]> Git Repo - J-u-boot.git/blame - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_*_vfifo() part 1
[J-u-boot.git] / drivers / ddr / altera / sequencer.c
CommitLineData
3da42859
DN
1/*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/arch/sdram.h>
04372fb8 10#include <errno.h>
3da42859
DN
11#include "sequencer.h"
12#include "sequencer_auto.h"
13#include "sequencer_auto_ac_init.h"
14#include "sequencer_auto_inst_init.h"
15#include "sequencer_defines.h"
16
3da42859 17static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
6afb4fe2 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
3da42859
DN
19
20static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
6afb4fe2 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
3da42859
DN
22
23static struct socfpga_sdr_reg_file *sdr_reg_file =
a1c654a8 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
3da42859
DN
25
26static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
e79025a7 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
3da42859
DN
28
29static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
1bc6f14a 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
3da42859
DN
31
32static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
1bc6f14a 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
3da42859
DN
34
35static struct socfpga_data_mgr *data_mgr =
c4815f76 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
3da42859 37
6cb9f167
MV
38static struct socfpga_sdr_ctrl *sdr_ctrl =
39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
3da42859 41#define DELTA_D 1
3da42859
DN
42
43/*
44 * In order to reduce ROM size, most of the selectable calibration steps are
45 * decided at compile time based on the user's calibration mode selection,
46 * as captured by the STATIC_CALIB_STEPS selection below.
47 *
48 * However, to support simulation-time selection of fast simulation mode, where
49 * we skip everything except the bare minimum, we need a few of the steps to
50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51 * check, which is based on the rtl-supplied value, or we dynamically compute
52 * the value to use based on the dynamically-chosen calibration mode
53 */
54
55#define DLEVEL 0
56#define STATIC_IN_RTL_SIM 0
57#define STATIC_SKIP_DELAY_LOOPS 0
58
59#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 STATIC_SKIP_DELAY_LOOPS)
61
62/* calibration steps requested by the rtl */
63uint16_t dyn_calib_steps;
64
65/*
66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67 * instead of static, we use boolean logic to select between
68 * non-skip and skip values
69 *
70 * The mask is set to include all bits when not-skipping, but is
71 * zero when skipping
72 */
73
74uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
75
76#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 ((non_skip_value) & skip_delay_mask)
78
79struct gbl_type *gbl;
80struct param_type *param;
81uint32_t curr_shadow_reg;
82
83static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 uint32_t write_group, uint32_t use_dm,
85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
3da42859
DN
87static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89{
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99}
100
2c0d2d9c 101static void reg_file_set_group(u16 set_group)
3da42859 102{
2c0d2d9c 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
3da42859
DN
104}
105
2c0d2d9c 106static void reg_file_set_stage(u8 set_stage)
3da42859 107{
2c0d2d9c 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
3da42859
DN
109}
110
2c0d2d9c 111static void reg_file_set_sub_stage(u8 set_sub_stage)
3da42859 112{
2c0d2d9c
MV
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
3da42859
DN
115}
116
7c89c2d9
MV
117/**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
9fa9c90e 122static void phy_mgr_initialize(void)
3da42859 123{
7c89c2d9
MV
124 u32 ratio;
125
3da42859 126 debug("%s:%d\n", __func__, __LINE__);
7c89c2d9 127 /* Calibration has control over path to memory */
3da42859
DN
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
1273dd9e 133 writel(0x3, &phy_mgr_cfg->mux_sel);
3da42859
DN
134
135 /* USER memory clock is not stable we begin initialization */
1273dd9e 136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
137
138 /* USER calibration status all set to zero */
1273dd9e 139 writel(0, &phy_mgr_cfg->cal_status);
3da42859 140
1273dd9e 141 writel(0, &phy_mgr_cfg->cal_debug_info);
3da42859 142
7c89c2d9
MV
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 ratio = RW_MGR_MEM_DATA_WIDTH /
154 RW_MGR_MEM_DATA_MASK_WIDTH;
155 param->dm_correct_mask = (1 << ratio) - 1;
3da42859
DN
156}
157
080bf64e
MV
158/**
159 * set_rank_and_odt_mask() - Set Rank and ODT mask
160 * @rank: Rank mask
161 * @odt_mode: ODT mode, OFF or READ_WRITE
162 *
163 * Set Rank and ODT mask (On-Die Termination).
164 */
b2dfd100 165static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
3da42859 166{
b2dfd100
MV
167 u32 odt_mask_0 = 0;
168 u32 odt_mask_1 = 0;
169 u32 cs_and_odt_mask;
3da42859 170
b2dfd100
MV
171 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 odt_mask_0 = 0x0;
173 odt_mask_1 = 0x0;
174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
287cdf6b
MV
175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 case 1: /* 1 Rank */
177 /* Read: ODT = 0 ; Write: ODT = 1 */
3da42859
DN
178 odt_mask_0 = 0x0;
179 odt_mask_1 = 0x1;
287cdf6b
MV
180 break;
181 case 2: /* 2 Ranks */
3da42859 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
080bf64e
MV
183 /*
184 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 * OR
186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 *
188 * Since MEM_NUMBER_OF_RANKS is 2, they
189 * are both single rank with 2 CS each
190 * (special for RDIMM).
191 *
3da42859
DN
192 * Read: Turn on ODT on the opposite rank
193 * Write: Turn on ODT on all ranks
194 */
195 odt_mask_0 = 0x3 & ~(1 << rank);
196 odt_mask_1 = 0x3;
197 } else {
198 /*
080bf64e
MV
199 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 *
201 * Read: Turn on ODT off on all ranks
202 * Write: Turn on ODT on active rank
3da42859
DN
203 */
204 odt_mask_0 = 0x0;
205 odt_mask_1 = 0x3 & (1 << rank);
206 }
287cdf6b
MV
207 break;
208 case 4: /* 4 Ranks */
209 /* Read:
3da42859 210 * ----------+-----------------------+
3da42859
DN
211 * | ODT |
212 * Read From +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 0 |
216 * 1 | 1 | 0 | 0 | 0 |
217 * 2 | 0 | 0 | 0 | 1 |
218 * 3 | 0 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 *
221 * Write:
222 * ----------+-----------------------+
3da42859
DN
223 * | ODT |
224 * Write To +-----------------------+
225 * Rank | 3 | 2 | 1 | 0 |
226 * ----------+-----+-----+-----+-----+
227 * 0 | 0 | 1 | 0 | 1 |
228 * 1 | 1 | 0 | 1 | 0 |
229 * 2 | 0 | 1 | 0 | 1 |
230 * 3 | 1 | 0 | 1 | 0 |
231 * ----------+-----+-----+-----+-----+
232 */
233 switch (rank) {
234 case 0:
235 odt_mask_0 = 0x4;
236 odt_mask_1 = 0x5;
237 break;
238 case 1:
239 odt_mask_0 = 0x8;
240 odt_mask_1 = 0xA;
241 break;
242 case 2:
243 odt_mask_0 = 0x1;
244 odt_mask_1 = 0x5;
245 break;
246 case 3:
247 odt_mask_0 = 0x2;
248 odt_mask_1 = 0xA;
249 break;
250 }
287cdf6b 251 break;
3da42859 252 }
3da42859
DN
253 }
254
b2dfd100
MV
255 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 ((0xFF & odt_mask_0) << 8) |
257 ((0xFF & odt_mask_1) << 16);
1273dd9e
MV
258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
260}
261
c76976d9
MV
262/**
263 * scc_mgr_set() - Set SCC Manager register
264 * @off: Base offset in SCC Manager space
265 * @grp: Read/Write group
266 * @val: Value to be set
267 *
268 * This function sets the SCC Manager (Scan Chain Control Manager) register.
269 */
270static void scc_mgr_set(u32 off, u32 grp, u32 val)
3da42859 271{
c76976d9
MV
272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273}
3da42859 274
e893f4dc
MV
275/**
276 * scc_mgr_initialize() - Initialize SCC Manager registers
277 *
278 * Initialize SCC Manager registers.
279 */
c76976d9
MV
280static void scc_mgr_initialize(void)
281{
3da42859 282 /*
e893f4dc
MV
283 * Clear register file for HPS. 16 (2^4) is the size of the
284 * full register file in the scc mgr:
285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 * MEM_IF_READ_DQS_WIDTH - 1);
3da42859 287 */
c76976d9 288 int i;
e893f4dc 289
3da42859 290 for (i = 0; i < 16; i++) {
7ac40d25 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
3da42859 292 __func__, __LINE__, i);
c76976d9 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
3da42859
DN
294 }
295}
296
5ff825b8
MV
297static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298{
c76976d9 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
5ff825b8
MV
300}
301
302static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
3da42859 303{
c76976d9 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
3da42859
DN
305}
306
5ff825b8
MV
307static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308{
c76976d9 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
5ff825b8
MV
310}
311
312static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313{
c76976d9 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
5ff825b8
MV
315}
316
32675249 317static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
3da42859 318{
c76976d9
MV
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 delay);
3da42859
DN
321}
322
5ff825b8 323static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
3da42859 324{
c76976d9 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
326}
327
328static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329{
c76976d9 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
331}
332
32675249 333static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
5ff825b8 334{
c76976d9
MV
335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 delay);
5ff825b8
MV
337}
338
339static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340{
c76976d9
MV
341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 delay);
5ff825b8
MV
344}
345
346/* load up dqs config settings */
347static void scc_mgr_load_dqs(uint32_t dqs)
348{
349 writel(dqs, &sdr_scc_mgr->dqs_ena);
350}
351
352/* load up dqs io config settings */
353static void scc_mgr_load_dqs_io(void)
354{
355 writel(0, &sdr_scc_mgr->dqs_io_ena);
356}
357
358/* load up dq config settings */
359static void scc_mgr_load_dq(uint32_t dq_in_group)
360{
361 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362}
363
364/* load up dm config settings */
365static void scc_mgr_load_dm(uint32_t dm)
366{
367 writel(dm, &sdr_scc_mgr->dm_ena);
3da42859
DN
368}
369
0b69b807
MV
370/**
371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372 * @off: Base offset in SCC Manager space
373 * @grp: Read/Write group
374 * @val: Value to be set
375 * @update: If non-zero, trigger SCC Manager update for all ranks
376 *
377 * This function sets the SCC Manager (Scan Chain Control Manager) register
378 * and optionally triggers the SCC update for all ranks.
379 */
380static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 const int update)
3da42859 382{
0b69b807 383 u32 r;
3da42859
DN
384
385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 r += NUM_RANKS_PER_SHADOW_REG) {
0b69b807
MV
387 scc_mgr_set(off, grp, val);
388
389 if (update || (r == 0)) {
390 writel(grp, &sdr_scc_mgr->dqs_ena);
1273dd9e 391 writel(0, &sdr_scc_mgr->update);
3da42859
DN
392 }
393 }
394}
395
0b69b807
MV
396static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397{
398 /*
399 * USER although the h/w doesn't support different phases per
400 * shadow register, for simplicity our scc manager modeling
401 * keeps different phase settings per shadow reg, and it's
402 * important for us to keep them in sync to match h/w.
403 * for efficiency, the scan chain update should occur only
404 * once to sr0.
405 */
406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 read_group, phase, 0);
408}
409
3da42859
DN
410static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 uint32_t phase)
412{
0b69b807
MV
413 /*
414 * USER although the h/w doesn't support different phases per
415 * shadow register, for simplicity our scc manager modeling
416 * keeps different phase settings per shadow reg, and it's
417 * important for us to keep them in sync to match h/w.
418 * for efficiency, the scan chain update should occur only
419 * once to sr0.
420 */
421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 write_group, phase, 0);
3da42859
DN
423}
424
3da42859
DN
425static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 uint32_t delay)
427{
3da42859
DN
428 /*
429 * In shadow register mode, the T11 settings are stored in
430 * registers in the core, which are updated by the DQS_ENA
431 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 * save lots of rank switching overhead, by calling
433 * select_shadow_regs_for_update with update_scan_chains
434 * set to 0.
435 */
0b69b807
MV
436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 read_group, delay, 1);
1273dd9e 438 writel(0, &sdr_scc_mgr->update);
3da42859
DN
439}
440
5be355c1
MV
441/**
442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443 * @write_group: Write group
444 * @delay: Delay value
445 *
446 * This function sets the OCT output delay in SCC manager.
447 */
448static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
3da42859 449{
5be355c1
MV
450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 const int base = write_group * ratio;
453 int i;
3da42859
DN
454 /*
455 * Load the setting in the SCC manager
456 * Although OCT affects only write data, the OCT delay is controlled
457 * by the DQS logic block which is instantiated once per read group.
458 * For protocols where a write group consists of multiple read groups,
459 * the setting must be set multiple times.
460 */
5be355c1
MV
461 for (i = 0; i < ratio; i++)
462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
3da42859
DN
463}
464
37a37ca7
MV
465/**
466 * scc_mgr_set_hhp_extras() - Set HHP extras.
467 *
468 * Load the fixed setting in the SCC manager HHP extras.
469 */
3da42859
DN
470static void scc_mgr_set_hhp_extras(void)
471{
472 /*
473 * Load the fixed setting in the SCC manager
37a37ca7
MV
474 * bits: 0:0 = 1'b1 - DQS bypass
475 * bits: 1:1 = 1'b1 - DQ bypass
476 * bits: 4:2 = 3'b001 - rfifo_mode
477 * bits: 6:5 = 2'b01 - rfifo clock_select
478 * bits: 7:7 = 1'b0 - separate gating from ungating setting
479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
3da42859 480 */
37a37ca7
MV
481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 (1 << 2) | (1 << 1) | (1 << 0);
483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 SCC_MGR_HHP_GLOBALS_OFFSET |
485 SCC_MGR_HHP_EXTRAS_OFFSET;
486
487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 __func__, __LINE__);
489 writel(value, addr);
490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 __func__, __LINE__);
3da42859
DN
492}
493
f42af35b
MV
494/**
495 * scc_mgr_zero_all() - Zero all DQS config
496 *
497 * Zero all DQS config.
