]>
Commit | Line | Data |
---|---|---|
81673e9a KG |
1 | #include <common.h> |
2 | ||
217c9dad WD |
3 | #if 0 /* Moved to malloc.h */ |
4 | /* ---------- To make a malloc.h, start cutting here ------------ */ | |
5 | ||
6 | /* | |
7 | A version of malloc/free/realloc written by Doug Lea and released to the | |
8 | public domain. Send questions/comments/complaints/performance data | |
9 | to [email protected] | |
10 | ||
11 | * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) | |
12 | ||
13 | Note: There may be an updated version of this malloc obtainable at | |
8bde7f77 WD |
14 | ftp://g.oswego.edu/pub/misc/malloc.c |
15 | Check before installing! | |
217c9dad WD |
16 | |
17 | * Why use this malloc? | |
18 | ||
19 | This is not the fastest, most space-conserving, most portable, or | |
20 | most tunable malloc ever written. However it is among the fastest | |
21 | while also being among the most space-conserving, portable and tunable. | |
22 | Consistent balance across these factors results in a good general-purpose | |
23 | allocator. For a high-level description, see | |
24 | http://g.oswego.edu/dl/html/malloc.html | |
25 | ||
26 | * Synopsis of public routines | |
27 | ||
28 | (Much fuller descriptions are contained in the program documentation below.) | |
29 | ||
30 | malloc(size_t n); | |
31 | Return a pointer to a newly allocated chunk of at least n bytes, or null | |
32 | if no space is available. | |
33 | free(Void_t* p); | |
34 | Release the chunk of memory pointed to by p, or no effect if p is null. | |
35 | realloc(Void_t* p, size_t n); | |
36 | Return a pointer to a chunk of size n that contains the same data | |
37 | as does chunk p up to the minimum of (n, p's size) bytes, or null | |
38 | if no space is available. The returned pointer may or may not be | |
39 | the same as p. If p is null, equivalent to malloc. Unless the | |
40 | #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a | |
41 | size argument of zero (re)allocates a minimum-sized chunk. | |
42 | memalign(size_t alignment, size_t n); | |
43 | Return a pointer to a newly allocated chunk of n bytes, aligned | |
44 | in accord with the alignment argument, which must be a power of | |
45 | two. | |
46 | valloc(size_t n); | |
47 | Equivalent to memalign(pagesize, n), where pagesize is the page | |
48 | size of the system (or as near to this as can be figured out from | |
49 | all the includes/defines below.) | |
50 | pvalloc(size_t n); | |
51 | Equivalent to valloc(minimum-page-that-holds(n)), that is, | |
52 | round up n to nearest pagesize. | |
53 | calloc(size_t unit, size_t quantity); | |
54 | Returns a pointer to quantity * unit bytes, with all locations | |
55 | set to zero. | |
56 | cfree(Void_t* p); | |
57 | Equivalent to free(p). | |
58 | malloc_trim(size_t pad); | |
59 | Release all but pad bytes of freed top-most memory back | |
60 | to the system. Return 1 if successful, else 0. | |
61 | malloc_usable_size(Void_t* p); | |
62 | Report the number usable allocated bytes associated with allocated | |
63 | chunk p. This may or may not report more bytes than were requested, | |
64 | due to alignment and minimum size constraints. | |
65 | malloc_stats(); | |
66 | Prints brief summary statistics. | |
67 | mallinfo() | |
68 | Returns (by copy) a struct containing various summary statistics. | |
69 | mallopt(int parameter_number, int parameter_value) | |
70 | Changes one of the tunable parameters described below. Returns | |
71 | 1 if successful in changing the parameter, else 0. | |
72 | ||
73 | * Vital statistics: | |
74 | ||
75 | Alignment: 8-byte | |
76 | 8 byte alignment is currently hardwired into the design. This | |
77 | seems to suffice for all current machines and C compilers. | |
78 | ||
79 | Assumed pointer representation: 4 or 8 bytes | |
80 | Code for 8-byte pointers is untested by me but has worked | |
81 | reliably by Wolfram Gloger, who contributed most of the | |
82 | changes supporting this. | |
83 | ||
84 | Assumed size_t representation: 4 or 8 bytes | |
85 | Note that size_t is allowed to be 4 bytes even if pointers are 8. | |
86 | ||
87 | Minimum overhead per allocated chunk: 4 or 8 bytes | |
88 | Each malloced chunk has a hidden overhead of 4 bytes holding size | |
89 | and status information. | |
90 | ||
91 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) | |
8bde7f77 | 92 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
217c9dad WD |
93 | |
94 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte | |
95 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are | |
96 | needed; 4 (8) for a trailing size field | |
97 | and 8 (16) bytes for free list pointers. Thus, the minimum | |
98 | allocatable size is 16/24/32 bytes. | |
99 | ||
100 | Even a request for zero bytes (i.e., malloc(0)) returns a | |
101 | pointer to something of the minimum allocatable size. | |
102 | ||
103 | Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes | |
8bde7f77 | 104 | 8-byte size_t: 2^63 - 16 bytes |
217c9dad WD |
105 | |
106 | It is assumed that (possibly signed) size_t bit values suffice to | |
107 | represent chunk sizes. `Possibly signed' is due to the fact | |
108 | that `size_t' may be defined on a system as either a signed or | |
109 | an unsigned type. To be conservative, values that would appear | |
110 | as negative numbers are avoided. | |
111 | Requests for sizes with a negative sign bit when the request | |
112 | size is treaded as a long will return null. | |
113 | ||
114 | Maximum overhead wastage per allocated chunk: normally 15 bytes | |
115 | ||
116 | Alignnment demands, plus the minimum allocatable size restriction | |
117 | make the normal worst-case wastage 15 bytes (i.e., up to 15 | |
118 | more bytes will be allocated than were requested in malloc), with | |
119 | two exceptions: | |
8bde7f77 WD |
120 | 1. Because requests for zero bytes allocate non-zero space, |
121 | the worst case wastage for a request of zero bytes is 24 bytes. | |
122 | 2. For requests >= mmap_threshold that are serviced via | |
123 | mmap(), the worst case wastage is 8 bytes plus the remainder | |
124 | from a system page (the minimal mmap unit); typically 4096 bytes. | |
