]> Git Repo - J-u-boot.git/blame - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() part 6
[J-u-boot.git] / drivers / ddr / altera / sequencer.c
CommitLineData
3da42859
DN
1/*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/arch/sdram.h>
04372fb8 10#include <errno.h>
3da42859
DN
11#include "sequencer.h"
12#include "sequencer_auto.h"
13#include "sequencer_auto_ac_init.h"
14#include "sequencer_auto_inst_init.h"
15#include "sequencer_defines.h"
16
3da42859 17static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
6afb4fe2 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
3da42859
DN
19
20static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
6afb4fe2 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
3da42859
DN
22
23static struct socfpga_sdr_reg_file *sdr_reg_file =
a1c654a8 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
3da42859
DN
25
26static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
e79025a7 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
3da42859
DN
28
29static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
1bc6f14a 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
3da42859
DN
31
32static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
1bc6f14a 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
3da42859
DN
34
35static struct socfpga_data_mgr *data_mgr =
c4815f76 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
3da42859 37
6cb9f167
MV
38static struct socfpga_sdr_ctrl *sdr_ctrl =
39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
3da42859 41#define DELTA_D 1
3da42859
DN
42
43/*
44 * In order to reduce ROM size, most of the selectable calibration steps are
45 * decided at compile time based on the user's calibration mode selection,
46 * as captured by the STATIC_CALIB_STEPS selection below.
47 *
48 * However, to support simulation-time selection of fast simulation mode, where
49 * we skip everything except the bare minimum, we need a few of the steps to
50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51 * check, which is based on the rtl-supplied value, or we dynamically compute
52 * the value to use based on the dynamically-chosen calibration mode
53 */
54
55#define DLEVEL 0
56#define STATIC_IN_RTL_SIM 0
57#define STATIC_SKIP_DELAY_LOOPS 0
58
59#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 STATIC_SKIP_DELAY_LOOPS)
61
62/* calibration steps requested by the rtl */
63uint16_t dyn_calib_steps;
64
65/*
66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67 * instead of static, we use boolean logic to select between
68 * non-skip and skip values
69 *
70 * The mask is set to include all bits when not-skipping, but is
71 * zero when skipping
72 */
73
74uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
75
76#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 ((non_skip_value) & skip_delay_mask)
78
79struct gbl_type *gbl;
80struct param_type *param;
81uint32_t curr_shadow_reg;
82
83static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 uint32_t write_group, uint32_t use_dm,
85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
3da42859
DN
87static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89{
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99}
100
2c0d2d9c 101static void reg_file_set_group(u16 set_group)
3da42859 102{
2c0d2d9c 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
3da42859
DN
104}
105
2c0d2d9c 106static void reg_file_set_stage(u8 set_stage)
3da42859 107{
2c0d2d9c 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
3da42859
DN
109}
110
2c0d2d9c 111static void reg_file_set_sub_stage(u8 set_sub_stage)
3da42859 112{
2c0d2d9c
MV
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
3da42859
DN
115}
116
7c89c2d9
MV
117/**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
9fa9c90e 122static void phy_mgr_initialize(void)
3da42859 123{
7c89c2d9
MV
124 u32 ratio;
125
3da42859 126 debug("%s:%d\n", __func__, __LINE__);
7c89c2d9 127 /* Calibration has control over path to memory */
3da42859
DN
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
1273dd9e 133 writel(0x3, &phy_mgr_cfg->mux_sel);
3da42859
DN
134
135 /* USER memory clock is not stable we begin initialization */
1273dd9e 136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
137
138 /* USER calibration status all set to zero */
1273dd9e 139 writel(0, &phy_mgr_cfg->cal_status);
3da42859 140
1273dd9e 141 writel(0, &phy_mgr_cfg->cal_debug_info);
3da42859 142
7c89c2d9
MV
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 ratio = RW_MGR_MEM_DATA_WIDTH /
154 RW_MGR_MEM_DATA_MASK_WIDTH;
155 param->dm_correct_mask = (1 << ratio) - 1;
3da42859
DN
156}
157
080bf64e
MV
158/**
159 * set_rank_and_odt_mask() - Set Rank and ODT mask
160 * @rank: Rank mask
161 * @odt_mode: ODT mode, OFF or READ_WRITE
162 *
163 * Set Rank and ODT mask (On-Die Termination).
164 */
b2dfd100 165static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
3da42859 166{
b2dfd100
MV
167 u32 odt_mask_0 = 0;
168 u32 odt_mask_1 = 0;
169 u32 cs_and_odt_mask;
3da42859 170
b2dfd100
MV
171 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 odt_mask_0 = 0x0;
173 odt_mask_1 = 0x0;
174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
287cdf6b
MV
175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 case 1: /* 1 Rank */
177 /* Read: ODT = 0 ; Write: ODT = 1 */
3da42859
DN
178 odt_mask_0 = 0x0;
179 odt_mask_1 = 0x1;
287cdf6b
MV
180 break;
181 case 2: /* 2 Ranks */
3da42859 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
080bf64e
MV
183 /*
184 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 * OR
186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 *
188 * Since MEM_NUMBER_OF_RANKS is 2, they
189 * are both single rank with 2 CS each
190 * (special for RDIMM).
191 *
3da42859
DN
192 * Read: Turn on ODT on the opposite rank
193 * Write: Turn on ODT on all ranks
194 */
195 odt_mask_0 = 0x3 & ~(1 << rank);
196 odt_mask_1 = 0x3;
197 } else {
198 /*
080bf64e
MV
199 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 *
201 * Read: Turn on ODT off on all ranks
202 * Write: Turn on ODT on active rank
3da42859
DN
203 */
204 odt_mask_0 = 0x0;
205 odt_mask_1 = 0x3 & (1 << rank);
206 }
287cdf6b
MV
207 break;
208 case 4: /* 4 Ranks */
209 /* Read:
3da42859 210 * ----------+-----------------------+
3da42859
DN
211 * | ODT |
212 * Read From +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 0 |
216 * 1 | 1 | 0 | 0 | 0 |
217 * 2 | 0 | 0 | 0 | 1 |
218 * 3 | 0 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 *
221 * Write:
222 * ----------+-----------------------+
3da42859
DN
223 * | ODT |
224 * Write To +-----------------------+
225 * Rank | 3 | 2 | 1 | 0 |
226 * ----------+-----+-----+-----+-----+
227 * 0 | 0 | 1 | 0 | 1 |
228 * 1 | 1 | 0 | 1 | 0 |
229 * 2 | 0 | 1 | 0 | 1 |
230 * 3 | 1 | 0 | 1 | 0 |
231 * ----------+-----+-----+-----+-----+
232 */
233 switch (rank) {
234 case 0:
235 odt_mask_0 = 0x4;
236 odt_mask_1 = 0x5;
237 break;
238 case 1:
239 odt_mask_0 = 0x8;
240 odt_mask_1 = 0xA;
241 break;
242 case 2:
243 odt_mask_0 = 0x1;
244 odt_mask_1 = 0x5;
245 break;
246 case 3:
247 odt_mask_0 = 0x2;
248 odt_mask_1 = 0xA;
249 break;
250 }
287cdf6b 251 break;
3da42859 252 }
3da42859
DN
253 }
254
b2dfd100
MV
255 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 ((0xFF & odt_mask_0) << 8) |
257 ((0xFF & odt_mask_1) << 16);
1273dd9e
MV
258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
260}
261
c76976d9
MV
262/**
263 * scc_mgr_set() - Set SCC Manager register
264 * @off: Base offset in SCC Manager space
265 * @grp: Read/Write group
266 * @val: Value to be set
267 *
268 * This function sets the SCC Manager (Scan Chain Control Manager) register.
269 */
270static void scc_mgr_set(u32 off, u32 grp, u32 val)
3da42859 271{
c76976d9
MV
272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273}
3da42859 274
e893f4dc
MV
275/**
276 * scc_mgr_initialize() - Initialize SCC Manager registers
277 *
278 * Initialize SCC Manager registers.
279 */
c76976d9
MV
280static void scc_mgr_initialize(void)
281{
3da42859 282 /*
e893f4dc
MV
283 * Clear register file for HPS. 16 (2^4) is the size of the
284 * full register file in the scc mgr:
285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 * MEM_IF_READ_DQS_WIDTH - 1);
3da42859 287 */
c76976d9 288 int i;
e893f4dc 289
3da42859 290 for (i = 0; i < 16; i++) {
7ac40d25 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
3da42859 292 __func__, __LINE__, i);
c76976d9 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
3da42859
DN
294 }
295}
296
5ff825b8
MV
297static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298{
c76976d9 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
5ff825b8
MV
300}
301
302static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
3da42859 303{
c76976d9 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
3da42859
DN
305}
306
5ff825b8
MV
307static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308{
c76976d9 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
5ff825b8
MV
310}
311
312static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313{
c76976d9 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
5ff825b8
MV
315}
316
32675249 317static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
3da42859 318{
c76976d9
MV
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 delay);
3da42859
DN
321}
322
5ff825b8 323static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
3da42859 324{
c76976d9 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
326}
327
328static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329{
c76976d9 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
331}
332
32675249 333static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
5ff825b8 334{
c76976d9
MV
335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 delay);
5ff825b8
MV
337}
338
339static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340{
c76976d9
MV
341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 delay);
5ff825b8
MV
344}
345
346/* load up dqs config settings */
347static void scc_mgr_load_dqs(uint32_t dqs)
348{
349 writel(dqs, &sdr_scc_mgr->dqs_ena);
350}
351
352/* load up dqs io config settings */
353static void scc_mgr_load_dqs_io(void)
354{
355 writel(0, &sdr_scc_mgr->dqs_io_ena);
356}
357
358/* load up dq config settings */
359static void scc_mgr_load_dq(uint32_t dq_in_group)
360{
361 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362}
363
364/* load up dm config settings */
365static void scc_mgr_load_dm(uint32_t dm)
366{
367 writel(dm, &sdr_scc_mgr->dm_ena);
3da42859
DN
368}
369
0b69b807
MV
370/**
371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372 * @off: Base offset in SCC Manager space
373 * @grp: Read/Write group
374 * @val: Value to be set
375 * @update: If non-zero, trigger SCC Manager update for all ranks
376 *
377 * This function sets the SCC Manager (Scan Chain Control Manager) register
378 * and optionally triggers the SCC update for all ranks.
379 */
380static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 const int update)
3da42859 382{
0b69b807 383 u32 r;
3da42859
DN
384
385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 r += NUM_RANKS_PER_SHADOW_REG) {
0b69b807
MV
387 scc_mgr_set(off, grp, val);
388
389 if (update || (r == 0)) {
390 writel(grp, &sdr_scc_mgr->dqs_ena);
1273dd9e 391 writel(0, &sdr_scc_mgr->update);
3da42859
DN
392 }
393 }
394}
395
0b69b807
MV
396static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397{
398 /*
399 * USER although the h/w doesn't support different phases per
400 * shadow register, for simplicity our scc manager modeling
401 * keeps different phase settings per shadow reg, and it's
402 * important for us to keep them in sync to match h/w.
403 * for efficiency, the scan chain update should occur only
404 * once to sr0.
405 */
406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 read_group, phase, 0);
408}
409
3da42859
DN
410static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 uint32_t phase)
412{
0b69b807
MV
413 /*
414 * USER although the h/w doesn't support different phases per
415 * shadow register, for simplicity our scc manager modeling
416 * keeps different phase settings per shadow reg, and it's
417 * important for us to keep them in sync to match h/w.
418 * for efficiency, the scan chain update should occur only
419 * once to sr0.
420 */
421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 write_group, phase, 0);
3da42859
DN
423}
424
3da42859
DN
425static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 uint32_t delay)
427{
3da42859
DN
428 /*
429 * In shadow register mode, the T11 settings are stored in
430 * registers in the core, which are updated by the DQS_ENA
431 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 * save lots of rank switching overhead, by calling
433 * select_shadow_regs_for_update with update_scan_chains
434 * set to 0.
435 */
0b69b807
MV
436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 read_group, delay, 1);
1273dd9e 438 writel(0, &sdr_scc_mgr->update);
3da42859
DN
439}
440
5be355c1
MV
441/**
442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443 * @write_group: Write group
444 * @delay: Delay value
445 *
446 * This function sets the OCT output delay in SCC manager.
447 */
448static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
3da42859 449{
5be355c1
MV
450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 const int base = write_group * ratio;
453 int i;
3da42859
DN
454 /*
455 * Load the setting in the SCC manager
456 * Although OCT affects only write data, the OCT delay is controlled
457 * by the DQS logic block which is instantiated once per read group.
458 * For protocols where a write group consists of multiple read groups,
459 * the setting must be set multiple times.
460 */
5be355c1
MV
461 for (i = 0; i < ratio; i++)
462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
3da42859
DN
463}
464
37a37ca7
MV
465/**
466 * scc_mgr_set_hhp_extras() - Set HHP extras.
467 *
468 * Load the fixed setting in the SCC manager HHP extras.
469 */
3da42859
DN
470static void scc_mgr_set_hhp_extras(void)
471{
472 /*
473 * Load the fixed setting in the SCC manager
37a37ca7
MV
474 * bits: 0:0 = 1'b1 - DQS bypass
475 * bits: 1:1 = 1'b1 - DQ bypass
476 * bits: 4:2 = 3'b001 - rfifo_mode
477 * bits: 6:5 = 2'b01 - rfifo clock_select
478 * bits: 7:7 = 1'b0 - separate gating from ungating setting
479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
3da42859 480 */
37a37ca7
MV
481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 (1 << 2) | (1 << 1) | (1 << 0);
483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 SCC_MGR_HHP_GLOBALS_OFFSET |
485 SCC_MGR_HHP_EXTRAS_OFFSET;
486
487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 __func__, __LINE__);
489 writel(value, addr);
490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 __func__, __LINE__);
3da42859
DN
492}
493
f42af35b
MV
494/**
495 * scc_mgr_zero_all() - Zero all DQS config
496 *
497 * Zero all DQS config.
3da42859
DN
498 */
499static void scc_mgr_zero_all(void)
500{
f42af35b 501 int i, r;
3da42859
DN
502
503 /*
504 * USER Zero all DQS config settings, across all groups and all
505 * shadow registers
506 */
f42af35b
MV
507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 /*
511 * The phases actually don't exist on a per-rank basis,
512 * but there's no harm updating them several times, so
513 * let's keep the code simple.
