]>
Commit | Line | Data |
---|---|---|
88364387 HT |
1 | /* |
2 | * Chromium OS cros_ec driver | |
3 | * | |
4 | * Copyright (c) 2012 The Chromium OS Authors. | |
88364387 | 5 | * |
1a459660 | 6 | * SPDX-License-Identifier: GPL-2.0+ |
88364387 HT |
7 | */ |
8 | ||
9 | /* | |
836bb6e8 SG |
10 | * This is the interface to the Chrome OS EC. It provides keyboard functions, |
11 | * power control and battery management. Quite a few other functions are | |
12 | * provided to enable the EC software to be updated, talk to the EC's I2C bus | |
13 | * and store a small amount of data in a memory which persists while the EC | |
14 | * is not reset. | |
88364387 HT |
15 | */ |
16 | ||
17 | #include <common.h> | |
18 | #include <command.h> | |
19 | #include <i2c.h> | |
20 | #include <cros_ec.h> | |
21 | #include <fdtdec.h> | |
22 | #include <malloc.h> | |
23 | #include <spi.h> | |
24 | #include <asm/io.h> | |
25 | #include <asm-generic/gpio.h> | |
26 | ||
27 | #ifdef DEBUG_TRACE | |
28 | #define debug_trace(fmt, b...) debug(fmt, #b) | |
29 | #else | |
30 | #define debug_trace(fmt, b...) | |
31 | #endif | |
32 | ||
33 | enum { | |
34 | /* Timeout waiting for a flash erase command to complete */ | |
35 | CROS_EC_CMD_TIMEOUT_MS = 5000, | |
36 | /* Timeout waiting for a synchronous hash to be recomputed */ | |
37 | CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, | |
38 | }; | |
39 | ||
40 | static struct cros_ec_dev static_dev, *last_dev; | |
41 | ||
42 | DECLARE_GLOBAL_DATA_PTR; | |
43 | ||
44 | /* Note: depends on enum ec_current_image */ | |
45 | static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; | |
46 | ||
47 | void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) | |
48 | { | |
49 | #ifdef DEBUG | |
50 | int i; | |
51 | ||
52 | printf("%s: ", name); | |
53 | if (cmd != -1) | |
54 | printf("cmd=%#x: ", cmd); | |
55 | for (i = 0; i < len; i++) | |
56 | printf("%02x ", data[i]); | |
57 | printf("\n"); | |
58 | #endif | |
59 | } | |
60 | ||
61 | /* | |
62 | * Calculate a simple 8-bit checksum of a data block | |
63 | * | |
64 | * @param data Data block to checksum | |
65 | * @param size Size of data block in bytes | |
66 | * @return checksum value (0 to 255) | |
67 | */ | |
68 | int cros_ec_calc_checksum(const uint8_t *data, int size) | |
69 | { | |
70 | int csum, i; | |
71 | ||
72 | for (i = csum = 0; i < size; i++) | |
73 | csum += data[i]; | |
74 | return csum & 0xff; | |
75 | } | |
76 | ||
77 | static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, | |
78 | const void *dout, int dout_len, | |
79 | uint8_t **dinp, int din_len) | |
80 | { | |
81 | int ret; | |
82 | ||
83 | switch (dev->interface) { | |
84 | #ifdef CONFIG_CROS_EC_SPI | |
85 | case CROS_EC_IF_SPI: | |
86 | ret = cros_ec_spi_command(dev, cmd, cmd_version, | |
87 | (const uint8_t *)dout, dout_len, | |
88 | dinp, din_len); | |
89 | break; | |
90 | #endif | |
91 | #ifdef CONFIG_CROS_EC_I2C | |
92 | case CROS_EC_IF_I2C: | |
93 | ret = cros_ec_i2c_command(dev, cmd, cmd_version, | |
94 | (const uint8_t *)dout, dout_len, | |
95 | dinp, din_len); | |
96 | break; | |
97 | #endif | |
98 | #ifdef CONFIG_CROS_EC_LPC | |
99 | case CROS_EC_IF_LPC: | |
100 | ret = cros_ec_lpc_command(dev, cmd, cmd_version, | |
101 | (const uint8_t *)dout, dout_len, | |
102 | dinp, din_len); | |
103 | break; | |
104 | #endif | |
105 | case CROS_EC_IF_NONE: | |
106 | default: | |
107 | ret = -1; | |
108 | } | |
109 | ||
110 | return ret; | |
111 | } | |
112 | ||
113 | /** | |
114 | * Send a command to the CROS-EC device and return the reply. | |
115 | * | |
116 | * The device's internal input/output buffers are used. | |
117 | * | |
118 | * @param dev CROS-EC device | |
119 | * @param cmd Command to send (EC_CMD_...) | |
120 | * @param cmd_version Version of command to send (EC_VER_...) | |
121 | * @param dout Output data (may be NULL If dout_len=0) | |
122 | * @param dout_len Size of output data in bytes | |
123 | * @param dinp Response data (may be NULL If din_len=0). | |
124 | * If not NULL, it will be updated to point to the data | |
125 | * and will always be double word aligned (64-bits) | |
126 | * @param din_len Maximum size of response in bytes | |
127 | * @return number of bytes in response, or -1 on error | |
128 | */ | |
129 | static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, | |
130 | int cmd_version, const void *dout, int dout_len, uint8_t **dinp, | |
131 | int din_len) | |
132 | { | |
133 | uint8_t *din; | |
134 | int len; | |
135 | ||
88364387 HT |
136 | len = send_command(dev, cmd, cmd_version, dout, dout_len, |
137 | &din, din_len); | |
138 | ||
139 | /* If the command doesn't complete, wait a while */ | |
140 | if (len == -EC_RES_IN_PROGRESS) { | |
141 | struct ec_response_get_comms_status *resp; | |
142 | ulong start; | |
143 | ||
144 | /* Wait for command to complete */ | |
145 | start = get_timer(0); | |
146 | do { | |
147 | int ret; | |
148 | ||
149 | mdelay(50); /* Insert some reasonable delay */ | |
150 | ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, | |
151 | NULL, 0, | |
152 | (uint8_t **)&resp, sizeof(*resp)); | |
153 | if (ret < 0) | |
154 | return ret; | |
155 | ||
156 | if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { | |
157 | debug("%s: Command %#02x timeout\n", | |
158 | __func__, cmd); | |
159 | return -EC_RES_TIMEOUT; | |
160 | } | |
161 | } while (resp->flags & EC_COMMS_STATUS_PROCESSING); | |
162 | ||
163 | /* OK it completed, so read the status response */ | |
164 | /* not sure why it was 0 for the last argument */ | |
165 | len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, | |
166 | NULL, 0, &din, din_len); | |
