]>
Commit | Line | Data |
---|---|---|
5ad9220b HS |
1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | /* | |
3 | * This code is based on a version (aka dlmalloc) of malloc/free/realloc written | |
4 | * by Doug Lea and released to the public domain, as explained at | |
5 | * http://creativecommons.org/publicdomain/zero/1.0/- | |
6 | * | |
7 | * The original code is available at http://gee.cs.oswego.edu/pub/misc/ | |
8 | * as file malloc-2.6.6.c. | |
9 | */ | |
10 | ||
81673e9a | 11 | #include <common.h> |
f7ae49fc | 12 | #include <log.h> |
401d1c4f | 13 | #include <asm/global_data.h> |
81673e9a | 14 | |
be621c11 | 15 | #if CONFIG_IS_ENABLED(UNIT_TEST) |
6d7601e7 SG |
16 | #define DEBUG |
17 | #endif | |
18 | ||
217c9dad | 19 | #include <malloc.h> |
d59476b6 SG |
20 | #include <asm/io.h> |
21 | ||
ea882baf | 22 | #ifdef DEBUG |
217c9dad WD |
23 | #if __STD_C |
24 | static void malloc_update_mallinfo (void); | |
25 | void malloc_stats (void); | |
26 | #else | |
27 | static void malloc_update_mallinfo (); | |
28 | void malloc_stats(); | |
29 | #endif | |
ea882baf | 30 | #endif /* DEBUG */ |
217c9dad | 31 | |
d87080b7 WD |
32 | DECLARE_GLOBAL_DATA_PTR; |
33 | ||
217c9dad WD |
34 | /* |
35 | Emulation of sbrk for WIN32 | |
36 | All code within the ifdef WIN32 is untested by me. | |
37 | ||
38 | Thanks to Martin Fong and others for supplying this. | |
39 | */ | |
40 | ||
41 | ||
42 | #ifdef WIN32 | |
43 | ||
44 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ | |
45 | ~(malloc_getpagesize-1)) | |
46 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) | |
47 | ||
48 | /* resrve 64MB to insure large contiguous space */ | |
49 | #define RESERVED_SIZE (1024*1024*64) | |
50 | #define NEXT_SIZE (2048*1024) | |
51 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) | |
52 | ||
53 | struct GmListElement; | |
54 | typedef struct GmListElement GmListElement; | |
55 | ||
56 | struct GmListElement | |
57 | { | |
58 | GmListElement* next; | |
59 | void* base; | |
60 | }; | |
61 | ||
62 | static GmListElement* head = 0; | |
63 | static unsigned int gNextAddress = 0; | |
64 | static unsigned int gAddressBase = 0; | |
65 | static unsigned int gAllocatedSize = 0; | |
66 | ||
67 | static | |
68 | GmListElement* makeGmListElement (void* bas) | |
69 | { | |
70 | GmListElement* this; | |
71 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); | |
72 | assert (this); | |
73 | if (this) | |
74 | { | |
75 | this->base = bas; | |
76 | this->next = head; | |
77 | head = this; | |
78 | } | |
79 | return this; | |
80 | } | |
81 | ||
82 | void gcleanup () | |
83 | { | |
84 | BOOL rval; | |
85 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); | |
86 | if (gAddressBase && (gNextAddress - gAddressBase)) | |
87 | { | |
88 | rval = VirtualFree ((void*)gAddressBase, | |
89 | gNextAddress - gAddressBase, | |
90 | MEM_DECOMMIT); | |
8bde7f77 | 91 | assert (rval); |
217c9dad WD |
92 | } |
93 | while (head) | |
94 | { | |
95 | GmListElement* next = head->next; | |
96 | rval = VirtualFree (head->base, 0, MEM_RELEASE); | |
97 | assert (rval); | |
98 | LocalFree (head); | |
99 | head = next; | |
100 | } | |
101 | } | |
102 | ||
103 | static | |
104 | void* findRegion (void* start_address, unsigned long size) | |
105 | { | |
106 | MEMORY_BASIC_INFORMATION info; | |
107 | if (size >= TOP_MEMORY) return NULL; | |
108 | ||
109 | while ((unsigned long)start_address + size < TOP_MEMORY) | |
110 | { | |
111 | VirtualQuery (start_address, &info, sizeof (info)); | |
112 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) | |
113 | return start_address; | |
114 | else | |
115 | { | |
8bde7f77 WD |
116 | /* Requested region is not available so see if the */ |
117 | /* next region is available. Set 'start_address' */ | |
118 | /* to the next region and call 'VirtualQuery()' */ | |
119 | /* again. */ | |
217c9dad WD |
120 | |
121 | start_address = (char*)info.BaseAddress + info.RegionSize; | |
122 | ||
8bde7f77 WD |
123 | /* Make sure we start looking for the next region */ |
124 | /* on the *next* 64K boundary. Otherwise, even if */ | |
125 | /* the new region is free according to */ | |
126 | /* 'VirtualQuery()', the subsequent call to */ | |
127 | /* 'VirtualAlloc()' (which follows the call to */ | |
128 | /* this routine in 'wsbrk()') will round *down* */ | |
129 | /* the requested address to a 64K boundary which */ | |
130 | /* we already know is an address in the */ | |
131 | /* unavailable region. Thus, the subsequent call */ | |
132 | /* to 'VirtualAlloc()' will fail and bring us back */ | |
133 | /* here, causing us to go into an infinite loop. */ | |
217c9dad WD |
134 | |
135 | start_address = | |
136 | (void *) AlignPage64K((unsigned long) start_address); | |
137 | } | |
138 | } | |
139 | return NULL; | |
140 | ||
141 | } | |
142 | ||
143 | ||
144 | void* wsbrk (long size) | |
145 | { | |
146 | void* tmp; | |
147 | if (size > 0) | |
148 | { | |
149 | if (gAddressBase == 0) | |
150 | { | |
151 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); | |
152 | gNextAddress = gAddressBase = | |
153 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, | |
154 | MEM_RESERVE, PAGE_NOACCESS); | |
155 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + | |
156 | gAllocatedSize)) | |
157 | { | |
158 | long new_size = max (NEXT_SIZE, AlignPage (size)); | |
159 | void* new_address = (void*)(gAddressBase+gAllocatedSize); | |
160 | do | |
161 | { | |
162 | new_address = findRegion (new_address, new_size); | |
163 | ||
a874cac3 | 164 | if (!new_address) |
217c9dad WD |
165 | return (void*)-1; |
166 | ||
167 | gAddressBase = gNextAddress = | |
168 | (unsigned int)VirtualAlloc (new_address, new_size, | |
169 | MEM_RESERVE, PAGE_NOACCESS); | |
8bde7f77 WD |
170 | /* repeat in case of race condition */ |
171 | /* The region that we found has been snagged */ | |
172 | /* by another thread */ | |
217c9dad WD |
173 | } |
174 | while (gAddressBase == 0); | |
175 | ||
176 | assert (new_address == (void*)gAddressBase); | |
177 | ||
178 | gAllocatedSize = new_size; | |
179 | ||
180 | if (!makeGmListElement ((void*)gAddressBase)) | |
181 | return (void*)-1; | |
182 | } | |
183 | if ((size + gNextAddress) > AlignPage (gNextAddress)) | |
184 | { | |
185 | void* res; | |
186 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), | |
187 | (size + gNextAddress - | |
188 | AlignPage (gNextAddress)), | |
189 | MEM_COMMIT, PAGE_READWRITE); | |
a874cac3 | 190 | if (!res) |
217c9dad WD |
191 | return (void*)-1; |
192 | } | |
193 | tmp = (void*)gNextAddress; | |
194 | gNextAddress = (unsigned int)tmp + size; | |
195 | return tmp; | |
196 | } | |
197 | else if (size < 0) | |
198 | { | |
199 | unsigned int alignedGoal = AlignPage (gNextAddress + size); | |
200 | /* Trim by releasing the virtual memory */ | |
201 | if (alignedGoal >= gAddressBase) | |
202 | { | |
203 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, | |
204 | MEM_DECOMMIT); | |
205 | gNextAddress = gNextAddress + size; | |
206 | return (void*)gNextAddress; | |
207 | } | |
208 | else | |
209 | { | |
210 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, | |
211 | MEM_DECOMMIT); | |
212 | gNextAddress = gAddressBase; | |
213 | return (void*)-1; | |
214 | } | |
215 | } | |
216 | else | |
217 | { | |
218 | return (void*)gNextAddress; | |
219 | } | |
220 | } | |
221 | ||
222 | #endif | |
223 | ||
d93041a4 | 224 | |
217c9dad WD |
225 | |
226 | /* | |
227 | Type declarations | |
228 | */ | |
229 | ||
230 | ||
231 | struct malloc_chunk | |
232 | { | |
233 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ | |
234 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ | |
235 | struct malloc_chunk* fd; /* double links -- used only if free. */ | |
236 | struct malloc_chunk* bk; | |
1ba91ba2 | 237 | } __attribute__((__may_alias__)) ; |
217c9dad WD |
238 | |
239 | typedef struct malloc_chunk* mchunkptr; | |
240 | ||
241 | /* | |
242 | ||
243 | malloc_chunk details: | |
244 | ||
245 | (The following includes lightly edited explanations by Colin Plumb.) | |
246 | ||
247 | Chunks of memory are maintained using a `boundary tag' method as | |
248 | described in e.g., Knuth or Standish. (See the paper by Paul | |
249 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a | |
250 | survey of such techniques.) Sizes of free chunks are stored both | |
251 | in the front of each chunk and at the end. This makes | |
252 | consolidating fragmented chunks into bigger chunks very fast. The | |
253 | size fields also hold bits representing whether chunks are free or | |
254 | in use. | |
255 | ||
256 | An allocated chunk looks like this: | |
257 | ||
258 | ||
259 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
260 | | Size of previous chunk, if allocated | | |
261 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
262 | | Size of chunk, in bytes |P| | |
217c9dad | 263 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
264 | | User data starts here... . |
265 | . . | |
266 | . (malloc_usable_space() bytes) . | |
267 | . | | |
217c9dad | 268 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
269 | | Size of chunk | |
270 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
271 | |
272 | ||
273 | Where "chunk" is the front of the chunk for the purpose of most of | |
274 | the malloc code, but "mem" is the pointer that is returned to the | |
275 | user. "Nextchunk" is the beginning of the next contiguous chunk. | |
276 | ||
277 | Chunks always begin on even word boundries, so the mem portion | |
278 | (which is returned to the user) is also on an even word boundary, and | |
279 | thus double-word aligned. | |
280 | ||
281 | Free chunks are stored in circular doubly-linked lists, and look like this: | |
282 | ||
283 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
284 | | Size of previous chunk | |
285 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
286 | `head:' | Size of chunk, in bytes |P| |
287 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
288 | | Forward pointer to next chunk in list | |
289 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
290 | | Back pointer to previous chunk in list | | |
291 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
292 | | Unused space (may be 0 bytes long) . | |
293 | . . | |
294 | . | | |
9297e366 | 295 | |
217c9dad WD |
296 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
297 | `foot:' | Size of chunk, in bytes | | |
8bde7f77 | 298 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
217c9dad WD |
299 | |
300 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the | |
301 | chunk size (which is always a multiple of two words), is an in-use | |
302 | bit for the *previous* chunk. If that bit is *clear*, then the | |
303 | word before the current chunk size contains the previous chunk | |
304 | size, and can be used to find the front of the previous chunk. | |
305 | (The very first chunk allocated always has this bit set, | |
306 | preventing access to non-existent (or non-owned) memory.) | |
307 | ||
308 | Note that the `foot' of the current chunk is actually represented | |
309 | as the prev_size of the NEXT chunk. (This makes it easier to | |
310 | deal with alignments etc). | |
311 | ||
312 | The two exceptions to all this are | |
313 | ||
314 | 1. The special chunk `top', which doesn't bother using the | |
8bde7f77 WD |
315 | trailing size field since there is no |
316 | next contiguous chunk that would have to index off it. (After | |
317 | initialization, `top' is forced to always exist. If it would | |