3da42859
DN
498 */
499static void scc_mgr_zero_all(void)
500{
f42af35b 501 int i, r;
3da42859
DN
502
503 /*
504 * USER Zero all DQS config settings, across all groups and all
505 * shadow registers
506 */
f42af35b
MV
507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 /*
511 * The phases actually don't exist on a per-rank basis,
512 * but there's no harm updating them several times, so
513 * let's keep the code simple.
514 */
515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 scc_mgr_set_dqs_en_phase(i, 0);
517 scc_mgr_set_dqs_en_delay(i, 0);
518 }
519
520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 scc_mgr_set_dqdqs_output_phase(i, 0);
f42af35b 522 /* Arria V/Cyclone V don't have out2. */
3da42859
DN
523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 }
525 }
526
f42af35b 527 /* Multicast to all DQS group enables. */
1273dd9e
MV
528 writel(0xff, &sdr_scc_mgr->dqs_ena);
529 writel(0, &sdr_scc_mgr->update);
3da42859
DN
530}
531
c5c5f537
MV
532/**
533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534 * @write_group: Write group
535 *
536 * Set bypass mode and trigger SCC update.
537 */
538static void scc_set_bypass_mode(const u32 write_group)
3da42859 539{
c5c5f537 540 /* Multicast to all DQ enables. */
1273dd9e
MV
541 writel(0xff, &sdr_scc_mgr->dq_ena);
542 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 543
c5c5f537 544 /* Update current DQS IO enable. */
1273dd9e 545 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 546
c5c5f537 547 /* Update the DQS logic. */
1273dd9e 548 writel(write_group, &sdr_scc_mgr->dqs_ena);
3da42859 549
c5c5f537 550 /* Hit update. */
1273dd9e 551 writel(0, &sdr_scc_mgr->update);
3da42859
DN
552}
553
5e837896
MV
554/**
555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556 * @write_group: Write group
557 *
558 * Load DQS settings for Write Group, do not trigger SCC update.
559 */
560static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
5ff825b8 561{
5e837896
MV
562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 const int base = write_group * ratio;
565 int i;
5ff825b8 566 /*
5e837896 567 * Load the setting in the SCC manager
5ff825b8
MV
568 * Although OCT affects only write data, the OCT delay is controlled
569 * by the DQS logic block which is instantiated once per read group.
570 * For protocols where a write group consists of multiple read groups,
5e837896 571 * the setting must be set multiple times.
5ff825b8 572 */
5e837896
MV
573 for (i = 0; i < ratio; i++)
574 writel(base + i, &sdr_scc_mgr->dqs_ena);
5ff825b8
MV
575}
576
d41ea93a
MV
577/**
578 * scc_mgr_zero_group() - Zero all configs for a group
579 *
580 * Zero DQ, DM, DQS and OCT configs for a group.
581 */
582static void scc_mgr_zero_group(const u32 write_group, const int out_only)
3da42859 583{
d41ea93a 584 int i, r;
3da42859 585
d41ea93a
MV
586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 r += NUM_RANKS_PER_SHADOW_REG) {
588 /* Zero all DQ config settings. */
3da42859 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
07aee5bd 590 scc_mgr_set_dq_out1_delay(i, 0);
3da42859 591 if (!out_only)
07aee5bd 592 scc_mgr_set_dq_in_delay(i, 0);
3da42859
DN
593 }
594
d41ea93a 595 /* Multicast to all DQ enables. */
1273dd9e 596 writel(0xff, &sdr_scc_mgr->dq_ena);
3da42859 597
d41ea93a
MV
598 /* Zero all DM config settings. */
599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
07aee5bd 600 scc_mgr_set_dm_out1_delay(i, 0);
3da42859 601
d41ea93a 602 /* Multicast to all DM enables. */
1273dd9e 603 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 604
d41ea93a 605 /* Zero all DQS IO settings. */
3da42859 606 if (!out_only)
32675249 607 scc_mgr_set_dqs_io_in_delay(0);
d41ea93a
MV
608
609 /* Arria V/Cyclone V don't have out2. */
32675249 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
3da42859
DN
611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 scc_mgr_load_dqs_for_write_group(write_group);
613
d41ea93a 614 /* Multicast to all DQS IO enables (only 1 in total). */
1273dd9e 615 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 616
d41ea93a 617 /* Hit update to zero everything. */
1273dd9e 618 writel(0, &sdr_scc_mgr->update);
3da42859
DN
619 }
620}
621
3da42859
DN
622/*
623 * apply and load a particular input delay for the DQ pins in a group
624 * group_bgn is the index of the first dq pin (in the write group)
625 */
32675249 626static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
3da42859
DN
627{
628 uint32_t i, p;
629
630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
07aee5bd 631 scc_mgr_set_dq_in_delay(p, delay);
3da42859
DN
632 scc_mgr_load_dq(p);
633 }
634}
635
300c2e62
MV
636/**
637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638 * @delay: Delay value
639 *
640 * Apply and load a particular output delay for the DQ pins in a group.
641 */
642static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
3da42859 643{
300c2e62 644 int i;
3da42859 645
300c2e62
MV
646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 scc_mgr_set_dq_out1_delay(i, delay);
3da42859
DN
648 scc_mgr_load_dq(i);
649 }
650}
651
652/* apply and load a particular output delay for the DM pins in a group */
32675249 653static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
3da42859
DN
654{
655 uint32_t i;
656
657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
07aee5bd 658 scc_mgr_set_dm_out1_delay(i, delay1);
3da42859
DN
659 scc_mgr_load_dm(i);
660 }
661}
662
663
664/* apply and load delay on both DQS and OCT out1 */
665static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 uint32_t delay)
667{
32675249 668 scc_mgr_set_dqs_out1_delay(delay);
3da42859
DN
669 scc_mgr_load_dqs_io();
670
671 scc_mgr_set_oct_out1_delay(write_group, delay);
672 scc_mgr_load_dqs_for_write_group(write_group);
673}
674
5cb1b508
MV
675/**
676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677 * @write_group: Write group
678 * @delay: Delay value
679 *
680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681 */
8eccde3e 682static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
8eccde3e
MV
683 const u32 delay)
684{
685 u32 i, new_delay;
3da42859 686
8eccde3e
MV
687 /* DQ shift */
688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
3da42859 689 scc_mgr_load_dq(i);
3da42859 690
8eccde3e
MV
691 /* DM shift */
692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
3da42859 693 scc_mgr_load_dm(i);
3da42859 694
5cb1b508
MV
695 /* DQS shift */
696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
3da42859 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
698 debug_cond(DLEVEL == 1,
699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 __func__, __LINE__, write_group, delay, new_delay,
701 IO_IO_OUT2_DELAY_MAX,
3da42859 702 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
703 new_delay -= IO_IO_OUT2_DELAY_MAX;
704 scc_mgr_set_dqs_out1_delay(new_delay);
3da42859
DN
705 }
706
707 scc_mgr_load_dqs_io();
708
5cb1b508
MV
709 /* OCT shift */
710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
3da42859 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
712 debug_cond(DLEVEL == 1,
713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 __func__, __LINE__, write_group, delay,
715 new_delay, IO_IO_OUT2_DELAY_MAX,
3da42859 716 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
717 new_delay -= IO_IO_OUT2_DELAY_MAX;
718 scc_mgr_set_oct_out1_delay(write_group, new_delay);
3da42859
DN
719 }
720
721 scc_mgr_load_dqs_for_write_group(write_group);
722}
723
f51a7d35
MV
724/**
725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726 * @write_group: Write group
727 * @delay: Delay value
728 *
729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
3da42859 730 */
f51a7d35
MV
731static void
732scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 const u32 delay)
3da42859 734{
f51a7d35 735 int r;
3da42859
DN
736
737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
f51a7d35 738 r += NUM_RANKS_PER_SHADOW_REG) {
5cb1b508 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
1273dd9e 740 writel(0, &sdr_scc_mgr->update);
3da42859
DN
741 }
742}
743
f936f94f
MV
744/**
745 * set_jump_as_return() - Return instruction optimization
746 *
747 * Optimization used to recover some slots in ddr3 inst_rom could be
748 * applied to other protocols if we wanted to
749 */
3da42859
DN
750static void set_jump_as_return(void)
751{
3da42859 752 /*
f936f94f 753 * To save space, we replace return with jump to special shared
3da42859 754 * RETURN instruction so we set the counter to large value so that
f936f94f 755 * we always jump.
3da42859 756 */
1273dd9e
MV
757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
759}
760
761/*
762 * should always use constants as argument to ensure all computations are
763 * performed at compile time
764 */
765static void delay_for_n_mem_clocks(const uint32_t clocks)
766{
767 uint32_t afi_clocks;
768 uint8_t inner = 0;
769 uint8_t outer = 0;
770 uint16_t c_loop = 0;
3da42859
DN
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 /* scale (rounding up) to get afi clocks */
777
778 /*
779 * Note, we don't bother accounting for being off a little bit
780 * because of a few extra instructions in outer loops
781 * Note, the loops have a test at the end, and do the test before
782 * the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 if (afi_clocks == 0) {
786 ;
787 } else if (afi_clocks <= 0x100) {
788 inner = afi_clocks-1;
789 outer = 0;
790 c_loop = 0;
791 } else if (afi_clocks <= 0x10000) {
792 inner = 0xff;
793 outer = (afi_clocks-1) >> 8;
794 c_loop = 0;
795 } else {
796 inner = 0xff;
797 outer = 0xff;
798 c_loop = (afi_clocks-1) >> 16;
799 }
800
801 /*
802 * rom instructions are structured as follows:
803 *
804 * IDLE_LOOP2: jnz cntr0, TARGET_A
805 * IDLE_LOOP1: jnz cntr1, TARGET_B
806 * return
807 *
808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 * TARGET_B is set to IDLE_LOOP2 as well
810 *
811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 *
814 * a little confusing, but it helps save precious space in the inst_rom
815 * and sequencer rom and keeps the delays more accurate and reduces
816 * overhead
817 */
818 if (afi_clocks <= 0x100) {
1273dd9e
MV
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 821
1273dd9e
MV
822 writel(RW_MGR_IDLE_LOOP1,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 824
1273dd9e
MV
825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 827 } else {
1273dd9e
MV
828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 830
1273dd9e
MV
831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 833
1273dd9e
MV
834 writel(RW_MGR_IDLE_LOOP2,
835 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 836
1273dd9e
MV
837 writel(RW_MGR_IDLE_LOOP2,
838 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
839
840 /* hack to get around compiler not being smart enough */
841 if (afi_clocks <= 0x10000) {
842 /* only need to run once */
1273dd9e
MV
843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
845 } else {
846 do {
1273dd9e
MV
847 writel(RW_MGR_IDLE_LOOP2,
848 SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
850 } while (c_loop-- != 0);
851 }
852 }
853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854}
855
944fe719
MV
856/**
857 * rw_mgr_mem_init_load_regs() - Load instruction registers
858 * @cntr0: Counter 0 value
859 * @cntr1: Counter 1 value
860 * @cntr2: Counter 2 value
861 * @jump: Jump instruction value
862 *
863 * Load instruction registers.
864 */
865static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866{
867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870 /* Load counters */
871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 &sdr_rw_load_mgr_regs->load_cntr0);
873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 &sdr_rw_load_mgr_regs->load_cntr1);
875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 &sdr_rw_load_mgr_regs->load_cntr2);
877
878 /* Load jump address */
879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883 /* Execute count instruction */
884 writel(jump, grpaddr);
885}
886
ecd2334a
MV
887/**
888 * rw_mgr_mem_load_user() - Load user calibration values
889 * @fin1: Final instruction 1
890 * @fin2: Final instruction 2
891 * @precharge: If 1, precharge the banks at the end
892 *
893 * Load user calibration values and optionally precharge the banks.
894 */
895static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 const int precharge)
3da42859 897{
ecd2334a
MV
898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 u32 r;
901
902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 if (param->skip_ranks[r]) {
904 /* request to skip the rank */
905 continue;
906 }
907
908 /* set rank */
909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911 /* precharge all banks ... */
912 if (precharge)
913 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
3da42859 914
ecd2334a
MV
915 /*
916 * USER Use Mirror-ed commands for odd ranks if address
917 * mirrorring is on
918 */
919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 set_jump_as_return();
921 writel(RW_MGR_MRS2_MIRR, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS3_MIRR, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS1_MIRR, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(fin1, grpaddr);
931 } else {
932 set_jump_as_return();
933 writel(RW_MGR_MRS2, grpaddr);
934 delay_for_n_mem_clocks(4);
935 set_jump_as_return();
936 writel(RW_MGR_MRS3, grpaddr);
937 delay_for_n_mem_clocks(4);
938 set_jump_as_return();
939 writel(RW_MGR_MRS1, grpaddr);
940 set_jump_as_return();
941 writel(fin2, grpaddr);
942 }
943
944 if (precharge)
945 continue;
946
947 set_jump_as_return();
948 writel(RW_MGR_ZQCL, grpaddr);
949
950 /* tZQinit = tDLLK = 512 ck cycles */
951 delay_for_n_mem_clocks(512);
952 }
953}
954
8e9d7d04
MV
955/**
956 * rw_mgr_mem_initialize() - Initialize RW Manager
957 *
958 * Initialize RW Manager.