167 | } | |
168 | ||
169 | debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp); | |
170 | if (dinp) { | |
171 | /* If we have any data to return, it must be 64bit-aligned */ | |
172 | assert(len <= 0 || !((uintptr_t)din & 7)); | |
173 | *dinp = din; | |
174 | } | |
175 | ||
176 | return len; | |
177 | } | |
178 | ||
179 | /** | |
180 | * Send a command to the CROS-EC device and return the reply. | |
181 | * | |
182 | * The device's internal input/output buffers are used. | |
183 | * | |
184 | * @param dev CROS-EC device | |
185 | * @param cmd Command to send (EC_CMD_...) | |
186 | * @param cmd_version Version of command to send (EC_VER_...) | |
187 | * @param dout Output data (may be NULL If dout_len=0) | |
188 | * @param dout_len Size of output data in bytes | |
189 | * @param din Response data (may be NULL If din_len=0). | |
190 | * It not NULL, it is a place for ec_command() to copy the | |
191 | * data to. | |
192 | * @param din_len Maximum size of response in bytes | |
193 | * @return number of bytes in response, or -1 on error | |
194 | */ | |
195 | static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, | |
196 | const void *dout, int dout_len, | |
197 | void *din, int din_len) | |
198 | { | |
199 | uint8_t *in_buffer; | |
200 | int len; | |
201 | ||
202 | assert((din_len == 0) || din); | |
203 | len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, | |
204 | &in_buffer, din_len); | |
205 | if (len > 0) { | |
206 | /* | |
207 | * If we were asked to put it somewhere, do so, otherwise just | |
208 | * disregard the result. | |
209 | */ | |
210 | if (din && in_buffer) { | |
211 | assert(len <= din_len); | |
212 | memmove(din, in_buffer, len); | |
213 | } | |
214 | } | |
215 | return len; | |
216 | } | |
217 | ||
218 | int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) | |
219 | { | |
836bb6e8 | 220 | if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, |
88364387 HT |
221 | sizeof(scan->data)) < sizeof(scan->data)) |
222 | return -1; | |
223 | ||
224 | return 0; | |
225 | } | |
226 | ||
227 | int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) | |
228 | { | |
229 | struct ec_response_get_version *r; | |
230 | ||
231 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
232 | (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) | |
233 | return -1; | |
234 | ||
235 | if (maxlen > sizeof(r->version_string_ro)) | |
236 | maxlen = sizeof(r->version_string_ro); | |
237 | ||
238 | switch (r->current_image) { | |
239 | case EC_IMAGE_RO: | |
240 | memcpy(id, r->version_string_ro, maxlen); | |
241 | break; | |
242 | case EC_IMAGE_RW: | |
243 | memcpy(id, r->version_string_rw, maxlen); | |
244 | break; | |
245 | default: | |
246 | return -1; | |
247 | } | |
248 | ||
249 | id[maxlen - 1] = '\0'; | |
250 | return 0; | |
251 | } | |
252 | ||
253 | int cros_ec_read_version(struct cros_ec_dev *dev, | |
254 | struct ec_response_get_version **versionp) | |
255 | { | |
256 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
257 | (uint8_t **)versionp, sizeof(**versionp)) | |
258 | < sizeof(**versionp)) | |
259 | return -1; | |
260 | ||
261 | return 0; | |
262 | } | |
263 | ||
264 | int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) | |
265 | { | |
266 | if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, | |
836bb6e8 | 267 | (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) |
88364387 HT |
268 | return -1; |
269 | ||
270 | return 0; | |
271 | } | |
272 | ||
273 | int cros_ec_read_current_image(struct cros_ec_dev *dev, | |
274 | enum ec_current_image *image) | |
275 | { | |
276 | struct ec_response_get_version *r; | |
277 | ||
278 | if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, | |
279 | (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) | |
280 | return -1; | |
281 | ||
282 | *image = r->current_image; | |
283 | return 0; | |
284 | } | |
285 | ||
286 | static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, | |
287 | struct ec_response_vboot_hash *hash) | |
288 | { | |
289 | struct ec_params_vboot_hash p; | |
290 | ulong start; | |
291 | ||
292 | start = get_timer(0); | |
293 | while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { | |
294 | mdelay(50); /* Insert some reasonable delay */ | |
295 | ||
296 | p.cmd = EC_VBOOT_HASH_GET; | |
297 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
298 | hash, sizeof(*hash)) < 0) | |
299 | return -1; | |
300 | ||
301 | if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { | |
302 | debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); | |
303 | return -EC_RES_TIMEOUT; | |
304 | } | |
305 | } | |
306 | return 0; | |
307 | } | |
308 | ||
309 | ||
310 | int cros_ec_read_hash(struct cros_ec_dev *dev, | |
311 | struct ec_response_vboot_hash *hash) | |
312 | { | |
313 | struct ec_params_vboot_hash p; | |
314 | int rv; | |
315 | ||
316 | p.cmd = EC_VBOOT_HASH_GET; | |
317 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
318 | hash, sizeof(*hash)) < 0) | |
319 | return -1; | |
320 | ||
321 | /* If the EC is busy calculating the hash, fidget until it's done. */ | |
322 | rv = cros_ec_wait_on_hash_done(dev, hash); | |
323 | if (rv) | |
324 | return rv; | |
325 | ||
326 | /* If the hash is valid, we're done. Otherwise, we have to kick it off | |
327 | * again and wait for it to complete. Note that we explicitly assume | |
328 | * that hashing zero bytes is always wrong, even though that would | |
329 | * produce a valid hash value. */ | |
330 | if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) | |
331 | return 0; | |
332 | ||
333 | debug("%s: No valid hash (status=%d size=%d). Compute one...\n", | |
