]>
Commit | Line | Data |
---|---|---|
88364387 HT |
1 | /* |
2 | * Chromium OS cros_ec driver | |
3 | * | |
4 | * Copyright (c) 2012 The Chromium OS Authors. | |
5 | * See file CREDITS for list of people who contributed to this | |
6 | * project. | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public License as | |
10 | * published by the Free Software Foundation; either version 2 of | |
11 | * the License, or (at your option) any later version. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | |
21 | * MA 02111-1307 USA | |
22 | */ | |
23 | ||
24 | /* | |
25 | * The Matrix Keyboard Protocol driver handles talking to the keyboard | |
26 | * controller chip. Mostly this is for keyboard functions, but some other | |
27 | * things have slipped in, so we provide generic services to talk to the | |
28 | * KBC. | |
29 | */ | |
30 | ||
31 | #include <common.h> | |
32 | #include <command.h> | |
33 | #include <i2c.h> | |
34 | #include <cros_ec.h> | |
35 | #include <fdtdec.h> | |
36 | #include <malloc.h> | |
37 | #include <spi.h> | |
38 | #include <asm/io.h> | |
39 | #include <asm-generic/gpio.h> | |
40 | ||
41 | #ifdef DEBUG_TRACE | |
42 | #define debug_trace(fmt, b...) debug(fmt, #b) | |
43 | #else | |
44 | #define debug_trace(fmt, b...) | |
45 | #endif | |
46 | ||
47 | enum { | |
48 | /* Timeout waiting for a flash erase command to complete */ | |
49 | CROS_EC_CMD_TIMEOUT_MS = 5000, | |
50 | /* Timeout waiting for a synchronous hash to be recomputed */ | |
51 | CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, | |
52 | }; | |
53 | ||
54 | static struct cros_ec_dev static_dev, *last_dev; | |
55 | ||
56 | DECLARE_GLOBAL_DATA_PTR; | |
57 | ||
58 | /* Note: depends on enum ec_current_image */ | |
59 | static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; | |
60 | ||
61 | void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) | |
62 | { | |
63 | #ifdef DEBUG | |
64 | int i; | |
65 | ||
66 | printf("%s: ", name); | |
67 | if (cmd != -1) | |
68 | printf("cmd=%#x: ", cmd); | |
69 | for (i = 0; i < len; i++) | |
70 | printf("%02x ", data[i]); | |
71 | printf("\n"); | |
72 | #endif | |
73 | } | |
74 | ||
75 | /* | |
76 | * Calculate a simple 8-bit checksum of a data block | |
77 | * | |
78 | * @param data Data block to checksum | |
79 | * @param size Size of data block in bytes | |
80 | * @return checksum value (0 to 255) | |
81 | */ | |
82 | int cros_ec_calc_checksum(const uint8_t *data, int size) | |
83 | { | |
84 | int csum, i; | |
85 | ||
86 | for (i = csum = 0; i < size; i++) | |
87 | csum += data[i]; | |
88 | return csum & 0xff; | |
89 | } | |
90 | ||
91 | static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, | |
92 | const void *dout, int dout_len, | |
93 | uint8_t **dinp, int din_len) | |
94 | { | |
95 | int ret; | |
96 | ||
97 | switch (dev->interface) { | |
98 | #ifdef CONFIG_CROS_EC_SPI | |
99 | case CROS_EC_IF_SPI: | |
100 | ret = cros_ec_spi_command(dev, cmd, cmd_version, | |
101 | (const uint8_t *)dout, dout_len, | |
102 | dinp, din_len); | |
103 | break; | |
104 | #endif | |
105 | #ifdef CONFIG_CROS_EC_I2C | |
106 | case CROS_EC_IF_I2C: | |
107 | ret = cros_ec_i2c_command(dev, cmd, cmd_version, | |
108 | (const uint8_t *)dout, dout_len, | |
109 | dinp, din_len); | |
110 | break; | |
111 | #endif | |
112 | #ifdef CONFIG_CROS_EC_LPC | |
113 | case CROS_EC_IF_LPC: | |
114 | ret = cros_ec_lpc_command(dev, cmd, cmd_version, | |
115 | (const uint8_t *)dout, dout_len, | |
116 | dinp, din_len); | |
117 | break; | |
118 | #endif | |
119 | case CROS_EC_IF_NONE: | |
120 | default: | |
121 | ret = -1; | |
122 | } | |
123 | ||
124 | return ret; | |
125 | } | |
126 | ||
127 | /** | |
128 | * Send a command to the CROS-EC device and return the reply. | |
129 | * | |
130 | * The device's internal input/output buffers are used. | |
131 | * | |
132 | * @param dev CROS-EC device | |
133 | * @param cmd Command to send (EC_CMD_...) | |
134 | * @param cmd_version Version of command to send (EC_VER_...) | |
135 | * @param dout Output data (may be NULL If dout_len=0) | |
136 | * @param dout_len Size of output data in bytes | |
137 | * @param dinp Response data (may be NULL If din_len=0). | |
138 | * If not NULL, it will be updated to point to the data | |
139 | * and will always be double word aligned (64-bits) | |
140 | * @param din_len Maximum size of response in bytes | |
141 | * @return number of bytes in response, or -1 on error | |
142 | */ | |
143 | static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, | |
144 | int cmd_version, const void *dout, int dout_len, uint8_t **dinp, | |
145 | int din_len) | |
146 | { | |
147 | uint8_t *din; | |
148 | int len; | |
149 | ||
150 | if (cmd_version != 0 && !dev->cmd_version_is_supported) { | |
151 | debug("%s: Command version >0 unsupported\n", __func__); | |
152 | return -1; | |
153 | } | |
154 | len = send_command(dev, cmd, cmd_version, dout, dout_len, | |
155 | &din, din_len); | |
156 | ||
157 | /* If the command doesn't complete, wait a while */ | |
158 | if (len == -EC_RES_IN_PROGRESS) { | |
159 | struct ec_response_get_comms_status *resp; | |
160 | ulong start; | |
161 | ||
162 | /* Wait for command to complete */ | |
163 | start = get_timer(0); | |
164 | do { | |
165 | int ret; | |
166 | ||
167 | mdelay(50); /* Insert some reasonable delay */ | |
168 | ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, | |
169 | NULL, 0, | |
170 | (uint8_t **)&resp, sizeof(*resp)); | |
171 | if (ret < 0) | |