217c9dad WD |
125 | |
126 | * Limitations | |
127 | ||
128 | Here are some features that are NOT currently supported | |
129 | ||
130 | * No user-definable hooks for callbacks and the like. | |
131 | * No automated mechanism for fully checking that all accesses | |
132 | to malloced memory stay within their bounds. | |
133 | * No support for compaction. | |
134 | ||
135 | * Synopsis of compile-time options: | |
136 | ||
137 | People have reported using previous versions of this malloc on all | |
138 | versions of Unix, sometimes by tweaking some of the defines | |
139 | below. It has been tested most extensively on Solaris and | |
140 | Linux. It is also reported to work on WIN32 platforms. | |
141 | People have also reported adapting this malloc for use in | |
142 | stand-alone embedded systems. | |
143 | ||
144 | The implementation is in straight, hand-tuned ANSI C. Among other | |
145 | consequences, it uses a lot of macros. Because of this, to be at | |
146 | all usable, this code should be compiled using an optimizing compiler | |
147 | (for example gcc -O2) that can simplify expressions and control | |
148 | paths. | |
149 | ||
150 | __STD_C (default: derived from C compiler defines) | |
151 | Nonzero if using ANSI-standard C compiler, a C++ compiler, or | |
152 | a C compiler sufficiently close to ANSI to get away with it. | |
153 | DEBUG (default: NOT defined) | |
154 | Define to enable debugging. Adds fairly extensive assertion-based | |
155 | checking to help track down memory errors, but noticeably slows down | |
156 | execution. | |
157 | REALLOC_ZERO_BYTES_FREES (default: NOT defined) | |
158 | Define this if you think that realloc(p, 0) should be equivalent | |
159 | to free(p). Otherwise, since malloc returns a unique pointer for | |
160 | malloc(0), so does realloc(p, 0). | |
161 | HAVE_MEMCPY (default: defined) | |
162 | Define if you are not otherwise using ANSI STD C, but still | |
163 | have memcpy and memset in your C library and want to use them. | |
164 | Otherwise, simple internal versions are supplied. | |
165 | USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) | |
166 | Define as 1 if you want the C library versions of memset and | |
167 | memcpy called in realloc and calloc (otherwise macro versions are used). | |
168 | At least on some platforms, the simple macro versions usually | |
169 | outperform libc versions. | |
170 | HAVE_MMAP (default: defined as 1) | |
171 | Define to non-zero to optionally make malloc() use mmap() to | |
172 | allocate very large blocks. | |
173 | HAVE_MREMAP (default: defined as 0 unless Linux libc set) | |
174 | Define to non-zero to optionally make realloc() use mremap() to | |
175 | reallocate very large blocks. | |
176 | malloc_getpagesize (default: derived from system #includes) | |
177 | Either a constant or routine call returning the system page size. | |
178 | HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) | |
179 | Optionally define if you are on a system with a /usr/include/malloc.h | |
180 | that declares struct mallinfo. It is not at all necessary to | |
181 | define this even if you do, but will ensure consistency. | |
182 | INTERNAL_SIZE_T (default: size_t) | |
183 | Define to a 32-bit type (probably `unsigned int') if you are on a | |
184 | 64-bit machine, yet do not want or need to allow malloc requests of | |
185 | greater than 2^31 to be handled. This saves space, especially for | |
186 | very small chunks. | |
187 | INTERNAL_LINUX_C_LIB (default: NOT defined) | |
188 | Defined only when compiled as part of Linux libc. | |
189 | Also note that there is some odd internal name-mangling via defines | |
190 | (for example, internally, `malloc' is named `mALLOc') needed | |
191 | when compiling in this case. These look funny but don't otherwise | |
192 | affect anything. | |
193 | WIN32 (default: undefined) | |
194 | Define this on MS win (95, nt) platforms to compile in sbrk emulation. | |
195 | LACKS_UNISTD_H (default: undefined if not WIN32) | |
196 | Define this if your system does not have a <unistd.h>. | |
197 | LACKS_SYS_PARAM_H (default: undefined if not WIN32) | |
198 | Define this if your system does not have a <sys/param.h>. | |
199 | MORECORE (default: sbrk) | |
200 | The name of the routine to call to obtain more memory from the system. | |
201 | MORECORE_FAILURE (default: -1) | |
202 | The value returned upon failure of MORECORE. | |
203 | MORECORE_CLEARS (default 1) | |
204 | True (1) if the routine mapped to MORECORE zeroes out memory (which | |
205 | holds for sbrk). | |
206 | DEFAULT_TRIM_THRESHOLD | |
207 | DEFAULT_TOP_PAD | |
208 | DEFAULT_MMAP_THRESHOLD | |
209 | DEFAULT_MMAP_MAX | |
210 | Default values of tunable parameters (described in detail below) | |
211 | controlling interaction with host system routines (sbrk, mmap, etc). | |
212 | These values may also be changed dynamically via mallopt(). The | |
213 | preset defaults are those that give best performance for typical | |
214 | programs/systems. | |
215 | USE_DL_PREFIX (default: undefined) | |
216 | Prefix all public routines with the string 'dl'. Useful to | |
217 | quickly avoid procedure declaration conflicts and linker symbol | |
218 | conflicts with existing memory allocation routines. | |
219 | ||
220 | ||
221 | */ | |
222 | ||
223 | \f | |
224 | ||
217c9dad WD |
225 | /* Preliminaries */ |
226 | ||
227 | #ifndef __STD_C | |
228 | #ifdef __STDC__ | |
229 | #define __STD_C 1 | |
230 | #else | |
231 | #if __cplusplus | |
232 | #define __STD_C 1 | |
233 | #else | |
234 | #define __STD_C 0 | |
235 | #endif /*__cplusplus*/ | |
236 | #endif /*__STDC__*/ | |
237 | #endif /*__STD_C*/ | |
238 | ||
239 | #ifndef Void_t | |
240 | #if (__STD_C || defined(WIN32)) | |
241 | #define Void_t void | |
242 | #else | |
243 | #define Void_t char | |
244 | #endif | |
245 | #endif /*Void_t*/ | |
246 | ||
247 | #if __STD_C | |
248 | #include <stddef.h> /* for size_t */ | |
249 | #else | |
250 | #include <sys/types.h> | |
251 | #endif | |
252 | ||
253 | #ifdef __cplusplus | |
254 | extern "C" { | |
255 | #endif | |
256 | ||