318 | become less than MINSIZE bytes long, it is replenished via | |
319 | malloc_extend_top.) | |
217c9dad WD |
320 | |
321 | 2. Chunks allocated via mmap, which have the second-lowest-order | |
8bde7f77 WD |
322 | bit (IS_MMAPPED) set in their size fields. Because they are |
323 | never merged or traversed from any other chunk, they have no | |
324 | foot size or inuse information. | |
217c9dad WD |
325 | |
326 | Available chunks are kept in any of several places (all declared below): | |
327 | ||
328 | * `av': An array of chunks serving as bin headers for consolidated | |
329 | chunks. Each bin is doubly linked. The bins are approximately | |
330 | proportionally (log) spaced. There are a lot of these bins | |
331 | (128). This may look excessive, but works very well in | |
332 | practice. All procedures maintain the invariant that no | |
333 | consolidated chunk physically borders another one. Chunks in | |
334 | bins are kept in size order, with ties going to the | |
335 | approximately least recently used chunk. | |
336 | ||
337 | The chunks in each bin are maintained in decreasing sorted order by | |
338 | size. This is irrelevant for the small bins, which all contain | |
339 | the same-sized chunks, but facilitates best-fit allocation for | |
340 | larger chunks. (These lists are just sequential. Keeping them in | |
341 | order almost never requires enough traversal to warrant using | |
342 | fancier ordered data structures.) Chunks of the same size are | |
343 | linked with the most recently freed at the front, and allocations | |
344 | are taken from the back. This results in LRU or FIFO allocation | |
345 | order, which tends to give each chunk an equal opportunity to be | |
346 | consolidated with adjacent freed chunks, resulting in larger free | |
347 | chunks and less fragmentation. | |
348 | ||
349 | * `top': The top-most available chunk (i.e., the one bordering the | |
350 | end of available memory) is treated specially. It is never | |
351 | included in any bin, is used only if no other chunk is | |
352 | available, and is released back to the system if it is very | |
353 | large (see M_TRIM_THRESHOLD). | |
354 | ||
355 | * `last_remainder': A bin holding only the remainder of the | |
356 | most recently split (non-top) chunk. This bin is checked | |
357 | before other non-fitting chunks, so as to provide better | |
358 | locality for runs of sequentially allocated chunks. | |
359 | ||
360 | * Implicitly, through the host system's memory mapping tables. | |
361 | If supported, requests greater than a threshold are usually | |
362 | serviced via calls to mmap, and then later released via munmap. | |
363 | ||
364 | */ | |
d93041a4 | 365 | |
217c9dad WD |
366 | /* sizes, alignments */ |
367 | ||
368 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) | |
369 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) | |
370 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) | |
371 | #define MINSIZE (sizeof(struct malloc_chunk)) | |
372 | ||
373 | /* conversion from malloc headers to user pointers, and back */ | |
374 | ||
375 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) | |
376 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) | |
377 | ||
378 | /* pad request bytes into a usable size */ | |
379 | ||
380 | #define request2size(req) \ | |
381 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ | |
382 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ | |
383 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) | |
384 | ||
385 | /* Check if m has acceptable alignment */ | |
386 | ||
387 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) | |
388 | ||
389 | ||
d93041a4 | 390 | |
217c9dad WD |
391 | |
392 | /* | |
393 | Physical chunk operations | |
394 | */ | |
395 | ||
396 | ||
397 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ | |
398 | ||
399 | #define PREV_INUSE 0x1 | |
400 | ||
401 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ | |
402 | ||
403 | #define IS_MMAPPED 0x2 | |
404 | ||
405 | /* Bits to mask off when extracting size */ | |
406 | ||
407 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) | |
408 | ||
409 | ||
410 | /* Ptr to next physical malloc_chunk. */ | |
411 | ||
412 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) | |
413 | ||
414 | /* Ptr to previous physical malloc_chunk */ | |
415 | ||
416 | #define prev_chunk(p)\ | |
417 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) | |
418 | ||
419 | ||
420 | /* Treat space at ptr + offset as a chunk */ | |
421 | ||
422 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) | |
423 | ||
424 | ||
d93041a4 | 425 | |
217c9dad WD |
426 | |
427 | /* | |
428 | Dealing with use bits | |
429 | */ | |
430 | ||
431 | /* extract p's inuse bit */ | |
432 | ||
433 | #define inuse(p)\ | |
434 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) | |
435 | ||
436 | /* extract inuse bit of previous chunk */ | |
437 | ||
438 | #define prev_inuse(p) ((p)->size & PREV_INUSE) | |
439 | ||
440 | /* check for mmap()'ed chunk */ | |
441 | ||
442 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) | |
443 | ||
444 | /* set/clear chunk as in use without otherwise disturbing */ | |
445 | ||
446 | #define set_inuse(p)\ | |
447 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE | |
448 | ||
449 | #define clear_inuse(p)\ | |
450 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) | |
451 | ||
452 | /* check/set/clear inuse bits in known places */ | |
453 | ||
454 | #define inuse_bit_at_offset(p, s)\ | |
455 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) | |
456 | ||
457 | #define set_inuse_bit_at_offset(p, s)\ | |
458 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) | |
459 | ||
460 | #define clear_inuse_bit_at_offset(p, s)\ | |
461 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) | |
462 | ||
463 | ||
d93041a4 | 464 | |
217c9dad WD |
465 | |
466 | /* | |
467 | Dealing with size fields | |
468 | */ | |
469 | ||
470 | /* Get size, ignoring use bits */ | |
471 | ||
472 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) | |
473 | ||
474 | /* Set size at head, without disturbing its use bit */ | |
475 | ||
476 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) | |
477 | ||
478 | /* Set size/use ignoring previous bits in header */ | |
479 | ||
480 | #define set_head(p, s) ((p)->size = (s)) | |
481 | ||
482 | /* Set size at footer (only when chunk is not in use) */ | |
483 | ||
484 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) | |
485 | ||
486 | ||
d93041a4 | 487 | |
217c9dad WD |
488 | |
489 | ||
490 | /* | |
491 | Bins | |
492 | ||
493 | The bins, `av_' are an array of pairs of pointers serving as the | |
494 | heads of (initially empty) doubly-linked lists of chunks, laid out | |
495 | in a way so that each pair can be treated as if it were in a | |
496 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads | |
497 | and chunks are the same). | |
498 | ||
499 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced | |
500 | 8 bytes apart. Larger bins are approximately logarithmically | |
501 | spaced. (See the table below.) The `av_' array is never mentioned | |
502 | directly in the code, but instead via bin access macros. | |
503 | ||
504 | Bin layout: | |
505 | ||
506 | 64 bins of size 8 | |
507 | 32 bins of size 64 | |
508 | 16 bins of size 512 | |
509 | 8 bins of size 4096 | |
510 | 4 bins of size 32768 | |
511 | 2 bins of size 262144 | |
512 | 1 bin of size what's left | |
513 | ||
514 | There is actually a little bit of slop in the numbers in bin_index | |
515 | for the sake of speed. This makes no difference elsewhere. | |
516 | ||
517 | The special chunks `top' and `last_remainder' get their own bins, | |
518 | (this is implemented via yet more trickery with the av_ array), | |
519 | although `top' is never properly linked to its bin since it is | |
520 | always handled specially. | |
521 | ||
522 | */ | |
523 | ||
524 | #define NAV 128 /* number of bins */ | |
525 | ||
526 | typedef struct malloc_chunk* mbinptr; | |
527 | ||
528 | /* access macros */ | |
529 | ||
530 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) | |
531 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) | |
532 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) | |
533 | ||
534 | /* | |
535 | The first 2 bins are never indexed. The corresponding av_ cells are instead | |
536 | used for bookkeeping. This is not to save space, but to simplify | |
537 | indexing, maintain locality, and avoid some initialization tests. | |
538 | */ | |
539 | ||
f2302d44 | 540 | #define top (av_[2]) /* The topmost chunk */ |
217c9dad WD |
541 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
542 | ||
543 | ||
544 | /* | |
545 | Because top initially points to its own bin with initial | |
546 | zero size, thus forcing extension on the first malloc request, | |
547 | we avoid having any special code in malloc to check whether | |
548 | it even exists yet. But we still need to in malloc_extend_top. | |
549 | */ | |
550 | ||
551 | #define initial_top ((mchunkptr)(bin_at(0))) | |
552 | ||
553 | /* Helper macro to initialize bins */ | |
554 | ||
555 | #define IAV(i) bin_at(i), bin_at(i) | |
556 | ||
557 | static mbinptr av_[NAV * 2 + 2] = { | |
199adb60 | 558 | NULL, NULL, |
217c9dad WD |
559 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), |
560 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), | |
561 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), | |
562 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), | |
563 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), | |
564 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), | |
565 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), | |
566 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), | |
567 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), | |
568 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), | |
569 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), | |
570 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), | |
571 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), | |
572 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), | |
573 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), | |
574 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) | |
575 | }; | |
576 | ||
2e5167cc | 577 | #ifdef CONFIG_NEEDS_MANUAL_RELOC |
7b395232 | 578 | static void malloc_bin_reloc(void) |
217c9dad | 579 | { |
93691842 SG |
580 | mbinptr *p = &av_[2]; |
581 | size_t i; | |
582 | ||
583 | for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p) | |
584 | *p = (mbinptr)((ulong)*p + gd->reloc_off); | |
217c9dad | 585 | } |
7b395232 GJ |
586 | #else |
587 | static inline void malloc_bin_reloc(void) {} | |
521af04d | 588 | #endif |
5e93bd1c | 589 | |
9297e366 MB |
590 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
591 | static void malloc_init(void); | |
592 | #endif | |
593 | ||
5e93bd1c PT |
594 | ulong mem_malloc_start = 0; |
595 | ulong mem_malloc_end = 0; | |
596 | ulong mem_malloc_brk = 0; | |
597 | ||
598 | void *sbrk(ptrdiff_t increment) | |
599 | { | |
600 | ulong old = mem_malloc_brk; | |
601 | ulong new = old + increment; | |
602 | ||
6163f5b4 KG |
603 | /* |
604 | * if we are giving memory back make sure we clear it out since | |
605 | * we set MORECORE_CLEARS to 1 | |
606 | */ | |
607 | if (increment < 0) | |
608 | memset((void *)new, 0, -increment); | |
609 | ||
5e93bd1c | 610 | if ((new < mem_malloc_start) || (new > mem_malloc_end)) |