514 */
515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 scc_mgr_set_dqs_en_phase(i, 0);
517 scc_mgr_set_dqs_en_delay(i, 0);
518 }
519
520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 scc_mgr_set_dqdqs_output_phase(i, 0);
f42af35b 522 /* Arria V/Cyclone V don't have out2. */
3da42859
DN
523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 }
525 }
526
f42af35b 527 /* Multicast to all DQS group enables. */
1273dd9e
MV
528 writel(0xff, &sdr_scc_mgr->dqs_ena);
529 writel(0, &sdr_scc_mgr->update);
3da42859
DN
530}
531
c5c5f537
MV
532/**
533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534 * @write_group: Write group
535 *
536 * Set bypass mode and trigger SCC update.
537 */
538static void scc_set_bypass_mode(const u32 write_group)
3da42859 539{
c5c5f537 540 /* Multicast to all DQ enables. */
1273dd9e
MV
541 writel(0xff, &sdr_scc_mgr->dq_ena);
542 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 543
c5c5f537 544 /* Update current DQS IO enable. */
1273dd9e 545 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 546
c5c5f537 547 /* Update the DQS logic. */
1273dd9e 548 writel(write_group, &sdr_scc_mgr->dqs_ena);
3da42859 549
c5c5f537 550 /* Hit update. */
1273dd9e 551 writel(0, &sdr_scc_mgr->update);
3da42859
DN
552}
553
5e837896
MV
554/**
555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556 * @write_group: Write group
557 *
558 * Load DQS settings for Write Group, do not trigger SCC update.
559 */
560static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
5ff825b8 561{
5e837896
MV
562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 const int base = write_group * ratio;
565 int i;
5ff825b8 566 /*
5e837896 567 * Load the setting in the SCC manager
5ff825b8
MV
568 * Although OCT affects only write data, the OCT delay is controlled
569 * by the DQS logic block which is instantiated once per read group.
570 * For protocols where a write group consists of multiple read groups,
5e837896 571 * the setting must be set multiple times.
5ff825b8 572 */
5e837896
MV
573 for (i = 0; i < ratio; i++)
574 writel(base + i, &sdr_scc_mgr->dqs_ena);
5ff825b8
MV
575}
576
d41ea93a
MV
577/**
578 * scc_mgr_zero_group() - Zero all configs for a group
579 *
580 * Zero DQ, DM, DQS and OCT configs for a group.
581 */
582static void scc_mgr_zero_group(const u32 write_group, const int out_only)
3da42859 583{
d41ea93a 584 int i, r;
3da42859 585
d41ea93a
MV
586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 r += NUM_RANKS_PER_SHADOW_REG) {
588 /* Zero all DQ config settings. */
3da42859 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
07aee5bd 590 scc_mgr_set_dq_out1_delay(i, 0);
3da42859 591 if (!out_only)
07aee5bd 592 scc_mgr_set_dq_in_delay(i, 0);
3da42859
DN
593 }
594
d41ea93a 595 /* Multicast to all DQ enables. */
1273dd9e 596 writel(0xff, &sdr_scc_mgr->dq_ena);
3da42859 597
d41ea93a
MV
598 /* Zero all DM config settings. */
599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
07aee5bd 600 scc_mgr_set_dm_out1_delay(i, 0);
3da42859 601
d41ea93a 602 /* Multicast to all DM enables. */
1273dd9e 603 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 604
d41ea93a 605 /* Zero all DQS IO settings. */
3da42859 606 if (!out_only)
32675249 607 scc_mgr_set_dqs_io_in_delay(0);
d41ea93a
MV
608
609 /* Arria V/Cyclone V don't have out2. */
32675249 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
3da42859
DN
611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 scc_mgr_load_dqs_for_write_group(write_group);
613
d41ea93a 614 /* Multicast to all DQS IO enables (only 1 in total). */
1273dd9e 615 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 616
d41ea93a 617 /* Hit update to zero everything. */
1273dd9e 618 writel(0, &sdr_scc_mgr->update);
3da42859
DN
619 }
620}
621
3da42859
DN
622/*
623 * apply and load a particular input delay for the DQ pins in a group
624 * group_bgn is the index of the first dq pin (in the write group)
625 */
32675249 626static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
3da42859
DN
627{
628 uint32_t i, p;
629
630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
07aee5bd 631 scc_mgr_set_dq_in_delay(p, delay);
3da42859
DN
632 scc_mgr_load_dq(p);
633 }
634}
635
300c2e62
MV
636/**
637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638 * @delay: Delay value
639 *
640 * Apply and load a particular output delay for the DQ pins in a group.
641 */
642static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
3da42859 643{
300c2e62 644 int i;
3da42859 645
300c2e62
MV
646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 scc_mgr_set_dq_out1_delay(i, delay);
3da42859
DN
648 scc_mgr_load_dq(i);
649 }
650}
651
652/* apply and load a particular output delay for the DM pins in a group */
32675249 653static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
3da42859
DN
654{
655 uint32_t i;
656
657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
07aee5bd 658 scc_mgr_set_dm_out1_delay(i, delay1);
3da42859
DN
659 scc_mgr_load_dm(i);
660 }
661}
662
663
664/* apply and load delay on both DQS and OCT out1 */
665static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 uint32_t delay)
667{
32675249 668 scc_mgr_set_dqs_out1_delay(delay);
3da42859
DN
669 scc_mgr_load_dqs_io();
670
671 scc_mgr_set_oct_out1_delay(write_group, delay);
672 scc_mgr_load_dqs_for_write_group(write_group);
673}
674
5cb1b508
MV
675/**
676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677 * @write_group: Write group
678 * @delay: Delay value
679 *
680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681 */
8eccde3e 682static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
8eccde3e
MV
683 const u32 delay)
684{
685 u32 i, new_delay;
3da42859 686
8eccde3e
MV
687 /* DQ shift */
688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
3da42859 689 scc_mgr_load_dq(i);
3da42859 690
8eccde3e
MV
691 /* DM shift */
692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
3da42859 693 scc_mgr_load_dm(i);
3da42859 694
5cb1b508
MV
695 /* DQS shift */
696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
3da42859 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
698 debug_cond(DLEVEL == 1,
699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 __func__, __LINE__, write_group, delay, new_delay,
701 IO_IO_OUT2_DELAY_MAX,
3da42859 702 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
703 new_delay -= IO_IO_OUT2_DELAY_MAX;
704 scc_mgr_set_dqs_out1_delay(new_delay);
3da42859
DN
705 }
706
707 scc_mgr_load_dqs_io();
708
5cb1b508
MV
709 /* OCT shift */
710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
3da42859 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
712 debug_cond(DLEVEL == 1,
713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 __func__, __LINE__, write_group, delay,
715 new_delay, IO_IO_OUT2_DELAY_MAX,
3da42859 716 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
717 new_delay -= IO_IO_OUT2_DELAY_MAX;
718 scc_mgr_set_oct_out1_delay(write_group, new_delay);
3da42859
DN
719 }
720
721 scc_mgr_load_dqs_for_write_group(write_group);
722}
723
f51a7d35
MV
724/**
725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726 * @write_group: Write group
727 * @delay: Delay value
728 *
729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
3da42859 730 */
f51a7d35
MV
731static void
732scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 const u32 delay)
3da42859 734{
f51a7d35 735 int r;
3da42859
DN
736
737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
f51a7d35 738 r += NUM_RANKS_PER_SHADOW_REG) {
5cb1b508 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
1273dd9e 740 writel(0, &sdr_scc_mgr->update);
3da42859
DN
741 }
742}
743
f936f94f
MV
744/**
745 * set_jump_as_return() - Return instruction optimization
746 *
747 * Optimization used to recover some slots in ddr3 inst_rom could be
748 * applied to other protocols if we wanted to
749 */
3da42859
DN
750static void set_jump_as_return(void)
751{
3da42859 752 /*
f936f94f 753 * To save space, we replace return with jump to special shared
3da42859 754 * RETURN instruction so we set the counter to large value so that
f936f94f 755 * we always jump.
3da42859 756 */
1273dd9e
MV
757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
759}
760
761/*
762 * should always use constants as argument to ensure all computations are
763 * performed at compile time
764 */
765static void delay_for_n_mem_clocks(const uint32_t clocks)
766{
767 uint32_t afi_clocks;
768 uint8_t inner = 0;
769 uint8_t outer = 0;
770 uint16_t c_loop = 0;
3da42859
DN
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 /* scale (rounding up) to get afi clocks */
777
778 /*
779 * Note, we don't bother accounting for being off a little bit
780 * because of a few extra instructions in outer loops
781 * Note, the loops have a test at the end, and do the test before
782 * the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 if (afi_clocks == 0) {
786 ;
787 } else if (afi_clocks <= 0x100) {
788 inner = afi_clocks-1;
789 outer = 0;
790 c_loop = 0;
791 } else if (afi_clocks <= 0x10000) {
792 inner = 0xff;
793 outer = (afi_clocks-1) >> 8;
794 c_loop = 0;
795 } else {
796 inner = 0xff;
797 outer = 0xff;
798 c_loop = (afi_clocks-1) >> 16;
799 }
800
801 /*
802 * rom instructions are structured as follows:
803 *
804 * IDLE_LOOP2: jnz cntr0, TARGET_A
805 * IDLE_LOOP1: jnz cntr1, TARGET_B
806 * return
807 *
808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 * TARGET_B is set to IDLE_LOOP2 as well
810 *
811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 *
814 * a little confusing, but it helps save precious space in the inst_rom
815 * and sequencer rom and keeps the delays more accurate and reduces
816 * overhead
817 */
818 if (afi_clocks <= 0x100) {
1273dd9e
MV
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 821
1273dd9e
MV
822 writel(RW_MGR_IDLE_LOOP1,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 824
1273dd9e
MV
825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 827 } else {
1273dd9e
MV
828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 830
1273dd9e
MV
831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 833
1273dd9e
MV
834 writel(RW_MGR_IDLE_LOOP2,
835 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 836
1273dd9e
MV
837 writel(RW_MGR_IDLE_LOOP2,
838 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
839
840 /* hack to get around compiler not being smart enough */
841 if (afi_clocks <= 0x10000) {
842 /* only need to run once */
1273dd9e
MV
843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
845 } else {
846 do {
1273dd9e
MV
847 writel(RW_MGR_IDLE_LOOP2,
848 SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
850 } while (c_loop-- != 0);
851 }
852 }
853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854}
855
944fe719
MV
856/**
857 * rw_mgr_mem_init_load_regs() - Load instruction registers
858 * @cntr0: Counter 0 value
859 * @cntr1: Counter 1 value
860 * @cntr2: Counter 2 value
861 * @jump: Jump instruction value
862 *
863 * Load instruction registers.
864 */
865static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866{
867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870 /* Load counters */
871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 &sdr_rw_load_mgr_regs->load_cntr0);
873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 &sdr_rw_load_mgr_regs->load_cntr1);
875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 &sdr_rw_load_mgr_regs->load_cntr2);
877
878 /* Load jump address */
879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883 /* Execute count instruction */
884 writel(jump, grpaddr);
885}
886
ecd2334a
MV
887/**
888 * rw_mgr_mem_load_user() - Load user calibration values
889 * @fin1: Final instruction 1
890 * @fin2: Final instruction 2
891 * @precharge: If 1, precharge the banks at the end
892 *
893 * Load user calibration values and optionally precharge the banks.
894 */
895static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 const int precharge)
3da42859 897{
ecd2334a
MV
898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 u32 r;
901
902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 if (param->skip_ranks[r]) {
904 /* request to skip the rank */
905 continue;
906 }
907
908 /* set rank */
909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911 /* precharge all banks ... */
912 if (precharge)
913 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
3da42859 914
ecd2334a
MV
915 /*
916 * USER Use Mirror-ed commands for odd ranks if address
917 * mirrorring is on
918 */
919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 set_jump_as_return();
921 writel(RW_MGR_MRS2_MIRR, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS3_MIRR, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS1_MIRR, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(fin1, grpaddr);
931 } else {
932 set_jump_as_return();
933 writel(RW_MGR_MRS2, grpaddr);
934 delay_for_n_mem_clocks(4);
935 set_jump_as_return();
936 writel(RW_MGR_MRS3, grpaddr);
937 delay_for_n_mem_clocks(4);
938 set_jump_as_return();
939 writel(RW_MGR_MRS1, grpaddr);
940 set_jump_as_return();
941 writel(fin2, grpaddr);
942 }
943
944 if (precharge)
945 continue;
946
947 set_jump_as_return();
948 writel(RW_MGR_ZQCL, grpaddr);
949
950 /* tZQinit = tDLLK = 512 ck cycles */
951 delay_for_n_mem_clocks(512);
952 }
953}
954
8e9d7d04
MV
955/**
956 * rw_mgr_mem_initialize() - Initialize RW Manager
957 *
958 * Initialize RW Manager.
959 */
ecd2334a
MV
960static void rw_mgr_mem_initialize(void)
961{
3da42859
DN
962 debug("%s:%d\n", __func__, __LINE__);
963
964 /* The reset / cke part of initialization is broadcasted to all ranks */
1273dd9e
MV
965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
967
968 /*
969 * Here's how you load register for a loop
970 * Counters are located @ 0x800
971 * Jump address are located @ 0xC00
972 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 * significant bits
976 */
977
8e9d7d04 978 /* Start with memory RESET activated */
3da42859
DN
979
980 /* tINIT = 200us */
981
982 /*
983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 * If a and b are the number of iteration in 2 nested loops
985 * it takes the following number of cycles to complete the operation:
986 * number_of_cycles = ((2 + n) * a + 2) * b
987 * where n is the number of instruction in the inner loop
988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 * b = 6A
990 */
944fe719
MV
991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 SEQ_TINIT_CNTR2_VAL,
993 RW_MGR_INIT_RESET_0_CKE_0);
3da42859 994
8e9d7d04 995 /* Indicate that memory is stable. */
1273dd9e 996 writel(1, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
997
998 /*
999 * transition the RESET to high
1000 * Wait for 500us
1001 */
1002
1003 /*
1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 * If a and b are the number of iteration in 2 nested loops
1006 * it takes the following number of cycles to complete the operation
1007 * number_of_cycles = ((2 + n) * a + 2) * b
1008 * where n is the number of instruction in the inner loop
1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 * b = FF
1011 */
944fe719
MV
1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 SEQ_TRESET_CNTR2_VAL,
1014 RW_MGR_INIT_RESET_1_CKE_0);
3da42859 1015
8e9d7d04 1016 /* Bring up clock enable. */
3da42859
DN
1017
1018 /* tXRP < 250 ck cycles */
1019 delay_for_n_mem_clocks(250);
1020
ecd2334a
MV
1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 0);
3da42859
DN
1023}
1024
1025/*
1026 * At the end of calibration we have to program the user settings in, and
1027 * USER hand off the memory to the user.