334 | __func__, hash->status, hash->size); | |
335 | ||
836bb6e8 | 336 | p.cmd = EC_VBOOT_HASH_START; |
88364387 HT |
337 | p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
338 | p.nonce_size = 0; | |
339 | p.offset = EC_VBOOT_HASH_OFFSET_RW; | |
340 | ||
341 | if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
342 | hash, sizeof(*hash)) < 0) | |
343 | return -1; | |
344 | ||
345 | rv = cros_ec_wait_on_hash_done(dev, hash); | |
346 | if (rv) | |
347 | return rv; | |
348 | ||
349 | debug("%s: hash done\n", __func__); | |
350 | ||
351 | return 0; | |
352 | } | |
353 | ||
354 | static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) | |
355 | { | |
356 | struct ec_params_vboot_hash p; | |
357 | struct ec_response_vboot_hash *hash; | |
358 | ||
359 | /* We don't have an explict command for the EC to discard its current | |
360 | * hash value, so we'll just tell it to calculate one that we know is | |
361 | * wrong (we claim that hashing zero bytes is always invalid). | |
362 | */ | |
363 | p.cmd = EC_VBOOT_HASH_RECALC; | |
364 | p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; | |
365 | p.nonce_size = 0; | |
366 | p.offset = 0; | |
367 | p.size = 0; | |
368 | ||
369 | debug("%s:\n", __func__); | |
370 | ||
371 | if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), | |
372 | (uint8_t **)&hash, sizeof(*hash)) < 0) | |
373 | return -1; | |
374 | ||
375 | /* No need to wait for it to finish */ | |
376 | return 0; | |
377 | } | |
378 | ||
379 | int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, | |
380 | uint8_t flags) | |
381 | { | |
382 | struct ec_params_reboot_ec p; | |
383 | ||
384 | p.cmd = cmd; | |
385 | p.flags = flags; | |
386 | ||
387 | if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) | |
388 | < 0) | |
389 | return -1; | |
390 | ||
391 | if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { | |
392 | /* | |
393 | * EC reboot will take place immediately so delay to allow it | |
394 | * to complete. Note that some reboot types (EC_REBOOT_COLD) | |
395 | * will reboot the AP as well, in which case we won't actually | |
396 | * get to this point. | |
397 | */ | |
398 | /* | |
399 | * TODO([email protected]): Would be nice if we had a | |
400 | * better way to determine when the reboot is complete. Could | |
401 | * we poll a memory-mapped LPC value? | |
402 | */ | |
403 | udelay(50000); | |
404 | } | |
405 | ||
406 | return 0; | |
407 | } | |
408 | ||
409 | int cros_ec_interrupt_pending(struct cros_ec_dev *dev) | |
410 | { | |
411 | /* no interrupt support : always poll */ | |
412 | if (!fdt_gpio_isvalid(&dev->ec_int)) | |
413 | return 1; | |
414 | ||
415 | return !gpio_get_value(dev->ec_int.gpio); | |
416 | } | |
417 | ||
836bb6e8 | 418 | int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) |
88364387 | 419 | { |
836bb6e8 SG |
420 | if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, |
421 | sizeof(*info)) < sizeof(*info)) | |
88364387 HT |
422 | return -1; |
423 | ||
424 | return 0; | |
425 | } | |
426 | ||
427 | int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) | |
428 | { | |
429 | struct ec_response_host_event_mask *resp; | |
430 | ||
431 | /* | |
432 | * Use the B copy of the event flags, because the main copy is already | |
433 | * used by ACPI/SMI. | |
434 | */ | |
435 | if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, | |
436 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) | |
437 | return -1; | |
438 | ||
439 | if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) | |
440 | return -1; | |
441 | ||
442 | *events_ptr = resp->mask; | |
443 | return 0; | |
444 | } | |
445 | ||
446 | int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) | |
447 | { | |
448 | struct ec_params_host_event_mask params; | |
449 | ||
450 | params.mask = events; | |
451 | ||
452 | /* | |
453 | * Use the B copy of the event flags, so it affects the data returned | |
454 | * by cros_ec_get_host_events(). | |
455 | */ | |
456 | if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, | |
457 | ¶ms, sizeof(params), NULL, 0) < 0) | |
458 | return -1; | |
459 | ||
460 | return 0; | |
461 | } | |
462 | ||
463 | int cros_ec_flash_protect(struct cros_ec_dev *dev, | |
464 | uint32_t set_mask, uint32_t set_flags, | |
465 | struct ec_response_flash_protect *resp) | |
466 | { | |
467 | struct ec_params_flash_protect params; | |
468 | ||
469 | params.mask = set_mask; | |
470 | params.flags = set_flags; | |
471 | ||
472 | if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, | |
473 | ¶ms, sizeof(params), | |
474 | resp, sizeof(*resp)) < sizeof(*resp)) | |
475 | return -1; | |
476 | ||
477 | return 0; | |
478 | } | |
479 | ||
480 | static int cros_ec_check_version(struct cros_ec_dev *dev) | |
481 | { | |
482 | struct ec_params_hello req; | |
483 | struct ec_response_hello *resp; | |
484 | ||
485 | #ifdef CONFIG_CROS_EC_LPC | |
486 | /* LPC has its own way of doing this */ | |
487 | if (dev->interface == CROS_EC_IF_LPC) | |
488 | return cros_ec_lpc_check_version(dev); | |
489 | #endif | |
490 | ||
491 | /* | |
492 | * TODO([email protected]). | |
493 | * There is a strange oddity here with the EC. We could just ignore | |
494 | * the response, i.e. pass the last two parameters as NULL and 0. | |
495 | * In this case we won't read back very many bytes from the EC. | |
496 | * On the I2C bus the EC gets upset about this and will try to send | |
497 | * the bytes anyway. This means that we will have to wait for that | |
498 | * to complete before continuing with a new EC command. | |
499 | * | |
500 | * This problem is probably unique to the I2C bus. | |
501 | * | |
502 | * So for now, just read all the data anyway. | |