ae30b8c2 | 611 | return (void *)MORECORE_FAILURE; |
5e93bd1c PT |
612 | |
613 | mem_malloc_brk = new; | |
614 | ||
615 | return (void *)old; | |
616 | } | |
217c9dad | 617 | |
d4e8ada0 PT |
618 | void mem_malloc_init(ulong start, ulong size) |
619 | { | |
620 | mem_malloc_start = start; | |
621 | mem_malloc_end = start + size; | |
622 | mem_malloc_brk = start; | |
623 | ||
9297e366 MB |
624 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
625 | malloc_init(); | |
626 | #endif | |
627 | ||
868de51d TR |
628 | debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start, |
629 | mem_malloc_end); | |
0aa8a4ad PM |
630 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
631 | memset((void *)mem_malloc_start, 0x0, size); | |
632 | #endif | |
7b395232 | 633 | malloc_bin_reloc(); |
d4e8ada0 | 634 | } |
d4e8ada0 | 635 | |
217c9dad WD |
636 | /* field-extraction macros */ |
637 | ||
638 | #define first(b) ((b)->fd) | |
639 | #define last(b) ((b)->bk) | |
640 | ||
641 | /* | |
642 | Indexing into bins | |
643 | */ | |
644 | ||
645 | #define bin_index(sz) \ | |
646 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ | |
647 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ | |
648 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ | |
649 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ | |
650 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ | |
651 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ | |
8bde7f77 | 652 | 126) |
217c9dad WD |
653 | /* |
654 | bins for chunks < 512 are all spaced 8 bytes apart, and hold | |
655 | identically sized chunks. This is exploited in malloc. | |
656 | */ | |
657 | ||
658 | #define MAX_SMALLBIN 63 | |
659 | #define MAX_SMALLBIN_SIZE 512 | |
660 | #define SMALLBIN_WIDTH 8 | |
661 | ||
662 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) | |
663 | ||
664 | /* | |
665 | Requests are `small' if both the corresponding and the next bin are small | |
666 | */ | |
667 | ||
668 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) | |
669 | ||
d93041a4 | 670 | |
217c9dad WD |
671 | |
672 | /* | |
673 | To help compensate for the large number of bins, a one-level index | |
674 | structure is used for bin-by-bin searching. `binblocks' is a | |
675 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins | |
676 | have any (possibly) non-empty bins, so they can be skipped over | |
677 | all at once during during traversals. The bits are NOT always | |
678 | cleared as soon as all bins in a block are empty, but instead only | |
679 | when all are noticed to be empty during traversal in malloc. | |
680 | */ | |
681 | ||
682 | #define BINBLOCKWIDTH 4 /* bins per block */ | |
683 | ||
f2302d44 SR |
684 | #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ |
685 | #define binblocks_w (av_[1]) | |
217c9dad WD |
686 | |
687 | /* bin<->block macros */ | |
688 | ||
689 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) | |
f2302d44 SR |
690 | #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) |
691 | #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) | |
217c9dad WD |
692 | |
693 | ||
d93041a4 | 694 | |
217c9dad WD |
695 | |
696 | ||
697 | /* Other static bookkeeping data */ | |
698 | ||
699 | /* variables holding tunable values */ | |
700 | ||
701 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
702 | static unsigned long top_pad = DEFAULT_TOP_PAD; | |
703 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; | |
704 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
705 | ||
706 | /* The first value returned from sbrk */ | |
707 | static char* sbrk_base = (char*)(-1); | |
708 | ||
709 | /* The maximum memory obtained from system via sbrk */ | |
710 | static unsigned long max_sbrked_mem = 0; | |
711 | ||
712 | /* The maximum via either sbrk or mmap */ | |
713 | static unsigned long max_total_mem = 0; | |
714 | ||
715 | /* internal working copy of mallinfo */ | |
716 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
717 | ||
718 | /* The total memory obtained from system via sbrk */ | |
719 | #define sbrked_mem (current_mallinfo.arena) | |
720 | ||
721 | /* Tracking mmaps */ | |
722 | ||
ea882baf | 723 | #ifdef DEBUG |
217c9dad | 724 | static unsigned int n_mmaps = 0; |
ea882baf | 725 | #endif /* DEBUG */ |
217c9dad WD |
726 | static unsigned long mmapped_mem = 0; |
727 | #if HAVE_MMAP | |
728 | static unsigned int max_n_mmaps = 0; | |
729 | static unsigned long max_mmapped_mem = 0; | |
730 | #endif | |
731 | ||
9297e366 MB |
732 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
733 | static void malloc_init(void) | |
734 | { | |
735 | int i, j; | |
736 | ||
737 | debug("bins (av_ array) are at %p\n", (void *)av_); | |
738 | ||
739 | av_[0] = NULL; av_[1] = NULL; | |
740 | for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) { | |
741 | av_[i] = bin_at(j - 2); | |
742 | av_[i + 1] = bin_at(j - 2); | |
743 | ||
744 | /* Just print the first few bins so that | |
745 | * we can see there are alright. | |
746 | */ | |
747 | if (i < 10) | |
748 | debug("av_[%d]=%lx av_[%d]=%lx\n", | |
749 | i, (ulong)av_[i], | |
750 | i + 1, (ulong)av_[i + 1]); | |
751 | } | |
d93041a4 | 752 | |
9297e366 MB |
753 | /* Init the static bookkeeping as well */ |
754 | sbrk_base = (char *)(-1); | |
755 | max_sbrked_mem = 0; | |
756 | max_total_mem = 0; | |
757 | #ifdef DEBUG | |
758 | memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo)); | |
759 | #endif | |
760 | } | |
761 | #endif | |
217c9dad WD |
762 | |
763 | /* | |
764 | Debugging support | |
765 | */ | |
766 | ||
767 | #ifdef DEBUG | |
768 | ||
769 | ||
770 | /* | |
771 | These routines make a number of assertions about the states | |
772 | of data structures that should be true at all times. If any | |
773 | are not true, it's very likely that a user program has somehow | |
774 | trashed memory. (It's also possible that there is a coding error | |
775 | in malloc. In which case, please report it!) | |
776 | */ | |
777 | ||
778 | #if __STD_C | |
779 | static void do_check_chunk(mchunkptr p) | |
780 | #else | |
781 | static void do_check_chunk(p) mchunkptr p; | |
782 | #endif | |
783 | { | |
217c9dad | 784 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
217c9dad WD |
785 | |
786 | /* No checkable chunk is mmapped */ | |
787 | assert(!chunk_is_mmapped(p)); | |
788 | ||
789 | /* Check for legal address ... */ | |
790 | assert((char*)p >= sbrk_base); | |
791 | if (p != top) | |
792 | assert((char*)p + sz <= (char*)top); | |
793 | else | |
794 | assert((char*)p + sz <= sbrk_base + sbrked_mem); | |
795 | ||
796 | } | |
797 | ||
798 | ||
799 | #if __STD_C | |
800 | static void do_check_free_chunk(mchunkptr p) | |
801 | #else | |
802 | static void do_check_free_chunk(p) mchunkptr p; | |
803 | #endif | |
804 | { | |
805 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
217c9dad | 806 | mchunkptr next = chunk_at_offset(p, sz); |
217c9dad WD |
807 | |
808 | do_check_chunk(p); | |
809 | ||
810 | /* Check whether it claims to be free ... */ | |
811 | assert(!inuse(p)); | |
812 | ||
813 | /* Unless a special marker, must have OK fields */ | |
814 | if ((long)sz >= (long)MINSIZE) | |
815 | { | |
816 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
817 | assert(aligned_OK(chunk2mem(p))); | |
818 | /* ... matching footer field */ | |
819 | assert(next->prev_size == sz); | |
820 | /* ... and is fully consolidated */ | |
821 | assert(prev_inuse(p)); | |
822 | assert (next == top || inuse(next)); | |
823 | ||
824 | /* ... and has minimally sane links */ | |
825 | assert(p->fd->bk == p); | |
826 | assert(p->bk->fd == p); | |
827 | } | |
828 | else /* markers are always of size SIZE_SZ */ | |
829 | assert(sz == SIZE_SZ); | |
830 | } | |
831 | ||
832 | #if __STD_C | |
833 | static void do_check_inuse_chunk(mchunkptr p) | |
834 | #else | |
835 | static void do_check_inuse_chunk(p) mchunkptr p; | |
836 | #endif | |
837 | { | |
838 | mchunkptr next = next_chunk(p); | |
839 | do_check_chunk(p); | |
840 | ||
841 | /* Check whether it claims to be in use ... */ | |
842 | assert(inuse(p)); | |
843 | ||
844 | /* ... and is surrounded by OK chunks. | |
845 | Since more things can be checked with free chunks than inuse ones, | |
846 | if an inuse chunk borders them and debug is on, it's worth doing them. | |
847 | */ | |
848 | if (!prev_inuse(p)) | |
849 | { | |
850 | mchunkptr prv = prev_chunk(p); | |
851 | assert(next_chunk(prv) == p); | |
852 | do_check_free_chunk(prv); | |
853 | } | |
854 | if (next == top) | |
855 | { | |
856 | assert(prev_inuse(next)); | |
857 | assert(chunksize(next) >= MINSIZE); | |
858 | } | |
859 | else if (!inuse(next)) | |
860 | do_check_free_chunk(next); | |
861 | ||
862 | } | |
863 | ||
864 | #if __STD_C | |
865 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) | |
866 | #else | |
867 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; | |
868 | #endif | |
869 | { | |
217c9dad WD |
870 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
871 | long room = sz - s; | |
217c9dad WD |
872 | |
873 | do_check_inuse_chunk(p); | |
874 | ||
875 | /* Legal size ... */ | |
876 | assert((long)sz >= (long)MINSIZE); | |
877 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
878 | assert(room >= 0); | |
879 | assert(room < (long)MINSIZE); | |
880 | ||
881 | /* ... and alignment */ | |
882 | assert(aligned_OK(chunk2mem(p))); | |
883 | ||
884 | ||
885 | /* ... and was allocated at front of an available chunk */ | |
886 | assert(prev_inuse(p)); | |
887 | ||
888 | } | |
889 | ||
890 | ||
891 | #define check_free_chunk(P) do_check_free_chunk(P) | |
892 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) | |
893 | #define check_chunk(P) do_check_chunk(P) | |
894 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) | |
895 | #else | |
896 | #define check_free_chunk(P) | |
897 | #define check_inuse_chunk(P) | |
898 | #define check_chunk(P) | |
899 | #define check_malloced_chunk(P,N) | |
900 | #endif | |
901 | ||
d93041a4 | 902 | |
217c9dad WD |
903 | |
904 | /* | |
905 | Macro-based internal utilities | |
906 | */ | |
907 | ||
908 | ||
909 | /* | |
910 | Linking chunks in bin lists. | |
911 | Call these only with variables, not arbitrary expressions, as arguments. | |
912 | */ | |
913 | ||
914 | /* | |
915 | Place chunk p of size s in its bin, in size order, | |
916 | putting it ahead of others of same size. | |
917 | */ | |
918 | ||
919 | ||
920 | #define frontlink(P, S, IDX, BK, FD) \ | |
921 | { \ | |
922 | if (S < MAX_SMALLBIN_SIZE) \ | |
923 | { \ | |
924 | IDX = smallbin_index(S); \ | |
925 | mark_binblock(IDX); \ | |
926 | BK = bin_at(IDX); \ | |
927 | FD = BK->fd; \ | |
928 | P->bk = BK; \ | |
929 | P->fd = FD; \ | |
930 | FD->bk = BK->fd = P; \ | |
931 | } \ | |
932 | else \ | |
933 | { \ | |
934 | IDX = bin_index(S); \ | |
935 | BK = bin_at(IDX); \ | |
936 | FD = BK->fd; \ | |
937 | if (FD == BK) mark_binblock(IDX); \ | |
938 | else \ | |
939 | { \ | |
940 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ | |
941 | BK = FD->bk; \ | |
942 | } \ | |
943 | P->bk = BK; \ | |
944 | P->fd = FD; \ | |
945 | FD->bk = BK->fd = P; \ | |
946 | } \ | |
947 | } | |
948 | ||
949 | ||
950 | /* take a chunk off a list */ | |
951 | ||
952 | #define unlink(P, BK, FD) \ | |
953 | { \ | |
954 | BK = P->bk; \ | |
955 | FD = P->fd; \ | |
956 | FD->bk = BK; \ | |
957 | BK->fd = FD; \ | |
958 | } \ | |
959 | ||
960 | /* Place p as the last remainder */ | |
961 | ||
962 | #define link_last_remainder(P) \ | |
963 | { \ | |
964 | last_remainder->fd = last_remainder->bk = P; \ | |