172 | return ret; | |
173 | ||
174 | if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { | |
175 | debug("%s: Command %#02x timeout\n", | |
176 | __func__, cmd); | |
177 | return -EC_RES_TIMEOUT; | |
178 | } | |
179 | } while (resp->flags & EC_COMMS_STATUS_PROCESSING); | |
180 | ||
181 | /* OK it completed, so read the status response */ | |
182 | /* not sure why it was 0 for the last argument */ | |
183 | len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, | |
184 | NULL, 0, &din, din_len); | |
185 | } | |
186 | ||
187 | debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp); | |
188 | if (dinp) { | |
189 | /* If we have any data to return, it must be 64bit-aligned */ | |
190 | assert(len <= 0 || !((uintptr_t)din & 7)); | |
191 | *dinp = din; | |
192 | } | |
193 | ||
194 | return len; | |
195 | } | |
196 | ||
197 | /** | |
198 | * Send a command to the CROS-EC device and return the reply. | |
199 | * | |
200 | * The device's internal input/output buffers are used. | |
201 | * | |
202 | * @param dev CROS-EC device | |
203 | * @param cmd Command to send (EC_CMD_...) | |
204 | * @param cmd_version Version of command to send (EC_VER_...) | |
205 | * @param dout Output data (may be NULL If dout_len=0) | |
206 | * @param dout_len Size of output data in bytes | |
207 | * @param din Response data (may be NULL If din_len=0). | |
208 | * It not NULL, it is a place for ec_command() to copy the | |
209 | * data to. | |
210 | * @param din_len Maximum size of response in bytes | |
211 | * @return number of bytes in response, or -1 on error | |
212 | */ | |
213 | static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, | |
214 | const void *dout, int dout_len, | |
215 | void *din, int din_len) | |
216 | { | |
217 | uint8_t *in_buffer; | |
218 | int len; | |
219 | ||
220 | assert((din_len == 0) || din); | |
221 | len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, | |
222 | &in_buffer, din_len); | |
223 | if (len > 0) { | |
224 | /* | |
225 | * If we were asked to put it somewhere, do so, otherwise just | |
226 | * disregard the result. | |
227 | */ | |
228 | if (din && in_buffer) { | |
229 | assert(len <= din_len); | |
230 | memmove(din, in_buffer, len); | |
231 | } | |
232 | } | |
233 | return len; | |
234 | } | |
235 | ||
236 | int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) | |
237 | { | |
238 | if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan, | |
239 | sizeof(scan->data)) < sizeof(scan->data)) | |
240 | return -1; | |
241 | ||
242 | return 0; | |
243 | } | |
244 | ||
245 | int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) | |
246 | { | |
247 | struct ec_response_get_version *r; | |
248 | ||
249 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
250 | (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) | |
251 | return -1; | |
252 | ||
253 | if (maxlen > sizeof(r->version_string_ro)) | |
254 | maxlen = sizeof(r->version_string_ro); | |
255 | ||
256 | switch (r->current_image) { | |
257 | case EC_IMAGE_RO: | |
258 | memcpy(id, r->version_string_ro, maxlen); | |
259 | break; | |
260 | case EC_IMAGE_RW: | |
261 | memcpy(id, r->version_string_rw, maxlen); | |
262 | break; | |
263 | default: | |
264 | return -1; | |
265 | } | |
266 | ||
267 | id[maxlen - 1] = '\0'; | |
268 | return 0; | |
269 | } | |
270 | ||
271 | int cros_ec_read_version(struct cros_ec_dev *dev, | |
272 | struct ec_response_get_version **versionp) | |
273 | { | |
274 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
275 | (uint8_t **)versionp, sizeof(**versionp)) | |
276 | < sizeof(**versionp)) | |
277 | return -1; | |
278 | ||
279 | return 0; | |
280 | } | |
281 | ||
282 | int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) | |
283 | { | |
284 | if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, | |
285 | (uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0) | |
286 | return -1; | |
287 | ||
288 | return 0; | |
289 | } | |
290 | ||
291 | int cros_ec_read_current_image(struct cros_ec_dev *dev, | |
292 | enum ec_current_image *image) | |
293 | { | |
294 | struct ec_response_get_version *r; | |
295 | ||
296 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
297 | (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) | |
298 | return -1; | |
299 | ||
300 | *image = r->current_image; | |
301 | return 0; | |
302 | } | |
303 | ||
304 | static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, | |
305 | struct ec_response_vboot_hash *hash) | |
306 | { | |
307 | struct ec_params_vboot_hash p; | |
308 | ulong start; | |
309 | ||
310 | start = get_timer(0); | |
311 | while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { | |
312 | mdelay(50); /* Insert some reasonable delay */ | |
313 | ||
314 | p.cmd = EC_VBOOT_HASH_GET; | |
315 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
316 | hash, sizeof(*hash)) < 0) | |
317 | return -1; | |
318 | ||
319 | if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { | |
320 | debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); | |
321 | return -EC_RES_TIMEOUT; | |
322 | } | |
323 | } | |
324 | return 0; | |
325 | } | |
326 | ||
327 | ||
328 | int cros_ec_read_hash(struct cros_ec_dev *dev, | |
329 | struct ec_response_vboot_hash *hash) | |
330 | { | |
331 | struct ec_params_vboot_hash p; | |
332 | int rv; | |
333 | ||
334 | p.cmd = EC_VBOOT_HASH_GET; | |
335 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
336 | hash, sizeof(*hash)) < 0) | |
337 | return -1; | |
