | |
186 | ||
187 | uint32_t val[key->len], acc[key->len], tmp[key->len]; | |
188 | uint32_t a_scaled[key->len]; | |
189 | result = tmp; /* Re-use location. */ | |
190 | ||
191 | /* Convert from big endian byte array to little endian word array. */ | |
192 | for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) | |
193 | val[i] = get_unaligned_be32(ptr); | |
194 | ||
195 | if (0 != num_public_exponent_bits(key, &k)) | |
196 | return -EINVAL; | |
197 | ||
198 | if (k < 2) { | |
199 | debug("Public exponent is too short (%d bits, minimum 2)\n", | |
200 | k); | |
201 | return -EINVAL; | |
202 | } | |
203 | ||
204 | if (!is_public_exponent_bit_set(key, 0)) { | |
205 | debug("LSB of RSA public exponent must be set.\n"); | |
206 | return -EINVAL; | |
207 | } | |
208 | ||
209 | /* the bit at e[k-1] is 1 by definition, so start with: C := M */ | |
210 | montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ | |
211 | /* retain scaled version for intermediate use */ | |
212 | memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); | |
213 | ||
214 | for (j = k - 2; j > 0; --j) { | |
215 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ | |
216 | ||
217 | if (is_public_exponent_bit_set(key, j)) { | |
218 | /* acc = tmp * val / R mod n */ | |
219 | montgomery_mul(key, acc, tmp, a_scaled); | |
220 | } else { | |
221 | /* e[j] == 0, copy tmp back to acc for next operation */ | |
222 | memcpy(acc, tmp, key->len * sizeof(acc[0])); | |
223 | } | |
224 | } | |
225 | ||
226 | /* the bit at e[0] is always 1 */ | |
227 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ | |
228 | montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ | |
229 | memcpy(result, acc, key->len * sizeof(result[0])); | |
230 | ||
231 | /* Make sure result < mod; result is at most 1x mod too large. */ | |
232 | if (greater_equal_modulus(key, result)) | |
233 | subtract_modulus(key, result); | |
234 | ||
235 | /* Convert to bigendian byte array */ | |
236 | for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) | |
237 | put_unaligned_be32(result[i], ptr); | |
238 | return 0; | |
239 | } | |
240 | ||
241 | static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) | |
242 | { | |
243 | int i; | |
244 | ||
245 | for (i = 0; i < len; i++) | |
246 | dst[i] = fdt32_to_cpu(src[len - 1 - i]); | |
247 | } | |
248 | ||
249 | int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, | |
250 | struct key_prop *prop, uint8_t *out) | |
251 | { | |
252 | struct rsa_public_key key; | |
253 | int ret; | |
254 | ||
255 | if (!prop) { | |
256 | debug("%s: Skipping invalid prop", __func__); | |
257 | return -EBADF; | |
258 | } | |
259 | key.n0inv = prop->n0inv; | |
260 | key.len = prop->num_bits; | |
261 | ||
262 | if (!prop->public_exponent) | |
263 | key.exponent = RSA_DEFAULT_PUBEXP; | |
264 | else | |
265 | key.exponent = | |
266 | fdt64_to_cpu(*((uint64_t *)(prop->public_exponent))); | |
267 | ||
268 | if (!key.len || !prop->modulus || !prop->rr) { | |
269 | debug("%s: Missing RSA key info", __func__); | |
270 | return -EFAULT; | |
271 | } | |
272 | ||
273 | /* Sanity check for stack size */ | |
274 | if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { | |
275 | debug("RSA key bits %u outside allowed range %d..%d\n", | |
276 | key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); | |
277 | return -EFAULT; | |
278 | } | |
279 | key.len /= sizeof(uint32_t) * 8; | |
280 | uint32_t key1[key.len], key2[key.len]; | |
281 | ||
282 | key.modulus = key1; | |
283 | key.rr = key2; | |
284 | rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); | |
285 | rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); | |
286 | if (!key.modulus || !key.rr) { | |
287 | debug("%s: Out of memory", __func__); | |
288 | return -ENOMEM; | |
289 | } | |
290 | ||
291 | uint32_t buf[sig_len / sizeof(uint32_t)]; | |
292 | ||
293 | memcpy(buf, sig, sig_len); | |
294 | ||
295 | ret = pow_mod(&key, buf); | |
296 | if (ret) | |
297 | return ret; | |
298 | ||
299 | memcpy(out, buf, sig_len); | |
300 | ||
301 | return 0; | |
302 | } |