965 | P->fd = P->bk = last_remainder; \ | |
966 | } | |
967 | ||
968 | /* Clear the last_remainder bin */ | |
969 | ||
970 | #define clear_last_remainder \ | |
971 | (last_remainder->fd = last_remainder->bk = last_remainder) | |
972 | ||
973 | ||
d93041a4 | 974 | |
217c9dad WD |
975 | |
976 | ||
977 | /* Routines dealing with mmap(). */ | |
978 | ||
979 | #if HAVE_MMAP | |
980 | ||
981 | #if __STD_C | |
982 | static mchunkptr mmap_chunk(size_t size) | |
983 | #else | |
984 | static mchunkptr mmap_chunk(size) size_t size; | |
985 | #endif | |
986 | { | |
987 | size_t page_mask = malloc_getpagesize - 1; | |
988 | mchunkptr p; | |
989 | ||
990 | #ifndef MAP_ANONYMOUS | |
991 | static int fd = -1; | |
992 | #endif | |
993 | ||
994 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ | |
995 | ||
996 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because | |
997 | * there is no following chunk whose prev_size field could be used. | |
998 | */ | |
999 | size = (size + SIZE_SZ + page_mask) & ~page_mask; | |
1000 | ||
1001 | #ifdef MAP_ANONYMOUS | |
1002 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, | |
1003 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | |
1004 | #else /* !MAP_ANONYMOUS */ | |
1005 | if (fd < 0) | |
1006 | { | |
1007 | fd = open("/dev/zero", O_RDWR); | |
1008 | if(fd < 0) return 0; | |
1009 | } | |
1010 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | |
1011 | #endif | |
1012 | ||
1013 | if(p == (mchunkptr)-1) return 0; | |
1014 | ||
1015 | n_mmaps++; | |
1016 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; | |
1017 | ||
1018 | /* We demand that eight bytes into a page must be 8-byte aligned. */ | |
1019 | assert(aligned_OK(chunk2mem(p))); | |
1020 | ||
1021 | /* The offset to the start of the mmapped region is stored | |
1022 | * in the prev_size field of the chunk; normally it is zero, | |
1023 | * but that can be changed in memalign(). | |
1024 | */ | |
1025 | p->prev_size = 0; | |
1026 | set_head(p, size|IS_MMAPPED); | |
1027 | ||
1028 | mmapped_mem += size; | |
1029 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1030 | max_mmapped_mem = mmapped_mem; | |
1031 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1032 | max_total_mem = mmapped_mem + sbrked_mem; | |
1033 | return p; | |
1034 | } | |
1035 | ||
1036 | #if __STD_C | |
1037 | static void munmap_chunk(mchunkptr p) | |
1038 | #else | |
1039 | static void munmap_chunk(p) mchunkptr p; | |
1040 | #endif | |
1041 | { | |
1042 | INTERNAL_SIZE_T size = chunksize(p); | |
1043 | int ret; | |
1044 | ||
1045 | assert (chunk_is_mmapped(p)); | |
1046 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1047 | assert((n_mmaps > 0)); | |
1048 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); | |
1049 | ||
1050 | n_mmaps--; | |
1051 | mmapped_mem -= (size + p->prev_size); | |
1052 | ||
1053 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); | |
1054 | ||
1055 | /* munmap returns non-zero on failure */ | |
1056 | assert(ret == 0); | |
1057 | } | |
1058 | ||
1059 | #if HAVE_MREMAP | |
1060 | ||
1061 | #if __STD_C | |
1062 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) | |
1063 | #else | |
1064 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; | |
1065 | #endif | |
1066 | { | |
1067 | size_t page_mask = malloc_getpagesize - 1; | |
1068 | INTERNAL_SIZE_T offset = p->prev_size; | |
1069 | INTERNAL_SIZE_T size = chunksize(p); | |
1070 | char *cp; | |
1071 | ||
1072 | assert (chunk_is_mmapped(p)); | |
1073 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1074 | assert((n_mmaps > 0)); | |
1075 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); | |
1076 | ||
1077 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ | |
1078 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; | |
1079 | ||
1080 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); | |
1081 | ||
1082 | if (cp == (char *)-1) return 0; | |
1083 | ||
1084 | p = (mchunkptr)(cp + offset); | |
1085 | ||
1086 | assert(aligned_OK(chunk2mem(p))); | |
1087 | ||
1088 | assert((p->prev_size == offset)); | |
1089 | set_head(p, (new_size - offset)|IS_MMAPPED); | |
1090 | ||
1091 | mmapped_mem -= size + offset; | |
1092 | mmapped_mem += new_size; | |
1093 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1094 | max_mmapped_mem = mmapped_mem; | |
1095 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1096 | max_total_mem = mmapped_mem + sbrked_mem; | |
1097 | return p; | |
1098 | } | |
1099 | ||
1100 | #endif /* HAVE_MREMAP */ | |
1101 | ||
1102 | #endif /* HAVE_MMAP */ | |
1103 | ||
217c9dad WD |
1104 | /* |
1105 | Extend the top-most chunk by obtaining memory from system. | |
1106 | Main interface to sbrk (but see also malloc_trim). | |
1107 | */ | |
1108 | ||
1109 | #if __STD_C | |
1110 | static void malloc_extend_top(INTERNAL_SIZE_T nb) | |
1111 | #else | |
1112 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; | |
1113 | #endif | |
1114 | { | |
1115 | char* brk; /* return value from sbrk */ | |
1116 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ | |
1117 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ | |
1118 | char* new_brk; /* return of 2nd sbrk call */ | |
1119 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ | |
1120 | ||
1121 | mchunkptr old_top = top; /* Record state of old top */ | |
1122 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); | |
1123 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); | |
1124 | ||
1125 | /* Pad request with top_pad plus minimal overhead */ | |
1126 | ||
1127 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; | |
1128 | unsigned long pagesz = malloc_getpagesize; | |
1129 | ||
1130 | /* If not the first time through, round to preserve page boundary */ | |
1131 | /* Otherwise, we need to correct to a page size below anyway. */ | |
1132 | /* (We also correct below if an intervening foreign sbrk call.) */ | |
1133 | ||
1134 | if (sbrk_base != (char*)(-1)) | |
1135 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); | |
1136 | ||
1137 | brk = (char*)(MORECORE (sbrk_size)); | |
1138 | ||
1139 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ | |
1140 | if (brk == (char*)(MORECORE_FAILURE) || | |
1141 | (brk < old_end && old_top != initial_top)) | |
1142 | return; | |
1143 | ||
1144 | sbrked_mem += sbrk_size; | |
1145 | ||
1146 | if (brk == old_end) /* can just add bytes to current top */ | |
1147 | { | |
1148 | top_size = sbrk_size + old_top_size; | |
1149 | set_head(top, top_size | PREV_INUSE); | |
1150 | } | |
1151 | else | |
1152 | { | |
1153 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ | |
1154 | sbrk_base = brk; | |
1155 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ | |
1156 | sbrked_mem += brk - (char*)old_end; | |
1157 | ||
1158 | /* Guarantee alignment of first new chunk made from this space */ | |
1159 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; | |
1160 | if (front_misalign > 0) | |
1161 | { | |
1162 | correction = (MALLOC_ALIGNMENT) - front_misalign; | |
1163 | brk += correction; | |
1164 | } | |
1165 | else | |
1166 | correction = 0; | |
1167 | ||
1168 | /* Guarantee the next brk will be at a page boundary */ | |
1169 | ||
1170 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & | |
8bde7f77 | 1171 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
217c9dad WD |
1172 | |
1173 | /* Allocate correction */ | |
1174 | new_brk = (char*)(MORECORE (correction)); | |
1175 | if (new_brk == (char*)(MORECORE_FAILURE)) return; | |
1176 | ||
1177 | sbrked_mem += correction; | |
1178 | ||
1179 | top = (mchunkptr)brk; | |
1180 | top_size = new_brk - brk + correction; | |
1181 | set_head(top, top_size | PREV_INUSE); | |
1182 | ||
1183 | if (old_top != initial_top) | |
1184 | { | |
1185 | ||
1186 | /* There must have been an intervening foreign sbrk call. */ | |
1187 | /* A double fencepost is necessary to prevent consolidation */ | |
1188 | ||
1189 | /* If not enough space to do this, then user did something very wrong */ | |
1190 | if (old_top_size < MINSIZE) | |
1191 | { | |
8bde7f77 WD |
1192 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
1193 | return; | |
217c9dad WD |
1194 | } |
1195 | ||
1196 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ | |
1197 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; | |
1198 | set_head_size(old_top, old_top_size); | |
1199 | chunk_at_offset(old_top, old_top_size )->size = | |
8bde7f77 | 1200 | SIZE_SZ|PREV_INUSE; |
217c9dad | 1201 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
8bde7f77 | 1202 | SIZE_SZ|PREV_INUSE; |
217c9dad WD |
1203 | /* If possible, release the rest. */ |
1204 | if (old_top_size >= MINSIZE) | |
8bde7f77 | 1205 | fREe(chunk2mem(old_top)); |
217c9dad WD |
1206 | } |
1207 | } | |
1208 | ||
1209 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) | |
1210 | max_sbrked_mem = sbrked_mem; | |
1211 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1212 | max_total_mem = mmapped_mem + sbrked_mem; | |
1213 | ||
1214 | /* We always land on a page boundary */ | |
1215 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); | |
1216 | } | |
1217 | ||
1218 | ||
d93041a4 | 1219 | |
217c9dad WD |
1220 | |
1221 | /* Main public routines */ | |
1222 | ||
1223 | ||
1224 | /* | |
1225 | Malloc Algorthim: | |
1226 | ||
1227 | The requested size is first converted into a usable form, `nb'. | |
1228 | This currently means to add 4 bytes overhead plus possibly more to | |
1229 | obtain 8-byte alignment and/or to obtain a size of at least | |
1230 | MINSIZE (currently 16 bytes), the smallest allocatable size. | |
1231 | (All fits are considered `exact' if they are within MINSIZE bytes.) | |
1232 | ||
1233 | From there, the first successful of the following steps is taken: | |
1234 | ||
1235 | 1. The bin corresponding to the request size is scanned, and if | |
8bde7f77 | 1236 | a chunk of exactly the right size is found, it is taken. |
217c9dad WD |
1237 | |
1238 | 2. The most recently remaindered chunk is used if it is big | |
8bde7f77 WD |
1239 | enough. This is a form of (roving) first fit, used only in |
1240 | the absence of exact fits. Runs of consecutive requests use | |
1241 | the remainder of the chunk used for the previous such request | |
1242 | whenever possible. This limited use of a first-fit style | |
1243 | allocation strategy tends to give contiguous chunks | |
1244 | coextensive lifetimes, which improves locality and can reduce | |
1245 | fragmentation in the long run. | |
217c9dad WD |
1246 | |
1247 | 3. Other bins are scanned in increasing size order, using a | |
8bde7f77 WD |
1248 | chunk big enough to fulfill the request, and splitting off |
1249 | any remainder. This search is strictly by best-fit; i.e., | |
1250 | the smallest (with ties going to approximately the least | |
1251 | recently used) chunk that fits is selected. | |
217c9dad WD |
1252 | |
1253 | 4. If large enough, the chunk bordering the end of memory | |
8bde7f77 WD |
1254 | (`top') is split off. (This use of `top' is in accord with |
1255 | the best-fit search rule. In effect, `top' is treated as | |
1256 | larger (and thus less well fitting) than any other available | |
1257 | chunk since it can be extended to be as large as necessary | |
1258 | (up to system limitations). | |
217c9dad WD |
1259 | |
1260 | 5. If the request size meets the mmap threshold and the | |
8bde7f77 WD |
1261 | system supports mmap, and there are few enough currently |
1262 | allocated mmapped regions, and a call to mmap succeeds, | |
1263 | the request is allocated via direct memory mapping. | |