257 | #include <stdio.h> /* needed for malloc_stats */ | |
258 | ||
259 | ||
260 | /* | |
261 | Compile-time options | |
262 | */ | |
263 | ||
264 | ||
265 | /* | |
266 | Debugging: | |
267 | ||
268 | Because freed chunks may be overwritten with link fields, this | |
269 | malloc will often die when freed memory is overwritten by user | |
270 | programs. This can be very effective (albeit in an annoying way) | |
271 | in helping track down dangling pointers. | |
272 | ||
273 | If you compile with -DDEBUG, a number of assertion checks are | |
274 | enabled that will catch more memory errors. You probably won't be | |
275 | able to make much sense of the actual assertion errors, but they | |
276 | should help you locate incorrectly overwritten memory. The | |
277 | checking is fairly extensive, and will slow down execution | |
278 | noticeably. Calling malloc_stats or mallinfo with DEBUG set will | |
279 | attempt to check every non-mmapped allocated and free chunk in the | |
280 | course of computing the summmaries. (By nature, mmapped regions | |
281 | cannot be checked very much automatically.) | |
282 | ||
283 | Setting DEBUG may also be helpful if you are trying to modify | |
284 | this code. The assertions in the check routines spell out in more | |
285 | detail the assumptions and invariants underlying the algorithms. | |
286 | ||
287 | */ | |
288 | ||
289 | #ifdef DEBUG | |
290 | #include <assert.h> | |
291 | #else | |
292 | #define assert(x) ((void)0) | |
293 | #endif | |
294 | ||
295 | ||
296 | /* | |
297 | INTERNAL_SIZE_T is the word-size used for internal bookkeeping | |
298 | of chunk sizes. On a 64-bit machine, you can reduce malloc | |
299 | overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' | |
300 | at the expense of not being able to handle requests greater than | |
301 | 2^31. This limitation is hardly ever a concern; you are encouraged | |
302 | to set this. However, the default version is the same as size_t. | |
303 | */ | |
304 | ||
305 | #ifndef INTERNAL_SIZE_T | |
306 | #define INTERNAL_SIZE_T size_t | |
307 | #endif | |
308 | ||
309 | /* | |
310 | REALLOC_ZERO_BYTES_FREES should be set if a call to | |
311 | realloc with zero bytes should be the same as a call to free. | |
312 | Some people think it should. Otherwise, since this malloc | |
313 | returns a unique pointer for malloc(0), so does realloc(p, 0). | |
314 | */ | |
315 | ||
316 | ||
317 | /* #define REALLOC_ZERO_BYTES_FREES */ | |
318 | ||
319 | ||
320 | /* | |
321 | WIN32 causes an emulation of sbrk to be compiled in | |
322 | mmap-based options are not currently supported in WIN32. | |
323 | */ | |
324 | ||
325 | /* #define WIN32 */ | |
326 | #ifdef WIN32 | |
327 | #define MORECORE wsbrk | |
328 | #define HAVE_MMAP 0 | |
329 | ||
330 | #define LACKS_UNISTD_H | |
331 | #define LACKS_SYS_PARAM_H | |
332 | ||
333 | /* | |
334 | Include 'windows.h' to get the necessary declarations for the | |
335 | Microsoft Visual C++ data structures and routines used in the 'sbrk' | |
336 | emulation. | |
337 | ||
338 | Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft | |
339 | Visual C++ header files are included. | |
340 | */ | |
341 | #define WIN32_LEAN_AND_MEAN | |
342 | #include <windows.h> | |
343 | #endif | |
344 | ||
345 | ||
346 | /* | |
347 | HAVE_MEMCPY should be defined if you are not otherwise using | |
348 | ANSI STD C, but still have memcpy and memset in your C library | |
349 | and want to use them in calloc and realloc. Otherwise simple | |
350 | macro versions are defined here. | |
351 | ||
352 | USE_MEMCPY should be defined as 1 if you actually want to | |
353 | have memset and memcpy called. People report that the macro | |
354 | versions are often enough faster than libc versions on many | |
355 | systems that it is better to use them. | |
356 | ||
357 | */ | |
358 | ||
359 | #define HAVE_MEMCPY | |
360 | ||
361 | #ifndef USE_MEMCPY | |
362 | #ifdef HAVE_MEMCPY | |
363 | #define USE_MEMCPY 1 | |
364 | #else | |
365 | #define USE_MEMCPY 0 | |
366 | #endif | |
367 | #endif | |
368 | ||
369 | #if (__STD_C || defined(HAVE_MEMCPY)) | |
370 | ||
371 | #if __STD_C | |
372 | void* memset(void*, int, size_t); | |
373 | void* memcpy(void*, const void*, size_t); | |
374 | #else | |
375 | #ifdef WIN32 | |
8bde7f77 WD |
376 | /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ |
377 | /* 'windows.h' */ | |
217c9dad WD |
378 | #else |
379 | Void_t* memset(); | |
380 | Void_t* memcpy(); | |
381 | #endif | |
382 | #endif | |
383 | #endif | |
384 | ||
385 | #if USE_MEMCPY | |
386 | ||
387 | /* The following macros are only invoked with (2n+1)-multiples of | |
388 | INTERNAL_SIZE_T units, with a positive integer n. This is exploited | |
389 | for fast inline execution when n is small. */ | |
390 | ||
391 | #define MALLOC_ZERO(charp, nbytes) \ | |
392 | do { \ | |
393 | INTERNAL_SIZE_T mzsz = (nbytes); \ | |
394 | if(mzsz <= 9*sizeof(mzsz)) { \ | |
395 | INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ | |
396 | if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ | |
8bde7f77 | 397 | *mz++ = 0; \ |
217c9dad | 398 | if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ |
8bde7f77 WD |
399 | *mz++ = 0; \ |
400 | if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ | |
401 | *mz++ = 0; }}} \ | |
402 | *mz++ = 0; \ | |
403 | *mz++ = 0; \ | |
404 | *mz = 0; \ | |
217c9dad WD |
405 | } else memset((charp), 0, mzsz); \ |
406 | } while(0) | |
407 | ||
408 | #define MALLOC_COPY(dest,src,nbytes) \ | |
409 | do { \ | |
410 | INTERNAL_SIZE_T mcsz = (nbytes); \ | |
411 | if(mcsz <= 9*sizeof(mcsz)) { \ | |
412 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ | |
413 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ | |
414 | if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
8bde7f77 | 415 | *mcdst++ = *mcsrc++; \ |
217c9dad | 416 | if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
8bde7f77 WD |
417 | *mcdst++ = *mcsrc++; \ |
418 | if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
419 | *mcdst++ = *mcsrc++; }}} \ | |
420 | *mcdst++ = *mcsrc++; \ | |
421 | *mcdst++ = *mcsrc++; \ | |
422 | *mcdst = *mcsrc ; \ | |
217c9dad WD |