1028 */
1029static void rw_mgr_mem_handoff(void)
1030{
ecd2334a
MV
1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 /*
1033 * USER need to wait tMOD (12CK or 15ns) time before issuing
1034 * other commands, but we will have plenty of NIOS cycles before
1035 * actual handoff so its okay.
1036 */
3da42859
DN
1037}
1038
d844c7d4
MV
1039/**
1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041 * @rank_bgn: Rank number
1042 * @group: Read/Write Group
1043 * @all_ranks: Test all ranks
1044 *
1045 * Performs a guaranteed read on the patterns we are going to use during a
1046 * read test to ensure memory works.
3da42859 1047 */
d844c7d4
MV
1048static int
1049rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 const u32 all_ranks)
3da42859 1051{
d844c7d4
MV
1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 const u32 addr_offset =
1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 const u32 rank_end = all_ranks ?
1057 RW_MGR_MEM_NUMBER_OF_RANKS :
1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 const u32 correct_mask_vg = param->read_correct_mask_vg;
3da42859 1062
d844c7d4
MV
1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 int vg, r;
1065 int ret = 0;
1066
1067 bit_chk = param->read_correct_mask;
3da42859
DN
1068
1069 for (r = rank_bgn; r < rank_end; r++) {
d844c7d4 1070 /* Request to skip the rank */
3da42859 1071 if (param->skip_ranks[r])
3da42859
DN
1072 continue;
1073
d844c7d4 1074 /* Set rank */
3da42859
DN
1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077 /* Load up a constant bursts of read commands */
1273dd9e
MV
1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 writel(RW_MGR_GUARANTEED_READ,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1081
1273dd9e
MV
1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 writel(RW_MGR_GUARANTEED_READ_CONT,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
1085
1086 tmp_bit_chk = 0;
d844c7d4
MV
1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 vg >= 0; vg--) {
1089 /* Reset the FIFOs to get pointers to known state. */
1273dd9e
MV
1090 writel(0, &phy_mgr_cmd->fifo_reset);
1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 RW_MGR_RESET_READ_DATAPATH_OFFSET);
d844c7d4
MV
1093 writel(RW_MGR_GUARANTEED_READ,
1094 addr + addr_offset + (vg << 2));
3da42859 1095
1273dd9e 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
d844c7d4
MV
1097 tmp_bit_chk <<= shift_ratio;
1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
3da42859 1099 }
d844c7d4
MV
1100
1101 bit_chk &= tmp_bit_chk;
3da42859
DN
1102 }
1103
17fdc916 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1105
1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
d844c7d4
MV
1107
1108 if (bit_chk != param->read_correct_mask)
1109 ret = -EIO;
1110
1111 debug_cond(DLEVEL == 1,
1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 __func__, __LINE__, group, bit_chk,
1114 param->read_correct_mask, ret);
1115
1116 return ret;
3da42859
DN
1117}
1118
b6cb7f9e
MV
1119/**
1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121 * @rank_bgn: Rank number
1122 * @all_ranks: Test all ranks
1123 *
1124 * Load up the patterns we are going to use during a read test.
1125 */
1126static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 const int all_ranks)
3da42859 1128{
b6cb7f9e
MV
1129 const u32 rank_end = all_ranks ?
1130 RW_MGR_MEM_NUMBER_OF_RANKS :
1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 u32 r;
3da42859
DN
1133
1134 debug("%s:%d\n", __func__, __LINE__);
b6cb7f9e 1135
3da42859
DN
1136 for (r = rank_bgn; r < rank_end; r++) {
1137 if (param->skip_ranks[r])
1138 /* request to skip the rank */
1139 continue;
1140
1141 /* set rank */
1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144 /* Load up a constant bursts */
1273dd9e 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1146
1273dd9e
MV
1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1149
1273dd9e 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1151
1273dd9e
MV
1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1154
1273dd9e 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859 1156
1273dd9e
MV
1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1159
1273dd9e 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1161
1273dd9e
MV
1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859 1164
1273dd9e
MV
1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
1167 }
1168
1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170}
1171
1172/*
1173 * try a read and see if it returns correct data back. has dummy reads
1174 * inserted into the mix used to align dqs enable. has more thorough checks
1175 * than the regular read test.
1176 */
1177static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 uint32_t all_groups, uint32_t all_ranks)
1180{
1181 uint32_t r, vg;
1182 uint32_t correct_mask_vg;
1183 uint32_t tmp_bit_chk;
1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 uint32_t addr;
1187 uint32_t base_rw_mgr;
1188
1189 *bit_chk = param->read_correct_mask;
1190 correct_mask_vg = param->read_correct_mask_vg;
1191
1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195 for (r = rank_bgn; r < rank_end; r++) {
1196 if (param->skip_ranks[r])
1197 /* request to skip the rank */
1198 continue;
1199
1200 /* set rank */
1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1273dd9e 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1204
1273dd9e
MV
1205 writel(RW_MGR_READ_B2B_WAIT1,
1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1207
1273dd9e
MV
1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 writel(RW_MGR_READ_B2B_WAIT2,
1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1211
3da42859 1212 if (quick_read_mode)
1273dd9e 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859
DN
1214 /* need at least two (1+1) reads to capture failures */
1215 else if (all_groups)
1273dd9e 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1217 else
1273dd9e 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1219
1273dd9e
MV
1220 writel(RW_MGR_READ_B2B,
1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
1222 if (all_groups)
1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1273dd9e 1225 &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1226 else
1273dd9e 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1228
1273dd9e
MV
1229 writel(RW_MGR_READ_B2B,
1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
1231
1232 tmp_bit_chk = 0;
1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 /* reset the fifos to get pointers to known state */
1273dd9e
MV
1235 writel(0, &phy_mgr_cmd->fifo_reset);
1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859
DN
1238
1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
c4815f76
MV
1242 if (all_groups)
1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 else
1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
17fdc916 1247 writel(RW_MGR_READ_B2B, addr +
3da42859
DN
1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 vg) << 2));
1250
1273dd9e 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
3da42859
DN
1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254 if (vg == 0)
1255 break;
1256 }
1257 *bit_chk &= tmp_bit_chk;
1258 }
1259
c4815f76 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1262
1263 if (all_correct) {
1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 (%u == %u) => %lu", __func__, __LINE__, group,
1267 all_groups, *bit_chk, param->read_correct_mask,
1268 (long unsigned int)(*bit_chk ==
1269 param->read_correct_mask));
1270 return *bit_chk == param->read_correct_mask;
1271 } else {
1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 (%u != %lu) => %lu\n", __func__, __LINE__,
1275 group, all_groups, *bit_chk, (long unsigned int)0,
1276 (long unsigned int)(*bit_chk != 0x00));
1277 return *bit_chk != 0x00;
1278 }
1279}
1280
1281static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 uint32_t all_groups)
1284{
1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 bit_chk, all_groups, 1);
1287}
1288
60bb8a8a
MV
1289/**
1290 * rw_mgr_incr_vfifo() - Increase VFIFO value
1291 * @grp: Read/Write group
60bb8a8a
MV
1292 *
1293 * Increase VFIFO value.
1294 */
8c887b6e 1295static void rw_mgr_incr_vfifo(const u32 grp)
3da42859 1296{
1273dd9e 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
3da42859
DN
1298}
1299
60bb8a8a
MV
1300/**
1301 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302 * @grp: Read/Write group
60bb8a8a
MV
1303 *
1304 * Decrease VFIFO value.
1305 */
8c887b6e 1306static void rw_mgr_decr_vfifo(const u32 grp)
3da42859 1307{
60bb8a8a 1308 u32 i;
3da42859 1309
60bb8a8a 1310 for (i = 0; i < VFIFO_SIZE - 1; i++)
8c887b6e 1311 rw_mgr_incr_vfifo(grp);
3da42859
DN
1312}
1313
d145ca9f
MV
1314/**
1315 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1316 * @grp: Read/Write group
1317 *
1318 * Push VFIFO until a failing read happens.
1319 */
1320static int find_vfifo_failing_read(const u32 grp)
3da42859 1321{
d145ca9f 1322 u32 v, ret, bit_chk, fail_cnt = 0;
3da42859 1323
8c887b6e 1324 for (v = 0; v < VFIFO_SIZE; v++) {
d145ca9f 1325 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
3da42859 1326 __func__, __LINE__, v);
d145ca9f
MV
1327 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1328 PASS_ONE_BIT, &bit_chk, 0);
1329 if (!ret) {
3da42859
DN
1330 fail_cnt++;
1331
1332 if (fail_cnt == 2)
d145ca9f 1333 return v;
3da42859
DN
1334 }
1335
d145ca9f 1336 /* Fiddle with FIFO. */
8c887b6e 1337 rw_mgr_incr_vfifo(grp);
3da42859
DN
1338 }
1339
d145ca9f
MV
1340 /* No failing read found! Something must have gone wrong. */
1341 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1342 return 0;
3da42859
DN
1343}
1344
52e8f217
MV
1345/**
1346 * sdr_find_phase_delay() - Find DQS enable phase or delay
1347 * @working: If 1, look for working phase/delay, if 0, look for non-working
1348 * @delay: If 1, look for delay, if 0, look for phase
1349 * @grp: Read/Write group
1350 * @work: Working window position
1351 * @work_inc: Working window increment
1352 * @pd: DQS Phase/Delay Iterator
1353 *
1354 * Find working or non-working DQS enable phase setting.
1355 */
1356static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1357 u32 *work, const u32 work_inc, u32 *pd)
1358{
1359 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1360 u32 ret, bit_chk;
1361
1362 for (; *pd <= max; (*pd)++) {
1363 if (delay)
1364 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1365 else
1366 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1367
1368 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1369 PASS_ONE_BIT, &bit_chk, 0);
1370 if (!working)
1371 ret = !ret;
1372
1373 if (ret)
1374 return 0;
1375
1376 if (work)
1377 *work += work_inc;
1378 }
1379
1380 return -EINVAL;
1381}
192d6f9f
MV
1382/**
1383 * sdr_find_phase() - Find DQS enable phase
1384 * @working: If 1, look for working phase, if 0, look for non-working phase
1385 * @grp: Read/Write group
192d6f9f
MV
1386 * @work: Working window position
1387 * @i: Iterator
1388 * @p: DQS Phase Iterator
192d6f9f
MV
1389 *
1390 * Find working or non-working DQS enable phase setting.
1391 */
8c887b6e 1392static int sdr_find_phase(int working, const u32 grp, u32 *work,
86a39dc7 1393 u32 *i, u32 *p)
3da42859 1394{
192d6f9f 1395 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
52e8f217 1396 int ret;
3da42859 1397
192d6f9f
MV
1398 for (; *i < end; (*i)++) {
1399 if (working)
1400 *p = 0;
1401
52e8f217
MV
1402 ret = sdr_find_phase_delay(working, 0, grp, work,
1403 IO_DELAY_PER_OPA_TAP, p);
1404 if (!ret)
1405 return 0;
192d6f9f
MV
1406
1407 if (*p > IO_DQS_EN_PHASE_MAX) {
1408 /* Fiddle with FIFO. */
8c887b6e 1409 rw_mgr_incr_vfifo(grp);
192d6f9f
MV
1410 if (!working)
1411 *p = 0;
3da42859 1412 }
3da42859
DN
1413 }
1414
192d6f9f
MV
1415 return -EINVAL;
1416}
1417
4c5e584b
MV
1418/**
1419 * sdr_working_phase() - Find working DQS enable phase
1420 * @grp: Read/Write group
1421 * @work_bgn: Working window start position
4c5e584b
MV
1422 * @d: dtaps output value
1423 * @p: DQS Phase Iterator
1424 * @i: Iterator
1425 *
1426 * Find working DQS enable phase setting.
1427 */
8c887b6e 1428static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
4c5e584b 1429 u32 *p, u32 *i)
192d6f9f 1430{
35ee867f
MV
1431 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1432 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
192d6f9f
MV
1433 int ret;
1434
1435 *work_bgn = 0;
1436
1437 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1438 *i = 0;
1439 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
8c887b6e 1440 ret = sdr_find_phase(1, grp, work_bgn, i, p);
192d6f9f
MV
1441 if (!ret)
1442 return 0;
1443 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1444 }
1445
38ed6922 1446 /* Cannot find working solution */
192d6f9f
MV
1447 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1448 __func__, __LINE__);
1449 return -EINVAL;
3da42859
DN
1450}
1451
4c5e584b
MV
1452/**
1453 * sdr_backup_phase() - Find DQS enable backup phase
1454 * @grp: Read/Write group
1455 * @work_bgn: Working window start position
4c5e584b
MV
1456 * @p: DQS Phase Iterator
1457 *
1458 * Find DQS enable backup phase setting.