217c9dad WD |
1264 | |
1265 | 6. Otherwise, the top of memory is extended by | |
8bde7f77 WD |
1266 | obtaining more space from the system (normally using sbrk, |
1267 | but definable to anything else via the MORECORE macro). | |
1268 | Memory is gathered from the system (in system page-sized | |
1269 | units) in a way that allows chunks obtained across different | |
1270 | sbrk calls to be consolidated, but does not require | |
1271 | contiguous memory. Thus, it should be safe to intersperse | |
1272 | mallocs with other sbrk calls. | |
217c9dad WD |
1273 | |
1274 | ||
1275 | All allocations are made from the the `lowest' part of any found | |
1276 | chunk. (The implementation invariant is that prev_inuse is | |
1277 | always true of any allocated chunk; i.e., that each allocated | |
1278 | chunk borders either a previously allocated and still in-use chunk, | |
1279 | or the base of its memory arena.) | |
1280 | ||
1281 | */ | |
1282 | ||
1283 | #if __STD_C | |
1284 | Void_t* mALLOc(size_t bytes) | |
1285 | #else | |
1286 | Void_t* mALLOc(bytes) size_t bytes; | |
1287 | #endif | |
1288 | { | |
1289 | mchunkptr victim; /* inspected/selected chunk */ | |
1290 | INTERNAL_SIZE_T victim_size; /* its size */ | |
1291 | int idx; /* index for bin traversal */ | |
1292 | mbinptr bin; /* associated bin */ | |
1293 | mchunkptr remainder; /* remainder from a split */ | |
1294 | long remainder_size; /* its size */ | |
1295 | int remainder_index; /* its bin index */ | |
1296 | unsigned long block; /* block traverser bit */ | |
1297 | int startidx; /* first bin of a traversed block */ | |
1298 | mchunkptr fwd; /* misc temp for linking */ | |
1299 | mchunkptr bck; /* misc temp for linking */ | |
1300 | mbinptr q; /* misc temp */ | |
1301 | ||
1302 | INTERNAL_SIZE_T nb; | |
1303 | ||
f1896c45 | 1304 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
deff6fb3 | 1305 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
c9356be3 | 1306 | return malloc_simple(bytes); |
d59476b6 SG |
1307 | #endif |
1308 | ||
27405448 WD |
1309 | /* check if mem_malloc_init() was run */ |
1310 | if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { | |
1311 | /* not initialized yet */ | |
199adb60 | 1312 | return NULL; |
27405448 WD |
1313 | } |
1314 | ||
199adb60 | 1315 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
1316 | |
1317 | nb = request2size(bytes); /* padded request size; */ | |
1318 | ||
1319 | /* Check for exact match in a bin */ | |
1320 | ||
1321 | if (is_small_request(nb)) /* Faster version for small requests */ | |
1322 | { | |
1323 | idx = smallbin_index(nb); | |
1324 | ||
1325 | /* No traversal or size check necessary for small bins. */ | |
1326 | ||
1327 | q = bin_at(idx); | |
1328 | victim = last(q); | |
1329 | ||
1330 | /* Also scan the next one, since it would have a remainder < MINSIZE */ | |
1331 | if (victim == q) | |
1332 | { | |
1333 | q = next_bin(q); | |
1334 | victim = last(q); | |
1335 | } | |
1336 | if (victim != q) | |
1337 | { | |
1338 | victim_size = chunksize(victim); | |
1339 | unlink(victim, bck, fwd); | |
1340 | set_inuse_bit_at_offset(victim, victim_size); | |
1341 | check_malloced_chunk(victim, nb); | |
1342 | return chunk2mem(victim); | |
1343 | } | |
1344 | ||
1345 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ | |
1346 | ||
1347 | } | |
1348 | else | |
1349 | { | |
1350 | idx = bin_index(nb); | |
1351 | bin = bin_at(idx); | |
1352 | ||
1353 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
1354 | { | |
1355 | victim_size = chunksize(victim); | |
1356 | remainder_size = victim_size - nb; | |
1357 | ||
1358 | if (remainder_size >= (long)MINSIZE) /* too big */ | |
1359 | { | |
8bde7f77 WD |
1360 | --idx; /* adjust to rescan below after checking last remainder */ |
1361 | break; | |
217c9dad WD |
1362 | } |
1363 | ||
1364 | else if (remainder_size >= 0) /* exact fit */ | |
1365 | { | |
8bde7f77 WD |
1366 | unlink(victim, bck, fwd); |
1367 | set_inuse_bit_at_offset(victim, victim_size); | |
1368 | check_malloced_chunk(victim, nb); | |
1369 | return chunk2mem(victim); | |
217c9dad WD |
1370 | } |
1371 | } | |
1372 | ||
1373 | ++idx; | |
1374 | ||
1375 | } | |
1376 | ||
1377 | /* Try to use the last split-off remainder */ | |
1378 | ||
1379 | if ( (victim = last_remainder->fd) != last_remainder) | |
1380 | { | |
1381 | victim_size = chunksize(victim); | |
1382 | remainder_size = victim_size - nb; | |
1383 | ||
1384 | if (remainder_size >= (long)MINSIZE) /* re-split */ | |
1385 | { | |
1386 | remainder = chunk_at_offset(victim, nb); | |
1387 | set_head(victim, nb | PREV_INUSE); | |
1388 | link_last_remainder(remainder); | |
1389 | set_head(remainder, remainder_size | PREV_INUSE); | |
1390 | set_foot(remainder, remainder_size); | |
1391 | check_malloced_chunk(victim, nb); | |
1392 | return chunk2mem(victim); | |
1393 | } | |
1394 | ||
1395 | clear_last_remainder; | |
1396 | ||
1397 | if (remainder_size >= 0) /* exhaust */ | |
1398 | { | |
1399 | set_inuse_bit_at_offset(victim, victim_size); | |
1400 | check_malloced_chunk(victim, nb); | |
1401 | return chunk2mem(victim); | |
1402 | } | |
1403 | ||
1404 | /* Else place in bin */ | |
1405 | ||
1406 | frontlink(victim, victim_size, remainder_index, bck, fwd); | |
1407 | } | |
1408 | ||
1409 | /* | |
1410 | If there are any possibly nonempty big-enough blocks, | |
1411 | search for best fitting chunk by scanning bins in blockwidth units. | |
1412 | */ | |
1413 | ||
f2302d44 | 1414 | if ( (block = idx2binblock(idx)) <= binblocks_r) |
217c9dad WD |
1415 | { |
1416 | ||
1417 | /* Get to the first marked block */ | |
1418 | ||
f2302d44 | 1419 | if ( (block & binblocks_r) == 0) |
217c9dad WD |
1420 | { |
1421 | /* force to an even block boundary */ | |
1422 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; | |
1423 | block <<= 1; | |
f2302d44 | 1424 | while ((block & binblocks_r) == 0) |
217c9dad | 1425 | { |
8bde7f77 WD |
1426 | idx += BINBLOCKWIDTH; |
1427 | block <<= 1; | |
217c9dad WD |
1428 | } |
1429 | } | |
1430 | ||
1431 | /* For each possibly nonempty block ... */ | |
1432 | for (;;) | |
1433 | { | |
1434 | startidx = idx; /* (track incomplete blocks) */ | |
1435 | q = bin = bin_at(idx); | |
1436 | ||
1437 | /* For each bin in this block ... */ | |
1438 | do | |
1439 | { | |
8bde7f77 WD |
1440 | /* Find and use first big enough chunk ... */ |
1441 | ||
1442 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
1443 | { | |
1444 | victim_size = chunksize(victim); | |
1445 | remainder_size = victim_size - nb; | |
1446 | ||
1447 | if (remainder_size >= (long)MINSIZE) /* split */ | |
1448 | { | |
1449 | remainder = chunk_at_offset(victim, nb); | |
1450 | set_head(victim, nb | PREV_INUSE); | |
1451 | unlink(victim, bck, fwd); | |
1452 | link_last_remainder(remainder); | |
1453 | set_head(remainder, remainder_size | PREV_INUSE); | |
1454 | set_foot(remainder, remainder_size); | |
1455 | check_malloced_chunk(victim, nb); | |
1456 | return chunk2mem(victim); | |
1457 | } | |
1458 | ||
1459 | else if (remainder_size >= 0) /* take */ | |
1460 | { | |
1461 | set_inuse_bit_at_offset(victim, victim_size); | |
1462 | unlink(victim, bck, fwd); | |
1463 | check_malloced_chunk(victim, nb); | |
1464 | return chunk2mem(victim); | |
1465 | } | |
1466 | ||
1467 | } | |
217c9dad WD |
1468 | |
1469 | bin = next_bin(bin); | |
1470 | ||
1471 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); | |
1472 | ||
1473 | /* Clear out the block bit. */ | |
1474 | ||
1475 | do /* Possibly backtrack to try to clear a partial block */ | |
1476 | { | |
8bde7f77 WD |
1477 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
1478 | { | |
f2302d44 | 1479 | av_[1] = (mbinptr)(binblocks_r & ~block); |
8bde7f77 WD |
1480 | break; |
1481 | } | |
1482 | --startidx; | |
217c9dad WD |
1483 | q = prev_bin(q); |
1484 | } while (first(q) == q); | |
1485 | ||
1486 | /* Get to the next possibly nonempty block */ | |
1487 | ||
f2302d44 | 1488 | if ( (block <<= 1) <= binblocks_r && (block != 0) ) |
217c9dad | 1489 | { |
f2302d44 | 1490 | while ((block & binblocks_r) == 0) |
8bde7f77 WD |
1491 | { |
1492 | idx += BINBLOCKWIDTH; | |
1493 | block <<= 1; | |
1494 | } | |
217c9dad WD |
1495 | } |
1496 | else | |
8bde7f77 | 1497 | break; |
217c9dad WD |
1498 | } |
1499 | } | |
1500 | ||
1501 | ||
1502 | /* Try to use top chunk */ | |
1503 | ||
1504 | /* Require that there be a remainder, ensuring top always exists */ | |
1505 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
1506 | { | |
1507 | ||
1508 | #if HAVE_MMAP | |
1509 | /* If big and would otherwise need to extend, try to use mmap instead */ | |
1510 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && | |
a874cac3 | 1511 | (victim = mmap_chunk(nb))) |
217c9dad WD |
1512 | return chunk2mem(victim); |
1513 | #endif | |
1514 | ||
1515 | /* Try to extend */ | |
1516 | malloc_extend_top(nb); | |
1517 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
199adb60 | 1518 | return NULL; /* propagate failure */ |
217c9dad WD |
1519 | } |
1520 | ||
1521 | victim = top; | |
1522 | set_head(victim, nb | PREV_INUSE); | |
1523 | top = chunk_at_offset(victim, nb); | |
1524 | set_head(top, remainder_size | PREV_INUSE); | |
1525 | check_malloced_chunk(victim, nb); | |
1526 | return chunk2mem(victim); | |
1527 | ||
1528 | } | |
1529 | ||
1530 | ||
d93041a4 | 1531 | |
217c9dad WD |
1532 | |
1533 | /* | |
1534 | ||
1535 | free() algorithm : | |
1536 | ||
1537 | cases: | |
1538 | ||
1539 | 1. free(0) has no effect. | |
1540 | ||
1541 | 2. If the chunk was allocated via mmap, it is release via munmap(). | |
1542 | ||
1543 | 3. If a returned chunk borders the current high end of memory, | |
8bde7f77 WD |
1544 | it is consolidated into the top, and if the total unused |
1545 | topmost memory exceeds the trim threshold, malloc_trim is | |
1546 | called. | |
217c9dad WD |
1547 | |
1548 | 4. Other chunks are consolidated as they arrive, and | |
8bde7f77 WD |
1549 | placed in corresponding bins. (This includes the case of |
1550 | consolidating with the current `last_remainder'). | |
217c9dad WD |
1551 | |
1552 | */ | |
1553 | ||
1554 | ||
1555 | #if __STD_C | |
1556 | void fREe(Void_t* mem) | |
1557 | #else | |
1558 | void fREe(mem) Void_t* mem; | |
1559 | #endif | |
1560 | { | |
1561 | mchunkptr p; /* chunk corresponding to mem */ | |
1562 | INTERNAL_SIZE_T hd; /* its head field */ | |
1563 | INTERNAL_SIZE_T sz; /* its size */ | |
1564 | int idx; /* its bin index */ | |
1565 | mchunkptr next; /* next contiguous chunk */ | |
1566 | INTERNAL_SIZE_T nextsz; /* its size */ | |
1567 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ | |
1568 | mchunkptr bck; /* misc temp for linking */ | |
1569 | mchunkptr fwd; /* misc temp for linking */ | |
1570 | int islr; /* track whether merging with last_remainder */ | |
1571 | ||
f1896c45 | 1572 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
d59476b6 | 1573 | /* free() is a no-op - all the memory will be freed on relocation */ |
c9356be3 | 1574 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
d59476b6 SG |
1575 | return; |
1576 | #endif | |
1577 | ||
199adb60 | 1578 | if (mem == NULL) /* free(0) has no effect */ |
217c9dad WD |
1579 | return; |
1580 | ||
1581 | p = mem2chunk(mem); | |
1582 | hd = p->size; | |
1583 | ||
1584 | #if HAVE_MMAP | |
1585 | if (hd & IS_MMAPPED) /* release mmapped memory. */ | |
1586 | { | |
1587 | munmap_chunk(p); | |
1588 | return; | |
1589 | } | |
1590 | #endif | |
1591 | ||
1592 | check_inuse_chunk(p); | |
1593 | ||
1594 | sz = hd & ~PREV_INUSE; | |