423 | } else memcpy(dest, src, mcsz); \ |
424 | } while(0) | |
425 | ||
426 | #else /* !USE_MEMCPY */ | |
427 | ||
428 | /* Use Duff's device for good zeroing/copying performance. */ | |
429 | ||
430 | #define MALLOC_ZERO(charp, nbytes) \ | |
431 | do { \ | |
432 | INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ | |
433 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
434 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
435 | switch (mctmp) { \ | |
436 | case 0: for(;;) { *mzp++ = 0; \ | |
437 | case 7: *mzp++ = 0; \ | |
438 | case 6: *mzp++ = 0; \ | |
439 | case 5: *mzp++ = 0; \ | |
440 | case 4: *mzp++ = 0; \ | |
441 | case 3: *mzp++ = 0; \ | |
442 | case 2: *mzp++ = 0; \ | |
443 | case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ | |
444 | } \ | |
445 | } while(0) | |
446 | ||
447 | #define MALLOC_COPY(dest,src,nbytes) \ | |
448 | do { \ | |
449 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ | |
450 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ | |
451 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
452 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
453 | switch (mctmp) { \ | |
454 | case 0: for(;;) { *mcdst++ = *mcsrc++; \ | |
455 | case 7: *mcdst++ = *mcsrc++; \ | |
456 | case 6: *mcdst++ = *mcsrc++; \ | |
457 | case 5: *mcdst++ = *mcsrc++; \ | |
458 | case 4: *mcdst++ = *mcsrc++; \ | |
459 | case 3: *mcdst++ = *mcsrc++; \ | |
460 | case 2: *mcdst++ = *mcsrc++; \ | |
461 | case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ | |
462 | } \ | |
463 | } while(0) | |
464 | ||
465 | #endif | |
466 | ||
467 | ||
468 | /* | |
469 | Define HAVE_MMAP to optionally make malloc() use mmap() to | |
470 | allocate very large blocks. These will be returned to the | |
471 | operating system immediately after a free(). | |
472 | */ | |
473 | ||
474 | #ifndef HAVE_MMAP | |
475 | #define HAVE_MMAP 1 | |
476 | #endif | |
477 | ||
478 | /* | |
479 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate | |
480 | large blocks. This is currently only possible on Linux with | |
481 | kernel versions newer than 1.3.77. | |
482 | */ | |
483 | ||
484 | #ifndef HAVE_MREMAP | |
485 | #ifdef INTERNAL_LINUX_C_LIB | |
486 | #define HAVE_MREMAP 1 | |
487 | #else | |
488 | #define HAVE_MREMAP 0 | |
489 | #endif | |
490 | #endif | |
491 | ||
492 | #if HAVE_MMAP | |
493 | ||
494 | #include <unistd.h> | |
495 | #include <fcntl.h> | |
496 | #include <sys/mman.h> | |
497 | ||
498 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) | |
499 | #define MAP_ANONYMOUS MAP_ANON | |
500 | #endif | |
501 | ||
502 | #endif /* HAVE_MMAP */ | |
503 | ||
504 | /* | |
505 | Access to system page size. To the extent possible, this malloc | |
506 | manages memory from the system in page-size units. | |
507 | ||
508 | The following mechanics for getpagesize were adapted from | |
509 | bsd/gnu getpagesize.h | |
510 | */ | |
511 | ||
512 | #ifndef LACKS_UNISTD_H | |
513 | # include <unistd.h> | |
514 | #endif | |
515 | ||
516 | #ifndef malloc_getpagesize | |
517 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ | |
518 | # ifndef _SC_PAGE_SIZE | |
519 | # define _SC_PAGE_SIZE _SC_PAGESIZE | |
520 | # endif | |
521 | # endif | |
522 | # ifdef _SC_PAGE_SIZE | |
523 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) | |
524 | # else | |
525 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) | |
526 | extern size_t getpagesize(); | |
527 | # define malloc_getpagesize getpagesize() | |
528 | # else | |
529 | # ifdef WIN32 | |
530 | # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ | |
531 | # else | |
532 | # ifndef LACKS_SYS_PARAM_H | |
533 | # include <sys/param.h> | |
534 | # endif | |
535 | # ifdef EXEC_PAGESIZE | |
536 | # define malloc_getpagesize EXEC_PAGESIZE | |
537 | # else | |
538 | # ifdef NBPG | |
539 | # ifndef CLSIZE | |
540 | # define malloc_getpagesize NBPG | |
541 | # else | |
542 | # define malloc_getpagesize (NBPG * CLSIZE) | |
543 | # endif | |
544 | # else | |
545 | # ifdef NBPC | |
546 | # define malloc_getpagesize NBPC | |
547 | # else | |
548 | # ifdef PAGESIZE | |
549 | # define malloc_getpagesize PAGESIZE | |
550 | # else | |
551 | # define malloc_getpagesize (4096) /* just guess */ | |
552 | # endif | |
553 | # endif | |
554 | # endif | |
555 | # endif | |
556 | # endif | |
557 | # endif | |
558 | # endif | |
559 | #endif | |
560 | ||
561 | ||
217c9dad WD |
562 | /* |
563 | ||
564 | This version of malloc supports the standard SVID/XPG mallinfo | |
565 | routine that returns a struct containing the same kind of | |
566 | information you can get from malloc_stats. It should work on | |
567 | any SVID/XPG compliant system that has a /usr/include/malloc.h | |
568 | defining struct mallinfo. (If you'd like to install such a thing | |
569 | yourself, cut out the preliminary declarations as described above | |
570 | and below and save them in a malloc.h file. But there's no | |
571 | compelling reason to bother to do this.) | |
572 | ||
573 | The main declaration needed is the mallinfo struct that is returned | |
574 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a | |
575 | bunch of fields, most of which are not even meaningful in this | |
576 | version of malloc. Some of these fields are are instead filled by | |
577 | mallinfo() with other numbers that might possibly be of interest. | |
578 | ||
579 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a | |
580 | /usr/include/malloc.h file that includes a declaration of struct | |
581 | mallinfo. If so, it is included; else an SVID2/XPG2 compliant | |
582 | version is declared below. These must be precisely the same for | |
583 | mallinfo() to work. | |
584 | ||
585 | */ | |
586 | ||
587 | /* #define HAVE_USR_INCLUDE_MALLOC_H */ | |
588 | ||
589 | #if HAVE_USR_INCLUDE_MALLOC_H | |
590 | #include "/usr/include/malloc.h" | |
591 | #else | |
592 | ||
593 | /* SVID2/XPG mallinfo structure */ | |
594 | ||
595 | struct mallinfo { | |
596 | int arena; /* total space allocated from system */ | |
597 | int ordblks; /* number of non-inuse chunks */ | |
598 | int smblks; /* unused -- always zero */ | |
599 | int hblks; /* number of mmapped regions */ | |