1459 */
8c887b6e 1460static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
3da42859 1461{
4c5e584b
MV
1462 u32 tmp_delay, bit_chk, d;
1463 int ret;
3da42859
DN
1464
1465 /* Special case code for backing up a phase */
1466 if (*p == 0) {
1467 *p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1468 rw_mgr_decr_vfifo(grp);
3da42859
DN
1469 } else {
1470 (*p)--;
1471 }
1472 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
521fe39c 1473 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
3da42859 1474
49891df6
MV
1475 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1476 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859 1477
4c5e584b
MV
1478 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1479 PASS_ONE_BIT, &bit_chk, 0);
1480 if (ret) {
3da42859
DN
1481 *work_bgn = tmp_delay;
1482 break;
1483 }
49891df6
MV
1484
1485 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
3da42859
DN
1486 }
1487
4c5e584b 1488 /* Restore VFIFO to old state before we decremented it (if needed). */
3da42859
DN
1489 (*p)++;
1490 if (*p > IO_DQS_EN_PHASE_MAX) {
1491 *p = 0;
8c887b6e 1492 rw_mgr_incr_vfifo(grp);
3da42859
DN
1493 }
1494
521fe39c 1495 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
3da42859
DN
1496}
1497
4c5e584b
MV
1498/**
1499 * sdr_nonworking_phase() - Find non-working DQS enable phase
1500 * @grp: Read/Write group
1501 * @work_end: Working window end position
4c5e584b
MV
1502 * @p: DQS Phase Iterator
1503 * @i: Iterator
1504 *
1505 * Find non-working DQS enable phase setting.
1506 */
8c887b6e 1507static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
3da42859 1508{
192d6f9f 1509 int ret;
3da42859
DN
1510
1511 (*p)++;
1512 *work_end += IO_DELAY_PER_OPA_TAP;
1513 if (*p > IO_DQS_EN_PHASE_MAX) {
192d6f9f 1514 /* Fiddle with FIFO. */
3da42859 1515 *p = 0;
8c887b6e 1516 rw_mgr_incr_vfifo(grp);
3da42859
DN
1517 }
1518
8c887b6e 1519 ret = sdr_find_phase(0, grp, work_end, i, p);
192d6f9f
MV
1520 if (ret) {
1521 /* Cannot see edge of failing read. */
1522 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1523 __func__, __LINE__);
3da42859
DN
1524 }
1525
192d6f9f 1526 return ret;
3da42859
DN
1527}
1528
0a13a0fb
MV
1529/**
1530 * sdr_find_window_center() - Find center of the working DQS window.
1531 * @grp: Read/Write group
1532 * @work_bgn: First working settings
1533 * @work_end: Last working settings
0a13a0fb
MV
1534 *
1535 * Find center of the working DQS enable window.
1536 */
1537static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
8c887b6e 1538 const u32 work_end)
3da42859 1539{
8c887b6e 1540 u32 bit_chk, work_mid;
3da42859 1541 int tmp_delay = 0;
28fd242a 1542 int i, p, d;
3da42859 1543
28fd242a 1544 work_mid = (work_bgn + work_end) / 2;
3da42859
DN
1545
1546 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
28fd242a 1547 work_bgn, work_end, work_mid);
3da42859 1548 /* Get the middle delay to be less than a VFIFO delay */
cbb0b7e0 1549 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
28fd242a 1550
3da42859 1551 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
cbb0b7e0 1552 work_mid %= tmp_delay;
28fd242a 1553 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
3da42859 1554
cbb0b7e0
MV
1555 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1556 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1557 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1558 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1559
1560 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1561
1562 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1563 if (d > IO_DQS_EN_DELAY_MAX)
1564 d = IO_DQS_EN_DELAY_MAX;
1565 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
28fd242a 1566
28fd242a 1567 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
3da42859 1568
cbb0b7e0 1569 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
28fd242a 1570 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859
DN
1571
1572 /*
1573 * push vfifo until we can successfully calibrate. We can do this
1574 * because the largest possible margin in 1 VFIFO cycle.
1575 */
1576 for (i = 0; i < VFIFO_SIZE; i++) {
8c887b6e 1577 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
28fd242a 1578 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
3da42859 1579 PASS_ONE_BIT,
28fd242a 1580 &bit_chk, 0)) {
0a13a0fb 1581 debug_cond(DLEVEL == 2,
8c887b6e
MV
1582 "%s:%d center: found: ptap=%u dtap=%u\n",
1583 __func__, __LINE__, p, d);
0a13a0fb 1584 return 0;
3da42859
DN
1585 }
1586
0a13a0fb 1587 /* Fiddle with FIFO. */
8c887b6e 1588 rw_mgr_incr_vfifo(grp);
3da42859
DN
1589 }
1590
0a13a0fb
MV
1591 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1592 __func__, __LINE__);
1593 return -EINVAL;
3da42859
DN
1594}
1595
914546e7 1596static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
3da42859 1597{
5735540f
MV
1598 u32 d, p, i;
1599 u32 dtaps_per_ptap;
1600 u32 work_bgn, work_end;
1601 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1602 int ret;
3da42859
DN
1603
1604 debug("%s:%d %u\n", __func__, __LINE__, grp);
1605
1606 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1607
1608 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1609 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1610
2f3589ca
MV
1611 /* Step 0: Determine number of delay taps for each phase tap. */
1612 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
3da42859 1613
2f3589ca 1614 /* Step 1: First push vfifo until we get a failing read. */
d145ca9f 1615 find_vfifo_failing_read(grp);
3da42859 1616
2f3589ca 1617 /* Step 2: Find first working phase, increment in ptaps. */
3da42859 1618 work_bgn = 0;
914546e7
MV
1619 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1620 if (ret)
1621 return ret;
3da42859
DN
1622
1623 work_end = work_bgn;
1624
1625 /*
2f3589ca
MV
1626 * If d is 0 then the working window covers a phase tap and we can
1627 * follow the old procedure. Otherwise, we've found the beginning
3da42859
DN
1628 * and we need to increment the dtaps until we find the end.
1629 */
1630 if (d == 0) {
2f3589ca
MV
1631 /*
1632 * Step 3a: If we have room, back off by one and
1633 * increment in dtaps.
1634 */
8c887b6e 1635 sdr_backup_phase(grp, &work_bgn, &p);
3da42859 1636
2f3589ca
MV
1637 /*
1638 * Step 4a: go forward from working phase to non working
1639 * phase, increment in ptaps.
1640 */
914546e7
MV
1641 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1642 if (ret)
1643 return ret;
3da42859 1644
2f3589ca 1645 /* Step 5a: Back off one from last, increment in dtaps. */
3da42859
DN
1646
1647 /* Special case code for backing up a phase */
1648 if (p == 0) {
1649 p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1650 rw_mgr_decr_vfifo(grp);
3da42859
DN
1651 } else {
1652 p = p - 1;
1653 }
1654
1655 work_end -= IO_DELAY_PER_OPA_TAP;
1656 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1657
3da42859
DN
1658 d = 0;
1659
2f3589ca
MV
1660 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1661 __func__, __LINE__, p);
3da42859
DN
1662 }
1663
2f3589ca 1664 /* The dtap increment to find the failing edge is done here. */
52e8f217
MV
1665 sdr_find_phase_delay(0, 1, grp, &work_end,
1666 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
3da42859
DN
1667
1668 /* Go back to working dtap */
1669 if (d != 0)
1670 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1671
2f3589ca
MV
1672 debug_cond(DLEVEL == 2,
1673 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1674 __func__, __LINE__, p, d - 1, work_end);
3da42859
DN
1675
1676 if (work_end < work_bgn) {
1677 /* nil range */
2f3589ca
MV
1678 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1679 __func__, __LINE__);
914546e7 1680 return -EINVAL;
3da42859
DN
1681 }
1682
2f3589ca 1683 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
3da42859
DN
1684 __func__, __LINE__, work_bgn, work_end);
1685
3da42859 1686 /*
2f3589ca
MV
1687 * We need to calculate the number of dtaps that equal a ptap.
1688 * To do that we'll back up a ptap and re-find the edge of the
1689 * window using dtaps
3da42859 1690 */
2f3589ca
MV
1691 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1692 __func__, __LINE__);
3da42859
DN
1693
1694 /* Special case code for backing up a phase */
1695 if (p == 0) {
1696 p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1697 rw_mgr_decr_vfifo(grp);
2f3589ca
MV
1698 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1699 __func__, __LINE__, p);
3da42859
DN
1700 } else {
1701 p = p - 1;
2f3589ca
MV
1702 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1703 __func__, __LINE__, p);
3da42859
DN
1704 }
1705
1706 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1707
1708 /*
1709 * Increase dtap until we first see a passing read (in case the
2f3589ca
MV
1710 * window is smaller than a ptap), and then a failing read to
1711 * mark the edge of the window again.
3da42859
DN
1712 */
1713
2f3589ca
MV
1714 /* Find a passing read. */
1715 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
3da42859 1716 __func__, __LINE__);
3da42859 1717
52e8f217 1718 initial_failing_dtap = d;
3da42859 1719
52e8f217 1720 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
3da42859 1721 if (found_passing_read) {
2f3589ca
MV
1722 /* Find a failing read. */
1723 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1724 __func__, __LINE__);
52e8f217
MV
1725 d++;
1726 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1727 &d);
3da42859 1728 } else {
2f3589ca
MV
1729 debug_cond(DLEVEL == 1,
1730 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1731 __func__, __LINE__);
3da42859
DN
1732 }
1733
1734 /*
1735 * The dynamically calculated dtaps_per_ptap is only valid if we
1736 * found a passing/failing read. If we didn't, it means d hit the max
1737 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1738 * statically calculated value.
1739 */
1740 if (found_passing_read && found_failing_read)
1741 dtaps_per_ptap = d - initial_failing_dtap;
1742
1273dd9e 1743 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
2f3589ca
MV
1744 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1745 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
3da42859 1746
2f3589ca 1747 /* Step 6: Find the centre of the window. */
914546e7 1748 ret = sdr_find_window_center(grp, work_bgn, work_end);
3da42859 1749
914546e7 1750 return ret;
3da42859
DN
1751}
1752
3da42859
DN
1753/* per-bit deskew DQ and center */
1754static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1755 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1756 uint32_t use_read_test, uint32_t update_fom)
1757{
1758 uint32_t i, p, d, min_index;
1759 /*
1760 * Store these as signed since there are comparisons with
1761 * signed numbers.
1762 */
1763 uint32_t bit_chk;
1764 uint32_t sticky_bit_chk;
1765 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1766 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1767 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1768 int32_t mid;
1769 int32_t orig_mid_min, mid_min;
1770 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1771 final_dqs_en;
1772 int32_t dq_margin, dqs_margin;
1773 uint32_t stop;
1774 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1775 uint32_t addr;
1776
1777 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1778
c4815f76 1779 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
17fdc916 1780 start_dqs = readl(addr + (read_group << 2));
3da42859 1781 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
17fdc916 1782 start_dqs_en = readl(addr + ((read_group << 2)
3da42859
DN
1783 - IO_DQS_EN_DELAY_OFFSET));
1784
1785 /* set the left and right edge of each bit to an illegal value */
1786 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1787 sticky_bit_chk = 0;
1788 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1789 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1790 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1791 }
1792
3da42859
DN
1793 /* Search for the left edge of the window for each bit */
1794 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1795 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1796
1273dd9e 1797 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1798
1799 /*
1800 * Stop searching when the read test doesn't pass AND when
1801 * we've seen a passing read on every bit.
1802 */
1803 if (use_read_test) {
1804 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1805 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1806 &bit_chk, 0, 0);
1807 } else {
1808 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1809 0, PASS_ONE_BIT,
1810 &bit_chk, 0);
1811 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1812 (read_group - (write_group *
1813 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1814 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1815 stop = (bit_chk == 0);
1816 }
1817 sticky_bit_chk = sticky_bit_chk | bit_chk;
1818 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1819 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1820 && %u", __func__, __LINE__, d,
1821 sticky_bit_chk,
1822 param->read_correct_mask, stop);
1823
1824 if (stop == 1) {
1825 break;
1826 } else {
1827 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1828 if (bit_chk & 1) {
1829 /* Remember a passing test as the
1830 left_edge */
1831 left_edge[i] = d;
1832 } else {
1833 /* If a left edge has not been seen yet,
1834 then a future passing test will mark
1835 this edge as the right edge */
1836 if (left_edge[i] ==
1837 IO_IO_IN_DELAY_MAX + 1) {
1838 right_edge[i] = -(d + 1);
1839 }
1840 }
1841 bit_chk = bit_chk >> 1;
1842 }
1843 }
1844 }
1845
1846 /* Reset DQ delay chains to 0 */
32675249 1847 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
3da42859
DN
1848 sticky_bit_chk = 0;
1849 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1850 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1851 %d right_edge[%u]: %d\n", __func__, __LINE__,
1852 i, left_edge[i], i, right_edge[i]);
1853
1854 /*
1855 * Check for cases where we haven't found the left edge,
1856 * which makes our assignment of the the right edge invalid.
1857 * Reset it to the illegal value.
1858 */
1859 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1860 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1861 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1862 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1863 right_edge[%u]: %d\n", __func__, __LINE__,
1864 i, right_edge[i]);
1865 }
1866
1867 /*
1868 * Reset sticky bit (except for bits where we have seen
1869 * both the left and right edge).
1870 */
1871 sticky_bit_chk = sticky_bit_chk << 1;
1872 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1873 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1874 sticky_bit_chk = sticky_bit_chk | 1;
1875 }
1876
1877 if (i == 0)
1878 break;
1879 }
1880
3da42859
DN
1881 /* Search for the right edge of the window for each bit */
1882 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1883 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1884 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1885 uint32_t delay = d + start_dqs_en;
1886 if (delay > IO_DQS_EN_DELAY_MAX)
1887 delay = IO_DQS_EN_DELAY_MAX;
1888 scc_mgr_set_dqs_en_delay(read_group, delay);
1889 }
1890 scc_mgr_load_dqs(read_group);
1891
1273dd9e 1892 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1893
1894 /*
1895 * Stop searching when the read test doesn't pass AND when
1896 * we've seen a passing read on every bit.