338 | ||
339 | /* If the EC is busy calculating the hash, fidget until it's done. */ | |
340 | rv = cros_ec_wait_on_hash_done(dev, hash); | |
341 | if (rv) | |
342 | return rv; | |
343 | ||
344 | /* If the hash is valid, we're done. Otherwise, we have to kick it off | |
345 | * again and wait for it to complete. Note that we explicitly assume | |
346 | * that hashing zero bytes is always wrong, even though that would | |
347 | * produce a valid hash value. */ | |
348 | if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) | |
349 | return 0; | |
350 | ||
351 | debug("%s: No valid hash (status=%d size=%d). Compute one...\n", | |
352 | __func__, hash->status, hash->size); | |
353 | ||
354 | p.cmd = EC_VBOOT_HASH_RECALC; | |
355 | p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; | |
356 | p.nonce_size = 0; | |
357 | p.offset = EC_VBOOT_HASH_OFFSET_RW; | |
358 | ||
359 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
360 | hash, sizeof(*hash)) < 0) | |
361 | return -1; | |
362 | ||
363 | rv = cros_ec_wait_on_hash_done(dev, hash); | |
364 | if (rv) | |
365 | return rv; | |
366 | ||
367 | debug("%s: hash done\n", __func__); | |
368 | ||
369 | return 0; | |
370 | } | |
371 | ||
372 | static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) | |
373 | { | |
374 | struct ec_params_vboot_hash p; | |
375 | struct ec_response_vboot_hash *hash; | |
376 | ||
377 | /* We don't have an explict command for the EC to discard its current | |
378 | * hash value, so we'll just tell it to calculate one that we know is | |
379 | * wrong (we claim that hashing zero bytes is always invalid). | |
380 | */ | |
381 | p.cmd = EC_VBOOT_HASH_RECALC; | |
382 | p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; | |
383 | p.nonce_size = 0; | |
384 | p.offset = 0; | |
385 | p.size = 0; | |
386 | ||
387 | debug("%s:\n", __func__); | |
388 | ||
389 | if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
390 | (uint8_t **)&hash, sizeof(*hash)) < 0) | |
391 | return -1; | |
392 | ||
393 | /* No need to wait for it to finish */ | |
394 | return 0; | |
395 | } | |
396 | ||
397 | int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, | |
398 | uint8_t flags) | |
399 | { | |
400 | struct ec_params_reboot_ec p; | |
401 | ||
402 | p.cmd = cmd; | |
403 | p.flags = flags; | |
404 | ||
405 | if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) | |
406 | < 0) | |
407 | return -1; | |
408 | ||
409 | if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { | |
410 | /* | |
411 | * EC reboot will take place immediately so delay to allow it | |
412 | * to complete. Note that some reboot types (EC_REBOOT_COLD) | |
413 | * will reboot the AP as well, in which case we won't actually | |
414 | * get to this point. | |
415 | */ | |
416 | /* | |
417 | * TODO([email protected]): Would be nice if we had a | |
418 | * better way to determine when the reboot is complete. Could | |
419 | * we poll a memory-mapped LPC value? | |
420 | */ | |
421 | udelay(50000); | |
422 | } | |
423 | ||
424 | return 0; | |
425 | } | |
426 | ||
427 | int cros_ec_interrupt_pending(struct cros_ec_dev *dev) | |
428 | { | |
429 | /* no interrupt support : always poll */ | |
430 | if (!fdt_gpio_isvalid(&dev->ec_int)) | |
431 | return 1; | |
432 | ||
433 | return !gpio_get_value(dev->ec_int.gpio); | |
434 | } | |
435 | ||
436 | int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info) | |
437 | { | |
438 | if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info, | |
439 | sizeof(*info)) < sizeof(*info)) | |
440 | return -1; | |
441 | ||
442 | return 0; | |
443 | } | |
444 | ||
445 | int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) | |
446 | { | |
447 | struct ec_response_host_event_mask *resp; | |
448 | ||
449 | /* | |
450 | * Use the B copy of the event flags, because the main copy is already | |
451 | * used by ACPI/SMI. | |
452 | */ | |
453 | if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, | |
454 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) | |
455 | return -1; | |
456 | ||
457 | if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) | |
458 | return -1; | |
459 | ||
460 | *events_ptr = resp->mask; | |
461 | return 0; | |
462 | } | |
463 | ||
464 | int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) | |
465 | { | |
466 | struct ec_params_host_event_mask params; | |
467 | ||
468 | params.mask = events; | |
469 | ||
470 | /* | |
471 | * Use the B copy of the event flags, so it affects the data returned | |
472 | * by cros_ec_get_host_events(). | |
473 | */ | |
474 | if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, | |
475 | ¶ms, sizeof(params), NULL, 0) < 0) | |
476 | return -1; | |
477 | ||
478 | return 0; | |
479 | } | |
480 | ||
481 | int cros_ec_flash_protect(struct cros_ec_dev *dev, | |
482 | uint32_t set_mask, uint32_t set_flags, | |
483 | struct ec_response_flash_protect *resp) | |
484 | { | |
485 | struct ec_params_flash_protect params; | |
486 | ||
487 | params.mask = set_mask; | |
488 | params.flags = set_flags; | |
489 | ||
490 | if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, | |
491 | ¶ms, sizeof(params), | |
492 | resp, sizeof(*resp)) < sizeof(*resp)) | |
493 | return -1; | |
494 | ||
495 | return 0; | |
496 | } | |
497 | ||
498 | static int cros_ec_check_version(struct cros_ec_dev *dev) | |
499 | { | |
500 | struct ec_params_hello req; | |
501 | struct ec_response_hello *resp; | |
502 | ||
503 | #ifdef CONFIG_CROS_EC_LPC | |