503 | */ | |
504 | dev->cmd_version_is_supported = 1; | |
505 | if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), | |
506 | (uint8_t **)&resp, sizeof(*resp)) > 0) { | |
507 | /* It appears to understand new version commands */ | |
508 | dev->cmd_version_is_supported = 1; | |
509 | } else { | |
4ff9b461 VB |
510 | printf("%s: ERROR: old EC interface not supported\n", |
511 | __func__); | |
512 | return -1; | |
88364387 HT |
513 | } |
514 | ||
515 | return 0; | |
516 | } | |
517 | ||
518 | int cros_ec_test(struct cros_ec_dev *dev) | |
519 | { | |
520 | struct ec_params_hello req; | |
521 | struct ec_response_hello *resp; | |
522 | ||
523 | req.in_data = 0x12345678; | |
524 | if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), | |
525 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { | |
526 | printf("ec_command_inptr() returned error\n"); | |
527 | return -1; | |
528 | } | |
529 | if (resp->out_data != req.in_data + 0x01020304) { | |
530 | printf("Received invalid handshake %x\n", resp->out_data); | |
531 | return -1; | |
532 | } | |
533 | ||
534 | return 0; | |
535 | } | |
536 | ||
537 | int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, | |
538 | uint32_t *offset, uint32_t *size) | |
539 | { | |
540 | struct ec_params_flash_region_info p; | |
541 | struct ec_response_flash_region_info *r; | |
542 | int ret; | |
543 | ||
544 | p.region = region; | |
545 | ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, | |
546 | EC_VER_FLASH_REGION_INFO, | |
547 | &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); | |
548 | if (ret != sizeof(*r)) | |
549 | return -1; | |
550 | ||
551 | if (offset) | |
552 | *offset = r->offset; | |
553 | if (size) | |
554 | *size = r->size; | |
555 | ||
556 | return 0; | |
557 | } | |
558 | ||
559 | int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) | |
560 | { | |
561 | struct ec_params_flash_erase p; | |
562 | ||
563 | p.offset = offset; | |
564 | p.size = size; | |
565 | return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), | |
566 | NULL, 0); | |
567 | } | |
568 | ||
569 | /** | |
570 | * Write a single block to the flash | |
571 | * | |
572 | * Write a block of data to the EC flash. The size must not exceed the flash | |
573 | * write block size which you can obtain from cros_ec_flash_write_burst_size(). | |
574 | * | |
575 | * The offset starts at 0. You can obtain the region information from | |
576 | * cros_ec_flash_offset() to find out where to write for a particular region. | |
577 | * | |
578 | * Attempting to write to the region where the EC is currently running from | |
579 | * will result in an error. | |
580 | * | |
581 | * @param dev CROS-EC device | |
582 | * @param data Pointer to data buffer to write | |
583 | * @param offset Offset within flash to write to. | |
584 | * @param size Number of bytes to write | |
585 | * @return 0 if ok, -1 on error | |
586 | */ | |
587 | static int cros_ec_flash_write_block(struct cros_ec_dev *dev, | |
588 | const uint8_t *data, uint32_t offset, uint32_t size) | |
589 | { | |
590 | struct ec_params_flash_write p; | |
591 | ||
592 | p.offset = offset; | |
593 | p.size = size; | |
836bb6e8 SG |
594 | assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); |
595 | memcpy(&p + 1, data, p.size); | |
88364387 HT |
596 | |
597 | return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, | |
598 | &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; | |
599 | } | |
600 | ||
601 | /** | |
602 | * Return optimal flash write burst size | |
603 | */ | |
604 | static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) | |
605 | { | |
836bb6e8 | 606 | return EC_FLASH_WRITE_VER0_SIZE; |
88364387 HT |
607 | } |
608 | ||
609 | /** | |
610 | * Check if a block of data is erased (all 0xff) | |
611 | * | |
612 | * This function is useful when dealing with flash, for checking whether a | |
613 | * data block is erased and thus does not need to be programmed. | |
614 | * | |
615 | * @param data Pointer to data to check (must be word-aligned) | |
616 | * @param size Number of bytes to check (must be word-aligned) | |
617 | * @return 0 if erased, non-zero if any word is not erased | |
618 | */ | |
619 | static int cros_ec_data_is_erased(const uint32_t *data, int size) | |
620 | { | |
621 | assert(!(size & 3)); | |
622 | size /= sizeof(uint32_t); | |
623 | for (; size > 0; size -= 4, data++) | |
624 | if (*data != -1U) | |
625 | return 0; | |
626 | ||
627 | return 1; | |
628 | } | |
629 | ||
630 | int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, | |
631 | uint32_t offset, uint32_t size) | |
632 | { | |
633 | uint32_t burst = cros_ec_flash_write_burst_size(dev); | |
634 | uint32_t end, off; | |
635 | int ret; | |
636 | ||
637 | /* | |
638 | * TODO: round up to the nearest multiple of write size. Can get away | |
639 | * without that on link right now because its write size is 4 bytes. | |
640 | */ | |
641 | end = offset + size; | |
642 | for (off = offset; off < end; off += burst, data += burst) { | |
643 | uint32_t todo; | |
644 | ||
645 | /* If the data is empty, there is no point in programming it */ | |
646 | todo = min(end - off, burst); | |
647 | if (dev->optimise_flash_write && | |
648 | cros_ec_data_is_erased((uint32_t *)data, todo)) | |
649 | continue; | |
650 | ||
651 | ret = cros_ec_flash_write_block(dev, data, off, todo); | |
652 | if (ret) | |
653 | return ret; | |
654 | } | |
655 | ||
656 | return 0; | |
657 | } | |
658 | ||
659 | /** | |
660 | * Read a single block from the flash | |
661 | * | |
662 | * Read a block of data from the EC flash. The size must not exceed the flash | |