1897 */
1898 if (use_read_test) {
1899 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1900 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1901 &bit_chk, 0, 0);
1902 } else {
1903 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1904 0, PASS_ONE_BIT,
1905 &bit_chk, 0);
1906 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1907 (read_group - (write_group *
1908 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1909 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1910 stop = (bit_chk == 0);
1911 }
1912 sticky_bit_chk = sticky_bit_chk | bit_chk;
1913 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1914
1915 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1916 %u && %u", __func__, __LINE__, d,
1917 sticky_bit_chk, param->read_correct_mask, stop);
1918
1919 if (stop == 1) {
1920 break;
1921 } else {
1922 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1923 if (bit_chk & 1) {
1924 /* Remember a passing test as
1925 the right_edge */
1926 right_edge[i] = d;
1927 } else {
1928 if (d != 0) {
1929 /* If a right edge has not been
1930 seen yet, then a future passing
1931 test will mark this edge as the
1932 left edge */
1933 if (right_edge[i] ==
1934 IO_IO_IN_DELAY_MAX + 1) {
1935 left_edge[i] = -(d + 1);
1936 }
1937 } else {
1938 /* d = 0 failed, but it passed
1939 when testing the left edge,
1940 so it must be marginal,
1941 set it to -1 */
1942 if (right_edge[i] ==
1943 IO_IO_IN_DELAY_MAX + 1 &&
1944 left_edge[i] !=
1945 IO_IO_IN_DELAY_MAX
1946 + 1) {
1947 right_edge[i] = -1;
1948 }
1949 /* If a right edge has not been
1950 seen yet, then a future passing
1951 test will mark this edge as the
1952 left edge */
1953 else if (right_edge[i] ==
1954 IO_IO_IN_DELAY_MAX +
1955 1) {
1956 left_edge[i] = -(d + 1);
1957 }
1958 }
1959 }
1960
1961 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1962 d=%u]: ", __func__, __LINE__, d);
1963 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1964 (int)(bit_chk & 1), i, left_edge[i]);
1965 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1966 right_edge[i]);
1967 bit_chk = bit_chk >> 1;
1968 }
1969 }
1970 }
1971
1972 /* Check that all bits have a window */
3da42859
DN
1973 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1974 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1975 %d right_edge[%u]: %d", __func__, __LINE__,
1976 i, left_edge[i], i, right_edge[i]);
1977 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1978 == IO_IO_IN_DELAY_MAX + 1)) {
1979 /*
1980 * Restore delay chain settings before letting the loop
1981 * in rw_mgr_mem_calibrate_vfifo to retry different
1982 * dqs/ck relationships.
1983 */
1984 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1985 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1986 scc_mgr_set_dqs_en_delay(read_group,
1987 start_dqs_en);
1988 }
1989 scc_mgr_load_dqs(read_group);
1273dd9e 1990 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1991
1992 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1993 find edge [%u]: %d %d", __func__, __LINE__,
1994 i, left_edge[i], right_edge[i]);
1995 if (use_read_test) {
1996 set_failing_group_stage(read_group *
1997 RW_MGR_MEM_DQ_PER_READ_DQS + i,
1998 CAL_STAGE_VFIFO,
1999 CAL_SUBSTAGE_VFIFO_CENTER);
2000 } else {
2001 set_failing_group_stage(read_group *
2002 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2003 CAL_STAGE_VFIFO_AFTER_WRITES,
2004 CAL_SUBSTAGE_VFIFO_CENTER);
2005 }
2006 return 0;
2007 }
2008 }
2009
2010 /* Find middle of window for each DQ bit */
2011 mid_min = left_edge[0] - right_edge[0];
2012 min_index = 0;
2013 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2014 mid = left_edge[i] - right_edge[i];
2015 if (mid < mid_min) {
2016 mid_min = mid;
2017 min_index = i;
2018 }
2019 }
2020
2021 /*
2022 * -mid_min/2 represents the amount that we need to move DQS.
2023 * If mid_min is odd and positive we'll need to add one to
2024 * make sure the rounding in further calculations is correct
2025 * (always bias to the right), so just add 1 for all positive values.
2026 */
2027 if (mid_min > 0)
2028 mid_min++;
2029
2030 mid_min = mid_min / 2;
2031
2032 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2033 __func__, __LINE__, mid_min, min_index);
2034
2035 /* Determine the amount we can change DQS (which is -mid_min) */
2036 orig_mid_min = mid_min;
2037 new_dqs = start_dqs - mid_min;
2038 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2039 new_dqs = IO_DQS_IN_DELAY_MAX;
2040 else if (new_dqs < 0)
2041 new_dqs = 0;
2042
2043 mid_min = start_dqs - new_dqs;
2044 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2045 mid_min, new_dqs);
2046
2047 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2048 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2049 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2050 else if (start_dqs_en - mid_min < 0)
2051 mid_min += start_dqs_en - mid_min;
2052 }
2053 new_dqs = start_dqs - mid_min;
2054
2055 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2056 new_dqs=%d mid_min=%d\n", start_dqs,
2057 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2058 new_dqs, mid_min);
2059
2060 /* Initialize data for export structures */
2061 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2062 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2063
3da42859
DN
2064 /* add delay to bring centre of all DQ windows to the same "level" */
2065 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2066 /* Use values before divide by 2 to reduce round off error */
2067 shift_dq = (left_edge[i] - right_edge[i] -
2068 (left_edge[min_index] - right_edge[min_index]))/2 +
2069 (orig_mid_min - mid_min);
2070
2071 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2072 shift_dq[%u]=%d\n", i, shift_dq);
2073
1273dd9e 2074 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
17fdc916
MV
2075 temp_dq_in_delay1 = readl(addr + (p << 2));
2076 temp_dq_in_delay2 = readl(addr + (i << 2));
3da42859
DN
2077
2078 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2079 (int32_t)IO_IO_IN_DELAY_MAX) {
2080 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2081 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2082 shift_dq = -(int32_t)temp_dq_in_delay1;
2083 }
2084 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2085 shift_dq[%u]=%d\n", i, shift_dq);
2086 final_dq[i] = temp_dq_in_delay1 + shift_dq;
07aee5bd 2087 scc_mgr_set_dq_in_delay(p, final_dq[i]);
3da42859
DN
2088 scc_mgr_load_dq(p);
2089
2090 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2091 left_edge[i] - shift_dq + (-mid_min),
2092 right_edge[i] + shift_dq - (-mid_min));
2093 /* To determine values for export structures */
2094 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2095 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2096
2097 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2098 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2099 }
2100
2101 final_dqs = new_dqs;
2102 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2103 final_dqs_en = start_dqs_en - mid_min;
2104
2105 /* Move DQS-en */
2106 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2107 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2108 scc_mgr_load_dqs(read_group);
2109 }
2110
2111 /* Move DQS */
2112 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2113 scc_mgr_load_dqs(read_group);
2114 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2115 dqs_margin=%d", __func__, __LINE__,
2116 dq_margin, dqs_margin);
2117
2118 /*
2119 * Do not remove this line as it makes sure all of our decisions
2120 * have been applied. Apply the update bit.
2121 */
1273dd9e 2122 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2123
2124 return (dq_margin >= 0) && (dqs_margin >= 0);
2125}
2126
04372fb8
MV
2127/**
2128 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2129 * @rw_group: Read/Write Group
2130 * @phase: DQ/DQS phase
2131 *
2132 * Because initially no communication ca be reliably performed with the memory
2133 * device, the sequencer uses a guaranteed write mechanism to write data into
2134 * the memory device.
2135 */
2136static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2137 const u32 phase)
2138{
04372fb8
MV
2139 int ret;
2140
2141 /* Set a particular DQ/DQS phase. */
2142 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2143
2144 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2145 __func__, __LINE__, rw_group, phase);
2146
2147 /*
2148 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2149 * Load up the patterns used by read calibration using the
2150 * current DQDQS phase.
2151 */
2152 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2153
2154 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2155 return 0;
2156
2157 /*
2158 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2159 * Back-to-Back reads of the patterns used for calibration.
2160 */
d844c7d4
MV
2161 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2162 if (ret)
04372fb8
MV
2163 debug_cond(DLEVEL == 1,
2164 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2165 __func__, __LINE__, rw_group, phase);
d844c7d4 2166 return ret;
04372fb8
MV
2167}
2168
f09da11e
MV
2169/**
2170 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2171 * @rw_group: Read/Write Group
2172 * @test_bgn: Rank at which the test begins
2173 *
2174 * DQS enable calibration ensures reliable capture of the DQ signal without
2175 * glitches on the DQS line.
2176 */
2177static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2178 const u32 test_bgn)
2179{
f09da11e
MV
2180 /*
2181 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2182 * DQS and DQS Eanble Signal Relationships.
2183 */
28ea827d
MV
2184
2185 /* We start at zero, so have one less dq to devide among */
2186 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2187 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
914546e7 2188 int ret;
28ea827d
MV
2189 u32 i, p, d, r;
2190
2191 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2192
2193 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2194 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2195 r += NUM_RANKS_PER_SHADOW_REG) {
2196 for (i = 0, p = test_bgn, d = 0;
2197 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2198 i++, p++, d += delay_step) {
2199 debug_cond(DLEVEL == 1,
2200 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2201 __func__, __LINE__, rw_group, r, i, p, d);
2202
2203 scc_mgr_set_dq_in_delay(p, d);
2204 scc_mgr_load_dq(p);
2205 }
2206
2207 writel(0, &sdr_scc_mgr->update);
2208 }
2209
2210 /*
2211 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2212 * dq_in_delay values
2213 */
914546e7 2214 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
28ea827d
MV
2215
2216 debug_cond(DLEVEL == 1,
2217 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
914546e7 2218 __func__, __LINE__, rw_group, !ret);
28ea827d
MV
2219
2220 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2221 r += NUM_RANKS_PER_SHADOW_REG) {
2222 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2223 writel(0, &sdr_scc_mgr->update);
2224 }
2225
914546e7 2226 return ret;
f09da11e
MV
2227}
2228
16cfc4b9
MV
2229/**
2230 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2231 * @rw_group: Read/Write Group
2232 * @test_bgn: Rank at which the test begins
2233 * @use_read_test: Perform a read test
2234 * @update_fom: Update FOM
2235 *
2236 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2237 * within a group.
2238 */
2239static int
2240rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2241 const int use_read_test,
2242 const int update_fom)
2243
2244{
2245 int ret, grp_calibrated;
2246 u32 rank_bgn, sr;
2247
2248 /*
2249 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2250 * Read per-bit deskew can be done on a per shadow register basis.
2251 */
2252 grp_calibrated = 1;
2253 for (rank_bgn = 0, sr = 0;
2254 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2255 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2256 /* Check if this set of ranks should be skipped entirely. */
2257 if (param->skip_shadow_regs[sr])
2258 continue;
2259
2260 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2261 rw_group, test_bgn,
2262 use_read_test,
2263 update_fom);
2264 if (ret)
2265 continue;
2266
2267 grp_calibrated = 0;
2268 }
2269
2270 if (!grp_calibrated)
2271 return -EIO;
2272
2273 return 0;
2274}
2275
bce24efa
MV
2276/**
2277 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2278 * @rw_group: Read/Write Group
2279 * @test_bgn: Rank at which the test begins
2280 *
2281 * Stage 1: Calibrate the read valid prediction FIFO.
2282 *
2283 * This function implements UniPHY calibration Stage 1, as explained in
2284 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3da42859 2285 *
bce24efa
MV
2286 * - read valid prediction will consist of finding:
2287 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2288 * - DQS input phase and DQS input delay (DQ/DQS Centering)
3da42859
DN
2289 * - we also do a per-bit deskew on the DQ lines.
2290 */
c336ca3e 2291static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
3da42859 2292{
16cfc4b9 2293 uint32_t p, d;
3da42859 2294 uint32_t dtaps_per_ptap;
3da42859
DN
2295 uint32_t failed_substage;
2296
04372fb8
MV
2297 int ret;
2298
c336ca3e 2299 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
3da42859 2300
7c0a9df3
MV
2301 /* Update info for sims */
2302 reg_file_set_group(rw_group);
3da42859 2303 reg_file_set_stage(CAL_STAGE_VFIFO);
7c0a9df3 2304 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
3da42859 2305
7c0a9df3
MV
2306 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2307
2308 /* USER Determine number of delay taps for each phase tap. */
d32badbd
MV
2309 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2310 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
3da42859 2311
fe2d0a2d 2312 for (d = 0; d <= dtaps_per_ptap; d += 2) {
3da42859
DN
2313 /*
2314 * In RLDRAMX we may be messing the delay of pins in
c336ca3e
MV
2315 * the same write rw_group but outside of the current read
2316 * the rw_group, but that's ok because we haven't calibrated
ac70d2f3 2317 * output side yet.
3da42859
DN
2318 */
2319 if (d > 0) {
f51a7d35 2320 scc_mgr_apply_group_all_out_delay_add_all_ranks(
c336ca3e 2321 rw_group, d);
3da42859
DN
2322 }
2323
fe2d0a2d 2324 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
04372fb8
MV
2325 /* 1) Guaranteed Write */
2326 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2327 if (ret)
2328 break;
3da42859 2329
f09da11e
MV
2330 /* 2) DQS Enable Calibration */
2331 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2332 test_bgn);
2333 if (ret) {
3da42859 2334 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
fe2d0a2d
MV
2335 continue;
2336 }
2337
16cfc4b9 2338 /* 3) Centering DQ/DQS */
fe2d0a2d 2339 /*
16cfc4b9
MV
2340 * If doing read after write calibration, do not update
2341 * FOM now. Do it then.
fe2d0a2d 2342 */
16cfc4b9
MV
2343 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2344 test_bgn, 1, 0);
2345 if (ret) {
fe2d0a2d 2346 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
16cfc4b9 2347 continue;
3da42859 2348 }
fe2d0a2d 2349
16cfc4b9
MV
2350 /* All done. */
2351 goto cal_done_ok;
3da42859
DN
2352 }
2353 }
2354
fe2d0a2d 2355 /* Calibration Stage 1 failed. */
c336ca3e 2356 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
fe2d0a2d 2357 return 0;
3da42859 2358
fe2d0a2d
MV
2359 /* Calibration Stage 1 completed OK. */
2360cal_done_ok:
3da42859
DN
2361 /*
2362 * Reset the delay chains back to zero if they have moved > 1
2363 * (check for > 1 because loop will increase d even when pass in
2364 * first case).