504 | /* LPC has its own way of doing this */ | |
505 | if (dev->interface == CROS_EC_IF_LPC) | |
506 | return cros_ec_lpc_check_version(dev); | |
507 | #endif | |
508 | ||
509 | /* | |
510 | * TODO([email protected]). | |
511 | * There is a strange oddity here with the EC. We could just ignore | |
512 | * the response, i.e. pass the last two parameters as NULL and 0. | |
513 | * In this case we won't read back very many bytes from the EC. | |
514 | * On the I2C bus the EC gets upset about this and will try to send | |
515 | * the bytes anyway. This means that we will have to wait for that | |
516 | * to complete before continuing with a new EC command. | |
517 | * | |
518 | * This problem is probably unique to the I2C bus. | |
519 | * | |
520 | * So for now, just read all the data anyway. | |
521 | */ | |
522 | dev->cmd_version_is_supported = 1; | |
523 | if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), | |
524 | (uint8_t **)&resp, sizeof(*resp)) > 0) { | |
525 | /* It appears to understand new version commands */ | |
526 | dev->cmd_version_is_supported = 1; | |
527 | } else { | |
528 | dev->cmd_version_is_supported = 0; | |
529 | if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, | |
530 | sizeof(req), (uint8_t **)&resp, | |
531 | sizeof(*resp)) < 0) { | |
532 | debug("%s: Failed both old and new command style\n", | |
533 | __func__); | |
534 | return -1; | |
535 | } | |
536 | } | |
537 | ||
538 | return 0; | |
539 | } | |
540 | ||
541 | int cros_ec_test(struct cros_ec_dev *dev) | |
542 | { | |
543 | struct ec_params_hello req; | |
544 | struct ec_response_hello *resp; | |
545 | ||
546 | req.in_data = 0x12345678; | |
547 | if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), | |
548 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { | |
549 | printf("ec_command_inptr() returned error\n"); | |
550 | return -1; | |
551 | } | |
552 | if (resp->out_data != req.in_data + 0x01020304) { | |
553 | printf("Received invalid handshake %x\n", resp->out_data); | |
554 | return -1; | |
555 | } | |
556 | ||
557 | return 0; | |
558 | } | |
559 | ||
560 | int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, | |
561 | uint32_t *offset, uint32_t *size) | |
562 | { | |
563 | struct ec_params_flash_region_info p; | |
564 | struct ec_response_flash_region_info *r; | |
565 | int ret; | |
566 | ||
567 | p.region = region; | |
568 | ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, | |
569 | EC_VER_FLASH_REGION_INFO, | |
570 | &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); | |
571 | if (ret != sizeof(*r)) | |
572 | return -1; | |
573 | ||
574 | if (offset) | |
575 | *offset = r->offset; | |
576 | if (size) | |
577 | *size = r->size; | |
578 | ||
579 | return 0; | |
580 | } | |
581 | ||
582 | int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) | |
583 | { | |
584 | struct ec_params_flash_erase p; | |
585 | ||
586 | p.offset = offset; | |
587 | p.size = size; | |
588 | return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), | |
589 | NULL, 0); | |
590 | } | |
591 | ||
592 | /** | |
593 | * Write a single block to the flash | |
594 | * | |
595 | * Write a block of data to the EC flash. The size must not exceed the flash | |
596 | * write block size which you can obtain from cros_ec_flash_write_burst_size(). | |
597 | * | |
598 | * The offset starts at 0. You can obtain the region information from | |
599 | * cros_ec_flash_offset() to find out where to write for a particular region. | |
600 | * | |
601 | * Attempting to write to the region where the EC is currently running from | |
602 | * will result in an error. | |
603 | * | |
604 | * @param dev CROS-EC device | |
605 | * @param data Pointer to data buffer to write | |
606 | * @param offset Offset within flash to write to. | |
607 | * @param size Number of bytes to write | |
608 | * @return 0 if ok, -1 on error | |
609 | */ | |
610 | static int cros_ec_flash_write_block(struct cros_ec_dev *dev, | |
611 | const uint8_t *data, uint32_t offset, uint32_t size) | |
612 | { | |
613 | struct ec_params_flash_write p; | |
614 | ||
615 | p.offset = offset; | |
616 | p.size = size; | |
617 | assert(data && p.size <= sizeof(p.data)); | |
618 | memcpy(p.data, data, p.size); | |
619 | ||
620 | return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, | |
621 | &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; | |
622 | } | |
623 | ||
624 | /** | |
625 | * Return optimal flash write burst size | |
626 | */ | |
627 | static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) | |
628 | { | |
629 | struct ec_params_flash_write p; | |
630 | return sizeof(p.data); | |
631 | } | |
632 | ||
633 | /** | |
634 | * Check if a block of data is erased (all 0xff) | |
635 | * | |
636 | * This function is useful when dealing with flash, for checking whether a | |
637 | * data block is erased and thus does not need to be programmed. | |
638 | * | |
639 | * @param data Pointer to data to check (must be word-aligned) | |
640 | * @param size Number of bytes to check (must be word-aligned) | |
641 | * @return 0 if erased, non-zero if any word is not erased | |
642 | */ | |
643 | static int cros_ec_data_is_erased(const uint32_t *data, int size) | |
644 | { | |
645 | assert(!(size & 3)); | |
646 | size /= sizeof(uint32_t); | |
647 | for (; size > 0; size -= 4, data++) | |
648 | if (*data != -1U) | |
649 | return 0; | |
650 | ||
651 | return 1; | |
652 | } | |
653 | ||
654 | int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, | |