959 */
ecd2334a
MV
960static void rw_mgr_mem_initialize(void)
961{
3da42859
DN
962 debug("%s:%d\n", __func__, __LINE__);
963
964 /* The reset / cke part of initialization is broadcasted to all ranks */
1273dd9e
MV
965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
967
968 /*
969 * Here's how you load register for a loop
970 * Counters are located @ 0x800
971 * Jump address are located @ 0xC00
972 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 * significant bits
976 */
977
8e9d7d04 978 /* Start with memory RESET activated */
3da42859
DN
979
980 /* tINIT = 200us */
981
982 /*
983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 * If a and b are the number of iteration in 2 nested loops
985 * it takes the following number of cycles to complete the operation:
986 * number_of_cycles = ((2 + n) * a + 2) * b
987 * where n is the number of instruction in the inner loop
988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 * b = 6A
990 */
944fe719
MV
991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 SEQ_TINIT_CNTR2_VAL,
993 RW_MGR_INIT_RESET_0_CKE_0);
3da42859 994
8e9d7d04 995 /* Indicate that memory is stable. */
1273dd9e 996 writel(1, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
997
998 /*
999 * transition the RESET to high
1000 * Wait for 500us
1001 */
1002
1003 /*
1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 * If a and b are the number of iteration in 2 nested loops
1006 * it takes the following number of cycles to complete the operation
1007 * number_of_cycles = ((2 + n) * a + 2) * b
1008 * where n is the number of instruction in the inner loop
1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 * b = FF
1011 */
944fe719
MV
1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 SEQ_TRESET_CNTR2_VAL,
1014 RW_MGR_INIT_RESET_1_CKE_0);
3da42859 1015
8e9d7d04 1016 /* Bring up clock enable. */
3da42859
DN
1017
1018 /* tXRP < 250 ck cycles */
1019 delay_for_n_mem_clocks(250);
1020
ecd2334a
MV
1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 0);
3da42859
DN
1023}
1024
1025/*
1026 * At the end of calibration we have to program the user settings in, and
1027 * USER hand off the memory to the user.
1028 */
1029static void rw_mgr_mem_handoff(void)
1030{
ecd2334a
MV
1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 /*
1033 * USER need to wait tMOD (12CK or 15ns) time before issuing
1034 * other commands, but we will have plenty of NIOS cycles before
1035 * actual handoff so its okay.
1036 */
3da42859
DN
1037}
1038
d844c7d4
MV
1039/**
1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041 * @rank_bgn: Rank number
1042 * @group: Read/Write Group
1043 * @all_ranks: Test all ranks
1044 *
1045 * Performs a guaranteed read on the patterns we are going to use during a
1046 * read test to ensure memory works.
3da42859 1047 */
d844c7d4
MV
1048static int
1049rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 const u32 all_ranks)
3da42859 1051{
d844c7d4
MV
1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 const u32 addr_offset =
1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 const u32 rank_end = all_ranks ?
1057 RW_MGR_MEM_NUMBER_OF_RANKS :
1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 const u32 correct_mask_vg = param->read_correct_mask_vg;
3da42859 1062
d844c7d4
MV
1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 int vg, r;
1065 int ret = 0;
1066
1067 bit_chk = param->read_correct_mask;
3da42859
DN
1068
1069 for (r = rank_bgn; r < rank_end; r++) {
d844c7d4 1070 /* Request to skip the rank */
3da42859 1071 if (param->skip_ranks[r])
3da42859
DN
1072 continue;
1073
d844c7d4 1074 /* Set rank */
3da42859
DN
1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077 /* Load up a constant bursts of read commands */
1273dd9e
MV
1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 writel(RW_MGR_GUARANTEED_READ,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1081
1273dd9e
MV
1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 writel(RW_MGR_GUARANTEED_READ_CONT,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
1085
1086 tmp_bit_chk = 0;
d844c7d4
MV
1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 vg >= 0; vg--) {
1089 /* Reset the FIFOs to get pointers to known state. */
1273dd9e
MV
1090 writel(0, &phy_mgr_cmd->fifo_reset);
1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 RW_MGR_RESET_READ_DATAPATH_OFFSET);
d844c7d4
MV
1093 writel(RW_MGR_GUARANTEED_READ,
1094 addr + addr_offset + (vg << 2));
3da42859 1095
1273dd9e 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
d844c7d4
MV
1097 tmp_bit_chk <<= shift_ratio;
1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
3da42859 1099 }
d844c7d4
MV
1100
1101 bit_chk &= tmp_bit_chk;
3da42859
DN
1102 }
1103
17fdc916 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1105
1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
d844c7d4
MV
1107
1108 if (bit_chk != param->read_correct_mask)
1109 ret = -EIO;
1110
1111 debug_cond(DLEVEL == 1,
1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 __func__, __LINE__, group, bit_chk,
1114 param->read_correct_mask, ret);
1115
1116 return ret;
3da42859
DN
1117}
1118
b6cb7f9e
MV
1119/**
1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121 * @rank_bgn: Rank number
1122 * @all_ranks: Test all ranks
1123 *
1124 * Load up the patterns we are going to use during a read test.
1125 */
1126static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 const int all_ranks)
3da42859 1128{
b6cb7f9e
MV
1129 const u32 rank_end = all_ranks ?
1130 RW_MGR_MEM_NUMBER_OF_RANKS :
1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 u32 r;
3da42859
DN
1133
1134 debug("%s:%d\n", __func__, __LINE__);
b6cb7f9e 1135
3da42859
DN
1136 for (r = rank_bgn; r < rank_end; r++) {
1137 if (param->skip_ranks[r])
1138 /* request to skip the rank */
1139 continue;
1140
1141 /* set rank */
1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144 /* Load up a constant bursts */
1273dd9e 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1146
1273dd9e
MV
1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1149
1273dd9e 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1151
1273dd9e
MV
1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1154
1273dd9e 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859 1156
1273dd9e
MV
1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1159
1273dd9e 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1161
1273dd9e
MV
1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859 1164
1273dd9e
MV
1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
1167 }
1168
1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170}
1171
1172/*
1173 * try a read and see if it returns correct data back. has dummy reads
1174 * inserted into the mix used to align dqs enable. has more thorough checks
1175 * than the regular read test.
1176 */
1177static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 uint32_t all_groups, uint32_t all_ranks)
1180{
1181 uint32_t r, vg;
1182 uint32_t correct_mask_vg;
1183 uint32_t tmp_bit_chk;
1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 uint32_t addr;
1187 uint32_t base_rw_mgr;
1188
1189 *bit_chk = param->read_correct_mask;
1190 correct_mask_vg = param->read_correct_mask_vg;
1191
1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195 for (r = rank_bgn; r < rank_end; r++) {
1196 if (param->skip_ranks[r])
1197 /* request to skip the rank */
1198 continue;
1199
1200 /* set rank */
1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1273dd9e 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1204
1273dd9e
MV
1205 writel(RW_MGR_READ_B2B_WAIT1,
1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1207
1273dd9e
MV
1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 writel(RW_MGR_READ_B2B_WAIT2,
1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1211
3da42859 1212 if (quick_read_mode)
1273dd9e 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859
DN
1214 /* need at least two (1+1) reads to capture failures */
1215 else if (all_groups)
1273dd9e 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1217 else
1273dd9e 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1219
1273dd9e
MV
1220 writel(RW_MGR_READ_B2B,
1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
1222 if (all_groups)
1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1273dd9e 1225 &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1226 else
1273dd9e 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1228
1273dd9e
MV
1229 writel(RW_MGR_READ_B2B,
1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
1231
1232 tmp_bit_chk = 0;
1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 /* reset the fifos to get pointers to known state */
1273dd9e
MV
1235 writel(0, &phy_mgr_cmd->fifo_reset);
1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859
DN
1238
1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
c4815f76
MV
1242 if (all_groups)
1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 else
1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
17fdc916 1247 writel(RW_MGR_READ_B2B, addr +
3da42859
DN
1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 vg) << 2));
1250
1273dd9e 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
3da42859
DN
1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254 if (vg == 0)
1255 break;
1256 }
1257 *bit_chk &= tmp_bit_chk;
1258 }
1259
c4815f76 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1262
1263 if (all_correct) {
1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 (%u == %u) => %lu", __func__, __LINE__, group,
1267 all_groups, *bit_chk, param->read_correct_mask,
1268 (long unsigned int)(*bit_chk ==
1269 param->read_correct_mask));
1270 return *bit_chk == param->read_correct_mask;
1271 } else {
1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 (%u != %lu) => %lu\n", __func__, __LINE__,
1275 group, all_groups, *bit_chk, (long unsigned int)0,
1276 (long unsigned int)(*bit_chk != 0x00));
1277 return *bit_chk != 0x00;
1278 }
1279}
1280
1281static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 uint32_t all_groups)
1284{
1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 bit_chk, all_groups, 1);
1287}
1288
60bb8a8a
MV
1289/**
1290 * rw_mgr_incr_vfifo() - Increase VFIFO value
1291 * @grp: Read/Write group
1292 * @v: VFIFO value
1293 *
1294 * Increase VFIFO value.
1295 */
1296static void rw_mgr_incr_vfifo(const u32 grp, u32 *v)
3da42859 1297{
1273dd9e 1298 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
3da42859
DN
1299 (*v)++;
1300}
1301
60bb8a8a
MV
1302/**
1303 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1304 * @grp: Read/Write group
1305 * @v: VFIFO value
1306 *
1307 * Decrease VFIFO value.
1308 */
1309static void rw_mgr_decr_vfifo(const u32 grp, u32 *v)
3da42859 1310{
60bb8a8a 1311 u32 i;
3da42859 1312
60bb8a8a 1313 for (i = 0; i < VFIFO_SIZE - 1; i++)
3da42859
DN
1314 rw_mgr_incr_vfifo(grp, v);
1315}
1316
1317static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1318{
1319 uint32_t v;
1320 uint32_t fail_cnt = 0;
1321 uint32_t test_status;
1322
1323 for (v = 0; v < VFIFO_SIZE; ) {
1324 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1325 __func__, __LINE__, v);
1326 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1327 (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1328 if (!test_status) {
1329 fail_cnt++;
1330
1331 if (fail_cnt == 2)
1332 break;
1333 }
1334
1335 /* fiddle with FIFO */
1336 rw_mgr_incr_vfifo(grp, &v);
1337 }
1338
1339 if (v >= VFIFO_SIZE) {
1340 /* no failing read found!! Something must have gone wrong */
1341 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1342 __func__, __LINE__);
1343 return 0;
1344 } else {
1345 return v;
1346 }
1347}
1348
192d6f9f
MV
1349/**
1350 * sdr_find_phase() - Find DQS enable phase
1351 * @working: If 1, look for working phase, if 0, look for non-working phase
1352 * @grp: Read/Write group
1353 * @v: VFIFO value
1354 * @work: Working window position
1355 * @i: Iterator
1356 * @p: DQS Phase Iterator
192d6f9f
MV
1357 *
1358 * Find working or non-working DQS enable phase setting.
1359 */
1360static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
86a39dc7 1361 u32 *i, u32 *p)
3da42859 1362{
192d6f9f
MV
1363 u32 ret, bit_chk;
1364 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
3da42859 1365
192d6f9f
MV
1366 for (; *i < end; (*i)++) {
1367 if (working)
1368 *p = 0;
1369
1370 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1371 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
3da42859 1372
192d6f9f
MV
1373 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1374 PASS_ONE_BIT, &bit_chk, 0);
192d6f9f
MV
1375 if (!working)
1376 ret = !ret;
3da42859 1377
192d6f9f
MV
1378 if (ret)
1379 return 0;
3da42859 1380
192d6f9f
MV
1381 *work += IO_DELAY_PER_OPA_TAP;
1382 }
1383
1384 if (*p > IO_DQS_EN_PHASE_MAX) {
1385 /* Fiddle with FIFO. */
1386 rw_mgr_incr_vfifo(grp, v);
1387 if (!working)
1388 *p = 0;
3da42859 1389 }
3da42859
DN
1390 }
1391
192d6f9f
MV
1392 return -EINVAL;
1393}
1394
4c5e584b
MV
1395/**
1396 * sdr_working_phase() - Find working DQS enable phase
1397 * @grp: Read/Write group
1398 * @work_bgn: Working window start position
1399 * @v: VFIFO value
1400 * @d: dtaps output value
1401 * @p: DQS Phase Iterator
1402 * @i: Iterator
1403 *
1404 * Find working DQS enable phase setting.
1405 */
1406static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *v, u32 *d,
1407 u32 *p, u32 *i)
192d6f9f 1408{
35ee867f
MV
1409 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1410 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
192d6f9f
MV
1411 int ret;
1412
1413 *work_bgn = 0;
1414
1415 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1416 *i = 0;
1417 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
86a39dc7 1418 ret = sdr_find_phase(1, grp, v, work_bgn, i, p);
192d6f9f
MV
1419 if (!ret)
1420 return 0;
1421 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1422 }
1423
38ed6922 1424 /* Cannot find working solution */
192d6f9f
MV
1425 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1426 __func__, __LINE__);
1427 return -EINVAL;
3da42859
DN
1428}
1429
4c5e584b
MV
1430/**
1431 * sdr_backup_phase() - Find DQS enable backup phase
1432 * @grp: Read/Write group
1433 * @work_bgn: Working window start position
1434 * @v: VFIFO value
1435 * @p: DQS Phase Iterator
1436 *
1437 * Find DQS enable backup phase setting.
1438 */
1439static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *v, u32 *p)
3da42859 1440{
4c5e584b
MV
1441 u32 tmp_delay, bit_chk, d;
1442 int ret;
3da42859
DN
1443
1444 /* Special case code for backing up a phase */
1445 if (*p == 0) {
1446 *p = IO_DQS_EN_PHASE_MAX;
521fe39c 1447 rw_mgr_decr_vfifo(grp, v);
3da42859
DN
1448 } else {
1449 (*p)--;
1450 }
1451 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
521fe39c 1452 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
3da42859 1453
49891df6
MV
1454 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1455 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859 1456
4c5e584b
MV
1457 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1458 PASS_ONE_BIT, &bit_chk, 0);
1459 if (ret) {
3da42859
DN
1460 *work_bgn = tmp_delay;
1461 break;
1462 }
49891df6
MV
1463
1464 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
3da42859
DN
1465 }
1466
4c5e584b 1467 /* Restore VFIFO to old state before we decremented it (if needed). */
3da42859
DN
1468 (*p)++;
1469 if (*p > IO_DQS_EN_PHASE_MAX) {
1470 *p = 0;
521fe39c 1471 rw_mgr_incr_vfifo(grp, v);
3da42859
DN
1472 }
1473
521fe39c 1474 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
3da42859
DN
1475}
1476
4c5e584b
MV
1477/**
1478 * sdr_nonworking_phase() - Find non-working DQS enable phase
1479 * @grp: Read/Write group
1480 * @work_end: Working window end position
1481 * @v: VFIFO value
1482 * @p: DQS Phase Iterator
1483 * @i: Iterator
1484 *
1485 * Find non-working DQS enable phase setting.