2365 */
2366 if (d > 2)
c336ca3e 2367 scc_mgr_zero_group(rw_group, 1);
3da42859
DN
2368
2369 return 1;
2370}
2371
2372/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2373static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2374 uint32_t test_bgn)
2375{
2376 uint32_t rank_bgn, sr;
2377 uint32_t grp_calibrated;
2378 uint32_t write_group;
2379
2380 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2381
2382 /* update info for sims */
2383
2384 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2385 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2386
2387 write_group = read_group;
2388
2389 /* update info for sims */
2390 reg_file_set_group(read_group);
2391
2392 grp_calibrated = 1;
2393 /* Read per-bit deskew can be done on a per shadow register basis */
2394 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2395 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2396 /* Determine if this set of ranks should be skipped entirely */
2397 if (!param->skip_shadow_regs[sr]) {
2398 /* This is the last calibration round, update FOM here */
2399 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2400 write_group,
2401 read_group,
2402 test_bgn, 0,
2403 1)) {
2404 grp_calibrated = 0;
2405 }
2406 }
2407 }
2408
2409
2410 if (grp_calibrated == 0) {
2411 set_failing_group_stage(write_group,
2412 CAL_STAGE_VFIFO_AFTER_WRITES,
2413 CAL_SUBSTAGE_VFIFO_CENTER);
2414 return 0;
2415 }
2416
2417 return 1;
2418}
2419
2420/* Calibrate LFIFO to find smallest read latency */
2421static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2422{
2423 uint32_t found_one;
2424 uint32_t bit_chk;
3da42859
DN
2425
2426 debug("%s:%d\n", __func__, __LINE__);
2427
2428 /* update info for sims */
2429 reg_file_set_stage(CAL_STAGE_LFIFO);
2430 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2431
2432 /* Load up the patterns used by read calibration for all ranks */
2433 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2434 found_one = 0;
2435
3da42859 2436 do {
1273dd9e 2437 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2438 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2439 __func__, __LINE__, gbl->curr_read_lat);
2440
2441 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2442 NUM_READ_TESTS,
2443 PASS_ALL_BITS,
2444 &bit_chk, 1)) {
2445 break;
2446 }
2447
2448 found_one = 1;
2449 /* reduce read latency and see if things are working */
2450 /* correctly */
2451 gbl->curr_read_lat--;
2452 } while (gbl->curr_read_lat > 0);
2453
2454 /* reset the fifos to get pointers to known state */
2455
1273dd9e 2456 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2457
2458 if (found_one) {
2459 /* add a fudge factor to the read latency that was determined */
2460 gbl->curr_read_lat += 2;
1273dd9e 2461 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2462 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2463 read_lat=%u\n", __func__, __LINE__,
2464 gbl->curr_read_lat);
2465 return 1;
2466 } else {
2467 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2468 CAL_SUBSTAGE_READ_LATENCY);
2469
2470 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2471 read_lat=%u\n", __func__, __LINE__,
2472 gbl->curr_read_lat);
2473 return 0;
2474 }
2475}
2476
2477/*
2478 * issue write test command.
2479 * two variants are provided. one that just tests a write pattern and
2480 * another that tests datamask functionality.
2481 */
2482static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2483 uint32_t test_dm)
2484{
2485 uint32_t mcc_instruction;
2486 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2487 ENABLE_SUPER_QUICK_CALIBRATION);
2488 uint32_t rw_wl_nop_cycles;
2489 uint32_t addr;
2490
2491 /*
2492 * Set counter and jump addresses for the right
2493 * number of NOP cycles.
2494 * The number of supported NOP cycles can range from -1 to infinity
2495 * Three different cases are handled:
2496 *
2497 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2498 * mechanism will be used to insert the right number of NOPs
2499 *
2500 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2501 * issuing the write command will jump straight to the
2502 * micro-instruction that turns on DQS (for DDRx), or outputs write
2503 * data (for RLD), skipping
2504 * the NOP micro-instruction all together
2505 *
2506 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2507 * turned on in the same micro-instruction that issues the write
2508 * command. Then we need
2509 * to directly jump to the micro-instruction that sends out the data
2510 *
2511 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2512 * (2 and 3). One jump-counter (0) is used to perform multiple
2513 * write-read operations.
2514 * one counter left to issue this command in "multiple-group" mode
2515 */
2516
2517 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2518
2519 if (rw_wl_nop_cycles == -1) {
2520 /*
2521 * CNTR 2 - We want to execute the special write operation that
2522 * turns on DQS right away and then skip directly to the
2523 * instruction that sends out the data. We set the counter to a
2524 * large number so that the jump is always taken.
2525 */
1273dd9e 2526 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2527
2528 /* CNTR 3 - Not used */
2529 if (test_dm) {
2530 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
3da42859 2531 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1273dd9e 2532 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 2533 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1273dd9e 2534 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2535 } else {
2536 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1273dd9e
MV
2537 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2538 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2539 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2540 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2541 }
2542 } else if (rw_wl_nop_cycles == 0) {
2543 /*
2544 * CNTR 2 - We want to skip the NOP operation and go straight
2545 * to the DQS enable instruction. We set the counter to a large
2546 * number so that the jump is always taken.
2547 */
1273dd9e 2548 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2549
2550 /* CNTR 3 - Not used */
2551 if (test_dm) {
2552 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
3da42859 2553 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1273dd9e 2554 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2555 } else {
2556 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2557 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2558 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2559 }
2560 } else {
2561 /*
2562 * CNTR 2 - In this case we want to execute the next instruction
2563 * and NOT take the jump. So we set the counter to 0. The jump
2564 * address doesn't count.
2565 */
1273dd9e
MV
2566 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2567 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2568
2569 /*
2570 * CNTR 3 - Set the nop counter to the number of cycles we
2571 * need to loop for, minus 1.
2572 */
1273dd9e 2573 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859
DN
2574 if (test_dm) {
2575 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1273dd9e
MV
2576 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2577 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2578 } else {
2579 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2580 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2581 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2582 }
2583 }
2584
1273dd9e
MV
2585 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2586 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859 2587
3da42859 2588 if (quick_write_mode)
1273dd9e 2589 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2590 else
1273dd9e 2591 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2592
1273dd9e 2593 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
2594
2595 /*
2596 * CNTR 1 - This is used to ensure enough time elapses
2597 * for read data to come back.
2598 */
1273dd9e 2599 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 2600
3da42859 2601 if (test_dm) {
1273dd9e
MV
2602 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2603 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 2604 } else {
1273dd9e
MV
2605 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2606 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
2607 }
2608
c4815f76 2609 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 2610 writel(mcc_instruction, addr + (group << 2));
3da42859
DN
2611}
2612
2613/* Test writes, can check for a single bit pass or multiple bit pass */
2614static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2615 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2616 uint32_t *bit_chk, uint32_t all_ranks)
2617{
3da42859
DN
2618 uint32_t r;
2619 uint32_t correct_mask_vg;
2620 uint32_t tmp_bit_chk;
2621 uint32_t vg;
2622 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2623 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2624 uint32_t addr_rw_mgr;
2625 uint32_t base_rw_mgr;
2626
2627 *bit_chk = param->write_correct_mask;
2628 correct_mask_vg = param->write_correct_mask_vg;
2629
2630 for (r = rank_bgn; r < rank_end; r++) {
2631 if (param->skip_ranks[r]) {
2632 /* request to skip the rank */
2633 continue;
2634 }
2635
2636 /* set rank */
2637 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2638
2639 tmp_bit_chk = 0;
a4bfa463 2640 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
3da42859
DN
2641 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2642 /* reset the fifos to get pointers to known state */
1273dd9e 2643 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2644
2645 tmp_bit_chk = tmp_bit_chk <<
2646 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2647 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2648 rw_mgr_mem_calibrate_write_test_issue(write_group *
2649 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2650 use_dm);
2651
17fdc916 2652 base_rw_mgr = readl(addr_rw_mgr);
3da42859
DN
2653 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2654 if (vg == 0)
2655 break;
2656 }
2657 *bit_chk &= tmp_bit_chk;
2658 }
2659
2660 if (all_correct) {
2661 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2662 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2663 %u => %lu", write_group, use_dm,
2664 *bit_chk, param->write_correct_mask,
2665 (long unsigned int)(*bit_chk ==
2666 param->write_correct_mask));
2667 return *bit_chk == param->write_correct_mask;
2668 } else {
2669 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2670 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2671 write_group, use_dm, *bit_chk);
2672 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2673 (long unsigned int)(*bit_chk != 0));
2674 return *bit_chk != 0x00;
2675 }
2676}
2677
2678/*
2679 * center all windows. do per-bit-deskew to possibly increase size of
2680 * certain windows.
2681 */
2682static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2683 uint32_t write_group, uint32_t test_bgn)
2684{
2685 uint32_t i, p, min_index;
2686 int32_t d;
2687 /*
2688 * Store these as signed since there are comparisons with
2689 * signed numbers.
2690 */
2691 uint32_t bit_chk;
2692 uint32_t sticky_bit_chk;
2693 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2694 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2695 int32_t mid;
2696 int32_t mid_min, orig_mid_min;
2697 int32_t new_dqs, start_dqs, shift_dq;
2698 int32_t dq_margin, dqs_margin, dm_margin;
2699 uint32_t stop;
2700 uint32_t temp_dq_out1_delay;
2701 uint32_t addr;
2702
2703 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2704
2705 dm_margin = 0;
2706
c4815f76 2707 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2708 start_dqs = readl(addr +
3da42859
DN
2709 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2710
2711 /* per-bit deskew */
2712
2713 /*
2714 * set the left and right edge of each bit to an illegal value
2715 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2716 */
2717 sticky_bit_chk = 0;
2718 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2719 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2720 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2721 }
2722
2723 /* Search for the left edge of the window for each bit */
3da42859 2724 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
300c2e62 2725 scc_mgr_apply_group_dq_out1_delay(write_group, d);
3da42859 2726
1273dd9e 2727 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2728
2729 /*
2730 * Stop searching when the read test doesn't pass AND when
2731 * we've seen a passing read on every bit.
2732 */
2733 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2734 0, PASS_ONE_BIT, &bit_chk, 0);
2735 sticky_bit_chk = sticky_bit_chk | bit_chk;
2736 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2737 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2738 == %u && %u [bit_chk= %u ]\n",
2739 d, sticky_bit_chk, param->write_correct_mask,
2740 stop, bit_chk);
2741
2742 if (stop == 1) {
2743 break;
2744 } else {
2745 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2746 if (bit_chk & 1) {
2747 /*
2748 * Remember a passing test as the
2749 * left_edge.
2750 */
2751 left_edge[i] = d;
2752 } else {
2753 /*
2754 * If a left edge has not been seen
2755 * yet, then a future passing test will
2756 * mark this edge as the right edge.
2757 */
2758 if (left_edge[i] ==
2759 IO_IO_OUT1_DELAY_MAX + 1) {
2760 right_edge[i] = -(d + 1);
2761 }
2762 }
2763 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2764 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2765 (int)(bit_chk & 1), i, left_edge[i]);
2766 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2767 right_edge[i]);
2768 bit_chk = bit_chk >> 1;
2769 }
2770 }
2771 }
2772
2773 /* Reset DQ delay chains to 0 */
32675249 2774 scc_mgr_apply_group_dq_out1_delay(0);
3da42859
DN
2775 sticky_bit_chk = 0;
2776 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2777 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2778 %d right_edge[%u]: %d\n", __func__, __LINE__,
2779 i, left_edge[i], i, right_edge[i]);
2780
2781 /*
2782 * Check for cases where we haven't found the left edge,
2783 * which makes our assignment of the the right edge invalid.
2784 * Reset it to the illegal value.
2785 */
2786 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2787 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2788 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2789 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2790 right_edge[%u]: %d\n", __func__, __LINE__,
2791 i, right_edge[i]);
2792 }
2793
2794 /*
2795 * Reset sticky bit (except for bits where we have
2796 * seen the left edge).
2797 */
2798 sticky_bit_chk = sticky_bit_chk << 1;
2799 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2800 sticky_bit_chk = sticky_bit_chk | 1;
2801
2802 if (i == 0)
2803 break;
2804 }
2805
2806 /* Search for the right edge of the window for each bit */
3da42859
DN
2807 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2808 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2809 d + start_dqs);
2810
1273dd9e 2811 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2812
2813 /*
2814 * Stop searching when the read test doesn't pass AND when
2815 * we've seen a passing read on every bit.
2816 */
2817 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2818 0, PASS_ONE_BIT, &bit_chk, 0);
2819
2820 sticky_bit_chk = sticky_bit_chk | bit_chk;
2821 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2822
2823 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2824 %u && %u\n", d, sticky_bit_chk,
2825 param->write_correct_mask, stop);
2826
2827 if (stop == 1) {
2828 if (d == 0) {
2829 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2830 i++) {
2831 /* d = 0 failed, but it passed when
2832 testing the left edge, so it must be
2833 marginal, set it to -1 */
2834 if (right_edge[i] ==
2835 IO_IO_OUT1_DELAY_MAX + 1 &&
2836 left_edge[i] !=
2837 IO_IO_OUT1_DELAY_MAX + 1) {
2838 right_edge[i] = -1;
2839 }
2840 }
2841 }
2842 break;
2843 } else {
2844 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2845 if (bit_chk & 1) {
2846 /*
2847 * Remember a passing test as
2848 * the right_edge.
2849 */
2850 right_edge[i] = d;
2851 } else {
2852 if (d != 0) {
2853 /*
2854 * If a right edge has not
2855 * been seen yet, then a future
2856 * passing test will mark this
2857 * edge as the left edge.
2858 */
2859 if (right_edge[i] ==
2860 IO_IO_OUT1_DELAY_MAX + 1)
2861 left_edge[i] = -(d + 1);
2862 } else {
2863 /*
2864 * d = 0 failed, but it passed
2865 * when testing the left edge,
2866 * so it must be marginal, set
2867 * it to -1.
2868 */
2869 if (right_edge[i] ==
2870 IO_IO_OUT1_DELAY_MAX + 1 &&
2871 left_edge[i] !=
2872 IO_IO_OUT1_DELAY_MAX + 1)
2873 right_edge[i] = -1;
2874 /*
2875 * If a right edge has not been
2876 * seen yet, then a future
2877 * passing test will mark this
2878 * edge as the left edge.