655 | uint32_t offset, uint32_t size) | |
656 | { | |
657 | uint32_t burst = cros_ec_flash_write_burst_size(dev); | |
658 | uint32_t end, off; | |
659 | int ret; | |
660 | ||
661 | /* | |
662 | * TODO: round up to the nearest multiple of write size. Can get away | |
663 | * without that on link right now because its write size is 4 bytes. | |
664 | */ | |
665 | end = offset + size; | |
666 | for (off = offset; off < end; off += burst, data += burst) { | |
667 | uint32_t todo; | |
668 | ||
669 | /* If the data is empty, there is no point in programming it */ | |
670 | todo = min(end - off, burst); | |
671 | if (dev->optimise_flash_write && | |
672 | cros_ec_data_is_erased((uint32_t *)data, todo)) | |
673 | continue; | |
674 | ||
675 | ret = cros_ec_flash_write_block(dev, data, off, todo); | |
676 | if (ret) | |
677 | return ret; | |
678 | } | |
679 | ||
680 | return 0; | |
681 | } | |
682 | ||
683 | /** | |
684 | * Read a single block from the flash | |
685 | * | |
686 | * Read a block of data from the EC flash. The size must not exceed the flash | |
687 | * write block size which you can obtain from cros_ec_flash_write_burst_size(). | |
688 | * | |
689 | * The offset starts at 0. You can obtain the region information from | |
690 | * cros_ec_flash_offset() to find out where to read for a particular region. | |
691 | * | |
692 | * @param dev CROS-EC device | |
693 | * @param data Pointer to data buffer to read into | |
694 | * @param offset Offset within flash to read from | |
695 | * @param size Number of bytes to read | |
696 | * @return 0 if ok, -1 on error | |
697 | */ | |
698 | static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, | |
699 | uint32_t offset, uint32_t size) | |
700 | { | |
701 | struct ec_params_flash_read p; | |
702 | ||
703 | p.offset = offset; | |
704 | p.size = size; | |
705 | ||
706 | return ec_command(dev, EC_CMD_FLASH_READ, 0, | |
707 | &p, sizeof(p), data, size) >= 0 ? 0 : -1; | |
708 | } | |
709 | ||
710 | int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, | |
711 | uint32_t size) | |
712 | { | |
713 | uint32_t burst = cros_ec_flash_write_burst_size(dev); | |
714 | uint32_t end, off; | |
715 | int ret; | |
716 | ||
717 | end = offset + size; | |
718 | for (off = offset; off < end; off += burst, data += burst) { | |
719 | ret = cros_ec_flash_read_block(dev, data, off, | |
720 | min(end - off, burst)); | |
721 | if (ret) | |
722 | return ret; | |
723 | } | |
724 | ||
725 | return 0; | |
726 | } | |
727 | ||
728 | int cros_ec_flash_update_rw(struct cros_ec_dev *dev, | |
729 | const uint8_t *image, int image_size) | |
730 | { | |
731 | uint32_t rw_offset, rw_size; | |
732 | int ret; | |
733 | ||
734 | if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) | |
735 | return -1; | |
736 | if (image_size > rw_size) | |
737 | return -1; | |
738 | ||
739 | /* Invalidate the existing hash, just in case the AP reboots | |
740 | * unexpectedly during the update. If that happened, the EC RW firmware | |
741 | * would be invalid, but the EC would still have the original hash. | |
742 | */ | |
743 | ret = cros_ec_invalidate_hash(dev); | |
744 | if (ret) | |
745 | return ret; | |
746 | ||
747 | /* | |
748 | * Erase the entire RW section, so that the EC doesn't see any garbage | |
749 | * past the new image if it's smaller than the current image. | |
750 | * | |
751 | * TODO: could optimize this to erase just the current image, since | |
752 | * presumably everything past that is 0xff's. But would still need to | |
753 | * round up to the nearest multiple of erase size. | |
754 | */ | |
755 | ret = cros_ec_flash_erase(dev, rw_offset, rw_size); | |
756 | if (ret) | |
757 | return ret; | |
758 | ||
759 | /* Write the image */ | |
760 | ret = cros_ec_flash_write(dev, image, rw_offset, image_size); | |
761 | if (ret) | |
762 | return ret; | |
763 | ||
764 | return 0; | |
765 | } | |
766 | ||
767 | int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) | |
768 | { | |
769 | struct ec_params_vbnvcontext p; | |
770 | int len; | |
771 | ||
772 | p.op = EC_VBNV_CONTEXT_OP_READ; | |
773 | ||
774 | len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, | |
775 | &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); | |
776 | if (len < EC_VBNV_BLOCK_SIZE) | |
777 | return -1; | |
778 | ||
779 | return 0; | |
780 | } | |
781 | ||
782 | int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) | |
783 | { | |
784 | struct ec_params_vbnvcontext p; | |
785 | int len; | |
786 | ||
787 | p.op = EC_VBNV_CONTEXT_OP_WRITE; | |
788 | memcpy(p.block, block, sizeof(p.block)); | |
789 | ||
790 | len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, | |
791 | &p, sizeof(p), NULL, 0); | |
792 | if (len < 0) | |
793 | return -1; | |
794 | ||
795 | return 0; | |
796 | } | |
797 | ||
798 | int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) | |
799 | { | |
800 | struct ec_params_ldo_set params; | |
801 | ||
802 | params.index = index; | |
803 | params.state = state; | |
804 | ||
805 | if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, | |
806 | ¶ms, sizeof(params), | |
807 | NULL, 0)) | |
808 | return -1; | |
809 | ||
810 | return 0; | |
811 | } | |
812 | ||
813 | int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) | |
814 | { | |
815 | struct ec_params_ldo_get params; | |
816 | struct ec_response_ldo_get *resp; | |
817 | ||
818 | params.index = index; | |
819 | ||