1486 */
1487static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *v,
1488 u32 *p, u32 *i)
3da42859 1489{
192d6f9f 1490 int ret;
3da42859
DN
1491
1492 (*p)++;
1493 *work_end += IO_DELAY_PER_OPA_TAP;
1494 if (*p > IO_DQS_EN_PHASE_MAX) {
192d6f9f 1495 /* Fiddle with FIFO. */
3da42859 1496 *p = 0;
521fe39c 1497 rw_mgr_incr_vfifo(grp, v);
3da42859
DN
1498 }
1499
86a39dc7 1500 ret = sdr_find_phase(0, grp, v, work_end, i, p);
192d6f9f
MV
1501 if (ret) {
1502 /* Cannot see edge of failing read. */
1503 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1504 __func__, __LINE__);
3da42859
DN
1505 }
1506
192d6f9f 1507 return ret;
3da42859
DN
1508}
1509
0a13a0fb
MV
1510/**
1511 * sdr_find_window_center() - Find center of the working DQS window.
1512 * @grp: Read/Write group
1513 * @work_bgn: First working settings
1514 * @work_end: Last working settings
1515 * @val: VFIFO value
1516 *
1517 * Find center of the working DQS enable window.
1518 */
1519static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
28fd242a 1520 const u32 work_end, const u32 val)
3da42859 1521{
28fd242a 1522 u32 bit_chk, work_mid, v = val;
3da42859 1523 int tmp_delay = 0;
28fd242a 1524 int i, p, d;
3da42859 1525
28fd242a 1526 work_mid = (work_bgn + work_end) / 2;
3da42859
DN
1527
1528 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
28fd242a 1529 work_bgn, work_end, work_mid);
3da42859 1530 /* Get the middle delay to be less than a VFIFO delay */
cbb0b7e0 1531 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
28fd242a 1532
3da42859 1533 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
cbb0b7e0 1534 work_mid %= tmp_delay;
28fd242a 1535 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
3da42859 1536
cbb0b7e0
MV
1537 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1538 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1539 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1540 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1541
1542 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1543
1544 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1545 if (d > IO_DQS_EN_DELAY_MAX)
1546 d = IO_DQS_EN_DELAY_MAX;
1547 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
28fd242a 1548
28fd242a 1549 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
3da42859 1550
cbb0b7e0 1551 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
28fd242a 1552 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859
DN
1553
1554 /*
1555 * push vfifo until we can successfully calibrate. We can do this
1556 * because the largest possible margin in 1 VFIFO cycle.
1557 */
1558 for (i = 0; i < VFIFO_SIZE; i++) {
1559 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
28fd242a
MV
1560 v);
1561 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
3da42859 1562 PASS_ONE_BIT,
28fd242a 1563 &bit_chk, 0)) {
0a13a0fb
MV
1564 debug_cond(DLEVEL == 2,
1565 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1566 __func__, __LINE__, v, p, d);
1567 return 0;
3da42859
DN
1568 }
1569
0a13a0fb 1570 /* Fiddle with FIFO. */
28fd242a 1571 rw_mgr_incr_vfifo(grp, &v);
3da42859
DN
1572 }
1573
0a13a0fb
MV
1574 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1575 __func__, __LINE__);
1576 return -EINVAL;
3da42859
DN
1577}
1578
1579/* find a good dqs enable to use */
1580static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1581{
1582 uint32_t v, d, p, i;
3da42859
DN
1583 uint32_t bit_chk;
1584 uint32_t dtaps_per_ptap;
28fd242a 1585 uint32_t work_bgn, work_end;
3da42859 1586 uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
3da42859
DN
1587
1588 debug("%s:%d %u\n", __func__, __LINE__, grp);
1589
1590 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1591
1592 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1593 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1594
1595 /* ************************************************************** */
1596 /* * Step 0 : Determine number of delay taps for each phase tap * */
1597 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1598
1599 /* ********************************************************* */
1600 /* * Step 1 : First push vfifo until we get a failing read * */
1601 v = find_vfifo_read(grp, &bit_chk);
1602
3da42859
DN
1603 /* ******************************************************** */
1604 /* * step 2: find first working phase, increment in ptaps * */
1605 work_bgn = 0;
35ee867f 1606 if (sdr_working_phase(grp, &work_bgn, &v, &d, &p, &i))
3da42859
DN
1607 return 0;
1608
1609 work_end = work_bgn;
1610
1611 /*
1612 * If d is 0 then the working window covers a phase tap and
1613 * we can follow the old procedure otherwise, we've found the beginning,
1614 * and we need to increment the dtaps until we find the end.
1615 */
1616 if (d == 0) {
1617 /* ********************************************************* */
1618 /* * step 3a: if we have room, back off by one and
1619 increment in dtaps * */
1620
49891df6 1621 sdr_backup_phase(grp, &work_bgn, &v, &p);
3da42859
DN
1622
1623 /* ********************************************************* */
1624 /* * step 4a: go forward from working phase to non working
1625 phase, increment in ptaps * */
4c5e584b 1626 if (sdr_nonworking_phase(grp, &work_end, &v, &p, &i))
3da42859
DN
1627 return 0;
1628
1629 /* ********************************************************* */
1630 /* * step 5a: back off one from last, increment in dtaps * */
1631
1632 /* Special case code for backing up a phase */
1633 if (p == 0) {
1634 p = IO_DQS_EN_PHASE_MAX;
1635 rw_mgr_decr_vfifo(grp, &v);
1636 } else {
1637 p = p - 1;
1638 }
1639
1640 work_end -= IO_DELAY_PER_OPA_TAP;
1641 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1642
1643 /* * The actual increment of dtaps is done outside of
1644 the if/else loop to share code */
1645 d = 0;
1646
1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1648 vfifo=%u ptap=%u\n", __func__, __LINE__,
1649 v, p);
1650 } else {
1651 /* ******************************************************* */
1652 /* * step 3-5b: Find the right edge of the window using
1653 delay taps * */
1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1655 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1656 v, p, d, work_bgn);
1657
1658 work_end = work_bgn;
3da42859
DN
1659 }
1660
1661 /* The dtap increment to find the failing edge is done here */
1662 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1663 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1664 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1665 end-2: dtap=%u\n", __func__, __LINE__, d);
1666 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1667
1668 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1669 PASS_ONE_BIT,
1670 &bit_chk, 0)) {
1671 break;
1672 }
1673 }
1674
1675 /* Go back to working dtap */
1676 if (d != 0)
1677 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1678
1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1680 ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1681 v, p, d-1, work_end);
1682
1683 if (work_end < work_bgn) {
1684 /* nil range */
1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1686 failed\n", __func__, __LINE__);
1687 return 0;
1688 }
1689
1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1691 __func__, __LINE__, work_bgn, work_end);
1692
1693 /* *************************************************************** */
1694 /*
1695 * * We need to calculate the number of dtaps that equal a ptap
1696 * * To do that we'll back up a ptap and re-find the edge of the
1697 * * window using dtaps
1698 */
1699
1700 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1701 for tracking\n", __func__, __LINE__);
1702
1703 /* Special case code for backing up a phase */
1704 if (p == 0) {
1705 p = IO_DQS_EN_PHASE_MAX;
1706 rw_mgr_decr_vfifo(grp, &v);
1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1708 cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1709 v, p);
1710 } else {
1711 p = p - 1;
1712 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1713 phase only: v=%u p=%u", __func__, __LINE__,
1714 v, p);
1715 }
1716
1717 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1718
1719 /*
1720 * Increase dtap until we first see a passing read (in case the
1721 * window is smaller than a ptap),
1722 * and then a failing read to mark the edge of the window again
1723 */
1724
1725 /* Find a passing read */
1726 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1727 __func__, __LINE__);
1728 found_passing_read = 0;
1729 found_failing_read = 0;
1730 initial_failing_dtap = d;
1731 for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1732 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1733 read d=%u\n", __func__, __LINE__, d);
1734 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1735
1736 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1737 PASS_ONE_BIT,
1738 &bit_chk, 0)) {
1739 found_passing_read = 1;
1740 break;
1741 }
1742 }
1743
1744 if (found_passing_read) {
1745 /* Find a failing read */
1746 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1747 read\n", __func__, __LINE__);
1748 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1749 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1750 testing read d=%u\n", __func__, __LINE__, d);
1751 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1752
1753 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1754 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1755 found_failing_read = 1;
1756 break;
1757 }
1758 }
1759 } else {
1760 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1761 calculate dtaps", __func__, __LINE__);
1762 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1763 }
1764
1765 /*
1766 * The dynamically calculated dtaps_per_ptap is only valid if we
1767 * found a passing/failing read. If we didn't, it means d hit the max
1768 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1769 * statically calculated value.
1770 */
1771 if (found_passing_read && found_failing_read)
1772 dtaps_per_ptap = d - initial_failing_dtap;
1773
1273dd9e 1774 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3da42859
DN
1775 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1776 - %u = %u", __func__, __LINE__, d,
1777 initial_failing_dtap, dtaps_per_ptap);
1778
1779 /* ******************************************** */
1780 /* * step 6: Find the centre of the window * */
0a13a0fb
MV
1781 if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1782 return 0; /* FIXME: Old code, return 0 means failure :-( */
3da42859 1783
3da42859
DN
1784 return 1;
1785}
1786
3da42859
DN
1787/* per-bit deskew DQ and center */
1788static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1789 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1790 uint32_t use_read_test, uint32_t update_fom)
1791{
1792 uint32_t i, p, d, min_index;
1793 /*
1794 * Store these as signed since there are comparisons with
1795 * signed numbers.
1796 */
1797 uint32_t bit_chk;
1798 uint32_t sticky_bit_chk;
1799 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1800 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1801 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1802 int32_t mid;
1803 int32_t orig_mid_min, mid_min;
1804 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1805 final_dqs_en;
1806 int32_t dq_margin, dqs_margin;
1807 uint32_t stop;
1808 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1809 uint32_t addr;
1810
1811 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1812
c4815f76 1813 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
17fdc916 1814 start_dqs = readl(addr + (read_group << 2));
3da42859 1815 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
17fdc916 1816 start_dqs_en = readl(addr + ((read_group << 2)
3da42859
DN
1817 - IO_DQS_EN_DELAY_OFFSET));
1818
1819 /* set the left and right edge of each bit to an illegal value */
1820 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1821 sticky_bit_chk = 0;
1822 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1823 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1824 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1825 }
1826
3da42859
DN
1827 /* Search for the left edge of the window for each bit */
1828 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1829 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1830
1273dd9e 1831 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1832
1833 /*
1834 * Stop searching when the read test doesn't pass AND when
1835 * we've seen a passing read on every bit.
1836 */
1837 if (use_read_test) {
1838 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1839 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1840 &bit_chk, 0, 0);
1841 } else {
1842 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1843 0, PASS_ONE_BIT,
1844 &bit_chk, 0);
1845 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1846 (read_group - (write_group *
1847 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1848 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1849 stop = (bit_chk == 0);
1850 }
1851 sticky_bit_chk = sticky_bit_chk | bit_chk;
1852 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1853 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1854 && %u", __func__, __LINE__, d,
1855 sticky_bit_chk,
1856 param->read_correct_mask, stop);
1857
1858 if (stop == 1) {
1859 break;
1860 } else {
1861 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1862 if (bit_chk & 1) {
1863 /* Remember a passing test as the
1864 left_edge */
1865 left_edge[i] = d;
1866 } else {
1867 /* If a left edge has not been seen yet,
1868 then a future passing test will mark
1869 this edge as the right edge */
1870 if (left_edge[i] ==
1871 IO_IO_IN_DELAY_MAX + 1) {
1872 right_edge[i] = -(d + 1);
1873 }
1874 }
1875 bit_chk = bit_chk >> 1;
1876 }
1877 }
1878 }
1879
1880 /* Reset DQ delay chains to 0 */
32675249 1881 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
3da42859
DN
1882 sticky_bit_chk = 0;
1883 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1884 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1885 %d right_edge[%u]: %d\n", __func__, __LINE__,
1886 i, left_edge[i], i, right_edge[i]);
1887
1888 /*
1889 * Check for cases where we haven't found the left edge,
1890 * which makes our assignment of the the right edge invalid.
1891 * Reset it to the illegal value.
1892 */
1893 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1894 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1895 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1896 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1897 right_edge[%u]: %d\n", __func__, __LINE__,
1898 i, right_edge[i]);
1899 }
1900
1901 /*
1902 * Reset sticky bit (except for bits where we have seen
1903 * both the left and right edge).
1904 */
1905 sticky_bit_chk = sticky_bit_chk << 1;
1906 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1907 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1908 sticky_bit_chk = sticky_bit_chk | 1;
1909 }
1910
1911 if (i == 0)
1912 break;
1913 }
1914
3da42859
DN
1915 /* Search for the right edge of the window for each bit */
1916 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1917 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1918 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1919 uint32_t delay = d + start_dqs_en;
1920 if (delay > IO_DQS_EN_DELAY_MAX)
1921 delay = IO_DQS_EN_DELAY_MAX;
1922 scc_mgr_set_dqs_en_delay(read_group, delay);
1923 }
1924 scc_mgr_load_dqs(read_group);
1925
1273dd9e 1926 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1927
1928 /*
1929 * Stop searching when the read test doesn't pass AND when
1930 * we've seen a passing read on every bit.