663 | * write block size which you can obtain from cros_ec_flash_write_burst_size(). | |
664 | * | |
665 | * The offset starts at 0. You can obtain the region information from | |
666 | * cros_ec_flash_offset() to find out where to read for a particular region. | |
667 | * | |
668 | * @param dev CROS-EC device | |
669 | * @param data Pointer to data buffer to read into | |
670 | * @param offset Offset within flash to read from | |
671 | * @param size Number of bytes to read | |
672 | * @return 0 if ok, -1 on error | |
673 | */ | |
674 | static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, | |
675 | uint32_t offset, uint32_t size) | |
676 | { | |
677 | struct ec_params_flash_read p; | |
678 | ||
679 | p.offset = offset; | |
680 | p.size = size; | |
681 | ||
682 | return ec_command(dev, EC_CMD_FLASH_READ, 0, | |
683 | &p, sizeof(p), data, size) >= 0 ? 0 : -1; | |
684 | } | |
685 | ||
686 | int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, | |
687 | uint32_t size) | |
688 | { | |
689 | uint32_t burst = cros_ec_flash_write_burst_size(dev); | |
690 | uint32_t end, off; | |
691 | int ret; | |
692 | ||
693 | end = offset + size; | |
694 | for (off = offset; off < end; off += burst, data += burst) { | |
695 | ret = cros_ec_flash_read_block(dev, data, off, | |
696 | min(end - off, burst)); | |
697 | if (ret) | |
698 | return ret; | |
699 | } | |
700 | ||
701 | return 0; | |
702 | } | |
703 | ||
704 | int cros_ec_flash_update_rw(struct cros_ec_dev *dev, | |
705 | const uint8_t *image, int image_size) | |
706 | { | |
707 | uint32_t rw_offset, rw_size; | |
708 | int ret; | |
709 | ||
710 | if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) | |
711 | return -1; | |
712 | if (image_size > rw_size) | |
713 | return -1; | |
714 | ||
715 | /* Invalidate the existing hash, just in case the AP reboots | |
716 | * unexpectedly during the update. If that happened, the EC RW firmware | |
717 | * would be invalid, but the EC would still have the original hash. | |
718 | */ | |
719 | ret = cros_ec_invalidate_hash(dev); | |
720 | if (ret) | |
721 | return ret; | |
722 | ||
723 | /* | |
724 | * Erase the entire RW section, so that the EC doesn't see any garbage | |
725 | * past the new image if it's smaller than the current image. | |
726 | * | |
727 | * TODO: could optimize this to erase just the current image, since | |
728 | * presumably everything past that is 0xff's. But would still need to | |
729 | * round up to the nearest multiple of erase size. | |
730 | */ | |
731 | ret = cros_ec_flash_erase(dev, rw_offset, rw_size); | |
732 | if (ret) | |
733 | return ret; | |
734 | ||
735 | /* Write the image */ | |
736 | ret = cros_ec_flash_write(dev, image, rw_offset, image_size); | |
737 | if (ret) | |
738 | return ret; | |
739 | ||
740 | return 0; | |
741 | } | |
742 | ||
743 | int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) | |
744 | { | |
745 | struct ec_params_vbnvcontext p; | |
746 | int len; | |
747 | ||
748 | p.op = EC_VBNV_CONTEXT_OP_READ; | |
749 | ||
750 | len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, | |
751 | &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); | |
752 | if (len < EC_VBNV_BLOCK_SIZE) | |
753 | return -1; | |
754 | ||
755 | return 0; | |
756 | } | |
757 | ||
758 | int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) | |
759 | { | |
760 | struct ec_params_vbnvcontext p; | |
761 | int len; | |
762 | ||
763 | p.op = EC_VBNV_CONTEXT_OP_WRITE; | |
764 | memcpy(p.block, block, sizeof(p.block)); | |
765 | ||
766 | len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, | |
767 | &p, sizeof(p), NULL, 0); | |
768 | if (len < 0) | |
769 | return -1; | |
770 | ||
771 | return 0; | |
772 | } | |
773 | ||
774 | int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) | |
775 | { | |
776 | struct ec_params_ldo_set params; | |
777 | ||
778 | params.index = index; | |
779 | params.state = state; | |
780 | ||
781 | if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, | |
782 | ¶ms, sizeof(params), | |
783 | NULL, 0)) | |
784 | return -1; | |
785 | ||
786 | return 0; | |
787 | } | |
788 | ||
789 | int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) | |
790 | { | |
791 | struct ec_params_ldo_get params; | |
792 | struct ec_response_ldo_get *resp; | |
793 | ||
794 | params.index = index; | |
795 | ||
796 | if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, | |
797 | ¶ms, sizeof(params), | |
798 | (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) | |
799 | return -1; | |
800 | ||
801 | *state = resp->state; | |
802 | ||
803 | return 0; | |
804 | } | |
805 | ||
806 | /** | |
836bb6e8 SG |
807 | * Decode EC interface details from the device tree and allocate a suitable |
808 | * device. | |
88364387 HT |
809 | * |
810 | * @param blob Device tree blob | |
811 | * @param node Node to decode from | |
812 | * @param devp Returns a pointer to the new allocated device | |
813 | * @return 0 if ok, -1 on error | |
814 | */ | |
815 | static int cros_ec_decode_fdt(const void *blob, int node, | |
816 | struct cros_ec_dev **devp) | |
817 | { | |
818 | enum fdt_compat_id compat; | |
819 | struct cros_ec_dev *dev; | |
820 | int parent; | |
821 | ||
822 | /* See what type of parent we are inside (this is expensive) */ | |
823 | parent = fdt_parent_offset(blob, node); | |
824 | if (parent < 0) { | |
825 | debug("%s: Cannot find node parent\n", __func__); | |
826 | return -1; | |
827 | } | |
828 | ||
829 | dev = &static_dev; | |
830 | dev->node = node; | |
831 | dev->parent_node = parent; | |
832 | ||
833 | compat = fdtdec_lookup(blob, parent); | |
834 | switch (compat) { | |
835 | #ifdef CONFIG_CROS_EC_SPI | |