820 | if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, | |
821 | ¶ms, sizeof(params), | |
822 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) | |
823 | return -1; | |
824 | ||
825 | *state = resp->state; | |
826 | ||
827 | return 0; | |
828 | } | |
829 | ||
830 | /** | |
831 | * Decode MBKP details from the device tree and allocate a suitable device. | |
832 | * | |
833 | * @param blob Device tree blob | |
834 | * @param node Node to decode from | |
835 | * @param devp Returns a pointer to the new allocated device | |
836 | * @return 0 if ok, -1 on error | |
837 | */ | |
838 | static int cros_ec_decode_fdt(const void *blob, int node, | |
839 | struct cros_ec_dev **devp) | |
840 | { | |
841 | enum fdt_compat_id compat; | |
842 | struct cros_ec_dev *dev; | |
843 | int parent; | |
844 | ||
845 | /* See what type of parent we are inside (this is expensive) */ | |
846 | parent = fdt_parent_offset(blob, node); | |
847 | if (parent < 0) { | |
848 | debug("%s: Cannot find node parent\n", __func__); | |
849 | return -1; | |
850 | } | |
851 | ||
852 | dev = &static_dev; | |
853 | dev->node = node; | |
854 | dev->parent_node = parent; | |
855 | ||
856 | compat = fdtdec_lookup(blob, parent); | |
857 | switch (compat) { | |
858 | #ifdef CONFIG_CROS_EC_SPI | |
859 | case COMPAT_SAMSUNG_EXYNOS_SPI: | |
860 | dev->interface = CROS_EC_IF_SPI; | |
861 | if (cros_ec_spi_decode_fdt(dev, blob)) | |
862 | return -1; | |
863 | break; | |
864 | #endif | |
865 | #ifdef CONFIG_CROS_EC_I2C | |
866 | case COMPAT_SAMSUNG_S3C2440_I2C: | |
867 | dev->interface = CROS_EC_IF_I2C; | |
868 | if (cros_ec_i2c_decode_fdt(dev, blob)) | |
869 | return -1; | |
870 | break; | |
871 | #endif | |
872 | #ifdef CONFIG_CROS_EC_LPC | |
873 | case COMPAT_INTEL_LPC: | |
874 | dev->interface = CROS_EC_IF_LPC; | |
875 | break; | |
876 | #endif | |
877 | default: | |
878 | debug("%s: Unknown compat id %d\n", __func__, compat); | |
879 | return -1; | |
880 | } | |
881 | ||
882 | fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); | |
883 | dev->optimise_flash_write = fdtdec_get_bool(blob, node, | |
884 | "optimise-flash-write"); | |
885 | *devp = dev; | |
886 | ||
887 | return 0; | |
888 | } | |
889 | ||
890 | int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) | |
891 | { | |
892 | char id[MSG_BYTES]; | |
893 | struct cros_ec_dev *dev; | |
894 | int node = 0; | |
895 | ||
896 | *cros_ecp = NULL; | |
897 | do { | |
898 | node = fdtdec_next_compatible(blob, node, | |
899 | COMPAT_GOOGLE_CROS_EC); | |
900 | if (node < 0) { | |
901 | debug("%s: Node not found\n", __func__); | |
902 | return 0; | |
903 | } | |
904 | } while (!fdtdec_get_is_enabled(blob, node)); | |
905 | ||
906 | if (cros_ec_decode_fdt(blob, node, &dev)) { | |
907 | debug("%s: Failed to decode device.\n", __func__); | |
908 | return -CROS_EC_ERR_FDT_DECODE; | |
909 | } | |
910 | ||
911 | switch (dev->interface) { | |
912 | #ifdef CONFIG_CROS_EC_SPI | |
913 | case CROS_EC_IF_SPI: | |
914 | if (cros_ec_spi_init(dev, blob)) { | |
915 | debug("%s: Could not setup SPI interface\n", __func__); | |
916 | return -CROS_EC_ERR_DEV_INIT; | |
917 | } | |
918 | break; | |
919 | #endif | |
920 | #ifdef CONFIG_CROS_EC_I2C | |
921 | case CROS_EC_IF_I2C: | |
922 | if (cros_ec_i2c_init(dev, blob)) | |
923 | return -CROS_EC_ERR_DEV_INIT; | |
924 | break; | |
925 | #endif | |
926 | #ifdef CONFIG_CROS_EC_LPC | |
927 | case CROS_EC_IF_LPC: | |
928 | if (cros_ec_lpc_init(dev, blob)) | |
929 | return -CROS_EC_ERR_DEV_INIT; | |
930 | break; | |
931 | #endif | |
932 | case CROS_EC_IF_NONE: | |
933 | default: | |
934 | return 0; | |
935 | } | |
936 | ||
937 | /* we will poll the EC interrupt line */ | |
938 | fdtdec_setup_gpio(&dev->ec_int); | |
939 | if (fdt_gpio_isvalid(&dev->ec_int)) | |
940 | gpio_direction_input(dev->ec_int.gpio); | |
941 | ||
942 | if (cros_ec_check_version(dev)) { | |
943 | debug("%s: Could not detect CROS-EC version\n", __func__); | |
944 | return -CROS_EC_ERR_CHECK_VERSION; | |
945 | } | |
946 | ||
947 | if (cros_ec_read_id(dev, id, sizeof(id))) { | |
948 | debug("%s: Could not read KBC ID\n", __func__); | |
949 | return -CROS_EC_ERR_READ_ID; | |
950 | } | |
951 | ||
952 | /* Remember this device for use by the cros_ec command */ | |
953 | last_dev = *cros_ecp = dev; | |
954 | debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); | |
955 | ||
956 | return 0; | |
957 | } | |
958 | ||
959 | #ifdef CONFIG_CMD_CROS_EC | |
960 | int cros_ec_decode_region(int argc, char * const argv[]) | |
961 | { | |
962 | if (argc > 0) { | |
963 | if (0 == strcmp(*argv, "rw")) | |
964 | return EC_FLASH_REGION_RW; | |
965 | else if (0 == strcmp(*argv, "ro")) | |
966 | return EC_FLASH_REGION_RO; | |
967 | ||
968 | debug("%s: Invalid region '%s'\n", __func__, *argv); | |
969 | } else { | |
970 | debug("%s: Missing region parameter\n", __func__); | |
971 | } | |
972 | ||
973 | return -1; | |
974 | } | |
975 | ||
976 | /** | |
977 | * Perform a flash read or write command | |
978 | * | |
979 | * @param dev CROS-EC device to read/write | |
980 | * @param is_write 1 do to a write, 0 to do a read | |
981 | * @param argc Number of arguments | |
982 | * @param argv Arguments (2 is region, 3 is address) | |
983 | * @return 0 for ok, 1 for a usage error or -ve for ec command error | |
984 | * (negative EC_RES_...) | |
985 | */ | |
986 | static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, | |
987 | char * const argv[]) | |
988 | { | |
989 | uint32_t offset, size = -1U, region_size; | |