1931 */
1932 if (use_read_test) {
1933 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1934 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1935 &bit_chk, 0, 0);
1936 } else {
1937 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1938 0, PASS_ONE_BIT,
1939 &bit_chk, 0);
1940 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1941 (read_group - (write_group *
1942 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1943 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1944 stop = (bit_chk == 0);
1945 }
1946 sticky_bit_chk = sticky_bit_chk | bit_chk;
1947 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1948
1949 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1950 %u && %u", __func__, __LINE__, d,
1951 sticky_bit_chk, param->read_correct_mask, stop);
1952
1953 if (stop == 1) {
1954 break;
1955 } else {
1956 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1957 if (bit_chk & 1) {
1958 /* Remember a passing test as
1959 the right_edge */
1960 right_edge[i] = d;
1961 } else {
1962 if (d != 0) {
1963 /* If a right edge has not been
1964 seen yet, then a future passing
1965 test will mark this edge as the
1966 left edge */
1967 if (right_edge[i] ==
1968 IO_IO_IN_DELAY_MAX + 1) {
1969 left_edge[i] = -(d + 1);
1970 }
1971 } else {
1972 /* d = 0 failed, but it passed
1973 when testing the left edge,
1974 so it must be marginal,
1975 set it to -1 */
1976 if (right_edge[i] ==
1977 IO_IO_IN_DELAY_MAX + 1 &&
1978 left_edge[i] !=
1979 IO_IO_IN_DELAY_MAX
1980 + 1) {
1981 right_edge[i] = -1;
1982 }
1983 /* If a right edge has not been
1984 seen yet, then a future passing
1985 test will mark this edge as the
1986 left edge */
1987 else if (right_edge[i] ==
1988 IO_IO_IN_DELAY_MAX +
1989 1) {
1990 left_edge[i] = -(d + 1);
1991 }
1992 }
1993 }
1994
1995 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1996 d=%u]: ", __func__, __LINE__, d);
1997 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1998 (int)(bit_chk & 1), i, left_edge[i]);
1999 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2000 right_edge[i]);
2001 bit_chk = bit_chk >> 1;
2002 }
2003 }
2004 }
2005
2006 /* Check that all bits have a window */
3da42859
DN
2007 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2008 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2009 %d right_edge[%u]: %d", __func__, __LINE__,
2010 i, left_edge[i], i, right_edge[i]);
2011 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2012 == IO_IO_IN_DELAY_MAX + 1)) {
2013 /*
2014 * Restore delay chain settings before letting the loop
2015 * in rw_mgr_mem_calibrate_vfifo to retry different
2016 * dqs/ck relationships.
2017 */
2018 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2019 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2020 scc_mgr_set_dqs_en_delay(read_group,
2021 start_dqs_en);
2022 }
2023 scc_mgr_load_dqs(read_group);
1273dd9e 2024 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2025
2026 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2027 find edge [%u]: %d %d", __func__, __LINE__,
2028 i, left_edge[i], right_edge[i]);
2029 if (use_read_test) {
2030 set_failing_group_stage(read_group *
2031 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2032 CAL_STAGE_VFIFO,
2033 CAL_SUBSTAGE_VFIFO_CENTER);
2034 } else {
2035 set_failing_group_stage(read_group *
2036 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2037 CAL_STAGE_VFIFO_AFTER_WRITES,
2038 CAL_SUBSTAGE_VFIFO_CENTER);
2039 }
2040 return 0;
2041 }
2042 }
2043
2044 /* Find middle of window for each DQ bit */
2045 mid_min = left_edge[0] - right_edge[0];
2046 min_index = 0;
2047 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2048 mid = left_edge[i] - right_edge[i];
2049 if (mid < mid_min) {
2050 mid_min = mid;
2051 min_index = i;
2052 }
2053 }
2054
2055 /*
2056 * -mid_min/2 represents the amount that we need to move DQS.
2057 * If mid_min is odd and positive we'll need to add one to
2058 * make sure the rounding in further calculations is correct
2059 * (always bias to the right), so just add 1 for all positive values.
2060 */
2061 if (mid_min > 0)
2062 mid_min++;
2063
2064 mid_min = mid_min / 2;
2065
2066 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2067 __func__, __LINE__, mid_min, min_index);
2068
2069 /* Determine the amount we can change DQS (which is -mid_min) */
2070 orig_mid_min = mid_min;
2071 new_dqs = start_dqs - mid_min;
2072 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2073 new_dqs = IO_DQS_IN_DELAY_MAX;
2074 else if (new_dqs < 0)
2075 new_dqs = 0;
2076
2077 mid_min = start_dqs - new_dqs;
2078 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2079 mid_min, new_dqs);
2080
2081 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2082 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2083 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2084 else if (start_dqs_en - mid_min < 0)
2085 mid_min += start_dqs_en - mid_min;
2086 }
2087 new_dqs = start_dqs - mid_min;
2088
2089 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2090 new_dqs=%d mid_min=%d\n", start_dqs,
2091 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2092 new_dqs, mid_min);
2093
2094 /* Initialize data for export structures */
2095 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2096 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2097
3da42859
DN
2098 /* add delay to bring centre of all DQ windows to the same "level" */
2099 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2100 /* Use values before divide by 2 to reduce round off error */
2101 shift_dq = (left_edge[i] - right_edge[i] -
2102 (left_edge[min_index] - right_edge[min_index]))/2 +
2103 (orig_mid_min - mid_min);
2104
2105 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2106 shift_dq[%u]=%d\n", i, shift_dq);
2107
1273dd9e 2108 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
17fdc916
MV
2109 temp_dq_in_delay1 = readl(addr + (p << 2));
2110 temp_dq_in_delay2 = readl(addr + (i << 2));
3da42859
DN
2111
2112 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2113 (int32_t)IO_IO_IN_DELAY_MAX) {
2114 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2115 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2116 shift_dq = -(int32_t)temp_dq_in_delay1;
2117 }
2118 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2119 shift_dq[%u]=%d\n", i, shift_dq);
2120 final_dq[i] = temp_dq_in_delay1 + shift_dq;
07aee5bd 2121 scc_mgr_set_dq_in_delay(p, final_dq[i]);
3da42859
DN
2122 scc_mgr_load_dq(p);
2123
2124 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2125 left_edge[i] - shift_dq + (-mid_min),
2126 right_edge[i] + shift_dq - (-mid_min));
2127 /* To determine values for export structures */
2128 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2129 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2130
2131 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2132 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2133 }
2134
2135 final_dqs = new_dqs;
2136 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2137 final_dqs_en = start_dqs_en - mid_min;
2138
2139 /* Move DQS-en */
2140 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2141 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2142 scc_mgr_load_dqs(read_group);
2143 }
2144
2145 /* Move DQS */
2146 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2147 scc_mgr_load_dqs(read_group);
2148 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2149 dqs_margin=%d", __func__, __LINE__,
2150 dq_margin, dqs_margin);
2151
2152 /*
2153 * Do not remove this line as it makes sure all of our decisions
2154 * have been applied. Apply the update bit.
2155 */
1273dd9e 2156 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2157
2158 return (dq_margin >= 0) && (dqs_margin >= 0);
2159}
2160
04372fb8
MV
2161/**
2162 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2163 * @rw_group: Read/Write Group
2164 * @phase: DQ/DQS phase
2165 *
2166 * Because initially no communication ca be reliably performed with the memory
2167 * device, the sequencer uses a guaranteed write mechanism to write data into
2168 * the memory device.
2169 */
2170static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2171 const u32 phase)
2172{
04372fb8
MV
2173 int ret;
2174
2175 /* Set a particular DQ/DQS phase. */
2176 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2177
2178 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2179 __func__, __LINE__, rw_group, phase);
2180
2181 /*
2182 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2183 * Load up the patterns used by read calibration using the
2184 * current DQDQS phase.
2185 */
2186 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2187
2188 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2189 return 0;
2190
2191 /*
2192 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2193 * Back-to-Back reads of the patterns used for calibration.
2194 */
d844c7d4
MV
2195 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2196 if (ret)
04372fb8
MV
2197 debug_cond(DLEVEL == 1,
2198 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2199 __func__, __LINE__, rw_group, phase);
d844c7d4 2200 return ret;
04372fb8
MV
2201}
2202
f09da11e
MV
2203/**
2204 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2205 * @rw_group: Read/Write Group
2206 * @test_bgn: Rank at which the test begins
2207 *
2208 * DQS enable calibration ensures reliable capture of the DQ signal without
2209 * glitches on the DQS line.
2210 */
2211static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2212 const u32 test_bgn)
2213{
f09da11e
MV
2214 /*
2215 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2216 * DQS and DQS Eanble Signal Relationships.
2217 */
28ea827d
MV
2218
2219 /* We start at zero, so have one less dq to devide among */
2220 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2221 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2222 int found;
2223 u32 i, p, d, r;
2224
2225 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2226
2227 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2228 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2229 r += NUM_RANKS_PER_SHADOW_REG) {
2230 for (i = 0, p = test_bgn, d = 0;
2231 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2232 i++, p++, d += delay_step) {
2233 debug_cond(DLEVEL == 1,
2234 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2235 __func__, __LINE__, rw_group, r, i, p, d);
2236
2237 scc_mgr_set_dq_in_delay(p, d);
2238 scc_mgr_load_dq(p);
2239 }
2240
2241 writel(0, &sdr_scc_mgr->update);
2242 }
2243
2244 /*
2245 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2246 * dq_in_delay values
2247 */
2248 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2249
2250 debug_cond(DLEVEL == 1,
2251 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2252 __func__, __LINE__, rw_group, found);
2253
2254 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2255 r += NUM_RANKS_PER_SHADOW_REG) {
2256 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2257 writel(0, &sdr_scc_mgr->update);
2258 }
2259
2260 if (!found)
2261 return -EINVAL;
2262
2263 return 0;
2264
f09da11e
MV
2265}
2266
16cfc4b9
MV
2267/**
2268 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2269 * @rw_group: Read/Write Group
2270 * @test_bgn: Rank at which the test begins
2271 * @use_read_test: Perform a read test
2272 * @update_fom: Update FOM
2273 *
2274 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2275 * within a group.
2276 */
2277static int
2278rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2279 const int use_read_test,
2280 const int update_fom)
2281
2282{
2283 int ret, grp_calibrated;
2284 u32 rank_bgn, sr;
2285
2286 /*
2287 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2288 * Read per-bit deskew can be done on a per shadow register basis.
2289 */
2290 grp_calibrated = 1;
2291 for (rank_bgn = 0, sr = 0;
2292 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2293 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2294 /* Check if this set of ranks should be skipped entirely. */
2295 if (param->skip_shadow_regs[sr])
2296 continue;
2297
2298 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2299 rw_group, test_bgn,
2300 use_read_test,
2301 update_fom);
2302 if (ret)
2303 continue;
2304
2305 grp_calibrated = 0;
2306 }
2307
2308 if (!grp_calibrated)
2309 return -EIO;
2310
2311 return 0;
2312}
2313
bce24efa
MV
2314/**
2315 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2316 * @rw_group: Read/Write Group
2317 * @test_bgn: Rank at which the test begins
2318 *
2319 * Stage 1: Calibrate the read valid prediction FIFO.
2320 *
2321 * This function implements UniPHY calibration Stage 1, as explained in
2322 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3da42859 2323 *
bce24efa
MV
2324 * - read valid prediction will consist of finding:
2325 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2326 * - DQS input phase and DQS input delay (DQ/DQS Centering)
3da42859
DN
2327 * - we also do a per-bit deskew on the DQ lines.
2328 */
c336ca3e 2329static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
3da42859 2330{
16cfc4b9 2331 uint32_t p, d;
3da42859 2332 uint32_t dtaps_per_ptap;
3da42859
DN
2333 uint32_t failed_substage;
2334
04372fb8
MV
2335 int ret;
2336
c336ca3e 2337 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
3da42859 2338
7c0a9df3
MV
2339 /* Update info for sims */
2340 reg_file_set_group(rw_group);
3da42859 2341 reg_file_set_stage(CAL_STAGE_VFIFO);
7c0a9df3 2342 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
3da42859 2343
7c0a9df3
MV
2344 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2345
2346 /* USER Determine number of delay taps for each phase tap. */
d32badbd
MV
2347 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2348 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
3da42859 2349
fe2d0a2d 2350 for (d = 0; d <= dtaps_per_ptap; d += 2) {
3da42859
DN
2351 /*
2352 * In RLDRAMX we may be messing the delay of pins in
c336ca3e
MV
2353 * the same write rw_group but outside of the current read
2354 * the rw_group, but that's ok because we haven't calibrated
ac70d2f3 2355 * output side yet.
3da42859
DN
2356 */
2357 if (d > 0) {
f51a7d35 2358 scc_mgr_apply_group_all_out_delay_add_all_ranks(
c336ca3e 2359 rw_group, d);
3da42859
DN
2360 }
2361
fe2d0a2d 2362 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
04372fb8
MV
2363 /* 1) Guaranteed Write */
2364 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2365 if (ret)
2366 break;
3da42859 2367
f09da11e
MV
2368 /* 2) DQS Enable Calibration */
2369 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2370 test_bgn);
2371 if (ret) {
3da42859 2372 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
fe2d0a2d
MV
2373 continue;
2374 }
2375
16cfc4b9 2376 /* 3) Centering DQ/DQS */
fe2d0a2d 2377 /*
16cfc4b9
MV
2378 * If doing read after write calibration, do not update
2379 * FOM now. Do it then.
fe2d0a2d 2380 */
16cfc4b9
MV
2381 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2382 test_bgn, 1, 0);
2383 if (ret) {
fe2d0a2d 2384 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
16cfc4b9 2385 continue;
3da42859 2386 }
fe2d0a2d 2387
16cfc4b9
MV
2388 /* All done. */
2389 goto cal_done_ok;
3da42859
DN
2390 }
2391 }
2392
fe2d0a2d 2393 /* Calibration Stage 1 failed. */
c336ca3e 2394 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
fe2d0a2d 2395 return 0;
3da42859 2396
fe2d0a2d
MV
2397 /* Calibration Stage 1 completed OK. */
2398cal_done_ok:
3da42859
DN
2399 /*
2400 * Reset the delay chains back to zero if they have moved > 1
2401 * (check for > 1 because loop will increase d even when pass in
2402 * first case).