600 | int hblkhd; /* total space in mmapped regions */ | |
601 | int usmblks; /* unused -- always zero */ | |
602 | int fsmblks; /* unused -- always zero */ | |
603 | int uordblks; /* total allocated space */ | |
604 | int fordblks; /* total non-inuse space */ | |
605 | int keepcost; /* top-most, releasable (via malloc_trim) space */ | |
606 | }; | |
607 | ||
608 | /* SVID2/XPG mallopt options */ | |
609 | ||
610 | #define M_MXFAST 1 /* UNUSED in this malloc */ | |
611 | #define M_NLBLKS 2 /* UNUSED in this malloc */ | |
612 | #define M_GRAIN 3 /* UNUSED in this malloc */ | |
613 | #define M_KEEP 4 /* UNUSED in this malloc */ | |
614 | ||
615 | #endif | |
616 | ||
617 | /* mallopt options that actually do something */ | |
618 | ||
619 | #define M_TRIM_THRESHOLD -1 | |
620 | #define M_TOP_PAD -2 | |
621 | #define M_MMAP_THRESHOLD -3 | |
622 | #define M_MMAP_MAX -4 | |
623 | ||
624 | ||
217c9dad WD |
625 | #ifndef DEFAULT_TRIM_THRESHOLD |
626 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) | |
627 | #endif | |
628 | ||
629 | /* | |
630 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory | |
631 | to keep before releasing via malloc_trim in free(). | |
632 | ||
633 | Automatic trimming is mainly useful in long-lived programs. | |
634 | Because trimming via sbrk can be slow on some systems, and can | |
635 | sometimes be wasteful (in cases where programs immediately | |
636 | afterward allocate more large chunks) the value should be high | |
637 | enough so that your overall system performance would improve by | |
638 | releasing. | |
639 | ||
640 | The trim threshold and the mmap control parameters (see below) | |
641 | can be traded off with one another. Trimming and mmapping are | |
642 | two different ways of releasing unused memory back to the | |
643 | system. Between these two, it is often possible to keep | |
644 | system-level demands of a long-lived program down to a bare | |
645 | minimum. For example, in one test suite of sessions measuring | |
646 | the XF86 X server on Linux, using a trim threshold of 128K and a | |
647 | mmap threshold of 192K led to near-minimal long term resource | |
648 | consumption. | |
649 | ||
650 | If you are using this malloc in a long-lived program, it should | |
651 | pay to experiment with these values. As a rough guide, you | |
652 | might set to a value close to the average size of a process | |
653 | (program) running on your system. Releasing this much memory | |
654 | would allow such a process to run in memory. Generally, it's | |
655 | worth it to tune for trimming rather tham memory mapping when a | |
656 | program undergoes phases where several large chunks are | |
657 | allocated and released in ways that can reuse each other's | |
658 | storage, perhaps mixed with phases where there are no such | |
659 | chunks at all. And in well-behaved long-lived programs, | |
660 | controlling release of large blocks via trimming versus mapping | |
661 | is usually faster. | |
662 | ||
663 | However, in most programs, these parameters serve mainly as | |
664 | protection against the system-level effects of carrying around | |
665 | massive amounts of unneeded memory. Since frequent calls to | |
666 | sbrk, mmap, and munmap otherwise degrade performance, the default | |
667 | parameters are set to relatively high values that serve only as | |
668 | safeguards. | |
669 | ||
670 | The default trim value is high enough to cause trimming only in | |
671 | fairly extreme (by current memory consumption standards) cases. | |
672 | It must be greater than page size to have any useful effect. To | |
673 | disable trimming completely, you can set to (unsigned long)(-1); | |
674 | ||
675 | ||
676 | */ | |
677 | ||
678 | ||
679 | #ifndef DEFAULT_TOP_PAD | |
680 | #define DEFAULT_TOP_PAD (0) | |
681 | #endif | |
682 | ||
683 | /* | |
684 | M_TOP_PAD is the amount of extra `padding' space to allocate or | |
685 | retain whenever sbrk is called. It is used in two ways internally: | |
686 | ||
687 | * When sbrk is called to extend the top of the arena to satisfy | |
8bde7f77 WD |
688 | a new malloc request, this much padding is added to the sbrk |
689 | request. | |
217c9dad WD |
690 | |
691 | * When malloc_trim is called automatically from free(), | |
8bde7f77 | 692 | it is used as the `pad' argument. |
217c9dad WD |
693 | |
694 | In both cases, the actual amount of padding is rounded | |
695 | so that the end of the arena is always a system page boundary. | |
696 | ||
697 | The main reason for using padding is to avoid calling sbrk so | |
698 | often. Having even a small pad greatly reduces the likelihood | |
699 | that nearly every malloc request during program start-up (or | |
700 | after trimming) will invoke sbrk, which needlessly wastes | |
701 | time. | |
702 | ||
703 | Automatic rounding-up to page-size units is normally sufficient | |
704 | to avoid measurable overhead, so the default is 0. However, in | |
705 | systems where sbrk is relatively slow, it can pay to increase | |
706 | this value, at the expense of carrying around more memory than | |
707 | the program needs. | |
708 | ||
709 | */ | |
710 | ||
711 | ||
712 | #ifndef DEFAULT_MMAP_THRESHOLD | |
713 | #define DEFAULT_MMAP_THRESHOLD (128 * 1024) | |
714 | #endif | |
715 | ||
716 | /* | |
717 | ||
718 | M_MMAP_THRESHOLD is the request size threshold for using mmap() | |
719 | to service a request. Requests of at least this size that cannot | |
720 | be allocated using already-existing space will be serviced via mmap. | |
721 | (If enough normal freed space already exists it is used instead.) | |
722 | ||
723 | Using mmap segregates relatively large chunks of memory so that | |
724 | they can be individually obtained and released from the host | |
725 | system. A request serviced through mmap is never reused by any | |
726 | other request (at least not directly; the system may just so | |
727 | happen to remap successive requests to the same locations). | |
728 | ||
729 | Segregating space in this way has the benefit that mmapped space | |
730 | can ALWAYS be individually released back to the system, which | |