2879 */
2880 else if (right_edge[i] ==
2881 IO_IO_OUT1_DELAY_MAX +
2882 1)
2883 left_edge[i] = -(d + 1);
2884 }
2885 }
2886 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2887 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2888 (int)(bit_chk & 1), i, left_edge[i]);
2889 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2890 right_edge[i]);
2891 bit_chk = bit_chk >> 1;
2892 }
2893 }
2894 }
2895
2896 /* Check that all bits have a window */
2897 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2898 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2899 %d right_edge[%u]: %d", __func__, __LINE__,
2900 i, left_edge[i], i, right_edge[i]);
2901 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2902 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2903 set_failing_group_stage(test_bgn + i,
2904 CAL_STAGE_WRITES,
2905 CAL_SUBSTAGE_WRITES_CENTER);
2906 return 0;
2907 }
2908 }
2909
2910 /* Find middle of window for each DQ bit */
2911 mid_min = left_edge[0] - right_edge[0];
2912 min_index = 0;
2913 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2914 mid = left_edge[i] - right_edge[i];
2915 if (mid < mid_min) {
2916 mid_min = mid;
2917 min_index = i;
2918 }
2919 }
2920
2921 /*
2922 * -mid_min/2 represents the amount that we need to move DQS.
2923 * If mid_min is odd and positive we'll need to add one to
2924 * make sure the rounding in further calculations is correct
2925 * (always bias to the right), so just add 1 for all positive values.
2926 */
2927 if (mid_min > 0)
2928 mid_min++;
2929 mid_min = mid_min / 2;
2930 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2931 __LINE__, mid_min);
2932
2933 /* Determine the amount we can change DQS (which is -mid_min) */
2934 orig_mid_min = mid_min;
2935 new_dqs = start_dqs;
2936 mid_min = 0;
2937 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2938 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2939 /* Initialize data for export structures */
2940 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2941 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2942
2943 /* add delay to bring centre of all DQ windows to the same "level" */
3da42859
DN
2944 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2945 /* Use values before divide by 2 to reduce round off error */
2946 shift_dq = (left_edge[i] - right_edge[i] -
2947 (left_edge[min_index] - right_edge[min_index]))/2 +
2948 (orig_mid_min - mid_min);
2949
2950 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2951 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2952
1273dd9e 2953 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2954 temp_dq_out1_delay = readl(addr + (i << 2));
3da42859
DN
2955 if (shift_dq + (int32_t)temp_dq_out1_delay >
2956 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2957 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2958 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2959 shift_dq = -(int32_t)temp_dq_out1_delay;
2960 }
2961 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2962 i, shift_dq);
07aee5bd 2963 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3da42859
DN
2964 scc_mgr_load_dq(i);
2965
2966 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2967 left_edge[i] - shift_dq + (-mid_min),
2968 right_edge[i] + shift_dq - (-mid_min));
2969 /* To determine values for export structures */
2970 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2971 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2972
2973 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2974 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2975 }
2976
2977 /* Move DQS */
2978 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
1273dd9e 2979 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2980
2981 /* Centre DM */
2982 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2983
2984 /*
2985 * set the left and right edge of each bit to an illegal value,
2986 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2987 */
2988 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2989 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2990 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2991 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2992 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2993 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2994 int32_t win_best = 0;
2995
2996 /* Search for the/part of the window with DM shift */
3da42859 2997 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
32675249 2998 scc_mgr_apply_group_dm_out1_delay(d);
1273dd9e 2999 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3000
3001 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3002 PASS_ALL_BITS, &bit_chk,
3003 0)) {
3004 /* USE Set current end of the window */
3005 end_curr = -d;
3006 /*
3007 * If a starting edge of our window has not been seen
3008 * this is our current start of the DM window.
3009 */
3010 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3011 bgn_curr = -d;
3012
3013 /*
3014 * If current window is bigger than best seen.
3015 * Set best seen to be current window.
3016 */
3017 if ((end_curr-bgn_curr+1) > win_best) {
3018 win_best = end_curr-bgn_curr+1;
3019 bgn_best = bgn_curr;
3020 end_best = end_curr;
3021 }
3022 } else {
3023 /* We just saw a failing test. Reset temp edge */
3024 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3025 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3026 }
3027 }
3028
3029
3030 /* Reset DM delay chains to 0 */
32675249 3031 scc_mgr_apply_group_dm_out1_delay(0);
3da42859
DN
3032
3033 /*
3034 * Check to see if the current window nudges up aganist 0 delay.
3035 * If so we need to continue the search by shifting DQS otherwise DQS
3036 * search begins as a new search. */
3037 if (end_curr != 0) {
3038 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3039 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3040 }
3041
3042 /* Search for the/part of the window with DQS shifts */
3da42859
DN
3043 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3044 /*
3045 * Note: This only shifts DQS, so are we limiting ourselve to
3046 * width of DQ unnecessarily.
3047 */
3048 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3049 d + new_dqs);
3050
1273dd9e 3051 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3052 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3053 PASS_ALL_BITS, &bit_chk,
3054 0)) {
3055 /* USE Set current end of the window */
3056 end_curr = d;
3057 /*
3058 * If a beginning edge of our window has not been seen
3059 * this is our current begin of the DM window.
3060 */
3061 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3062 bgn_curr = d;
3063
3064 /*
3065 * If current window is bigger than best seen. Set best
3066 * seen to be current window.
3067 */
3068 if ((end_curr-bgn_curr+1) > win_best) {
3069 win_best = end_curr-bgn_curr+1;
3070 bgn_best = bgn_curr;
3071 end_best = end_curr;
3072 }
3073 } else {
3074 /* We just saw a failing test. Reset temp edge */
3075 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3076 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077
3078 /* Early exit optimization: if ther remaining delay
3079 chain space is less than already seen largest window
3080 we can exit */
3081 if ((win_best-1) >
3082 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3083 break;
3084 }
3085 }
3086 }
3087
3088 /* assign left and right edge for cal and reporting; */
3089 left_edge[0] = -1*bgn_best;
3090 right_edge[0] = end_best;
3091
3092 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3093 __LINE__, left_edge[0], right_edge[0]);
3094
3095 /* Move DQS (back to orig) */
3096 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3097
3098 /* Move DM */
3099
3100 /* Find middle of window for the DM bit */
3101 mid = (left_edge[0] - right_edge[0]) / 2;
3102
3103 /* only move right, since we are not moving DQS/DQ */
3104 if (mid < 0)
3105 mid = 0;
3106
3107 /* dm_marign should fail if we never find a window */
3108 if (win_best == 0)
3109 dm_margin = -1;
3110 else
3111 dm_margin = left_edge[0] - mid;
3112
32675249 3113 scc_mgr_apply_group_dm_out1_delay(mid);
1273dd9e 3114 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3115
3116 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3117 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3118 right_edge[0], mid, dm_margin);
3119 /* Export values */
3120 gbl->fom_out += dq_margin + dqs_margin;
3121
3122 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3123 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3124 dq_margin, dqs_margin, dm_margin);
3125
3126 /*
3127 * Do not remove this line as it makes sure all of our
3128 * decisions have been applied.
3129 */
1273dd9e 3130 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3131 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3132}
3133
3134/* calibrate the write operations */
3135static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3136 uint32_t test_bgn)
3137{
3138 /* update info for sims */
3139 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3140
3141 reg_file_set_stage(CAL_STAGE_WRITES);
3142 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3143
3144 reg_file_set_group(g);
3145
3146 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3147 set_failing_group_stage(g, CAL_STAGE_WRITES,
3148 CAL_SUBSTAGE_WRITES_CENTER);
3149 return 0;
3150 }
3151
3152 return 1;
3153}
3154
4b0ac26a
MV
3155/**
3156 * mem_precharge_and_activate() - Precharge all banks and activate
3157 *
3158 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3159 */
3da42859
DN
3160static void mem_precharge_and_activate(void)
3161{
4b0ac26a 3162 int r;
3da42859
DN
3163
3164 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
4b0ac26a
MV
3165 /* Test if the rank should be skipped. */
3166 if (param->skip_ranks[r])
3da42859 3167 continue;
3da42859 3168
4b0ac26a 3169 /* Set rank. */
3da42859
DN
3170 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3171
4b0ac26a 3172 /* Precharge all banks. */
1273dd9e
MV
3173 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3174 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 3175
1273dd9e
MV
3176 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3177 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3178 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 3179
1273dd9e
MV
3180 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3181 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3182 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 3183
4b0ac26a 3184 /* Activate rows. */
1273dd9e
MV
3185 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3186 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
3187 }
3188}
3189
16502a0b
MV
3190/**
3191 * mem_init_latency() - Configure memory RLAT and WLAT settings
3192 *
3193 * Configure memory RLAT and WLAT parameters.
3194 */
3195static void mem_init_latency(void)
3da42859 3196{
3da42859 3197 /*
16502a0b
MV
3198 * For AV/CV, LFIFO is hardened and always runs at full rate
3199 * so max latency in AFI clocks, used here, is correspondingly
3200 * smaller.
3da42859 3201 */
16502a0b
MV
3202 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3203 u32 rlat, wlat;
3da42859 3204
16502a0b 3205 debug("%s:%d\n", __func__, __LINE__);
3da42859
DN
3206
3207 /*
16502a0b
MV
3208 * Read in write latency.
3209 * WL for Hard PHY does not include additive latency.
3da42859 3210 */
16502a0b
MV
3211 wlat = readl(&data_mgr->t_wl_add);
3212 wlat += readl(&data_mgr->mem_t_add);
3da42859 3213
16502a0b 3214 gbl->rw_wl_nop_cycles = wlat - 1;
3da42859 3215
16502a0b
MV
3216 /* Read in readl latency. */
3217 rlat = readl(&data_mgr->t_rl_add);
3da42859 3218
16502a0b
MV
3219 /* Set a pretty high read latency initially. */
3220 gbl->curr_read_lat = rlat + 16;
3da42859
DN
3221 if (gbl->curr_read_lat > max_latency)
3222 gbl->curr_read_lat = max_latency;
3223
1273dd9e 3224 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859 3225
16502a0b
MV
3226 /* Advertise write latency. */
3227 writel(wlat, &phy_mgr_cfg->afi_wlat);
3da42859
DN
3228}
3229
51cea0b6
MV
3230/**
3231 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3232 *
3233 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3234 */
3da42859
DN
3235static void mem_skip_calibrate(void)
3236{
3237 uint32_t vfifo_offset;
3238 uint32_t i, j, r;
3da42859
DN
3239
3240 debug("%s:%d\n", __func__, __LINE__);
3241 /* Need to update every shadow register set used by the interface */
3242 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
51cea0b6 3243 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
3244 /*
3245 * Set output phase alignment settings appropriate for
3246 * skip calibration.
3247 */
3248 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3249 scc_mgr_set_dqs_en_phase(i, 0);
3250#if IO_DLL_CHAIN_LENGTH == 6
3251 scc_mgr_set_dqdqs_output_phase(i, 6);
3252#else
3253 scc_mgr_set_dqdqs_output_phase(i, 7);
3254#endif
3255 /*
3256 * Case:33398
3257 *
3258 * Write data arrives to the I/O two cycles before write
3259 * latency is reached (720 deg).
3260 * -> due to bit-slip in a/c bus
3261 * -> to allow board skew where dqs is longer than ck
3262 * -> how often can this happen!?
3263 * -> can claim back some ptaps for high freq
3264 * support if we can relax this, but i digress...
3265 *
3266 * The write_clk leads mem_ck by 90 deg
3267 * The minimum ptap of the OPA is 180 deg
3268 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3269 * The write_clk is always delayed by 2 ptaps
3270 *
3271 * Hence, to make DQS aligned to CK, we need to delay
3272 * DQS by:
3273 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3274 *
3275 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3276 * gives us the number of ptaps, which simplies to:
3277 *
3278 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3279 */
51cea0b6
MV
3280 scc_mgr_set_dqdqs_output_phase(i,
3281 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3da42859 3282 }
1273dd9e
MV
3283 writel(0xff, &sdr_scc_mgr->dqs_ena);
3284 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3da42859 3285
3da42859 3286 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
1273dd9e
MV
3287 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3288 SCC_MGR_GROUP_COUNTER_OFFSET);
3da42859 3289 }
1273dd9e
MV
3290 writel(0xff, &sdr_scc_mgr->dq_ena);
3291 writel(0xff, &sdr_scc_mgr->dm_ena);
3292 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3293 }
3294
3295 /* Compensate for simulation model behaviour */
3296 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3297 scc_mgr_set_dqs_bus_in_delay(i, 10);
3298 scc_mgr_load_dqs(i);
3299 }
1273dd9e 3300 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3301
3302 /*
3303 * ArriaV has hard FIFOs that can only be initialized by incrementing
3304 * in sequencer.
3305 */
3306 vfifo_offset = CALIB_VFIFO_OFFSET;
51cea0b6 3307 for (j = 0; j < vfifo_offset; j++)
1273dd9e 3308 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
1273dd9e 3309 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
3310
3311 /*
51cea0b6
MV
3312 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3313 * setting from generation-time constant.
3da42859
DN
3314 */
3315 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
1273dd9e 3316 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
3317}
3318
3589fbfb
MV
3319/**
3320 * mem_calibrate() - Memory calibration entry point.
3321 *
3322 * Perform memory calibration.
3323 */
3da42859
DN
3324static uint32_t mem_calibrate(void)
3325{
3326 uint32_t i;
3327 uint32_t rank_bgn, sr;
3328 uint32_t write_group, write_test_bgn;
3329 uint32_t read_group, read_test_bgn;
3330 uint32_t run_groups, current_run;
3331 uint32_t failing_groups = 0;
3332 uint32_t group_failed = 0;
3da42859 3333
33c42bb8
MV
3334 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3335 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3336
3da42859 3337 debug("%s:%d\n", __func__, __LINE__);
3da42859 3338
16502a0b 3339 /* Initialize the data settings */
3da42859
DN
3340 gbl->error_substage = CAL_SUBSTAGE_NIL;
3341 gbl->error_stage = CAL_STAGE_NIL;
3342 gbl->error_group = 0xff;
3343 gbl->fom_in = 0;
3344 gbl->fom_out = 0;
3345
16502a0b
MV
3346 /* Initialize WLAT and RLAT. */
3347 mem_init_latency();
3348
3349 /* Initialize bit slips. */
3350 mem_precharge_and_activate();
3da42859 3351
3da42859 3352 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
1273dd9e
MV
3353 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3354 SCC_MGR_GROUP_COUNTER_OFFSET);
fa5d821b
MV
3355 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3356 if (i == 0)
3357 scc_mgr_set_hhp_extras();
3358
c5c5f537 3359 scc_set_bypass_mode(i);
3da42859
DN
3360 }
3361
722c9685 3362 /* Calibration is skipped. */
3da42859
DN
3363 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3364 /*
3365 * Set VFIFO and LFIFO to instant-on settings in skip
3366 * calibration mode.