2403 */
2404 if (d > 2)
c336ca3e 2405 scc_mgr_zero_group(rw_group, 1);
3da42859
DN
2406
2407 return 1;
2408}
2409
2410/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2411static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2412 uint32_t test_bgn)
2413{
2414 uint32_t rank_bgn, sr;
2415 uint32_t grp_calibrated;
2416 uint32_t write_group;
2417
2418 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2419
2420 /* update info for sims */
2421
2422 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2423 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2424
2425 write_group = read_group;
2426
2427 /* update info for sims */
2428 reg_file_set_group(read_group);
2429
2430 grp_calibrated = 1;
2431 /* Read per-bit deskew can be done on a per shadow register basis */
2432 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2433 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2434 /* Determine if this set of ranks should be skipped entirely */
2435 if (!param->skip_shadow_regs[sr]) {
2436 /* This is the last calibration round, update FOM here */
2437 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2438 write_group,
2439 read_group,
2440 test_bgn, 0,
2441 1)) {
2442 grp_calibrated = 0;
2443 }
2444 }
2445 }
2446
2447
2448 if (grp_calibrated == 0) {
2449 set_failing_group_stage(write_group,
2450 CAL_STAGE_VFIFO_AFTER_WRITES,
2451 CAL_SUBSTAGE_VFIFO_CENTER);
2452 return 0;
2453 }
2454
2455 return 1;
2456}
2457
2458/* Calibrate LFIFO to find smallest read latency */
2459static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2460{
2461 uint32_t found_one;
2462 uint32_t bit_chk;
3da42859
DN
2463
2464 debug("%s:%d\n", __func__, __LINE__);
2465
2466 /* update info for sims */
2467 reg_file_set_stage(CAL_STAGE_LFIFO);
2468 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2469
2470 /* Load up the patterns used by read calibration for all ranks */
2471 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2472 found_one = 0;
2473
3da42859 2474 do {
1273dd9e 2475 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2476 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2477 __func__, __LINE__, gbl->curr_read_lat);
2478
2479 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2480 NUM_READ_TESTS,
2481 PASS_ALL_BITS,
2482 &bit_chk, 1)) {
2483 break;
2484 }
2485
2486 found_one = 1;
2487 /* reduce read latency and see if things are working */
2488 /* correctly */
2489 gbl->curr_read_lat--;
2490 } while (gbl->curr_read_lat > 0);
2491
2492 /* reset the fifos to get pointers to known state */
2493
1273dd9e 2494 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2495
2496 if (found_one) {
2497 /* add a fudge factor to the read latency that was determined */
2498 gbl->curr_read_lat += 2;
1273dd9e 2499 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2500 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2501 read_lat=%u\n", __func__, __LINE__,
2502 gbl->curr_read_lat);
2503 return 1;
2504 } else {
2505 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2506 CAL_SUBSTAGE_READ_LATENCY);
2507
2508 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2509 read_lat=%u\n", __func__, __LINE__,
2510 gbl->curr_read_lat);
2511 return 0;
2512 }
2513}
2514
2515/*
2516 * issue write test command.
2517 * two variants are provided. one that just tests a write pattern and
2518 * another that tests datamask functionality.
2519 */
2520static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2521 uint32_t test_dm)
2522{
2523 uint32_t mcc_instruction;
2524 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2525 ENABLE_SUPER_QUICK_CALIBRATION);
2526 uint32_t rw_wl_nop_cycles;
2527 uint32_t addr;
2528
2529 /*
2530 * Set counter and jump addresses for the right
2531 * number of NOP cycles.
2532 * The number of supported NOP cycles can range from -1 to infinity
2533 * Three different cases are handled:
2534 *
2535 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2536 * mechanism will be used to insert the right number of NOPs
2537 *
2538 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2539 * issuing the write command will jump straight to the
2540 * micro-instruction that turns on DQS (for DDRx), or outputs write
2541 * data (for RLD), skipping
2542 * the NOP micro-instruction all together
2543 *
2544 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2545 * turned on in the same micro-instruction that issues the write
2546 * command. Then we need
2547 * to directly jump to the micro-instruction that sends out the data
2548 *
2549 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2550 * (2 and 3). One jump-counter (0) is used to perform multiple
2551 * write-read operations.
2552 * one counter left to issue this command in "multiple-group" mode
2553 */
2554
2555 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2556
2557 if (rw_wl_nop_cycles == -1) {
2558 /*
2559 * CNTR 2 - We want to execute the special write operation that
2560 * turns on DQS right away and then skip directly to the
2561 * instruction that sends out the data. We set the counter to a
2562 * large number so that the jump is always taken.
2563 */
1273dd9e 2564 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2565
2566 /* CNTR 3 - Not used */
2567 if (test_dm) {
2568 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
3da42859 2569 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1273dd9e 2570 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 2571 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1273dd9e 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2573 } else {
2574 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1273dd9e
MV
2575 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2576 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2577 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2578 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2579 }
2580 } else if (rw_wl_nop_cycles == 0) {
2581 /*
2582 * CNTR 2 - We want to skip the NOP operation and go straight
2583 * to the DQS enable instruction. We set the counter to a large
2584 * number so that the jump is always taken.
2585 */
1273dd9e 2586 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2587
2588 /* CNTR 3 - Not used */
2589 if (test_dm) {
2590 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
3da42859 2591 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1273dd9e 2592 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2593 } else {
2594 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2595 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2596 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2597 }
2598 } else {
2599 /*
2600 * CNTR 2 - In this case we want to execute the next instruction
2601 * and NOT take the jump. So we set the counter to 0. The jump
2602 * address doesn't count.
2603 */
1273dd9e
MV
2604 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2605 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2606
2607 /*
2608 * CNTR 3 - Set the nop counter to the number of cycles we
2609 * need to loop for, minus 1.
2610 */
1273dd9e 2611 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859
DN
2612 if (test_dm) {
2613 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1273dd9e
MV
2614 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2615 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2616 } else {
2617 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2618 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2619 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2620 }
2621 }
2622
1273dd9e
MV
2623 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2624 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859 2625
3da42859 2626 if (quick_write_mode)
1273dd9e 2627 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2628 else
1273dd9e 2629 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2630
1273dd9e 2631 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
2632
2633 /*
2634 * CNTR 1 - This is used to ensure enough time elapses
2635 * for read data to come back.
2636 */
1273dd9e 2637 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 2638
3da42859 2639 if (test_dm) {
1273dd9e
MV
2640 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2641 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 2642 } else {
1273dd9e
MV
2643 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2644 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
2645 }
2646
c4815f76 2647 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 2648 writel(mcc_instruction, addr + (group << 2));
3da42859
DN
2649}
2650
2651/* Test writes, can check for a single bit pass or multiple bit pass */
2652static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2653 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2654 uint32_t *bit_chk, uint32_t all_ranks)
2655{
3da42859
DN
2656 uint32_t r;
2657 uint32_t correct_mask_vg;
2658 uint32_t tmp_bit_chk;
2659 uint32_t vg;
2660 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2661 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2662 uint32_t addr_rw_mgr;
2663 uint32_t base_rw_mgr;
2664
2665 *bit_chk = param->write_correct_mask;
2666 correct_mask_vg = param->write_correct_mask_vg;
2667
2668 for (r = rank_bgn; r < rank_end; r++) {
2669 if (param->skip_ranks[r]) {
2670 /* request to skip the rank */
2671 continue;
2672 }
2673
2674 /* set rank */
2675 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2676
2677 tmp_bit_chk = 0;
a4bfa463 2678 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
3da42859
DN
2679 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2680 /* reset the fifos to get pointers to known state */
1273dd9e 2681 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2682
2683 tmp_bit_chk = tmp_bit_chk <<
2684 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2685 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2686 rw_mgr_mem_calibrate_write_test_issue(write_group *
2687 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2688 use_dm);
2689
17fdc916 2690 base_rw_mgr = readl(addr_rw_mgr);
3da42859
DN
2691 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2692 if (vg == 0)
2693 break;
2694 }
2695 *bit_chk &= tmp_bit_chk;
2696 }
2697
2698 if (all_correct) {
2699 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2700 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2701 %u => %lu", write_group, use_dm,
2702 *bit_chk, param->write_correct_mask,
2703 (long unsigned int)(*bit_chk ==
2704 param->write_correct_mask));
2705 return *bit_chk == param->write_correct_mask;
2706 } else {
2707 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2708 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2709 write_group, use_dm, *bit_chk);
2710 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2711 (long unsigned int)(*bit_chk != 0));
2712 return *bit_chk != 0x00;
2713 }
2714}
2715
2716/*
2717 * center all windows. do per-bit-deskew to possibly increase size of
2718 * certain windows.
2719 */
2720static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2721 uint32_t write_group, uint32_t test_bgn)
2722{
2723 uint32_t i, p, min_index;
2724 int32_t d;
2725 /*
2726 * Store these as signed since there are comparisons with
2727 * signed numbers.
2728 */
2729 uint32_t bit_chk;
2730 uint32_t sticky_bit_chk;
2731 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2732 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2733 int32_t mid;
2734 int32_t mid_min, orig_mid_min;
2735 int32_t new_dqs, start_dqs, shift_dq;
2736 int32_t dq_margin, dqs_margin, dm_margin;
2737 uint32_t stop;
2738 uint32_t temp_dq_out1_delay;
2739 uint32_t addr;
2740
2741 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2742
2743 dm_margin = 0;
2744
c4815f76 2745 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2746 start_dqs = readl(addr +
3da42859
DN
2747 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2748
2749 /* per-bit deskew */
2750
2751 /*
2752 * set the left and right edge of each bit to an illegal value
2753 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2754 */
2755 sticky_bit_chk = 0;
2756 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2757 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2758 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2759 }
2760
2761 /* Search for the left edge of the window for each bit */
3da42859 2762 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
300c2e62 2763 scc_mgr_apply_group_dq_out1_delay(write_group, d);
3da42859 2764
1273dd9e 2765 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2766
2767 /*
2768 * Stop searching when the read test doesn't pass AND when
2769 * we've seen a passing read on every bit.
2770 */
2771 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2772 0, PASS_ONE_BIT, &bit_chk, 0);
2773 sticky_bit_chk = sticky_bit_chk | bit_chk;
2774 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2775 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2776 == %u && %u [bit_chk= %u ]\n",
2777 d, sticky_bit_chk, param->write_correct_mask,
2778 stop, bit_chk);
2779
2780 if (stop == 1) {
2781 break;
2782 } else {
2783 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2784 if (bit_chk & 1) {
2785 /*
2786 * Remember a passing test as the
2787 * left_edge.
2788 */
2789 left_edge[i] = d;
2790 } else {
2791 /*
2792 * If a left edge has not been seen
2793 * yet, then a future passing test will
2794 * mark this edge as the right edge.
2795 */
2796 if (left_edge[i] ==
2797 IO_IO_OUT1_DELAY_MAX + 1) {
2798 right_edge[i] = -(d + 1);
2799 }
2800 }
2801 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2802 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2803 (int)(bit_chk & 1), i, left_edge[i]);
2804 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2805 right_edge[i]);
2806 bit_chk = bit_chk >> 1;
2807 }
2808 }
2809 }
2810
2811 /* Reset DQ delay chains to 0 */
32675249 2812 scc_mgr_apply_group_dq_out1_delay(0);
3da42859
DN
2813 sticky_bit_chk = 0;
2814 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2815 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2816 %d right_edge[%u]: %d\n", __func__, __LINE__,
2817 i, left_edge[i], i, right_edge[i]);
2818
2819 /*
2820 * Check for cases where we haven't found the left edge,
2821 * which makes our assignment of the the right edge invalid.
2822 * Reset it to the illegal value.
2823 */
2824 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2825 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2826 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2827 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2828 right_edge[%u]: %d\n", __func__, __LINE__,
2829 i, right_edge[i]);
2830 }
2831
2832 /*
2833 * Reset sticky bit (except for bits where we have
2834 * seen the left edge).
2835 */
2836 sticky_bit_chk = sticky_bit_chk << 1;
2837 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2838 sticky_bit_chk = sticky_bit_chk | 1;
2839
2840 if (i == 0)
2841 break;
2842 }
2843
2844 /* Search for the right edge of the window for each bit */
3da42859
DN
2845 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2846 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2847 d + start_dqs);
2848
1273dd9e 2849 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2850
2851 /*
2852 * Stop searching when the read test doesn't pass AND when
2853 * we've seen a passing read on every bit.
2854 */
2855 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2856 0, PASS_ONE_BIT, &bit_chk, 0);
2857
2858 sticky_bit_chk = sticky_bit_chk | bit_chk;
2859 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2860
2861 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2862 %u && %u\n", d, sticky_bit_chk,
2863 param->write_correct_mask, stop);
2864
2865 if (stop == 1) {
2866 if (d == 0) {
2867 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2868 i++) {
2869 /* d = 0 failed, but it passed when
2870 testing the left edge, so it must be
2871 marginal, set it to -1 */
2872 if (right_edge[i] ==
2873 IO_IO_OUT1_DELAY_MAX + 1 &&
2874 left_edge[i] !=
2875 IO_IO_OUT1_DELAY_MAX + 1) {
2876 right_edge[i] = -1;
2877 }
2878 }
2879 }
2880 break;
2881 } else {
2882 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2883 if (bit_chk & 1) {
2884 /*
2885 * Remember a passing test as
2886 * the right_edge.
2887 */
2888 right_edge[i] = d;
2889 } else {
2890 if (d != 0) {
2891 /*
2892 * If a right edge has not
2893 * been seen yet, then a future
2894 * passing test will mark this
2895 * edge as the left edge.
2896 */
2897 if (right_edge[i] ==
2898 IO_IO_OUT1_DELAY_MAX + 1)
2899 left_edge[i] = -(d + 1);
2900 } else {
2901 /*
2902 * d = 0 failed, but it passed
2903 * when testing the left edge,
2904 * so it must be marginal, set
2905 * it to -1.
2906 */
2907 if (right_edge[i] ==
2908 IO_IO_OUT1_DELAY_MAX + 1 &&
2909 left_edge[i] !=
2910 IO_IO_OUT1_DELAY_MAX + 1)
2911 right_edge[i] = -1;
2912 /*
2913 * If a right edge has not been
2914 * seen yet, then a future
2915 * passing test will mark this
2916 * edge as the left edge.