731 | helps keep the system level memory demands of a long-lived | |
732 | program low. Mapped memory can never become `locked' between | |
733 | other chunks, as can happen with normally allocated chunks, which | |
734 | menas that even trimming via malloc_trim would not release them. | |
735 | ||
736 | However, it has the disadvantages that: | |
737 | ||
8bde7f77 WD |
738 | 1. The space cannot be reclaimed, consolidated, and then |
739 | used to service later requests, as happens with normal chunks. | |
740 | 2. It can lead to more wastage because of mmap page alignment | |
741 | requirements | |
742 | 3. It causes malloc performance to be more dependent on host | |
743 | system memory management support routines which may vary in | |
744 | implementation quality and may impose arbitrary | |
745 | limitations. Generally, servicing a request via normal | |
746 | malloc steps is faster than going through a system's mmap. | |
217c9dad WD |
747 | |
748 | All together, these considerations should lead you to use mmap | |
749 | only for relatively large requests. | |
750 | ||
751 | ||
752 | */ | |
753 | ||
754 | ||
217c9dad WD |
755 | #ifndef DEFAULT_MMAP_MAX |
756 | #if HAVE_MMAP | |
757 | #define DEFAULT_MMAP_MAX (64) | |
758 | #else | |
759 | #define DEFAULT_MMAP_MAX (0) | |
760 | #endif | |
761 | #endif | |
762 | ||
763 | /* | |
764 | M_MMAP_MAX is the maximum number of requests to simultaneously | |
765 | service using mmap. This parameter exists because: | |
766 | ||
8bde7f77 WD |
767 | 1. Some systems have a limited number of internal tables for |
768 | use by mmap. | |
769 | 2. In most systems, overreliance on mmap can degrade overall | |
770 | performance. | |
771 | 3. If a program allocates many large regions, it is probably | |
772 | better off using normal sbrk-based allocation routines that | |
773 | can reclaim and reallocate normal heap memory. Using a | |
774 | small value allows transition into this mode after the | |
775 | first few allocations. | |
217c9dad WD |
776 | |
777 | Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, | |
778 | the default value is 0, and attempts to set it to non-zero values | |
779 | in mallopt will fail. | |
780 | */ | |
781 | ||
782 | ||
217c9dad WD |
783 | /* |
784 | USE_DL_PREFIX will prefix all public routines with the string 'dl'. | |
785 | Useful to quickly avoid procedure declaration conflicts and linker | |
786 | symbol conflicts with existing memory allocation routines. | |
787 | ||
788 | */ | |
789 | ||
790 | /* #define USE_DL_PREFIX */ | |
791 | ||
792 | ||
217c9dad WD |
793 | /* |
794 | ||
795 | Special defines for linux libc | |
796 | ||
797 | Except when compiled using these special defines for Linux libc | |
798 | using weak aliases, this malloc is NOT designed to work in | |
799 | multithreaded applications. No semaphores or other concurrency | |
800 | control are provided to ensure that multiple malloc or free calls | |
801 | don't run at the same time, which could be disasterous. A single | |
802 | semaphore could be used across malloc, realloc, and free (which is | |
803 | essentially the effect of the linux weak alias approach). It would | |
804 | be hard to obtain finer granularity. | |
805 | ||
806 | */ | |
807 | ||
808 | ||
809 | #ifdef INTERNAL_LINUX_C_LIB | |
810 | ||
811 | #if __STD_C | |
812 | ||
813 | Void_t * __default_morecore_init (ptrdiff_t); | |
814 | Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; | |
815 | ||
816 | #else | |
817 | ||
818 | Void_t * __default_morecore_init (); | |
819 | Void_t *(*__morecore)() = __default_morecore_init; | |
820 | ||
821 | #endif | |
822 | ||
823 | #define MORECORE (*__morecore) | |
824 | #define MORECORE_FAILURE 0 | |
825 | #define MORECORE_CLEARS 1 | |
826 | ||
827 | #else /* INTERNAL_LINUX_C_LIB */ | |
828 | ||
829 | #if __STD_C | |
830 | extern Void_t* sbrk(ptrdiff_t); | |
831 | #else | |
832 | extern Void_t* sbrk(); | |
833 | #endif | |
834 | ||
835 | #ifndef MORECORE | |
836 | #define MORECORE sbrk | |
837 | #endif | |
838 | ||
839 | #ifndef MORECORE_FAILURE | |
840 | #define MORECORE_FAILURE -1 | |
841 | #endif | |
842 | ||
843 | #ifndef MORECORE_CLEARS | |
844 | #define MORECORE_CLEARS 1 | |
845 | #endif | |
846 | ||
847 | #endif /* INTERNAL_LINUX_C_LIB */ | |
848 | ||
849 | #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) | |
850 | ||
851 | #define cALLOc __libc_calloc | |
852 | #define fREe __libc_free | |
853 | #define mALLOc __libc_malloc | |
854 | #define mEMALIGn __libc_memalign | |
855 | #define rEALLOc __libc_realloc | |
856 | #define vALLOc __libc_valloc | |
857 | #define pvALLOc __libc_pvalloc | |
858 | #define mALLINFo __libc_mallinfo | |
859 | #define mALLOPt __libc_mallopt | |
860 | ||
861 | #pragma weak calloc = __libc_calloc | |
862 | #pragma weak free = __libc_free | |
863 | #pragma weak cfree = __libc_free | |
864 | #pragma weak malloc = __libc_malloc | |
865 | #pragma weak memalign = __libc_memalign | |
866 | #pragma weak realloc = __libc_realloc | |
867 | #pragma weak valloc = __libc_valloc | |
868 | #pragma weak pvalloc = __libc_pvalloc | |
869 | #pragma weak mallinfo = __libc_mallinfo | |
870 | #pragma weak mallopt = __libc_mallopt | |
871 | ||
872 | #else | |
873 | ||
874 | #ifdef USE_DL_PREFIX | |
875 | #define cALLOc dlcalloc | |
876 | #define fREe dlfree | |
877 | #define mALLOc dlmalloc | |
878 | #define mEMALIGn dlmemalign | |
879 | #define rEALLOc dlrealloc | |
880 | #define vALLOc dlvalloc | |
881 | #define pvALLOc dlpvalloc | |
882 | #define mALLINFo dlmallinfo | |
883 | #define mALLOPt dlmallopt | |
884 | #else /* USE_DL_PREFIX */ | |
885 | #define cALLOc calloc | |
886 | #define fREe free | |
887 | #define mALLOc malloc | |
888 | #define mEMALIGn memalign | |
889 | #define rEALLOc realloc | |
890 | #define vALLOc valloc | |
891 | #define pvALLOc pvalloc | |
892 | #define mALLINFo mallinfo | |
893 | #define mALLOPt mallopt | |
894 | #endif /* USE_DL_PREFIX */ | |
895 | ||
896 | #endif | |
897 | ||
898 | /* Public routines */ | |
899 | ||
900 | #if __STD_C | |
901 | ||
902 | Void_t* mALLOc(size_t); | |
903 | void fREe(Void_t*); | |
904 | Void_t* rEALLOc(Void_t*, size_t); | |