836 | case COMPAT_SAMSUNG_EXYNOS_SPI: | |
837 | dev->interface = CROS_EC_IF_SPI; | |
838 | if (cros_ec_spi_decode_fdt(dev, blob)) | |
839 | return -1; | |
840 | break; | |
841 | #endif | |
842 | #ifdef CONFIG_CROS_EC_I2C | |
843 | case COMPAT_SAMSUNG_S3C2440_I2C: | |
844 | dev->interface = CROS_EC_IF_I2C; | |
845 | if (cros_ec_i2c_decode_fdt(dev, blob)) | |
846 | return -1; | |
847 | break; | |
848 | #endif | |
849 | #ifdef CONFIG_CROS_EC_LPC | |
850 | case COMPAT_INTEL_LPC: | |
851 | dev->interface = CROS_EC_IF_LPC; | |
852 | break; | |
853 | #endif | |
854 | default: | |
855 | debug("%s: Unknown compat id %d\n", __func__, compat); | |
856 | return -1; | |
857 | } | |
858 | ||
859 | fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); | |
860 | dev->optimise_flash_write = fdtdec_get_bool(blob, node, | |
861 | "optimise-flash-write"); | |
862 | *devp = dev; | |
863 | ||
864 | return 0; | |
865 | } | |
866 | ||
867 | int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) | |
868 | { | |
869 | char id[MSG_BYTES]; | |
870 | struct cros_ec_dev *dev; | |
871 | int node = 0; | |
872 | ||
873 | *cros_ecp = NULL; | |
874 | do { | |
875 | node = fdtdec_next_compatible(blob, node, | |
876 | COMPAT_GOOGLE_CROS_EC); | |
877 | if (node < 0) { | |
878 | debug("%s: Node not found\n", __func__); | |
879 | return 0; | |
880 | } | |
881 | } while (!fdtdec_get_is_enabled(blob, node)); | |
882 | ||
883 | if (cros_ec_decode_fdt(blob, node, &dev)) { | |
884 | debug("%s: Failed to decode device.\n", __func__); | |
885 | return -CROS_EC_ERR_FDT_DECODE; | |
886 | } | |
887 | ||
888 | switch (dev->interface) { | |
889 | #ifdef CONFIG_CROS_EC_SPI | |
890 | case CROS_EC_IF_SPI: | |
891 | if (cros_ec_spi_init(dev, blob)) { | |
892 | debug("%s: Could not setup SPI interface\n", __func__); | |
893 | return -CROS_EC_ERR_DEV_INIT; | |
894 | } | |
895 | break; | |
896 | #endif | |
897 | #ifdef CONFIG_CROS_EC_I2C | |
898 | case CROS_EC_IF_I2C: | |
899 | if (cros_ec_i2c_init(dev, blob)) | |
900 | return -CROS_EC_ERR_DEV_INIT; | |
901 | break; | |
902 | #endif | |
903 | #ifdef CONFIG_CROS_EC_LPC | |
904 | case CROS_EC_IF_LPC: | |
905 | if (cros_ec_lpc_init(dev, blob)) | |
906 | return -CROS_EC_ERR_DEV_INIT; | |
907 | break; | |
908 | #endif | |
909 | case CROS_EC_IF_NONE: | |
910 | default: | |
911 | return 0; | |
912 | } | |
913 | ||
914 | /* we will poll the EC interrupt line */ | |
915 | fdtdec_setup_gpio(&dev->ec_int); | |
916 | if (fdt_gpio_isvalid(&dev->ec_int)) | |
917 | gpio_direction_input(dev->ec_int.gpio); | |
918 | ||
919 | if (cros_ec_check_version(dev)) { | |
920 | debug("%s: Could not detect CROS-EC version\n", __func__); | |
921 | return -CROS_EC_ERR_CHECK_VERSION; | |
922 | } | |
923 | ||
924 | if (cros_ec_read_id(dev, id, sizeof(id))) { | |
925 | debug("%s: Could not read KBC ID\n", __func__); | |
926 | return -CROS_EC_ERR_READ_ID; | |
927 | } | |
928 | ||
929 | /* Remember this device for use by the cros_ec command */ | |
930 | last_dev = *cros_ecp = dev; | |
931 | debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); | |
932 | ||
933 | return 0; | |
934 | } | |
935 | ||
88364387 HT |
936 | int cros_ec_decode_region(int argc, char * const argv[]) |
937 | { | |
938 | if (argc > 0) { | |
939 | if (0 == strcmp(*argv, "rw")) | |
940 | return EC_FLASH_REGION_RW; | |
941 | else if (0 == strcmp(*argv, "ro")) | |
942 | return EC_FLASH_REGION_RO; | |
943 | ||
944 | debug("%s: Invalid region '%s'\n", __func__, *argv); | |
945 | } else { | |
946 | debug("%s: Missing region parameter\n", __func__); | |
947 | } | |
948 | ||
949 | return -1; | |
950 | } | |
951 | ||
d7f25f35 SG |
952 | int cros_ec_decode_ec_flash(const void *blob, struct fdt_cros_ec *config) |
953 | { | |
954 | int flash_node, node; | |
955 | ||
956 | node = fdtdec_next_compatible(blob, 0, COMPAT_GOOGLE_CROS_EC); | |
957 | if (node < 0) { | |
958 | debug("Failed to find chrome-ec node'\n"); | |
959 | return -1; | |
960 | } | |
961 | ||
962 | flash_node = fdt_subnode_offset(blob, node, "flash"); | |
963 | if (flash_node < 0) { | |
964 | debug("Failed to find flash node\n"); | |
965 | return -1; | |
966 | } | |
967 | ||
968 | if (fdtdec_read_fmap_entry(blob, flash_node, "flash", | |
969 | &config->flash)) { | |
970 | debug("Failed to decode flash node in chrome-ec'\n"); | |
971 | return -1; | |
972 | } | |
973 | ||
974 | config->flash_erase_value = fdtdec_get_int(blob, flash_node, | |
975 | "erase-value", -1); | |
976 | for (node = fdt_first_subnode(blob, flash_node); node >= 0; | |
977 | node = fdt_next_subnode(blob, node)) { | |
978 | const char *name = fdt_get_name(blob, node, NULL); | |
979 | enum ec_flash_region region; | |
980 | ||
981 | if (0 == strcmp(name, "ro")) { | |
982 | region = EC_FLASH_REGION_RO; | |
983 | } else if (0 == strcmp(name, "rw")) { | |
984 | region = EC_FLASH_REGION_RW; | |
985 | } else if (0 == strcmp(name, "wp-ro")) { | |
986 | region = EC_FLASH_REGION_WP_RO; | |
987 | } else { | |
988 | debug("Unknown EC flash region name '%s'\n", name); | |
989 | return -1; | |
990 | } | |
991 | ||
992 | if (fdtdec_read_fmap_entry(blob, node, "reg", | |
993 | &config->region[region])) { | |
994 | debug("Failed to decode flash region in chrome-ec'\n"); | |
995 | return -1; | |
996 | } | |
997 | } | |
998 | ||
999 | return 0; | |
1000 | } | |
1001 | ||
1c266b92 SG |
1002 | #ifdef CONFIG_CMD_CROS_EC |
1003 | ||
88364387 HT |
1004 | /** |
1005 | * Perform a flash read or write command | |
1006 | * | |
1007 | * @param dev CROS-EC device to read/write | |
1008 | * @param is_write 1 do to a write, 0 to do a read | |
1009 | * @param argc Number of arguments | |