1595 | next = chunk_at_offset(p, sz); | |
1596 | nextsz = chunksize(next); | |
1597 | ||
1598 | if (next == top) /* merge with top */ | |
1599 | { | |
1600 | sz += nextsz; | |
1601 | ||
1602 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
1603 | { | |
1604 | prevsz = p->prev_size; | |
1605 | p = chunk_at_offset(p, -((long) prevsz)); | |
1606 | sz += prevsz; | |
1607 | unlink(p, bck, fwd); | |
1608 | } | |
1609 | ||
1610 | set_head(p, sz | PREV_INUSE); | |
1611 | top = p; | |
1612 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) | |
1613 | malloc_trim(top_pad); | |
1614 | return; | |
1615 | } | |
1616 | ||
1617 | set_head(next, nextsz); /* clear inuse bit */ | |
1618 | ||
1619 | islr = 0; | |
1620 | ||
1621 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
1622 | { | |
1623 | prevsz = p->prev_size; | |
1624 | p = chunk_at_offset(p, -((long) prevsz)); | |
1625 | sz += prevsz; | |
1626 | ||
1627 | if (p->fd == last_remainder) /* keep as last_remainder */ | |
1628 | islr = 1; | |
1629 | else | |
1630 | unlink(p, bck, fwd); | |
1631 | } | |
1632 | ||
1633 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ | |
1634 | { | |
1635 | sz += nextsz; | |
1636 | ||
1637 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ | |
1638 | { | |
1639 | islr = 1; | |
1640 | link_last_remainder(p); | |
1641 | } | |
1642 | else | |
1643 | unlink(next, bck, fwd); | |
1644 | } | |
1645 | ||
1646 | ||
1647 | set_head(p, sz | PREV_INUSE); | |
1648 | set_foot(p, sz); | |
1649 | if (!islr) | |
1650 | frontlink(p, sz, idx, bck, fwd); | |
1651 | } | |
1652 | ||
1653 | ||
d93041a4 | 1654 | |
217c9dad WD |
1655 | |
1656 | ||
1657 | /* | |
1658 | ||
1659 | Realloc algorithm: | |
1660 | ||
1661 | Chunks that were obtained via mmap cannot be extended or shrunk | |
1662 | unless HAVE_MREMAP is defined, in which case mremap is used. | |
1663 | Otherwise, if their reallocation is for additional space, they are | |
1664 | copied. If for less, they are just left alone. | |
1665 | ||
1666 | Otherwise, if the reallocation is for additional space, and the | |
1667 | chunk can be extended, it is, else a malloc-copy-free sequence is | |
1668 | taken. There are several different ways that a chunk could be | |
1669 | extended. All are tried: | |
1670 | ||
1671 | * Extending forward into following adjacent free chunk. | |
1672 | * Shifting backwards, joining preceding adjacent space | |
1673 | * Both shifting backwards and extending forward. | |
1674 | * Extending into newly sbrked space | |
1675 | ||
1676 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a | |
1677 | size argument of zero (re)allocates a minimum-sized chunk. | |
1678 | ||
1679 | If the reallocation is for less space, and the new request is for | |
1680 | a `small' (<512 bytes) size, then the newly unused space is lopped | |
1681 | off and freed. | |
1682 | ||
1683 | The old unix realloc convention of allowing the last-free'd chunk | |
1684 | to be used as an argument to realloc is no longer supported. | |
1685 | I don't know of any programs still relying on this feature, | |
1686 | and allowing it would also allow too many other incorrect | |
1687 | usages of realloc to be sensible. | |
1688 | ||
1689 | ||
1690 | */ | |
1691 | ||
1692 | ||
1693 | #if __STD_C | |
1694 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) | |
1695 | #else | |
1696 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; | |
1697 | #endif | |
1698 | { | |
1699 | INTERNAL_SIZE_T nb; /* padded request size */ | |
1700 | ||
1701 | mchunkptr oldp; /* chunk corresponding to oldmem */ | |
1702 | INTERNAL_SIZE_T oldsize; /* its size */ | |
1703 | ||
1704 | mchunkptr newp; /* chunk to return */ | |
1705 | INTERNAL_SIZE_T newsize; /* its size */ | |
1706 | Void_t* newmem; /* corresponding user mem */ | |
1707 | ||
1708 | mchunkptr next; /* next contiguous chunk after oldp */ | |
1709 | INTERNAL_SIZE_T nextsize; /* its size */ | |
1710 | ||
1711 | mchunkptr prev; /* previous contiguous chunk before oldp */ | |
1712 | INTERNAL_SIZE_T prevsize; /* its size */ | |
1713 | ||
1714 | mchunkptr remainder; /* holds split off extra space from newp */ | |
1715 | INTERNAL_SIZE_T remainder_size; /* its size */ | |
1716 | ||
1717 | mchunkptr bck; /* misc temp for linking */ | |
1718 | mchunkptr fwd; /* misc temp for linking */ | |
1719 | ||
1720 | #ifdef REALLOC_ZERO_BYTES_FREES | |
a874cac3 HS |
1721 | if (!bytes) { |
1722 | fREe(oldmem); | |
1723 | return NULL; | |
1724 | } | |
217c9dad WD |
1725 | #endif |
1726 | ||
199adb60 | 1727 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
1728 | |
1729 | /* realloc of null is supposed to be same as malloc */ | |
199adb60 | 1730 | if (oldmem == NULL) return mALLOc(bytes); |
217c9dad | 1731 | |
f1896c45 | 1732 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
c9356be3 | 1733 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
d59476b6 SG |
1734 | /* This is harder to support and should not be needed */ |
1735 | panic("pre-reloc realloc() is not supported"); | |
1736 | } | |
1737 | #endif | |
1738 | ||
217c9dad WD |
1739 | newp = oldp = mem2chunk(oldmem); |
1740 | newsize = oldsize = chunksize(oldp); | |
1741 | ||
1742 | ||
1743 | nb = request2size(bytes); | |
1744 | ||
1745 | #if HAVE_MMAP | |
1746 | if (chunk_is_mmapped(oldp)) | |
1747 | { | |
1748 | #if HAVE_MREMAP | |
1749 | newp = mremap_chunk(oldp, nb); | |
1750 | if(newp) return chunk2mem(newp); | |
1751 | #endif | |
1752 | /* Note the extra SIZE_SZ overhead. */ | |
1753 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ | |
1754 | /* Must alloc, copy, free. */ | |
1755 | newmem = mALLOc(bytes); | |
a874cac3 HS |
1756 | if (!newmem) |
1757 | return NULL; /* propagate failure */ | |
217c9dad WD |
1758 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); |
1759 | munmap_chunk(oldp); | |
1760 | return newmem; | |
1761 | } | |
1762 | #endif | |
1763 | ||
1764 | check_inuse_chunk(oldp); | |
1765 | ||
1766 | if ((long)(oldsize) < (long)(nb)) | |
1767 | { | |
1768 | ||
1769 | /* Try expanding forward */ | |
1770 | ||
1771 | next = chunk_at_offset(oldp, oldsize); | |
1772 | if (next == top || !inuse(next)) | |
1773 | { | |
1774 | nextsize = chunksize(next); | |
1775 | ||
1776 | /* Forward into top only if a remainder */ | |
1777 | if (next == top) | |
1778 | { | |
8bde7f77 WD |
1779 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
1780 | { | |
1781 | newsize += nextsize; | |
1782 | top = chunk_at_offset(oldp, nb); | |
1783 | set_head(top, (newsize - nb) | PREV_INUSE); | |
1784 | set_head_size(oldp, nb); | |
1785 | return chunk2mem(oldp); | |
1786 | } | |
217c9dad WD |
1787 | } |
1788 | ||
1789 | /* Forward into next chunk */ | |
1790 | else if (((long)(nextsize + newsize) >= (long)(nb))) | |
1791 | { | |
8bde7f77 WD |
1792 | unlink(next, bck, fwd); |
1793 | newsize += nextsize; | |
1794 | goto split; | |
217c9dad WD |
1795 | } |
1796 | } | |
1797 | else | |
1798 | { | |
199adb60 | 1799 | next = NULL; |
217c9dad WD |
1800 | nextsize = 0; |
1801 | } | |
1802 | ||
1803 | /* Try shifting backwards. */ | |
1804 | ||
1805 | if (!prev_inuse(oldp)) | |
1806 | { | |
1807 | prev = prev_chunk(oldp); | |
1808 | prevsize = chunksize(prev); | |
1809 | ||
1810 | /* try forward + backward first to save a later consolidation */ | |
1811 | ||
199adb60 | 1812 | if (next != NULL) |
217c9dad | 1813 | { |
8bde7f77 WD |
1814 | /* into top */ |
1815 | if (next == top) | |
1816 | { | |
1817 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) | |
1818 | { | |
1819 | unlink(prev, bck, fwd); | |
1820 | newp = prev; | |
1821 | newsize += prevsize + nextsize; | |
1822 | newmem = chunk2mem(newp); | |
1823 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1824 | top = chunk_at_offset(newp, nb); | |
1825 | set_head(top, (newsize - nb) | PREV_INUSE); | |
1826 | set_head_size(newp, nb); | |
1827 | return newmem; | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | /* into next chunk */ | |
1832 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) | |
1833 | { | |
1834 | unlink(next, bck, fwd); | |
1835 | unlink(prev, bck, fwd); | |
1836 | newp = prev; | |
1837 | newsize += nextsize + prevsize; | |
1838 | newmem = chunk2mem(newp); | |
1839 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1840 | goto split; | |
1841 | } | |
217c9dad WD |
1842 | } |
1843 | ||
1844 | /* backward only */ | |
199adb60 | 1845 | if (prev != NULL && (long)(prevsize + newsize) >= (long)nb) |
217c9dad | 1846 | { |
8bde7f77 WD |
1847 | unlink(prev, bck, fwd); |
1848 | newp = prev; | |
1849 | newsize += prevsize; | |
1850 | newmem = chunk2mem(newp); | |
1851 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1852 | goto split; | |
217c9dad WD |
1853 | } |
1854 | } | |
1855 | ||
1856 | /* Must allocate */ | |
1857 | ||
1858 | newmem = mALLOc (bytes); | |
1859 | ||
199adb60 KP |
1860 | if (newmem == NULL) /* propagate failure */ |
1861 | return NULL; | |
217c9dad WD |
1862 | |
1863 | /* Avoid copy if newp is next chunk after oldp. */ | |
1864 | /* (This can only happen when new chunk is sbrk'ed.) */ | |
1865 | ||
1866 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) | |
1867 | { | |
1868 | newsize += chunksize(newp); | |
1869 | newp = oldp; | |
1870 | goto split; | |
1871 | } | |
1872 | ||
1873 | /* Otherwise copy, free, and exit */ | |
1874 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1875 | fREe(oldmem); | |
1876 | return newmem; | |
1877 | } | |
1878 | ||
1879 | ||
1880 | split: /* split off extra room in old or expanded chunk */ | |
1881 | ||
1882 | if (newsize - nb >= MINSIZE) /* split off remainder */ | |
1883 | { | |
1884 | remainder = chunk_at_offset(newp, nb); | |
1885 | remainder_size = newsize - nb; | |
1886 | set_head_size(newp, nb); | |
1887 | set_head(remainder, remainder_size | PREV_INUSE); | |
1888 | set_inuse_bit_at_offset(remainder, remainder_size); | |
1889 | fREe(chunk2mem(remainder)); /* let free() deal with it */ | |
1890 | } | |
1891 | else | |
1892 | { | |
1893 | set_head_size(newp, newsize); | |
1894 | set_inuse_bit_at_offset(newp, newsize); | |
1895 | } | |
1896 | ||
1897 | check_inuse_chunk(newp); | |
1898 | return chunk2mem(newp); | |
1899 | } | |
1900 | ||
1901 | ||
d93041a4 | 1902 | |
217c9dad WD |
1903 | |
1904 | /* | |
1905 | ||
1906 | memalign algorithm: | |
1907 | ||
1908 | memalign requests more than enough space from malloc, finds a spot | |
1909 | within that chunk that meets the alignment request, and then | |
1910 | possibly frees the leading and trailing space. | |
1911 | ||
1912 | The alignment argument must be a power of two. This property is not | |
1913 | checked by memalign, so misuse may result in random runtime errors. | |
1914 | ||
1915 | 8-byte alignment is guaranteed by normal malloc calls, so don't | |
1916 | bother calling memalign with an argument of 8 or less. | |
1917 | ||
1918 | Overreliance on memalign is a sure way to fragment space. | |
1919 | ||
1920 | */ | |
1921 | ||
1922 | ||
1923 | #if __STD_C | |
1924 | Void_t* mEMALIGn(size_t alignment, size_t bytes) | |
1925 | #else | |
1926 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; | |
1927 | #endif | |
1928 | { | |
1929 | INTERNAL_SIZE_T nb; /* padded request size */ | |
1930 | char* m; /* memory returned by malloc call */ | |
1931 | mchunkptr p; /* corresponding chunk */ | |
1932 | char* brk; /* alignment point within p */ | |
1933 | mchunkptr newp; /* chunk to return */ | |
1934 | INTERNAL_SIZE_T newsize; /* its size */ | |
1935 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ | |
1936 | mchunkptr remainder; /* spare room at end to split off */ | |
1937 | long remainder_size; /* its size */ | |
1938 | ||
199adb60 | 1939 | if ((long)bytes < 0) return NULL; |
217c9dad | 1940 | |
ee038c58 LFT |
1941 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
1942 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { | |
4c6be01c | 1943 | return memalign_simple(alignment, bytes); |
ee038c58 LFT |
1944 | } |
1945 | #endif | |
1946 | ||
217c9dad WD |
1947 | /* If need less alignment than we give anyway, just relay to malloc */ |
1948 | ||
1949 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); | |
1950 | ||
1951 | /* Otherwise, ensure that it is at least a minimum chunk size */ | |
1952 | ||
1953 | if (alignment < MINSIZE) alignment = MINSIZE; | |
1954 | ||
1955 | /* Call malloc with worst case padding to hit alignment. */ | |
1956 | ||
1957 | nb = request2size(bytes); | |
1958 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); | |
1959 | ||
4f144a41 SW |
1960 | /* |
1961 | * The attempt to over-allocate (with a size large enough to guarantee the | |
1962 | * ability to find an aligned region within allocated memory) failed. | |
1963 | * | |
1964 | * Try again, this time only allocating exactly the size the user wants. If | |
1965 | * the allocation now succeeds and just happens to be aligned, we can still | |
1966 | * fulfill the user's request. | |
1967 | */ | |
1968 | if (m == NULL) { | |
034eda86 | 1969 | size_t extra, extra2; |
4f144a41 SW |
1970 | /* |
1971 | * Use bytes not nb, since mALLOc internally calls request2size too, and | |
1972 | * each call increases the size to allocate, to account for the header. | |
1973 | */ | |
1974 | m = (char*)(mALLOc(bytes)); | |
1975 | /* Aligned -> return it */ | |
1976 | if ((((unsigned long)(m)) % alignment) == 0) | |
1977 | return m; | |
034eda86 SW |
1978 | /* |
1979 | * Otherwise, try again, requesting enough extra space to be able to | |
1980 | * acquire alignment. | |
1981 | */ | |
4f144a41 | 1982 | fREe(m); |
034eda86 SW |
1983 | /* Add in extra bytes to match misalignment of unexpanded allocation */ |
1984 | extra = alignment - (((unsigned long)(m)) % alignment); | |
1985 | m = (char*)(mALLOc(bytes + extra)); | |
1986 | /* | |
1987 | * m might not be the same as before. Validate that the previous value of | |
1988 | * extra still works for the current value of m. | |
1989 | * If (!m), extra2=alignment so | |
1990 | */ | |
1991 | if (m) { | |
1992 | extra2 = alignment - (((unsigned long)(m)) % alignment); | |
1993 | if (extra2 > extra) { | |
1994 | fREe(m); | |
1995 | m = NULL; | |
1996 | } | |
1997 | } | |
1998 | /* Fall through to original NULL check and chunk splitting logic */ | |
4f144a41 SW |
1999 | } |
2000 | ||
199adb60 | 2001 | if (m == NULL) return NULL; /* propagate failure */ |
217c9dad WD |
2002 | |
2003 | p = mem2chunk(m); | |
2004 | ||
2005 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ | |
2006 | { | |
2007 | #if HAVE_MMAP | |
2008 | if(chunk_is_mmapped(p)) | |
2009 | return chunk2mem(p); /* nothing more to do */ | |
2010 | #endif | |
2011 | } | |
2012 | else /* misaligned */ | |
2013 | { | |
2014 | /* | |
2015 | Find an aligned spot inside chunk. | |
2016 | Since we need to give back leading space in a chunk of at | |
2017 | least MINSIZE, if the first calculation places us at | |
2018 | a spot with less than MINSIZE leader, we can move to the | |
2019 | next aligned spot -- we've allocated enough total room so that | |
2020 | this is always possible. | |
2021 | */ | |
2022 | ||
2023 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); | |
2024 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; | |
2025 | ||
2026 | newp = (mchunkptr)brk; | |
2027 | leadsize = brk - (char*)(p); | |
2028 | newsize = chunksize(p) - leadsize; | |
2029 | ||
2030 | #if HAVE_MMAP | |
2031 | if(chunk_is_mmapped(p)) | |
2032 | { | |
2033 | newp->prev_size = p->prev_size + leadsize; | |
2034 | set_head(newp, newsize|IS_MMAPPED); | |
2035 | return chunk2mem(newp); | |
2036 | } | |
2037 | #endif | |
2038 | ||
2039 | /* give back leader, use the rest */ | |
2040 | ||
2041 | set_head(newp, newsize | PREV_INUSE); | |
2042 | set_inuse_bit_at_offset(newp, newsize); | |
2043 | set_head_size(p, leadsize); | |
2044 | fREe(chunk2mem(p)); | |
2045 | p = newp; | |
2046 | ||
2047 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); | |
2048 | } | |
2049 | ||
2050 | /* Also give back spare room at the end */ | |
2051 | ||
2052 | remainder_size = chunksize(p) - nb; | |
2053 | ||
2054 | if (remainder_size >= (long)MINSIZE) | |
2055 | { | |
2056 | remainder = chunk_at_offset(p, nb); | |
2057 | set_head(remainder, remainder_size | PREV_INUSE); | |
2058 | set_head_size(p, nb); | |
2059 | fREe(chunk2mem(remainder)); | |
2060 | } | |
2061 | ||
2062 | check_inuse_chunk(p); | |
2063 | return chunk2mem(p); | |
2064 | ||
2065 | } | |
2066 | ||
d93041a4 | 2067 | |
217c9dad WD |
2068 | |
2069 | ||
2070 | /* | |
2071 | valloc just invokes memalign with alignment argument equal | |
2072 | to the page size of the system (or as near to this as can | |
2073 | be figured out from all the includes/defines above.) | |
2074 | */ | |
2075 | ||
2076 | #if __STD_C | |
2077 | Void_t* vALLOc(size_t bytes) | |
2078 | #else | |
2079 | Void_t* vALLOc(bytes) size_t bytes; | |
2080 | #endif | |
2081 | { | |
2082 | return mEMALIGn (malloc_getpagesize, bytes); | |
2083 | } | |
2084 | ||
2085 | /* | |
2086 | pvalloc just invokes valloc for the nearest pagesize | |
2087 | that will accommodate request | |
2088 | */ | |
2089 | ||
2090 | ||
2091 | #if __STD_C | |
2092 | Void_t* pvALLOc(size_t bytes) | |
2093 | #else | |
2094 | Void_t* pvALLOc(bytes) size_t bytes; | |
2095 | #endif | |
2096 | { | |
2097 | size_t pagesize = malloc_getpagesize; | |
2098 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); | |
2099 | } | |
2100 | ||
2101 | /* | |
2102 | ||
2103 | calloc calls malloc, then zeroes out the allocated chunk. | |
2104 | ||
2105 | */ | |
2106 | ||
2107 | #if __STD_C | |
2108 | Void_t* cALLOc(size_t n, size_t elem_size) | |
2109 | #else | |
2110 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; | |
2111 | #endif | |
2112 | { | |
2113 | mchunkptr p; | |
2114 | INTERNAL_SIZE_T csz; | |
2115 | ||
2116 | INTERNAL_SIZE_T sz = n * elem_size; | |
2117 | ||
2118 | ||
2119 | /* check if expand_top called, in which case don't need to clear */ | |
0aa8a4ad | 2120 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2121 | #if MORECORE_CLEARS |
2122 | mchunkptr oldtop = top; | |
2123 | INTERNAL_SIZE_T oldtopsize = chunksize(top); | |
0aa8a4ad | 2124 | #endif |
217c9dad WD |
2125 | #endif |
2126 | Void_t* mem = mALLOc (sz); | |
2127 | ||
199adb60 | 2128 | if ((long)n < 0) return NULL; |
217c9dad | 2129 | |
199adb60 KP |
2130 | if (mem == NULL) |
2131 | return NULL; | |
217c9dad WD |
2132 | else |
2133 | { | |
f1896c45 | 2134 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
c9356be3 | 2135 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
bb71a2d9 | 2136 | memset(mem, 0, sz); |
d59476b6 SG |
2137 | return mem; |
2138 | } | |
2139 | #endif | |
217c9dad WD |
2140 | p = mem2chunk(mem); |
2141 | ||
2142 | /* Two optional cases in which clearing not necessary */ | |
2143 | ||
2144 | ||
2145 | #if HAVE_MMAP | |
2146 | if (chunk_is_mmapped(p)) return mem; | |
2147 | #endif | |
2148 | ||
2149 | csz = chunksize(p); | |
2150 | ||
0aa8a4ad | 2151 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2152 | #if MORECORE_CLEARS |
2153 | if (p == oldtop && csz > oldtopsize) | |
2154 | { | |
2155 | /* clear only the bytes from non-freshly-sbrked memory */ | |
2156 | csz = oldtopsize; | |
2157 | } | |
0aa8a4ad | 2158 | #endif |
217c9dad WD |
2159 | #endif |
2160 | ||
2161 | MALLOC_ZERO(mem, csz - SIZE_SZ); | |
2162 | return mem; | |
2163 | } | |
2164 | } | |
2165 | ||
2166 | /* | |
2167 | ||
2168 | cfree just calls free. It is needed/defined on some systems | |
2169 | that pair it with calloc, presumably for odd historical reasons. | |
2170 | ||
2171 | */ | |
2172 | ||
2173 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) | |
2174 | #if __STD_C | |
2175 | void cfree(Void_t *mem) | |
2176 | #else | |
2177 | void cfree(mem) Void_t *mem; | |
2178 | #endif | |
2179 | { | |
2180 | fREe(mem); | |
2181 | } | |
2182 | #endif | |
2183 | ||
d93041a4 | 2184 | |
217c9dad WD |
2185 | |
2186 | /* | |
2187 | ||
2188 | Malloc_trim gives memory back to the system (via negative | |
2189 | arguments to sbrk) if there is unused memory at the `high' end of | |
2190 | the malloc pool. You can call this after freeing large blocks of | |
2191 | memory to potentially reduce the system-level memory requirements | |
2192 | of a program. However, it cannot guarantee to reduce memory. Under | |
2193 | some allocation patterns, some large free blocks of memory will be | |
2194 | locked between two used chunks, so they cannot be given back to | |
2195 | the system. | |
2196 | ||
2197 | The `pad' argument to malloc_trim represents the amount of free | |
2198 | trailing space to leave untrimmed. If this argument is zero, | |
2199 | only the minimum amount of memory to maintain internal data | |
2200 | structures will be left (one page or less). Non-zero arguments | |
2201 | can be supplied to maintain enough trailing space to service | |
2202 | future expected allocations without having to re-obtain memory | |
2203 | from the system. | |
2204 | ||
2205 | Malloc_trim returns 1 if it actually released any memory, else 0. | |
2206 | ||
2207 | */ | |
2208 | ||
2209 | #if __STD_C | |
2210 | int malloc_trim(size_t pad) | |
2211 | #else | |
2212 | int malloc_trim(pad) size_t pad; | |
2213 | #endif | |
2214 | { | |
2215 | long top_size; /* Amount of top-most memory */ | |
2216 | long extra; /* Amount to release */ | |
2217 | char* current_brk; /* address returned by pre-check sbrk call */ | |
2218 | char* new_brk; /* address returned by negative sbrk call */ | |
2219 | ||
2220 | unsigned long pagesz = malloc_getpagesize; | |
2221 | ||
2222 | top_size = chunksize(top); | |
2223 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; | |
2224 | ||
2225 | if (extra < (long)pagesz) /* Not enough memory to release */ | |
2226 | return 0; | |
2227 | ||
2228 | else | |
2229 | { | |
2230 | /* Test to make sure no one else called sbrk */ | |
2231 | current_brk = (char*)(MORECORE (0)); | |
2232 | if (current_brk != (char*)(top) + top_size) | |
2233 | return 0; /* Apparently we don't own memory; must fail */ | |
2234 | ||
2235 | else | |
2236 | { | |
2237 | new_brk = (char*)(MORECORE (-extra)); | |
2238 | ||
2239 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ | |
2240 | { | |
8bde7f77 WD |
2241 | /* Try to figure out what we have */ |
2242 | current_brk = (char*)(MORECORE (0)); | |
2243 | top_size = current_brk - (char*)top; | |
2244 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ | |
2245 | { | |
2246 | sbrked_mem = current_brk - sbrk_base; | |
2247 | set_head(top, top_size | PREV_INUSE); | |
2248 | } | |
2249 | check_chunk(top); | |
2250 | return 0; | |
217c9dad WD |
2251 | } |
2252 | ||
2253 | else | |
2254 | { | |
8bde7f77 WD |
2255 | /* Success. Adjust top accordingly. */ |
2256 | set_head(top, (top_size - extra) | PREV_INUSE); | |
2257 | sbrked_mem -= extra; | |
2258 | check_chunk(top); | |
2259 | return 1; | |
217c9dad WD |
2260 | } |
2261 | } | |
2262 | } | |
2263 | } | |
2264 | ||
d93041a4 | 2265 | |
217c9dad WD |
2266 | |
2267 | /* | |
2268 | malloc_usable_size: | |
2269 | ||