905 | Void_t* mEMALIGn(size_t, size_t); | |
906 | Void_t* vALLOc(size_t); | |
907 | Void_t* pvALLOc(size_t); | |
908 | Void_t* cALLOc(size_t, size_t); | |
909 | void cfree(Void_t*); | |
910 | int malloc_trim(size_t); | |
911 | size_t malloc_usable_size(Void_t*); | |
912 | void malloc_stats(); | |
913 | int mALLOPt(int, int); | |
914 | struct mallinfo mALLINFo(void); | |
915 | #else | |
916 | Void_t* mALLOc(); | |
917 | void fREe(); | |
918 | Void_t* rEALLOc(); | |
919 | Void_t* mEMALIGn(); | |
920 | Void_t* vALLOc(); | |
921 | Void_t* pvALLOc(); | |
922 | Void_t* cALLOc(); | |
923 | void cfree(); | |
924 | int malloc_trim(); | |
925 | size_t malloc_usable_size(); | |
926 | void malloc_stats(); | |
927 | int mALLOPt(); | |
928 | struct mallinfo mALLINFo(); | |
929 | #endif | |
930 | ||
931 | ||
932 | #ifdef __cplusplus | |
933 | }; /* end of extern "C" */ | |
934 | #endif | |
935 | ||
936 | /* ---------- To make a malloc.h, end cutting here ------------ */ | |
ea882baf | 937 | #endif /* 0 */ /* Moved to malloc.h */ |
217c9dad WD |
938 | |
939 | #include <malloc.h> | |
ea882baf | 940 | #ifdef DEBUG |
217c9dad WD |
941 | #if __STD_C |
942 | static void malloc_update_mallinfo (void); | |
943 | void malloc_stats (void); | |
944 | #else | |
945 | static void malloc_update_mallinfo (); | |
946 | void malloc_stats(); | |
947 | #endif | |
ea882baf | 948 | #endif /* DEBUG */ |
217c9dad | 949 | |
d87080b7 WD |
950 | DECLARE_GLOBAL_DATA_PTR; |
951 | ||
217c9dad WD |
952 | /* |
953 | Emulation of sbrk for WIN32 | |
954 | All code within the ifdef WIN32 is untested by me. | |
955 | ||
956 | Thanks to Martin Fong and others for supplying this. | |
957 | */ | |
958 | ||
959 | ||
960 | #ifdef WIN32 | |
961 | ||
962 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ | |
963 | ~(malloc_getpagesize-1)) | |
964 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) | |
965 | ||
966 | /* resrve 64MB to insure large contiguous space */ | |
967 | #define RESERVED_SIZE (1024*1024*64) | |
968 | #define NEXT_SIZE (2048*1024) | |
969 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) | |
970 | ||
971 | struct GmListElement; | |
972 | typedef struct GmListElement GmListElement; | |
973 | ||
974 | struct GmListElement | |
975 | { | |
976 | GmListElement* next; | |
977 | void* base; | |
978 | }; | |
979 | ||
980 | static GmListElement* head = 0; | |
981 | static unsigned int gNextAddress = 0; | |
982 | static unsigned int gAddressBase = 0; | |
983 | static unsigned int gAllocatedSize = 0; | |
984 | ||
985 | static | |
986 | GmListElement* makeGmListElement (void* bas) | |
987 | { | |
988 | GmListElement* this; | |
989 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); | |
990 | assert (this); | |
991 | if (this) | |
992 | { | |
993 | this->base = bas; | |
994 | this->next = head; | |
995 | head = this; | |
996 | } | |
997 | return this; | |
998 | } | |
999 | ||
1000 | void gcleanup () | |
1001 | { | |
1002 | BOOL rval; | |
1003 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); | |
1004 | if (gAddressBase && (gNextAddress - gAddressBase)) | |
1005 | { | |
1006 | rval = VirtualFree ((void*)gAddressBase, | |
1007 | gNextAddress - gAddressBase, | |
1008 | MEM_DECOMMIT); | |
8bde7f77 | 1009 | assert (rval); |
217c9dad WD |
1010 | } |
1011 | while (head) | |
1012 | { | |
1013 | GmListElement* next = head->next; | |
1014 | rval = VirtualFree (head->base, 0, MEM_RELEASE); | |
1015 | assert (rval); | |
1016 | LocalFree (head); | |
1017 | head = next; | |
1018 | } | |
1019 | } | |
1020 | ||
1021 | static | |
1022 | void* findRegion (void* start_address, unsigned long size) | |
1023 | { | |
1024 | MEMORY_BASIC_INFORMATION info; | |
1025 | if (size >= TOP_MEMORY) return NULL; | |
1026 | ||
1027 | while ((unsigned long)start_address + size < TOP_MEMORY) | |
1028 | { | |
1029 | VirtualQuery (start_address, &info, sizeof (info)); | |
1030 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) | |
1031 | return start_address; | |
1032 | else | |
1033 | { | |
8bde7f77 WD |
1034 | /* Requested region is not available so see if the */ |
1035 | /* next region is available. Set 'start_address' */ | |
1036 | /* to the next region and call 'VirtualQuery()' */ | |
1037 | /* again. */ | |
217c9dad WD |
1038 | |
1039 | start_address = (char*)info.BaseAddress + info.RegionSize; | |
1040 | ||
8bde7f77 WD |
1041 | /* Make sure we start looking for the next region */ |
1042 | /* on the *next* 64K boundary. Otherwise, even if */ | |
1043 | /* the new region is free according to */ | |
1044 | /* 'VirtualQuery()', the subsequent call to */ | |
1045 | /* 'VirtualAlloc()' (which follows the call to */ | |
1046 | /* this routine in 'wsbrk()') will round *down* */ | |
1047 | /* the requested address to a 64K boundary which */ | |
1048 | /* we already know is an address in the */ | |
1049 | /* unavailable region. Thus, the subsequent call */ | |
1050 | /* to 'VirtualAlloc()' will fail and bring us back */ | |
1051 | /* here, causing us to go into an infinite loop. */ | |
217c9dad WD |
1052 | |
1053 | start_address = | |
1054 | (void *) AlignPage64K((unsigned long) start_address); | |
1055 | } | |
1056 | } | |
1057 | return NULL; | |
1058 | ||
1059 | } | |
1060 | ||
1061 | ||
1062 | void* wsbrk (long size) | |
1063 | { | |
1064 | void* tmp; | |
1065 | if (size > 0) | |
1066 | { | |
1067 | if (gAddressBase == 0) | |
1068 | { | |
1069 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); | |
1070 | gNextAddress = gAddressBase = | |
1071 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, | |
1072 | MEM_RESERVE, PAGE_NOACCESS); | |
1073 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + | |
1074 | gAllocatedSize)) | |
1075 | { | |
1076 | long new_size = max (NEXT_SIZE, AlignPage (size)); | |
1077 | void* new_address = (void*)(gAddressBase+gAllocatedSize); | |
1078 | do | |
1079 | { | |
1080 | new_address = findRegion (new_address, new_size); | |
1081 | ||
1082 | if (new_address == 0) | |
1083 | return (void*)-1; | |
1084 | ||
1085 | gAddressBase = gNextAddress = | |
1086 | (unsigned int)VirtualAlloc (new_address, new_size, | |
1087 | MEM_RESERVE, PAGE_NOACCESS); | |
8bde7f77 WD |