2917 */
2918 else if (right_edge[i] ==
2919 IO_IO_OUT1_DELAY_MAX +
2920 1)
2921 left_edge[i] = -(d + 1);
2922 }
2923 }
2924 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2925 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2926 (int)(bit_chk & 1), i, left_edge[i]);
2927 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2928 right_edge[i]);
2929 bit_chk = bit_chk >> 1;
2930 }
2931 }
2932 }
2933
2934 /* Check that all bits have a window */
2935 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2936 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2937 %d right_edge[%u]: %d", __func__, __LINE__,
2938 i, left_edge[i], i, right_edge[i]);
2939 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2940 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2941 set_failing_group_stage(test_bgn + i,
2942 CAL_STAGE_WRITES,
2943 CAL_SUBSTAGE_WRITES_CENTER);
2944 return 0;
2945 }
2946 }
2947
2948 /* Find middle of window for each DQ bit */
2949 mid_min = left_edge[0] - right_edge[0];
2950 min_index = 0;
2951 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2952 mid = left_edge[i] - right_edge[i];
2953 if (mid < mid_min) {
2954 mid_min = mid;
2955 min_index = i;
2956 }
2957 }
2958
2959 /*
2960 * -mid_min/2 represents the amount that we need to move DQS.
2961 * If mid_min is odd and positive we'll need to add one to
2962 * make sure the rounding in further calculations is correct
2963 * (always bias to the right), so just add 1 for all positive values.
2964 */
2965 if (mid_min > 0)
2966 mid_min++;
2967 mid_min = mid_min / 2;
2968 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2969 __LINE__, mid_min);
2970
2971 /* Determine the amount we can change DQS (which is -mid_min) */
2972 orig_mid_min = mid_min;
2973 new_dqs = start_dqs;
2974 mid_min = 0;
2975 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2976 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2977 /* Initialize data for export structures */
2978 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2979 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2980
2981 /* add delay to bring centre of all DQ windows to the same "level" */
3da42859
DN
2982 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2983 /* Use values before divide by 2 to reduce round off error */
2984 shift_dq = (left_edge[i] - right_edge[i] -
2985 (left_edge[min_index] - right_edge[min_index]))/2 +
2986 (orig_mid_min - mid_min);
2987
2988 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2989 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2990
1273dd9e 2991 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2992 temp_dq_out1_delay = readl(addr + (i << 2));
3da42859
DN
2993 if (shift_dq + (int32_t)temp_dq_out1_delay >
2994 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2995 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2996 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2997 shift_dq = -(int32_t)temp_dq_out1_delay;
2998 }
2999 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3000 i, shift_dq);
07aee5bd 3001 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3da42859
DN
3002 scc_mgr_load_dq(i);
3003
3004 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3005 left_edge[i] - shift_dq + (-mid_min),
3006 right_edge[i] + shift_dq - (-mid_min));
3007 /* To determine values for export structures */
3008 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3009 dq_margin = left_edge[i] - shift_dq + (-mid_min);
3010
3011 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3012 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3013 }
3014
3015 /* Move DQS */
3016 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
1273dd9e 3017 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3018
3019 /* Centre DM */
3020 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3021
3022 /*
3023 * set the left and right edge of each bit to an illegal value,
3024 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3025 */
3026 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3027 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3028 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3029 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3030 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3031 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3032 int32_t win_best = 0;
3033
3034 /* Search for the/part of the window with DM shift */
3da42859 3035 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
32675249 3036 scc_mgr_apply_group_dm_out1_delay(d);
1273dd9e 3037 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3038
3039 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3040 PASS_ALL_BITS, &bit_chk,
3041 0)) {
3042 /* USE Set current end of the window */
3043 end_curr = -d;
3044 /*
3045 * If a starting edge of our window has not been seen
3046 * this is our current start of the DM window.
3047 */
3048 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3049 bgn_curr = -d;
3050
3051 /*
3052 * If current window is bigger than best seen.
3053 * Set best seen to be current window.
3054 */
3055 if ((end_curr-bgn_curr+1) > win_best) {
3056 win_best = end_curr-bgn_curr+1;
3057 bgn_best = bgn_curr;
3058 end_best = end_curr;
3059 }
3060 } else {
3061 /* We just saw a failing test. Reset temp edge */
3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 }
3065 }
3066
3067
3068 /* Reset DM delay chains to 0 */
32675249 3069 scc_mgr_apply_group_dm_out1_delay(0);
3da42859
DN
3070
3071 /*
3072 * Check to see if the current window nudges up aganist 0 delay.
3073 * If so we need to continue the search by shifting DQS otherwise DQS
3074 * search begins as a new search. */
3075 if (end_curr != 0) {
3076 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3078 }
3079
3080 /* Search for the/part of the window with DQS shifts */
3da42859
DN
3081 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3082 /*
3083 * Note: This only shifts DQS, so are we limiting ourselve to
3084 * width of DQ unnecessarily.
3085 */
3086 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3087 d + new_dqs);
3088
1273dd9e 3089 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3090 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3091 PASS_ALL_BITS, &bit_chk,
3092 0)) {
3093 /* USE Set current end of the window */
3094 end_curr = d;
3095 /*
3096 * If a beginning edge of our window has not been seen
3097 * this is our current begin of the DM window.
3098 */
3099 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3100 bgn_curr = d;
3101
3102 /*
3103 * If current window is bigger than best seen. Set best
3104 * seen to be current window.
3105 */
3106 if ((end_curr-bgn_curr+1) > win_best) {
3107 win_best = end_curr-bgn_curr+1;
3108 bgn_best = bgn_curr;
3109 end_best = end_curr;
3110 }
3111 } else {
3112 /* We just saw a failing test. Reset temp edge */
3113 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3114 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3115
3116 /* Early exit optimization: if ther remaining delay
3117 chain space is less than already seen largest window
3118 we can exit */
3119 if ((win_best-1) >
3120 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3121 break;
3122 }
3123 }
3124 }
3125
3126 /* assign left and right edge for cal and reporting; */
3127 left_edge[0] = -1*bgn_best;
3128 right_edge[0] = end_best;
3129
3130 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3131 __LINE__, left_edge[0], right_edge[0]);
3132
3133 /* Move DQS (back to orig) */
3134 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3135
3136 /* Move DM */
3137
3138 /* Find middle of window for the DM bit */
3139 mid = (left_edge[0] - right_edge[0]) / 2;
3140
3141 /* only move right, since we are not moving DQS/DQ */
3142 if (mid < 0)
3143 mid = 0;
3144
3145 /* dm_marign should fail if we never find a window */
3146 if (win_best == 0)
3147 dm_margin = -1;
3148 else
3149 dm_margin = left_edge[0] - mid;
3150
32675249 3151 scc_mgr_apply_group_dm_out1_delay(mid);
1273dd9e 3152 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3153
3154 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3155 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3156 right_edge[0], mid, dm_margin);
3157 /* Export values */
3158 gbl->fom_out += dq_margin + dqs_margin;
3159
3160 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3161 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3162 dq_margin, dqs_margin, dm_margin);
3163
3164 /*
3165 * Do not remove this line as it makes sure all of our
3166 * decisions have been applied.
3167 */
1273dd9e 3168 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3169 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3170}
3171
3172/* calibrate the write operations */
3173static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3174 uint32_t test_bgn)
3175{
3176 /* update info for sims */
3177 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3178
3179 reg_file_set_stage(CAL_STAGE_WRITES);
3180 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3181
3182 reg_file_set_group(g);
3183
3184 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3185 set_failing_group_stage(g, CAL_STAGE_WRITES,
3186 CAL_SUBSTAGE_WRITES_CENTER);
3187 return 0;
3188 }
3189
3190 return 1;
3191}
3192
4b0ac26a
MV
3193/**
3194 * mem_precharge_and_activate() - Precharge all banks and activate
3195 *
3196 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3197 */
3da42859
DN
3198static void mem_precharge_and_activate(void)
3199{
4b0ac26a 3200 int r;
3da42859
DN
3201
3202 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
4b0ac26a
MV
3203 /* Test if the rank should be skipped. */
3204 if (param->skip_ranks[r])
3da42859 3205 continue;
3da42859 3206
4b0ac26a 3207 /* Set rank. */
3da42859
DN
3208 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3209
4b0ac26a 3210 /* Precharge all banks. */
1273dd9e
MV
3211 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3212 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 3213
1273dd9e
MV
3214 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3215 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3216 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 3217
1273dd9e
MV
3218 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3219 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3220 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 3221
4b0ac26a 3222 /* Activate rows. */
1273dd9e
MV
3223 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3224 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
3225 }
3226}
3227
16502a0b
MV
3228/**
3229 * mem_init_latency() - Configure memory RLAT and WLAT settings
3230 *
3231 * Configure memory RLAT and WLAT parameters.
3232 */
3233static void mem_init_latency(void)
3da42859 3234{
3da42859 3235 /*
16502a0b
MV
3236 * For AV/CV, LFIFO is hardened and always runs at full rate
3237 * so max latency in AFI clocks, used here, is correspondingly
3238 * smaller.
3da42859 3239 */
16502a0b
MV
3240 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3241 u32 rlat, wlat;
3da42859 3242
16502a0b 3243 debug("%s:%d\n", __func__, __LINE__);
3da42859
DN
3244
3245 /*
16502a0b
MV
3246 * Read in write latency.
3247 * WL for Hard PHY does not include additive latency.
3da42859 3248 */
16502a0b
MV
3249 wlat = readl(&data_mgr->t_wl_add);
3250 wlat += readl(&data_mgr->mem_t_add);
3da42859 3251
16502a0b 3252 gbl->rw_wl_nop_cycles = wlat - 1;
3da42859 3253
16502a0b
MV
3254 /* Read in readl latency. */
3255 rlat = readl(&data_mgr->t_rl_add);
3da42859 3256
16502a0b
MV
3257 /* Set a pretty high read latency initially. */
3258 gbl->curr_read_lat = rlat + 16;
3da42859
DN
3259 if (gbl->curr_read_lat > max_latency)
3260 gbl->curr_read_lat = max_latency;
3261
1273dd9e 3262 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859 3263
16502a0b
MV
3264 /* Advertise write latency. */
3265 writel(wlat, &phy_mgr_cfg->afi_wlat);
3da42859
DN
3266}
3267
51cea0b6
MV
3268/**
3269 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3270 *
3271 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3272 */
3da42859
DN
3273static void mem_skip_calibrate(void)
3274{
3275 uint32_t vfifo_offset;
3276 uint32_t i, j, r;
3da42859
DN
3277
3278 debug("%s:%d\n", __func__, __LINE__);
3279 /* Need to update every shadow register set used by the interface */
3280 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
51cea0b6 3281 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
3282 /*
3283 * Set output phase alignment settings appropriate for
3284 * skip calibration.
3285 */
3286 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287 scc_mgr_set_dqs_en_phase(i, 0);
3288#if IO_DLL_CHAIN_LENGTH == 6
3289 scc_mgr_set_dqdqs_output_phase(i, 6);
3290#else
3291 scc_mgr_set_dqdqs_output_phase(i, 7);
3292#endif
3293 /*
3294 * Case:33398
3295 *
3296 * Write data arrives to the I/O two cycles before write
3297 * latency is reached (720 deg).
3298 * -> due to bit-slip in a/c bus
3299 * -> to allow board skew where dqs is longer than ck
3300 * -> how often can this happen!?
3301 * -> can claim back some ptaps for high freq
3302 * support if we can relax this, but i digress...
3303 *
3304 * The write_clk leads mem_ck by 90 deg
3305 * The minimum ptap of the OPA is 180 deg
3306 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3307 * The write_clk is always delayed by 2 ptaps
3308 *
3309 * Hence, to make DQS aligned to CK, we need to delay
3310 * DQS by:
3311 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3312 *
3313 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3314 * gives us the number of ptaps, which simplies to:
3315 *
3316 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3317 */
51cea0b6
MV
3318 scc_mgr_set_dqdqs_output_phase(i,
3319 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3da42859 3320 }
1273dd9e
MV
3321 writel(0xff, &sdr_scc_mgr->dqs_ena);
3322 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3da42859 3323
3da42859 3324 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
1273dd9e
MV
3325 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3326 SCC_MGR_GROUP_COUNTER_OFFSET);
3da42859 3327 }
1273dd9e
MV
3328 writel(0xff, &sdr_scc_mgr->dq_ena);
3329 writel(0xff, &sdr_scc_mgr->dm_ena);
3330 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3331 }
3332
3333 /* Compensate for simulation model behaviour */
3334 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3335 scc_mgr_set_dqs_bus_in_delay(i, 10);
3336 scc_mgr_load_dqs(i);
3337 }
1273dd9e 3338 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3339
3340 /*
3341 * ArriaV has hard FIFOs that can only be initialized by incrementing
3342 * in sequencer.
3343 */
3344 vfifo_offset = CALIB_VFIFO_OFFSET;
51cea0b6 3345 for (j = 0; j < vfifo_offset; j++)
1273dd9e 3346 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
1273dd9e 3347 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
3348
3349 /*
51cea0b6
MV
3350 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3351 * setting from generation-time constant.
3da42859
DN
3352 */
3353 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
1273dd9e 3354 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
3355}
3356
3589fbfb
MV
3357/**
3358 * mem_calibrate() - Memory calibration entry point.
3359 *
3360 * Perform memory calibration.
3361 */
3da42859
DN
3362static uint32_t mem_calibrate(void)
3363{
3364 uint32_t i;
3365 uint32_t rank_bgn, sr;
3366 uint32_t write_group, write_test_bgn;
3367 uint32_t read_group, read_test_bgn;
3368 uint32_t run_groups, current_run;
3369 uint32_t failing_groups = 0;
3370 uint32_t group_failed = 0;
3da42859 3371
33c42bb8
MV
3372 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3373 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3374
3da42859 3375 debug("%s:%d\n", __func__, __LINE__);
3da42859 3376
16502a0b 3377 /* Initialize the data settings */
3da42859
DN
3378 gbl->error_substage = CAL_SUBSTAGE_NIL;
3379 gbl->error_stage = CAL_STAGE_NIL;
3380 gbl->error_group = 0xff;
3381 gbl->fom_in = 0;
3382 gbl->fom_out = 0;
3383
16502a0b
MV
3384 /* Initialize WLAT and RLAT. */
3385 mem_init_latency();
3386
3387 /* Initialize bit slips. */
3388 mem_precharge_and_activate();
3da42859 3389
3da42859 3390 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
1273dd9e
MV
3391 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3392 SCC_MGR_GROUP_COUNTER_OFFSET);
fa5d821b
MV
3393 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3394 if (i == 0)
3395 scc_mgr_set_hhp_extras();
3396
c5c5f537 3397 scc_set_bypass_mode(i);
3da42859
DN
3398 }
3399
722c9685 3400 /* Calibration is skipped. */
3da42859
DN
3401 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3402 /*
3403 * Set VFIFO and LFIFO to instant-on settings in skip
3404 * calibration mode.