990 | unsigned long addr; | |
991 | char *endp; | |
992 | int region; | |
993 | int ret; | |
994 | ||
995 | region = cros_ec_decode_region(argc - 2, argv + 2); | |
996 | if (region == -1) | |
997 | return 1; | |
998 | if (argc < 4) | |
999 | return 1; | |
1000 | addr = simple_strtoul(argv[3], &endp, 16); | |
1001 | if (*argv[3] == 0 || *endp != 0) | |
1002 | return 1; | |
1003 | if (argc > 4) { | |
1004 | size = simple_strtoul(argv[4], &endp, 16); | |
1005 | if (*argv[4] == 0 || *endp != 0) | |
1006 | return 1; | |
1007 | } | |
1008 | ||
1009 | ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); | |
1010 | if (ret) { | |
1011 | debug("%s: Could not read region info\n", __func__); | |
1012 | return ret; | |
1013 | } | |
1014 | if (size == -1U) | |
1015 | size = region_size; | |
1016 | ||
1017 | ret = is_write ? | |
1018 | cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : | |
1019 | cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); | |
1020 | if (ret) { | |
1021 | debug("%s: Could not %s region\n", __func__, | |
1022 | is_write ? "write" : "read"); | |
1023 | return ret; | |
1024 | } | |
1025 | ||
1026 | return 0; | |
1027 | } | |
1028 | ||
1029 | static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) | |
1030 | { | |
1031 | struct cros_ec_dev *dev = last_dev; | |
1032 | const char *cmd; | |
1033 | int ret = 0; | |
1034 | ||
1035 | if (argc < 2) | |
1036 | return CMD_RET_USAGE; | |
1037 | ||
1038 | cmd = argv[1]; | |
1039 | if (0 == strcmp("init", cmd)) { | |
1040 | ret = cros_ec_init(gd->fdt_blob, &dev); | |
1041 | if (ret) { | |
1042 | printf("Could not init cros_ec device (err %d)\n", ret); | |
1043 | return 1; | |
1044 | } | |
1045 | return 0; | |
1046 | } | |
1047 | ||
1048 | /* Just use the last allocated device; there should be only one */ | |
1049 | if (!last_dev) { | |
1050 | printf("No CROS-EC device available\n"); | |
1051 | return 1; | |
1052 | } | |
1053 | if (0 == strcmp("id", cmd)) { | |
1054 | char id[MSG_BYTES]; | |
1055 | ||
1056 | if (cros_ec_read_id(dev, id, sizeof(id))) { | |
1057 | debug("%s: Could not read KBC ID\n", __func__); | |
1058 | return 1; | |
1059 | } | |
1060 | printf("%s\n", id); | |
1061 | } else if (0 == strcmp("info", cmd)) { | |
1062 | struct ec_response_cros_ec_info info; | |
1063 | ||
1064 | if (cros_ec_info(dev, &info)) { | |
1065 | debug("%s: Could not read KBC info\n", __func__); | |
1066 | return 1; | |
1067 | } | |
1068 | printf("rows = %u\n", info.rows); | |
1069 | printf("cols = %u\n", info.cols); | |
1070 | printf("switches = %#x\n", info.switches); | |
1071 | } else if (0 == strcmp("curimage", cmd)) { | |
1072 | enum ec_current_image image; | |
1073 | ||
1074 | if (cros_ec_read_current_image(dev, &image)) { | |
1075 | debug("%s: Could not read KBC image\n", __func__); | |
1076 | return 1; | |
1077 | } | |
1078 | printf("%d\n", image); | |
1079 | } else if (0 == strcmp("hash", cmd)) { | |
1080 | struct ec_response_vboot_hash hash; | |
1081 | int i; | |
1082 | ||
1083 | if (cros_ec_read_hash(dev, &hash)) { | |
1084 | debug("%s: Could not read KBC hash\n", __func__); | |
1085 | return 1; | |
1086 | } | |
1087 | ||
1088 | if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) | |
1089 | printf("type: SHA-256\n"); | |
1090 | else | |
1091 | printf("type: %d\n", hash.hash_type); | |
1092 | ||
1093 | printf("offset: 0x%08x\n", hash.offset); | |
1094 | printf("size: 0x%08x\n", hash.size); | |
1095 | ||
1096 | printf("digest: "); | |
1097 | for (i = 0; i < hash.digest_size; i++) | |
1098 | printf("%02x", hash.hash_digest[i]); | |
1099 | printf("\n"); | |
1100 | } else if (0 == strcmp("reboot", cmd)) { | |
1101 | int region; | |
1102 | enum ec_reboot_cmd cmd; | |
1103 | ||
1104 | if (argc >= 3 && !strcmp(argv[2], "cold")) | |
1105 | cmd = EC_REBOOT_COLD; | |
1106 | else { | |
1107 | region = cros_ec_decode_region(argc - 2, argv + 2); | |
1108 | if (region == EC_FLASH_REGION_RO) | |
1109 | cmd = EC_REBOOT_JUMP_RO; | |
1110 | else if (region == EC_FLASH_REGION_RW) | |
1111 | cmd = EC_REBOOT_JUMP_RW; | |
1112 | else | |
1113 | return CMD_RET_USAGE; | |
1114 | } | |
1115 | ||
1116 | if (cros_ec_reboot(dev, cmd, 0)) { | |
1117 | debug("%s: Could not reboot KBC\n", __func__); | |
1118 | return 1; | |
1119 | } | |
1120 | } else if (0 == strcmp("events", cmd)) { | |
1121 | uint32_t events; | |
1122 | ||
1123 | if (cros_ec_get_host_events(dev, &events)) { | |
1124 | debug("%s: Could not read host events\n", __func__); | |
1125 | return 1; | |
1126 | } | |
1127 | printf("0x%08x\n", events); | |
1128 | } else if (0 == strcmp("clrevents", cmd)) { | |
1129 | uint32_t events = 0x7fffffff; | |
1130 | ||
1131 | if (argc >= 3) | |
1132 | events = simple_strtol(argv[2], NULL, 0); | |
1133 | ||
1134 | if (cros_ec_clear_host_events(dev, events)) { | |
1135 | debug("%s: Could not clear host events\n", __func__); | |
1136 | return 1; | |
1137 | } | |
1138 | } else if (0 == strcmp("read", cmd)) { | |
1139 | ret = do_read_write(dev, 0, argc, argv); | |
1140 | if (ret > 0) | |
1141 | return CMD_RET_USAGE; | |
1142 | } else if (0 == strcmp("write", cmd)) { | |
1143 | ret = do_read_write(dev, 1, argc, argv); | |
1144 | if (ret > 0) | |
1145 | return CMD_RET_USAGE; | |
1146 | } else if (0 == strcmp("erase", cmd)) { | |
1147 | int region = cros_ec_decode_region(argc - 2, argv + 2); | |
1148 | uint32_t offset, size; | |
1149 | ||
1150 | if (region == -1) | |
1151 | return CMD_RET_USAGE; | |