3367 */
3368 mem_skip_calibrate();
3da42859 3369
722c9685
MV
3370 /*
3371 * Do not remove this line as it makes sure all of our
3372 * decisions have been applied.
3373 */
3374 writel(0, &sdr_scc_mgr->update);
3375 return 1;
3376 }
3da42859 3377
722c9685
MV
3378 /* Calibration is not skipped. */
3379 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3380 /*
3381 * Zero all delay chain/phase settings for all
3382 * groups and all shadow register sets.
3383 */
3384 scc_mgr_zero_all();
3385
3386 run_groups = ~param->skip_groups;
3387
3388 for (write_group = 0, write_test_bgn = 0; write_group
3389 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3390 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
c452dcd0
MV
3391
3392 /* Initialize the group failure */
722c9685
MV
3393 group_failed = 0;
3394
3395 current_run = run_groups & ((1 <<
3396 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3397 run_groups = run_groups >>
3398 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3399
3400 if (current_run == 0)
3401 continue;
3402
3403 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3404 SCC_MGR_GROUP_COUNTER_OFFSET);
3405 scc_mgr_zero_group(write_group, 0);
3406
33c42bb8
MV
3407 for (read_group = write_group * rwdqs_ratio,
3408 read_test_bgn = 0;
c452dcd0 3409 read_group < (write_group + 1) * rwdqs_ratio;
33c42bb8
MV
3410 read_group++,
3411 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3412 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3413 continue;
3414
722c9685 3415 /* Calibrate the VFIFO */
33c42bb8
MV
3416 if (rw_mgr_mem_calibrate_vfifo(read_group,
3417 read_test_bgn))
3418 continue;
3419
33c42bb8
MV
3420 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3421 return 0;
c452dcd0
MV
3422
3423 /* The group failed, we're done. */
3424 goto grp_failed;
722c9685 3425 }
3da42859 3426
722c9685 3427 /* Calibrate the output side */
c452dcd0
MV
3428 for (rank_bgn = 0, sr = 0;
3429 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3430 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3431 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3432 continue;
4ac21610 3433
c452dcd0
MV
3434 /* Not needed in quick mode! */
3435 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3436 continue;
4ac21610 3437
c452dcd0
MV
3438 /*
3439 * Determine if this set of ranks
3440 * should be skipped entirely.
3441 */
3442 if (param->skip_shadow_regs[sr])
3443 continue;
4ac21610 3444
c452dcd0
MV
3445 /* Calibrate WRITEs */
3446 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3447 write_group, write_test_bgn))
3448 continue;
4ac21610 3449
c452dcd0
MV
3450 group_failed = 1;
3451 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3452 return 0;
722c9685 3453 }
3da42859 3454
c452dcd0
MV
3455 /* Some group failed, we're done. */
3456 if (group_failed)
3457 goto grp_failed;
3458
3459 for (read_group = write_group * rwdqs_ratio,
3460 read_test_bgn = 0;
3461 read_group < (write_group + 1) * rwdqs_ratio;
3462 read_group++,
3463 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3464 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3465 continue;
3466
3467 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3468 read_test_bgn))
3469 continue;
3470
3471 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3472 return 0;
3473
3474 /* The group failed, we're done. */
3475 goto grp_failed;
3da42859
DN
3476 }
3477
c452dcd0
MV
3478 /* No group failed, continue as usual. */
3479 continue;
3480
3481grp_failed: /* A group failed, increment the counter. */
3482 failing_groups++;
722c9685
MV
3483 }
3484
3485 /*
3486 * USER If there are any failing groups then report
3487 * the failure.
3488 */
3489 if (failing_groups != 0)
3490 return 0;
3491
c50ae303
MV
3492 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3493 continue;
3494
3495 /*
3496 * If we're skipping groups as part of debug,
3497 * don't calibrate LFIFO.
3498 */
3499 if (param->skip_groups != 0)
3500 continue;
3501
722c9685 3502 /* Calibrate the LFIFO */
c50ae303
MV
3503 if (!rw_mgr_mem_calibrate_lfifo())
3504 return 0;
3da42859
DN
3505 }
3506
3507 /*
3508 * Do not remove this line as it makes sure all of our decisions
3509 * have been applied.
3510 */
1273dd9e 3511 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3512 return 1;
3513}
3514
23a040c0
MV
3515/**
3516 * run_mem_calibrate() - Perform memory calibration
3517 *
3518 * This function triggers the entire memory calibration procedure.
3519 */
3520static int run_mem_calibrate(void)
3da42859 3521{
23a040c0 3522 int pass;
3da42859
DN
3523
3524 debug("%s:%d\n", __func__, __LINE__);
3525
3526 /* Reset pass/fail status shown on afi_cal_success/fail */
1273dd9e 3527 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3da42859 3528
23a040c0
MV
3529 /* Stop tracking manager. */
3530 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3da42859 3531
9fa9c90e 3532 phy_mgr_initialize();
3da42859
DN
3533 rw_mgr_mem_initialize();
3534
23a040c0 3535 /* Perform the actual memory calibration. */
3da42859
DN
3536 pass = mem_calibrate();
3537
3538 mem_precharge_and_activate();
1273dd9e 3539 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859 3540
23a040c0
MV
3541 /* Handoff. */
3542 rw_mgr_mem_handoff();
3da42859 3543 /*
23a040c0
MV
3544 * In Hard PHY this is a 2-bit control:
3545 * 0: AFI Mux Select
3546 * 1: DDIO Mux Select
3da42859 3547 */
23a040c0 3548 writel(0x2, &phy_mgr_cfg->mux_sel);
3da42859 3549
23a040c0
MV
3550 /* Start tracking manager. */
3551 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3552
3553 return pass;
3554}
3555
3556/**
3557 * debug_mem_calibrate() - Report result of memory calibration
3558 * @pass: Value indicating whether calibration passed or failed
3559 *
3560 * This function reports the results of the memory calibration
3561 * and writes debug information into the register file.
3562 */
3563static void debug_mem_calibrate(int pass)
3564{
3565 uint32_t debug_info;
3da42859
DN
3566
3567 if (pass) {
3568 printf("%s: CALIBRATION PASSED\n", __FILE__);
3569
3570 gbl->fom_in /= 2;
3571 gbl->fom_out /= 2;
3572
3573 if (gbl->fom_in > 0xff)
3574 gbl->fom_in = 0xff;
3575
3576 if (gbl->fom_out > 0xff)
3577 gbl->fom_out = 0xff;
3578
3579 /* Update the FOM in the register file */
3580 debug_info = gbl->fom_in;
3581 debug_info |= gbl->fom_out << 8;
1273dd9e 3582 writel(debug_info, &sdr_reg_file->fom);
3da42859 3583
1273dd9e
MV
3584 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3585 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3da42859
DN
3586 } else {
3587 printf("%s: CALIBRATION FAILED\n", __FILE__);
3588
3589 debug_info = gbl->error_stage;
3590 debug_info |= gbl->error_substage << 8;
3591 debug_info |= gbl->error_group << 16;
3592
1273dd9e
MV
3593 writel(debug_info, &sdr_reg_file->failing_stage);
3594 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3595 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3da42859
DN
3596
3597 /* Update the failing group/stage in the register file */
3598 debug_info = gbl->error_stage;
3599 debug_info |= gbl->error_substage << 8;
3600 debug_info |= gbl->error_group << 16;
1273dd9e 3601 writel(debug_info, &sdr_reg_file->failing_stage);
3da42859
DN
3602 }
3603
23a040c0 3604 printf("%s: Calibration complete\n", __FILE__);
3da42859
DN
3605}
3606
bb06434b
MV
3607/**
3608 * hc_initialize_rom_data() - Initialize ROM data
3609 *
3610 * Initialize ROM data.
3611 */
3da42859
DN
3612static void hc_initialize_rom_data(void)
3613{
bb06434b 3614 u32 i, addr;
3da42859 3615
c4815f76 3616 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
bb06434b
MV
3617 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3618 writel(inst_rom_init[i], addr + (i << 2));
3da42859 3619
c4815f76 3620 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
bb06434b
MV
3621 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3622 writel(ac_rom_init[i], addr + (i << 2));
3da42859
DN
3623}
3624
9c1ab2ca
MV
3625/**
3626 * initialize_reg_file() - Initialize SDR register file
3627 *
3628 * Initialize SDR register file.
3629 */
3da42859
DN
3630static void initialize_reg_file(void)
3631{
3da42859 3632 /* Initialize the register file with the correct data */
1273dd9e
MV
3633 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3634 writel(0, &sdr_reg_file->debug_data_addr);
3635 writel(0, &sdr_reg_file->cur_stage);
3636 writel(0, &sdr_reg_file->fom);
3637 writel(0, &sdr_reg_file->failing_stage);
3638 writel(0, &sdr_reg_file->debug1);
3639 writel(0, &sdr_reg_file->debug2);
3da42859
DN
3640}
3641
2ca151f8
MV
3642/**
3643 * initialize_hps_phy() - Initialize HPS PHY
3644 *
3645 * Initialize HPS PHY.
3646 */
3da42859
DN
3647static void initialize_hps_phy(void)
3648{
3649 uint32_t reg;
3da42859
DN
3650 /*
3651 * Tracking also gets configured here because it's in the
3652 * same register.
3653 */
3654 uint32_t trk_sample_count = 7500;
3655 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3656 /*
3657 * Format is number of outer loops in the 16 MSB, sample
3658 * count in 16 LSB.
3659 */
3660
3661 reg = 0;
3662 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3663 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3664 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3665 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3666 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3667 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3668 /*
3669 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3670 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3671 */
3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3674 trk_sample_count);
6cb9f167 3675 writel(reg, &sdr_ctrl->phy_ctrl0);
3da42859
DN
3676
3677 reg = 0;
3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3679 trk_sample_count >>
3680 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3682 trk_long_idle_sample_count);
6cb9f167 3683 writel(reg, &sdr_ctrl->phy_ctrl1);
3da42859
DN
3684
3685 reg = 0;
3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3687 trk_long_idle_sample_count >>
3688 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
6cb9f167 3689 writel(reg, &sdr_ctrl->phy_ctrl2);
3da42859
DN
3690}
3691
880e46f2
MV
3692/**
3693 * initialize_tracking() - Initialize tracking
3694 *
3695 * Initialize the register file with usable initial data.
3696 */
3da42859
DN
3697static void initialize_tracking(void)
3698{
880e46f2
MV
3699 /*
3700 * Initialize the register file with the correct data.
3701 * Compute usable version of value in case we skip full
3702 * computation later.
3703 */
3704 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3705 &sdr_reg_file->dtaps_per_ptap);
3706
3707 /* trk_sample_count */
3708 writel(7500, &sdr_reg_file->trk_sample_count);
3709
3710 /* longidle outer loop [15:0] */
3711 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3da42859
DN
3712
3713 /*
880e46f2
MV
3714 * longidle sample count [31:24]
3715 * trfc, worst case of 933Mhz 4Gb [23:16]
3716 * trcd, worst case [15:8]
3717 * vfifo wait [7:0]
3da42859 3718 */
880e46f2
MV
3719 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3720 &sdr_reg_file->delays);
3da42859 3721
880e46f2
MV
3722 /* mux delay */
3723 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3724 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3725 &sdr_reg_file->trk_rw_mgr_addr);
3726
3727 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3728 &sdr_reg_file->trk_read_dqs_width);
3729
3730 /* trefi [7:0] */
3731 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3732 &sdr_reg_file->trk_rfsh);
3da42859
DN
3733}
3734
3735int sdram_calibration_full(void)
3736{
3737 struct param_type my_param;
3738 struct gbl_type my_gbl;
3739 uint32_t pass;
84e0b0cf
MV
3740
3741 memset(&my_param, 0, sizeof(my_param));
3742 memset(&my_gbl, 0, sizeof(my_gbl));
3da42859
DN
3743
3744 param = &my_param;
3745 gbl = &my_gbl;
3746
3da42859
DN
3747 /* Set the calibration enabled by default */
3748 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3749 /*
3750 * Only sweep all groups (regardless of fail state) by default
3751 * Set enabled read test by default.
3752 */
3753#if DISABLE_GUARANTEED_READ
3754 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3755#endif
3756 /* Initialize the register file */
3757 initialize_reg_file();
3758
3759 /* Initialize any PHY CSR */
3760 initialize_hps_phy();
3761
3762 scc_mgr_initialize();
3763
3764 initialize_tracking();
3765
3da42859
DN
3766 printf("%s: Preparing to start memory calibration\n", __FILE__);
3767
3768 debug("%s:%d\n", __func__, __LINE__);
23f62b36
MV
3769 debug_cond(DLEVEL == 1,
3770 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3771 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3772 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3773 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3774 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3775 debug_cond(DLEVEL == 1,
3776 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3777 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3778 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3779 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3780 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3781 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3782 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3783 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3784 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3785 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3786 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3787 IO_IO_OUT2_DELAY_MAX);
3788 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3789 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3da42859
DN
3790
3791 hc_initialize_rom_data();
3792
3793 /* update info for sims */
3794 reg_file_set_stage(CAL_STAGE_NIL);
3795 reg_file_set_group(0);
3796
3797 /*
3798 * Load global needed for those actions that require
3799 * some dynamic calibration support.
3800 */
3801 dyn_calib_steps = STATIC_CALIB_STEPS;
3802 /*
3803 * Load global to allow dynamic selection of delay loop settings
3804 * based on calibration mode.
3805 */
3806 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3807 skip_delay_mask = 0xff;
3808 else
3809 skip_delay_mask = 0x0;
3810
3811 pass = run_mem_calibrate();
23a040c0 3812 debug_mem_calibrate(pass);
3da42859
DN
3813 return pass;
3814}
This page took 0.574906 seconds and 4 git commands to generate.