3405 */
3406 mem_skip_calibrate();
3da42859 3407
722c9685
MV
3408 /*
3409 * Do not remove this line as it makes sure all of our
3410 * decisions have been applied.
3411 */
3412 writel(0, &sdr_scc_mgr->update);
3413 return 1;
3414 }
3da42859 3415
722c9685
MV
3416 /* Calibration is not skipped. */
3417 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3418 /*
3419 * Zero all delay chain/phase settings for all
3420 * groups and all shadow register sets.
3421 */
3422 scc_mgr_zero_all();
3423
3424 run_groups = ~param->skip_groups;
3425
3426 for (write_group = 0, write_test_bgn = 0; write_group
3427 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3428 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
c452dcd0
MV
3429
3430 /* Initialize the group failure */
722c9685
MV
3431 group_failed = 0;
3432
3433 current_run = run_groups & ((1 <<
3434 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3435 run_groups = run_groups >>
3436 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3437
3438 if (current_run == 0)
3439 continue;
3440
3441 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3442 SCC_MGR_GROUP_COUNTER_OFFSET);
3443 scc_mgr_zero_group(write_group, 0);
3444
33c42bb8
MV
3445 for (read_group = write_group * rwdqs_ratio,
3446 read_test_bgn = 0;
c452dcd0 3447 read_group < (write_group + 1) * rwdqs_ratio;
33c42bb8
MV
3448 read_group++,
3449 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3451 continue;
3452
722c9685 3453 /* Calibrate the VFIFO */
33c42bb8
MV
3454 if (rw_mgr_mem_calibrate_vfifo(read_group,
3455 read_test_bgn))
3456 continue;
3457
33c42bb8
MV
3458 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459 return 0;
c452dcd0
MV
3460
3461 /* The group failed, we're done. */
3462 goto grp_failed;
722c9685 3463 }
3da42859 3464
722c9685 3465 /* Calibrate the output side */
c452dcd0
MV
3466 for (rank_bgn = 0, sr = 0;
3467 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3468 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3469 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3470 continue;
4ac21610 3471
c452dcd0
MV
3472 /* Not needed in quick mode! */
3473 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3474 continue;
4ac21610 3475
c452dcd0
MV
3476 /*
3477 * Determine if this set of ranks
3478 * should be skipped entirely.
3479 */
3480 if (param->skip_shadow_regs[sr])
3481 continue;
4ac21610 3482
c452dcd0
MV
3483 /* Calibrate WRITEs */
3484 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3485 write_group, write_test_bgn))
3486 continue;
4ac21610 3487
c452dcd0
MV
3488 group_failed = 1;
3489 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3490 return 0;
722c9685 3491 }
3da42859 3492
c452dcd0
MV
3493 /* Some group failed, we're done. */
3494 if (group_failed)
3495 goto grp_failed;
3496
3497 for (read_group = write_group * rwdqs_ratio,
3498 read_test_bgn = 0;
3499 read_group < (write_group + 1) * rwdqs_ratio;
3500 read_group++,
3501 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3502 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3503 continue;
3504
3505 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3506 read_test_bgn))
3507 continue;
3508
3509 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3510 return 0;
3511
3512 /* The group failed, we're done. */
3513 goto grp_failed;
3da42859
DN
3514 }
3515
c452dcd0
MV
3516 /* No group failed, continue as usual. */
3517 continue;
3518
3519grp_failed: /* A group failed, increment the counter. */
3520 failing_groups++;
722c9685
MV
3521 }
3522
3523 /*
3524 * USER If there are any failing groups then report
3525 * the failure.
3526 */
3527 if (failing_groups != 0)
3528 return 0;
3529
c50ae303
MV
3530 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3531 continue;
3532
3533 /*
3534 * If we're skipping groups as part of debug,
3535 * don't calibrate LFIFO.
3536 */
3537 if (param->skip_groups != 0)
3538 continue;
3539
722c9685 3540 /* Calibrate the LFIFO */
c50ae303
MV
3541 if (!rw_mgr_mem_calibrate_lfifo())
3542 return 0;
3da42859
DN
3543 }
3544
3545 /*
3546 * Do not remove this line as it makes sure all of our decisions
3547 * have been applied.
3548 */
1273dd9e 3549 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3550 return 1;
3551}
3552
23a040c0
MV
3553/**
3554 * run_mem_calibrate() - Perform memory calibration
3555 *
3556 * This function triggers the entire memory calibration procedure.
3557 */
3558static int run_mem_calibrate(void)
3da42859 3559{
23a040c0 3560 int pass;
3da42859
DN
3561
3562 debug("%s:%d\n", __func__, __LINE__);
3563
3564 /* Reset pass/fail status shown on afi_cal_success/fail */
1273dd9e 3565 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3da42859 3566
23a040c0
MV
3567 /* Stop tracking manager. */
3568 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3da42859 3569
9fa9c90e 3570 phy_mgr_initialize();
3da42859
DN
3571 rw_mgr_mem_initialize();
3572
23a040c0 3573 /* Perform the actual memory calibration. */
3da42859
DN
3574 pass = mem_calibrate();
3575
3576 mem_precharge_and_activate();
1273dd9e 3577 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859 3578
23a040c0
MV
3579 /* Handoff. */
3580 rw_mgr_mem_handoff();
3da42859 3581 /*
23a040c0
MV
3582 * In Hard PHY this is a 2-bit control:
3583 * 0: AFI Mux Select
3584 * 1: DDIO Mux Select
3da42859 3585 */
23a040c0 3586 writel(0x2, &phy_mgr_cfg->mux_sel);
3da42859 3587
23a040c0
MV
3588 /* Start tracking manager. */
3589 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3590
3591 return pass;
3592}
3593
3594/**
3595 * debug_mem_calibrate() - Report result of memory calibration
3596 * @pass: Value indicating whether calibration passed or failed
3597 *
3598 * This function reports the results of the memory calibration
3599 * and writes debug information into the register file.
3600 */
3601static void debug_mem_calibrate(int pass)
3602{
3603 uint32_t debug_info;
3da42859
DN
3604
3605 if (pass) {
3606 printf("%s: CALIBRATION PASSED\n", __FILE__);
3607
3608 gbl->fom_in /= 2;
3609 gbl->fom_out /= 2;
3610
3611 if (gbl->fom_in > 0xff)
3612 gbl->fom_in = 0xff;
3613
3614 if (gbl->fom_out > 0xff)
3615 gbl->fom_out = 0xff;
3616
3617 /* Update the FOM in the register file */
3618 debug_info = gbl->fom_in;
3619 debug_info |= gbl->fom_out << 8;
1273dd9e 3620 writel(debug_info, &sdr_reg_file->fom);
3da42859 3621
1273dd9e
MV
3622 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3623 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3da42859
DN
3624 } else {
3625 printf("%s: CALIBRATION FAILED\n", __FILE__);
3626
3627 debug_info = gbl->error_stage;
3628 debug_info |= gbl->error_substage << 8;
3629 debug_info |= gbl->error_group << 16;
3630
1273dd9e
MV
3631 writel(debug_info, &sdr_reg_file->failing_stage);
3632 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3633 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3da42859
DN
3634
3635 /* Update the failing group/stage in the register file */
3636 debug_info = gbl->error_stage;
3637 debug_info |= gbl->error_substage << 8;
3638 debug_info |= gbl->error_group << 16;
1273dd9e 3639 writel(debug_info, &sdr_reg_file->failing_stage);
3da42859
DN
3640 }
3641
23a040c0 3642 printf("%s: Calibration complete\n", __FILE__);
3da42859
DN
3643}
3644
bb06434b
MV
3645/**
3646 * hc_initialize_rom_data() - Initialize ROM data
3647 *
3648 * Initialize ROM data.
3649 */
3da42859
DN
3650static void hc_initialize_rom_data(void)
3651{
bb06434b 3652 u32 i, addr;
3da42859 3653
c4815f76 3654 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
bb06434b
MV
3655 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3656 writel(inst_rom_init[i], addr + (i << 2));
3da42859 3657
c4815f76 3658 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
bb06434b
MV
3659 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3660 writel(ac_rom_init[i], addr + (i << 2));
3da42859
DN
3661}
3662
9c1ab2ca
MV
3663/**
3664 * initialize_reg_file() - Initialize SDR register file
3665 *
3666 * Initialize SDR register file.
3667 */
3da42859
DN
3668static void initialize_reg_file(void)
3669{
3da42859 3670 /* Initialize the register file with the correct data */
1273dd9e
MV
3671 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3672 writel(0, &sdr_reg_file->debug_data_addr);
3673 writel(0, &sdr_reg_file->cur_stage);
3674 writel(0, &sdr_reg_file->fom);
3675 writel(0, &sdr_reg_file->failing_stage);
3676 writel(0, &sdr_reg_file->debug1);
3677 writel(0, &sdr_reg_file->debug2);
3da42859
DN
3678}
3679
2ca151f8
MV
3680/**
3681 * initialize_hps_phy() - Initialize HPS PHY
3682 *
3683 * Initialize HPS PHY.
3684 */
3da42859
DN
3685static void initialize_hps_phy(void)
3686{
3687 uint32_t reg;
3da42859
DN
3688 /*
3689 * Tracking also gets configured here because it's in the
3690 * same register.
3691 */
3692 uint32_t trk_sample_count = 7500;
3693 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3694 /*
3695 * Format is number of outer loops in the 16 MSB, sample
3696 * count in 16 LSB.
3697 */
3698
3699 reg = 0;
3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3703 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3706 /*
3707 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3708 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3709 */
3710 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3711 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3712 trk_sample_count);
6cb9f167 3713 writel(reg, &sdr_ctrl->phy_ctrl0);
3da42859
DN
3714
3715 reg = 0;
3716 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3717 trk_sample_count >>
3718 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3719 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3720 trk_long_idle_sample_count);
6cb9f167 3721 writel(reg, &sdr_ctrl->phy_ctrl1);
3da42859
DN
3722
3723 reg = 0;
3724 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3725 trk_long_idle_sample_count >>
3726 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
6cb9f167 3727 writel(reg, &sdr_ctrl->phy_ctrl2);
3da42859
DN
3728}
3729
880e46f2
MV
3730/**
3731 * initialize_tracking() - Initialize tracking
3732 *
3733 * Initialize the register file with usable initial data.
3734 */
3da42859
DN
3735static void initialize_tracking(void)
3736{
880e46f2
MV
3737 /*
3738 * Initialize the register file with the correct data.
3739 * Compute usable version of value in case we skip full
3740 * computation later.
3741 */
3742 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3743 &sdr_reg_file->dtaps_per_ptap);
3744
3745 /* trk_sample_count */
3746 writel(7500, &sdr_reg_file->trk_sample_count);
3747
3748 /* longidle outer loop [15:0] */
3749 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3da42859
DN
3750
3751 /*
880e46f2
MV
3752 * longidle sample count [31:24]
3753 * trfc, worst case of 933Mhz 4Gb [23:16]
3754 * trcd, worst case [15:8]
3755 * vfifo wait [7:0]
3da42859 3756 */
880e46f2
MV
3757 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3758 &sdr_reg_file->delays);
3da42859 3759
880e46f2
MV
3760 /* mux delay */
3761 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3762 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3763 &sdr_reg_file->trk_rw_mgr_addr);
3764
3765 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3766 &sdr_reg_file->trk_read_dqs_width);
3767
3768 /* trefi [7:0] */
3769 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3770 &sdr_reg_file->trk_rfsh);
3da42859
DN
3771}
3772
3773int sdram_calibration_full(void)
3774{
3775 struct param_type my_param;
3776 struct gbl_type my_gbl;
3777 uint32_t pass;
84e0b0cf
MV
3778
3779 memset(&my_param, 0, sizeof(my_param));
3780 memset(&my_gbl, 0, sizeof(my_gbl));
3da42859
DN
3781
3782 param = &my_param;
3783 gbl = &my_gbl;
3784
3da42859
DN
3785 /* Set the calibration enabled by default */
3786 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3787 /*
3788 * Only sweep all groups (regardless of fail state) by default
3789 * Set enabled read test by default.
3790 */
3791#if DISABLE_GUARANTEED_READ
3792 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3793#endif
3794 /* Initialize the register file */
3795 initialize_reg_file();
3796
3797 /* Initialize any PHY CSR */
3798 initialize_hps_phy();
3799
3800 scc_mgr_initialize();
3801
3802 initialize_tracking();
3803
3da42859
DN
3804 printf("%s: Preparing to start memory calibration\n", __FILE__);
3805
3806 debug("%s:%d\n", __func__, __LINE__);
23f62b36
MV
3807 debug_cond(DLEVEL == 1,
3808 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3809 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3810 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3811 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3812 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3813 debug_cond(DLEVEL == 1,
3814 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3815 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3816 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3817 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3818 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3819 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3820 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3821 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3822 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3823 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3824 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3825 IO_IO_OUT2_DELAY_MAX);
3826 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3827 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3da42859
DN
3828
3829 hc_initialize_rom_data();
3830
3831 /* update info for sims */
3832 reg_file_set_stage(CAL_STAGE_NIL);
3833 reg_file_set_group(0);
3834
3835 /*
3836 * Load global needed for those actions that require
3837 * some dynamic calibration support.
3838 */
3839 dyn_calib_steps = STATIC_CALIB_STEPS;
3840 /*
3841 * Load global to allow dynamic selection of delay loop settings
3842 * based on calibration mode.
3843 */
3844 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3845 skip_delay_mask = 0xff;
3846 else
3847 skip_delay_mask = 0x0;
3848
3849 pass = run_mem_calibrate();
23a040c0 3850 debug_mem_calibrate(pass);
3da42859
DN
3851 return pass;
3852}
This page took 0.580746 seconds and 4 git commands to generate.