2270 | This routine tells you how many bytes you can actually use in an | |
2271 | allocated chunk, which may be more than you requested (although | |
2272 | often not). You can use this many bytes without worrying about | |
2273 | overwriting other allocated objects. Not a particularly great | |
2274 | programming practice, but still sometimes useful. | |
2275 | ||
2276 | */ | |
2277 | ||
2278 | #if __STD_C | |
2279 | size_t malloc_usable_size(Void_t* mem) | |
2280 | #else | |
2281 | size_t malloc_usable_size(mem) Void_t* mem; | |
2282 | #endif | |
2283 | { | |
2284 | mchunkptr p; | |
199adb60 | 2285 | if (mem == NULL) |
217c9dad WD |
2286 | return 0; |
2287 | else | |
2288 | { | |
2289 | p = mem2chunk(mem); | |
2290 | if(!chunk_is_mmapped(p)) | |
2291 | { | |
2292 | if (!inuse(p)) return 0; | |
2293 | check_inuse_chunk(p); | |
2294 | return chunksize(p) - SIZE_SZ; | |
2295 | } | |
2296 | return chunksize(p) - 2*SIZE_SZ; | |
2297 | } | |
2298 | } | |
2299 | ||
2300 | ||
d93041a4 | 2301 | |
217c9dad WD |
2302 | |
2303 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ | |
2304 | ||
ea882baf | 2305 | #ifdef DEBUG |
217c9dad WD |
2306 | static void malloc_update_mallinfo() |
2307 | { | |
2308 | int i; | |
2309 | mbinptr b; | |
2310 | mchunkptr p; | |
2311 | #ifdef DEBUG | |
2312 | mchunkptr q; | |
2313 | #endif | |
2314 | ||
2315 | INTERNAL_SIZE_T avail = chunksize(top); | |
2316 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; | |
2317 | ||
2318 | for (i = 1; i < NAV; ++i) | |
2319 | { | |
2320 | b = bin_at(i); | |
2321 | for (p = last(b); p != b; p = p->bk) | |
2322 | { | |
2323 | #ifdef DEBUG | |
2324 | check_free_chunk(p); | |
2325 | for (q = next_chunk(p); | |
8bde7f77 WD |
2326 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
2327 | q = next_chunk(q)) | |
2328 | check_inuse_chunk(q); | |
217c9dad WD |
2329 | #endif |
2330 | avail += chunksize(p); | |
2331 | navail++; | |
2332 | } | |
2333 | } | |
2334 | ||
2335 | current_mallinfo.ordblks = navail; | |
2336 | current_mallinfo.uordblks = sbrked_mem - avail; | |
2337 | current_mallinfo.fordblks = avail; | |
2338 | current_mallinfo.hblks = n_mmaps; | |
2339 | current_mallinfo.hblkhd = mmapped_mem; | |
2340 | current_mallinfo.keepcost = chunksize(top); | |
2341 | ||
2342 | } | |
ea882baf | 2343 | #endif /* DEBUG */ |
217c9dad | 2344 | |
d93041a4 | 2345 | |
217c9dad WD |
2346 | |
2347 | /* | |
2348 | ||
2349 | malloc_stats: | |
2350 | ||
2351 | Prints on the amount of space obtain from the system (both | |
2352 | via sbrk and mmap), the maximum amount (which may be more than | |
2353 | current if malloc_trim and/or munmap got called), the maximum | |
2354 | number of simultaneous mmap regions used, and the current number | |
2355 | of bytes allocated via malloc (or realloc, etc) but not yet | |
2356 | freed. (Note that this is the number of bytes allocated, not the | |
2357 | number requested. It will be larger than the number requested | |
2358 | because of alignment and bookkeeping overhead.) | |
2359 | ||
2360 | */ | |
2361 | ||
ea882baf | 2362 | #ifdef DEBUG |
217c9dad WD |
2363 | void malloc_stats() |
2364 | { | |
2365 | malloc_update_mallinfo(); | |
2366 | printf("max system bytes = %10u\n", | |
8bde7f77 | 2367 | (unsigned int)(max_total_mem)); |
217c9dad | 2368 | printf("system bytes = %10u\n", |
8bde7f77 | 2369 | (unsigned int)(sbrked_mem + mmapped_mem)); |
217c9dad | 2370 | printf("in use bytes = %10u\n", |
8bde7f77 | 2371 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
217c9dad WD |
2372 | #if HAVE_MMAP |
2373 | printf("max mmap regions = %10u\n", | |
8bde7f77 | 2374 | (unsigned int)max_n_mmaps); |
217c9dad WD |
2375 | #endif |
2376 | } | |
ea882baf | 2377 | #endif /* DEBUG */ |
217c9dad WD |
2378 | |
2379 | /* | |
2380 | mallinfo returns a copy of updated current mallinfo. | |
2381 | */ | |
2382 | ||
ea882baf | 2383 | #ifdef DEBUG |
217c9dad WD |
2384 | struct mallinfo mALLINFo() |
2385 | { | |
2386 | malloc_update_mallinfo(); | |
2387 | return current_mallinfo; | |
2388 | } | |
ea882baf | 2389 | #endif /* DEBUG */ |
217c9dad WD |
2390 | |
2391 | ||
d93041a4 | 2392 | |
217c9dad WD |
2393 | |
2394 | /* | |
2395 | mallopt: | |
2396 | ||
2397 | mallopt is the general SVID/XPG interface to tunable parameters. | |
2398 | The format is to provide a (parameter-number, parameter-value) pair. | |
2399 | mallopt then sets the corresponding parameter to the argument | |
2400 | value if it can (i.e., so long as the value is meaningful), | |
2401 | and returns 1 if successful else 0. | |
2402 | ||
2403 | See descriptions of tunable parameters above. | |
2404 | ||
2405 | */ | |
2406 | ||
2407 | #if __STD_C | |
2408 | int mALLOPt(int param_number, int value) | |
2409 | #else | |
2410 | int mALLOPt(param_number, value) int param_number; int value; | |
2411 | #endif | |
2412 | { | |
2413 | switch(param_number) | |
2414 | { | |
2415 | case M_TRIM_THRESHOLD: | |
2416 | trim_threshold = value; return 1; | |
2417 | case M_TOP_PAD: | |
2418 | top_pad = value; return 1; | |
2419 | case M_MMAP_THRESHOLD: | |
2420 | mmap_threshold = value; return 1; | |
2421 | case M_MMAP_MAX: | |
2422 | #if HAVE_MMAP | |
2423 | n_mmaps_max = value; return 1; | |
2424 | #else | |
2425 | if (value != 0) return 0; else n_mmaps_max = value; return 1; | |
2426 | #endif | |
2427 | ||
2428 | default: | |
2429 | return 0; | |
2430 | } | |
2431 | } | |
2432 | ||
fb5cf7f1 SG |
2433 | int initf_malloc(void) |
2434 | { | |
f1896c45 | 2435 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
fb5cf7f1 | 2436 | assert(gd->malloc_base); /* Set up by crt0.S */ |
f1896c45 | 2437 | gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN); |
fb5cf7f1 SG |
2438 | gd->malloc_ptr = 0; |
2439 | #endif | |
2440 | ||
2441 | return 0; | |
2442 | } | |
2443 | ||
217c9dad WD |
2444 | /* |
2445 | ||
2446 | History: | |
2447 | ||
2448 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) | |
2449 | * return null for negative arguments | |
2450 | * Added Several WIN32 cleanups from Martin C. Fong <[email protected]> | |
8bde7f77 WD |
2451 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
2452 | (e.g. WIN32 platforms) | |
2453 | * Cleanup up header file inclusion for WIN32 platforms | |
2454 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
2455 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
2456 | memory allocation routines | |
2457 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
2458 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
217c9dad | 2459 | usage of 'assert' in non-WIN32 code |
8bde7f77 WD |
2460 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
2461 | avoid infinite loop | |
217c9dad WD |
2462 | * Always call 'fREe()' rather than 'free()' |
2463 | ||
2464 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) | |
2465 | * Fixed ordering problem with boundary-stamping | |
2466 | ||
2467 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) | |
2468 | * Added pvalloc, as recommended by H.J. Liu | |
2469 | * Added 64bit pointer support mainly from Wolfram Gloger | |
2470 | * Added anonymously donated WIN32 sbrk emulation | |
2471 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
2472 | * malloc_extend_top: fix mask error that caused wastage after | |
8bde7f77 | 2473 | foreign sbrks |
217c9dad WD |
2474 | * Add linux mremap support code from HJ Liu |
2475 | ||
2476 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) | |
2477 | * Integrated most documentation with the code. | |
2478 | * Add support for mmap, with help from | |
8bde7f77 | 2479 | Wolfram Gloger ([email protected]). |
217c9dad WD |
2480 | * Use last_remainder in more cases. |
2481 | * Pack bins using idea from [email protected] | |
2482 | * Use ordered bins instead of best-fit threshhold | |
2483 | * Eliminate block-local decls to simplify tracing and debugging. | |
2484 | * Support another case of realloc via move into top | |
2485 | * Fix error occuring when initial sbrk_base not word-aligned. | |
2486 | * Rely on page size for units instead of SBRK_UNIT to | |
8bde7f77 | 2487 | avoid surprises about sbrk alignment conventions. |
217c9dad | 2488 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
8bde7f77 | 2489 | ([email protected]) for the suggestion. |
217c9dad WD |
2490 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
2491 | * More precautions for cases where other routines call sbrk, | |
8bde7f77 | 2492 | courtesy of Wolfram Gloger ([email protected]). |
217c9dad | 2493 | * Added macros etc., allowing use in linux libc from |
8bde7f77 | 2494 | H.J. Lu ([email protected]) |
217c9dad WD |
2495 | * Inverted this history list |
2496 | ||
2497 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) | |
2498 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
2499 | * Removed all preallocation code since under current scheme | |
8bde7f77 WD |
2500 | the work required to undo bad preallocations exceeds |
2501 | the work saved in good cases for most test programs. | |
217c9dad | 2502 | * No longer use return list or unconsolidated bins since |
8bde7f77 WD |
2503 | no scheme using them consistently outperforms those that don't |
2504 | given above changes. | |
217c9dad WD |
2505 | * Use best fit for very large chunks to prevent some worst-cases. |
2506 | * Added some support for debugging | |
2507 | ||
2508 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) | |
2509 | * Removed footers when chunks are in use. Thanks to | |
8bde7f77 | 2510 | Paul Wilson ([email protected]) for the suggestion. |
217c9dad WD |
2511 | |
2512 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) | |
2513 | * Added malloc_trim, with help from Wolfram Gloger | |
8bde7f77 | 2514 | ([email protected]). |
217c9dad WD |
2515 | |
2516 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) | |
2517 | ||
2518 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) | |
2519 | * realloc: try to expand in both directions | |
2520 | * malloc: swap order of clean-bin strategy; | |
2521 | * realloc: only conditionally expand backwards | |
2522 | * Try not to scavenge used bins | |
2523 | * Use bin counts as a guide to preallocation | |
2524 | * Occasionally bin return list chunks in first scan | |
2525 | * Add a few optimizations from [email protected] | |
2526 | ||
2527 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) | |
2528 | * faster bin computation & slightly different binning | |
2529 | * merged all consolidations to one part of malloc proper | |
8bde7f77 | 2530 | (eliminating old malloc_find_space & malloc_clean_bin) |
217c9dad WD |
2531 | * Scan 2 returns chunks (not just 1) |
2532 | * Propagate failure in realloc if malloc returns 0 | |
2533 | * Add stuff to allow compilation on non-ANSI compilers | |
8bde7f77 | 2534 | from [email protected] |
217c9dad WD |
2535 | |
2536 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) | |
2537 | * removed potential for odd address access in prev_chunk | |
2538 | * removed dependency on getpagesize.h | |
2539 | * misc cosmetics and a bit more internal documentation | |
2540 | * anticosmetics: mangled names in macros to evade debugger strangeness | |
2541 | * tested on sparc, hp-700, dec-mips, rs6000 | |
8bde7f77 WD |
2542 | with gcc & native cc (hp, dec only) allowing |
2543 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
217c9dad WD |
2544 | |
2545 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) | |
2546 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
8bde7f77 | 2547 | structure of old version, but most details differ.) |
217c9dad WD |
2548 | |
2549 | */ |