1010 | * @param argv Arguments (2 is region, 3 is address) | |
1011 | * @return 0 for ok, 1 for a usage error or -ve for ec command error | |
1012 | * (negative EC_RES_...) | |
1013 | */ | |
1014 | static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, | |
1015 | char * const argv[]) | |
1016 | { | |
1017 | uint32_t offset, size = -1U, region_size; | |
1018 | unsigned long addr; | |
1019 | char *endp; | |
1020 | int region; | |
1021 | int ret; | |
1022 | ||
1023 | region = cros_ec_decode_region(argc - 2, argv + 2); | |
1024 | if (region == -1) | |
1025 | return 1; | |
1026 | if (argc < 4) | |
1027 | return 1; | |
1028 | addr = simple_strtoul(argv[3], &endp, 16); | |
1029 | if (*argv[3] == 0 || *endp != 0) | |
1030 | return 1; | |
1031 | if (argc > 4) { | |
1032 | size = simple_strtoul(argv[4], &endp, 16); | |
1033 | if (*argv[4] == 0 || *endp != 0) | |
1034 | return 1; | |
1035 | } | |
1036 | ||
1037 | ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); | |
1038 | if (ret) { | |
1039 | debug("%s: Could not read region info\n", __func__); | |
1040 | return ret; | |
1041 | } | |
1042 | if (size == -1U) | |
1043 | size = region_size; | |
1044 | ||
1045 | ret = is_write ? | |
1046 | cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : | |
1047 | cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); | |
1048 | if (ret) { | |
1049 | debug("%s: Could not %s region\n", __func__, | |
1050 | is_write ? "write" : "read"); | |
1051 | return ret; | |
1052 | } | |
1053 | ||
1054 | return 0; | |
1055 | } | |
1056 | ||
1057 | static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) | |
1058 | { | |
1059 | struct cros_ec_dev *dev = last_dev; | |
1060 | const char *cmd; | |
1061 | int ret = 0; | |
1062 | ||
1063 | if (argc < 2) | |
1064 | return CMD_RET_USAGE; | |
1065 | ||
1066 | cmd = argv[1]; | |
1067 | if (0 == strcmp("init", cmd)) { | |
1068 | ret = cros_ec_init(gd->fdt_blob, &dev); | |
1069 | if (ret) { | |
1070 | printf("Could not init cros_ec device (err %d)\n", ret); | |
1071 | return 1; | |
1072 | } | |
1073 | return 0; | |
1074 | } | |
1075 | ||
1076 | /* Just use the last allocated device; there should be only one */ | |
1077 | if (!last_dev) { | |
1078 | printf("No CROS-EC device available\n"); | |
1079 | return 1; | |
1080 | } | |
1081 | if (0 == strcmp("id", cmd)) { | |
1082 | char id[MSG_BYTES]; | |
1083 | ||
1084 | if (cros_ec_read_id(dev, id, sizeof(id))) { | |
1085 | debug("%s: Could not read KBC ID\n", __func__); | |
1086 | return 1; | |
1087 | } | |
1088 | printf("%s\n", id); | |
1089 | } else if (0 == strcmp("info", cmd)) { | |
836bb6e8 | 1090 | struct ec_response_mkbp_info info; |
88364387 HT |
1091 | |
1092 | if (cros_ec_info(dev, &info)) { | |
1093 | debug("%s: Could not read KBC info\n", __func__); | |
1094 | return 1; | |
1095 | } | |
1096 | printf("rows = %u\n", info.rows); | |
1097 | printf("cols = %u\n", info.cols); | |
1098 | printf("switches = %#x\n", info.switches); | |
1099 | } else if (0 == strcmp("curimage", cmd)) { | |
1100 | enum ec_current_image image; | |
1101 | ||
1102 | if (cros_ec_read_current_image(dev, &image)) { | |
1103 | debug("%s: Could not read KBC image\n", __func__); | |
1104 | return 1; | |
1105 | } | |
1106 | printf("%d\n", image); | |
1107 | } else if (0 == strcmp("hash", cmd)) { | |
1108 | struct ec_response_vboot_hash hash; | |
1109 | int i; | |
1110 | ||
1111 | if (cros_ec_read_hash(dev, &hash)) { | |
1112 | debug("%s: Could not read KBC hash\n", __func__); | |
1113 | return 1; | |
1114 | } | |
1115 | ||
1116 | if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) | |
1117 | printf("type: SHA-256\n"); | |
1118 | else | |
1119 | printf("type: %d\n", hash.hash_type); | |
1120 | ||
1121 | printf("offset: 0x%08x\n", hash.offset); | |
1122 | printf("size: 0x%08x\n", hash.size); | |
1123 | ||
1124 | printf("digest: "); | |
1125 | for (i = 0; i < hash.digest_size; i++) | |
1126 | printf("%02x", hash.hash_digest[i]); | |
1127 | printf("\n"); | |
1128 | } else if (0 == strcmp("reboot", cmd)) { | |
1129 | int region; | |
1130 | enum ec_reboot_cmd cmd; | |
1131 | ||
1132 | if (argc >= 3 && !strcmp(argv[2], "cold")) | |
1133 | cmd = EC_REBOOT_COLD; | |
1134 | else { | |
1135 | region = cros_ec_decode_region(argc - 2, argv + 2); | |
1136 | if (region == EC_FLASH_REGION_RO) | |
1137 | cmd = EC_REBOOT_JUMP_RO; | |
1138 | else if (region == EC_FLASH_REGION_RW) | |
1139 | cmd = EC_REBOOT_JUMP_RW; | |
1140 | else | |
1141 | return CMD_RET_USAGE; | |
1142 | } | |
1143 | ||
1144 | if (cros_ec_reboot(dev, cmd, 0)) { | |
1145 | debug("%s: Could not reboot KBC\n", __func__); | |
1146 | return 1; | |
1147 | } | |
1148 | } else if (0 == strcmp("events", cmd)) { | |
1149 | uint32_t events; | |
1150 | ||
1151 | if (cros_ec_get_host_events(dev, &events)) { | |
1152 | debug("%s: Could not read host events\n", __func__); | |
1153 | return 1; | |
1154 | } | |
1155 | printf("0x%08x\n", events); | |
1156 | } else if (0 == strcmp("clrevents", cmd)) { | |
1157 | uint32_t events = 0x7fffffff; | |
1158 | ||
1159 | if (argc >= 3) | |
1160 | events = simple_strtol(argv[2], NULL, 0); | |
1161 | ||
1162 | if (cros_ec_clear_host_events(dev, events)) { | |
1163 | debug("%s: Could not clear host events\n", __func__); | |
1164 | return 1; | |
1165 | } | |
1166 | } else if (0 == strcmp("read", cmd)) { | |
1167 | ret = do_read_write(dev, 0, argc, argv); | |
1168 | if (ret > 0) | |
1169 | return CMD_RET_USAGE; | |
1170 | } else if (0 == strcmp("write", cmd)) { | |
1171 | ret = do_read_write(dev, 1, argc, argv); | |
1172 | if (ret > 0) | |
1173 | return CMD_RET_USAGE; | |
1174 | } else if (0 == strcmp("erase", cmd)) { | |