1152 | if (cros_ec_flash_offset(dev, region, &offset, &size)) { | |
1153 | debug("%s: Could not read region info\n", __func__); | |
1154 | ret = -1; | |
1155 | } else { | |
1156 | ret = cros_ec_flash_erase(dev, offset, size); | |
1157 | if (ret) { | |
1158 | debug("%s: Could not erase region\n", | |
1159 | __func__); | |
1160 | } | |
1161 | } | |
1162 | } else if (0 == strcmp("regioninfo", cmd)) { | |
1163 | int region = cros_ec_decode_region(argc - 2, argv + 2); | |
1164 | uint32_t offset, size; | |
1165 | ||
1166 | if (region == -1) | |
1167 | return CMD_RET_USAGE; | |
1168 | ret = cros_ec_flash_offset(dev, region, &offset, &size); | |
1169 | if (ret) { | |
1170 | debug("%s: Could not read region info\n", __func__); | |
1171 | } else { | |
1172 | printf("Region: %s\n", region == EC_FLASH_REGION_RO ? | |
1173 | "RO" : "RW"); | |
1174 | printf("Offset: %x\n", offset); | |
1175 | printf("Size: %x\n", size); | |
1176 | } | |
1177 | } else if (0 == strcmp("vbnvcontext", cmd)) { | |
1178 | uint8_t block[EC_VBNV_BLOCK_SIZE]; | |
1179 | char buf[3]; | |
1180 | int i, len; | |
1181 | unsigned long result; | |
1182 | ||
1183 | if (argc <= 2) { | |
1184 | ret = cros_ec_read_vbnvcontext(dev, block); | |
1185 | if (!ret) { | |
1186 | printf("vbnv_block: "); | |
1187 | for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) | |
1188 | printf("%02x", block[i]); | |
1189 | putc('\n'); | |
1190 | } | |
1191 | } else { | |
1192 | /* | |
1193 | * TODO(clchiou): Move this to a utility function as | |
1194 | * cmd_spi might want to call it. | |
1195 | */ | |
1196 | memset(block, 0, EC_VBNV_BLOCK_SIZE); | |
1197 | len = strlen(argv[2]); | |
1198 | buf[2] = '\0'; | |
1199 | for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { | |
1200 | if (i * 2 >= len) | |
1201 | break; | |
1202 | buf[0] = argv[2][i * 2]; | |
1203 | if (i * 2 + 1 >= len) | |
1204 | buf[1] = '0'; | |
1205 | else | |
1206 | buf[1] = argv[2][i * 2 + 1]; | |
1207 | strict_strtoul(buf, 16, &result); | |
1208 | block[i] = result; | |
1209 | } | |
1210 | ret = cros_ec_write_vbnvcontext(dev, block); | |
1211 | } | |
1212 | if (ret) { | |
1213 | debug("%s: Could not %s VbNvContext\n", __func__, | |
1214 | argc <= 2 ? "read" : "write"); | |
1215 | } | |
1216 | } else if (0 == strcmp("test", cmd)) { | |
1217 | int result = cros_ec_test(dev); | |
1218 | ||
1219 | if (result) | |
1220 | printf("Test failed with error %d\n", result); | |
1221 | else | |
1222 | puts("Test passed\n"); | |
1223 | } else if (0 == strcmp("version", cmd)) { | |
1224 | struct ec_response_get_version *p; | |
1225 | char *build_string; | |
1226 | ||
1227 | ret = cros_ec_read_version(dev, &p); | |
1228 | if (!ret) { | |
1229 | /* Print versions */ | |
1230 | printf("RO version: %1.*s\n", | |
1231 | sizeof(p->version_string_ro), | |
1232 | p->version_string_ro); | |
1233 | printf("RW version: %1.*s\n", | |
1234 | sizeof(p->version_string_rw), | |
1235 | p->version_string_rw); | |
1236 | printf("Firmware copy: %s\n", | |
1237 | (p->current_image < | |
1238 | ARRAY_SIZE(ec_current_image_name) ? | |
1239 | ec_current_image_name[p->current_image] : | |
1240 | "?")); | |
1241 | ret = cros_ec_read_build_info(dev, &build_string); | |
1242 | if (!ret) | |
1243 | printf("Build info: %s\n", build_string); | |
1244 | } | |
1245 | } else if (0 == strcmp("ldo", cmd)) { | |
1246 | uint8_t index, state; | |
1247 | char *endp; | |
1248 | ||
1249 | if (argc < 3) | |
1250 | return CMD_RET_USAGE; | |
1251 | index = simple_strtoul(argv[2], &endp, 10); | |
1252 | if (*argv[2] == 0 || *endp != 0) | |
1253 | return CMD_RET_USAGE; | |
1254 | if (argc > 3) { | |
1255 | state = simple_strtoul(argv[3], &endp, 10); | |
1256 | if (*argv[3] == 0 || *endp != 0) | |
1257 | return CMD_RET_USAGE; | |
1258 | ret = cros_ec_set_ldo(dev, index, state); | |
1259 | } else { | |
1260 | ret = cros_ec_get_ldo(dev, index, &state); | |
1261 | if (!ret) { | |
1262 | printf("LDO%d: %s\n", index, | |
1263 | state == EC_LDO_STATE_ON ? | |
1264 | "on" : "off"); | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | if (ret) { | |
1269 | debug("%s: Could not access LDO%d\n", __func__, index); | |
1270 | return ret; | |
1271 | } | |
1272 | } else { | |
1273 | return CMD_RET_USAGE; | |
1274 | } | |
1275 | ||
1276 | if (ret < 0) { | |
1277 | printf("Error: CROS-EC command failed (error %d)\n", ret); | |
1278 | ret = 1; | |
1279 | } | |
1280 | ||
1281 | return ret; | |
1282 | } | |
1283 | ||
1284 | U_BOOT_CMD( | |
1285 | crosec, 5, 1, do_cros_ec, | |
1286 | "CROS-EC utility command", | |
1287 | "init Re-init CROS-EC (done on startup automatically)\n" | |
1288 | "crosec id Read CROS-EC ID\n" | |
1289 | "crosec info Read CROS-EC info\n" | |
1290 | "crosec curimage Read CROS-EC current image\n" | |
1291 | "crosec hash Read CROS-EC hash\n" | |
1292 | "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" | |
1293 | "crosec events Read CROS-EC host events\n" | |
1294 | "crosec clrevents [mask] Clear CROS-EC host events\n" | |
1295 | "crosec regioninfo <ro|rw> Read image info\n" | |
1296 | "crosec erase <ro|rw> Erase EC image\n" | |
1297 | "crosec read <ro|rw> <addr> [<size>] Read EC image\n" | |
1298 | "crosec write <ro|rw> <addr> [<size>] Write EC image\n" | |
1299 | "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" | |
1300 | "crosec ldo <idx> [<state>] Switch/Read LDO state\n" | |
1301 | "crosec test run tests on cros_ec\n" | |
1302 | "crosec version Read CROS-EC version" | |
1303 | ); | |
1304 | #endif |