1175 | int region = cros_ec_decode_region(argc - 2, argv + 2); | |
1176 | uint32_t offset, size; | |
1177 | ||
1178 | if (region == -1) | |
1179 | return CMD_RET_USAGE; | |
1180 | if (cros_ec_flash_offset(dev, region, &offset, &size)) { | |
1181 | debug("%s: Could not read region info\n", __func__); | |
1182 | ret = -1; | |
1183 | } else { | |
1184 | ret = cros_ec_flash_erase(dev, offset, size); | |
1185 | if (ret) { | |
1186 | debug("%s: Could not erase region\n", | |
1187 | __func__); | |
1188 | } | |
1189 | } | |
1190 | } else if (0 == strcmp("regioninfo", cmd)) { | |
1191 | int region = cros_ec_decode_region(argc - 2, argv + 2); | |
1192 | uint32_t offset, size; | |
1193 | ||
1194 | if (region == -1) | |
1195 | return CMD_RET_USAGE; | |
1196 | ret = cros_ec_flash_offset(dev, region, &offset, &size); | |
1197 | if (ret) { | |
1198 | debug("%s: Could not read region info\n", __func__); | |
1199 | } else { | |
1200 | printf("Region: %s\n", region == EC_FLASH_REGION_RO ? | |
1201 | "RO" : "RW"); | |
1202 | printf("Offset: %x\n", offset); | |
1203 | printf("Size: %x\n", size); | |
1204 | } | |
1205 | } else if (0 == strcmp("vbnvcontext", cmd)) { | |
1206 | uint8_t block[EC_VBNV_BLOCK_SIZE]; | |
1207 | char buf[3]; | |
1208 | int i, len; | |
1209 | unsigned long result; | |
1210 | ||
1211 | if (argc <= 2) { | |
1212 | ret = cros_ec_read_vbnvcontext(dev, block); | |
1213 | if (!ret) { | |
1214 | printf("vbnv_block: "); | |
1215 | for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) | |
1216 | printf("%02x", block[i]); | |
1217 | putc('\n'); | |
1218 | } | |
1219 | } else { | |
1220 | /* | |
1221 | * TODO(clchiou): Move this to a utility function as | |
1222 | * cmd_spi might want to call it. | |
1223 | */ | |
1224 | memset(block, 0, EC_VBNV_BLOCK_SIZE); | |
1225 | len = strlen(argv[2]); | |
1226 | buf[2] = '\0'; | |
1227 | for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { | |
1228 | if (i * 2 >= len) | |
1229 | break; | |
1230 | buf[0] = argv[2][i * 2]; | |
1231 | if (i * 2 + 1 >= len) | |
1232 | buf[1] = '0'; | |
1233 | else | |
1234 | buf[1] = argv[2][i * 2 + 1]; | |
1235 | strict_strtoul(buf, 16, &result); | |
1236 | block[i] = result; | |
1237 | } | |
1238 | ret = cros_ec_write_vbnvcontext(dev, block); | |
1239 | } | |
1240 | if (ret) { | |
1241 | debug("%s: Could not %s VbNvContext\n", __func__, | |
1242 | argc <= 2 ? "read" : "write"); | |
1243 | } | |
1244 | } else if (0 == strcmp("test", cmd)) { | |
1245 | int result = cros_ec_test(dev); | |
1246 | ||
1247 | if (result) | |
1248 | printf("Test failed with error %d\n", result); | |
1249 | else | |
1250 | puts("Test passed\n"); | |
1251 | } else if (0 == strcmp("version", cmd)) { | |
1252 | struct ec_response_get_version *p; | |
1253 | char *build_string; | |
1254 | ||
1255 | ret = cros_ec_read_version(dev, &p); | |
1256 | if (!ret) { | |
1257 | /* Print versions */ | |
1258 | printf("RO version: %1.*s\n", | |
1259 | sizeof(p->version_string_ro), | |
1260 | p->version_string_ro); | |
1261 | printf("RW version: %1.*s\n", | |
1262 | sizeof(p->version_string_rw), | |
1263 | p->version_string_rw); | |
1264 | printf("Firmware copy: %s\n", | |
1265 | (p->current_image < | |
1266 | ARRAY_SIZE(ec_current_image_name) ? | |
1267 | ec_current_image_name[p->current_image] : | |
1268 | "?")); | |
1269 | ret = cros_ec_read_build_info(dev, &build_string); | |
1270 | if (!ret) | |
1271 | printf("Build info: %s\n", build_string); | |
1272 | } | |
1273 | } else if (0 == strcmp("ldo", cmd)) { | |
1274 | uint8_t index, state; | |
1275 | char *endp; | |
1276 | ||
1277 | if (argc < 3) | |
1278 | return CMD_RET_USAGE; | |
1279 | index = simple_strtoul(argv[2], &endp, 10); | |
1280 | if (*argv[2] == 0 || *endp != 0) | |
1281 | return CMD_RET_USAGE; | |
1282 | if (argc > 3) { | |
1283 | state = simple_strtoul(argv[3], &endp, 10); | |
1284 | if (*argv[3] == 0 || *endp != 0) | |
1285 | return CMD_RET_USAGE; | |
1286 | ret = cros_ec_set_ldo(dev, index, state); | |
1287 | } else { | |
1288 | ret = cros_ec_get_ldo(dev, index, &state); | |
1289 | if (!ret) { | |
1290 | printf("LDO%d: %s\n", index, | |
1291 | state == EC_LDO_STATE_ON ? | |
1292 | "on" : "off"); | |
1293 | } | |
1294 | } | |
1295 | ||
1296 | if (ret) { | |
1297 | debug("%s: Could not access LDO%d\n", __func__, index); | |
1298 | return ret; | |
1299 | } | |
1300 | } else { | |
1301 | return CMD_RET_USAGE; | |
1302 | } | |
1303 | ||
1304 | if (ret < 0) { | |
1305 | printf("Error: CROS-EC command failed (error %d)\n", ret); | |
1306 | ret = 1; | |
1307 | } | |
1308 | ||
1309 | return ret; | |
1310 | } | |
1311 | ||
1312 | U_BOOT_CMD( | |
1313 | crosec, 5, 1, do_cros_ec, | |
1314 | "CROS-EC utility command", | |
1315 | "init Re-init CROS-EC (done on startup automatically)\n" | |
1316 | "crosec id Read CROS-EC ID\n" | |
1317 | "crosec info Read CROS-EC info\n" | |
1318 | "crosec curimage Read CROS-EC current image\n" | |
1319 | "crosec hash Read CROS-EC hash\n" | |
1320 | "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" | |
1321 | "crosec events Read CROS-EC host events\n" | |
1322 | "crosec clrevents [mask] Clear CROS-EC host events\n" | |
1323 | "crosec regioninfo <ro|rw> Read image info\n" | |
1324 | "crosec erase <ro|rw> Erase EC image\n" | |
1325 | "crosec read <ro|rw> <addr> [<size>] Read EC image\n" | |
1326 | "crosec write <ro|rw> <addr> [<size>] Write EC image\n" | |
1327 | "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" | |
1328 | "crosec ldo <idx> [<state>] Switch/Read LDO state\n" | |
1329 | "crosec test run tests on cros_ec\n" | |
1330 | "crosec version Read CROS-EC version" | |
1331 | ); | |
1332 | #endif |