1088 | /* repeat in case of race condition */ |
1089 | /* The region that we found has been snagged */ | |
1090 | /* by another thread */ | |
217c9dad WD |
1091 | } |
1092 | while (gAddressBase == 0); | |
1093 | ||
1094 | assert (new_address == (void*)gAddressBase); | |
1095 | ||
1096 | gAllocatedSize = new_size; | |
1097 | ||
1098 | if (!makeGmListElement ((void*)gAddressBase)) | |
1099 | return (void*)-1; | |
1100 | } | |
1101 | if ((size + gNextAddress) > AlignPage (gNextAddress)) | |
1102 | { | |
1103 | void* res; | |
1104 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), | |
1105 | (size + gNextAddress - | |
1106 | AlignPage (gNextAddress)), | |
1107 | MEM_COMMIT, PAGE_READWRITE); | |
1108 | if (res == 0) | |
1109 | return (void*)-1; | |
1110 | } | |
1111 | tmp = (void*)gNextAddress; | |
1112 | gNextAddress = (unsigned int)tmp + size; | |
1113 | return tmp; | |
1114 | } | |
1115 | else if (size < 0) | |
1116 | { | |
1117 | unsigned int alignedGoal = AlignPage (gNextAddress + size); | |
1118 | /* Trim by releasing the virtual memory */ | |
1119 | if (alignedGoal >= gAddressBase) | |
1120 | { | |
1121 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, | |
1122 | MEM_DECOMMIT); | |
1123 | gNextAddress = gNextAddress + size; | |
1124 | return (void*)gNextAddress; | |
1125 | } | |
1126 | else | |
1127 | { | |
1128 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, | |
1129 | MEM_DECOMMIT); | |
1130 | gNextAddress = gAddressBase; | |
1131 | return (void*)-1; | |
1132 | } | |
1133 | } | |
1134 | else | |
1135 | { | |
1136 | return (void*)gNextAddress; | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | #endif | |
1141 | ||
1142 | \f | |
1143 | ||
1144 | /* | |
1145 | Type declarations | |
1146 | */ | |
1147 | ||
1148 | ||
1149 | struct malloc_chunk | |
1150 | { | |
1151 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ | |
1152 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ | |
1153 | struct malloc_chunk* fd; /* double links -- used only if free. */ | |
1154 | struct malloc_chunk* bk; | |
1155 | }; | |
1156 | ||
1157 | typedef struct malloc_chunk* mchunkptr; | |
1158 | ||
1159 | /* | |
1160 | ||
1161 | malloc_chunk details: | |
1162 | ||
1163 | (The following includes lightly edited explanations by Colin Plumb.) | |
1164 | ||
1165 | Chunks of memory are maintained using a `boundary tag' method as | |
1166 | described in e.g., Knuth or Standish. (See the paper by Paul | |
1167 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a | |
1168 | survey of such techniques.) Sizes of free chunks are stored both | |
1169 | in the front of each chunk and at the end. This makes | |
1170 | consolidating fragmented chunks into bigger chunks very fast. The | |
1171 | size fields also hold bits representing whether chunks are free or | |
1172 | in use. | |
1173 | ||
1174 | An allocated chunk looks like this: | |
1175 | ||
1176 | ||
1177 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1178 | | Size of previous chunk, if allocated | | |
1179 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1180 | | Size of chunk, in bytes |P| | |
217c9dad | 1181 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1182 | | User data starts here... . |
1183 | . . | |
1184 | . (malloc_usable_space() bytes) . | |
1185 | . | | |
217c9dad | 1186 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1187 | | Size of chunk | |
1188 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1189 | |
1190 | ||
1191 | Where "chunk" is the front of the chunk for the purpose of most of | |
1192 | the malloc code, but "mem" is the pointer that is returned to the | |
1193 | user. "Nextchunk" is the beginning of the next contiguous chunk. | |
1194 | ||
1195 | Chunks always begin on even word boundries, so the mem portion | |
1196 | (which is returned to the user) is also on an even word boundary, and | |
1197 | thus double-word aligned. | |
1198 | ||
1199 | Free chunks are stored in circular doubly-linked lists, and look like this: | |
1200 | ||
1201 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1202 | | Size of previous chunk | |
1203 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1204 | `head:' | Size of chunk, in bytes |P| |
1205 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1206 | | Forward pointer to next chunk in list | |
1207 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1208 | | Back pointer to previous chunk in list | | |
1209 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1210 | | Unused space (may be 0 bytes long) . | |
1211 | . . | |
1212 | . | | |
217c9dad WD |
1213 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1214 | `foot:' | Size of chunk, in bytes | | |
8bde7f77 | 1215 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
217c9dad WD |
1216 | |
1217 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the | |
1218 | chunk size (which is always a multiple of two words), is an in-use | |
1219 | bit for the *previous* chunk. If that bit is *clear*, then the | |
1220 | word before the current chunk size contains the previous chunk | |
1221 | size, and can be used to find the front of the previous chunk. | |
1222 | (The very first chunk allocated always has this bit set, | |
1223 | preventing access to non-existent (or non-owned) memory.) | |
1224 | ||
1225 | Note that the `foot' of the current chunk is actually represented | |
1226 | as the prev_size of the NEXT chunk. (This makes it easier to | |
1227 | deal with alignments etc). | |
1228 | ||
1229 | The two exceptions to all this are | |
1230 | ||
1231 | 1. The special chunk `top', which doesn't bother using the | |
8bde7f77 WD |
1232 | trailing size field since there is no |
1233 | next contiguous chunk that would have to index off it. (After | |
1234 | initialization, `top' is forced to always exist. If it would | |
1235 | become less than MINSIZE bytes long, it is replenished via | |
1236 | malloc_extend_top.) | |
217c9dad WD |
1237 | |
1238 | 2. Chunks allocated via mmap, which have the second-lowest-order | |
8bde7f77 WD |
1239 | bit (IS_MMAPPED) set in their size fields. Because they are |
1240 | never merged or traversed from any other chunk, they have no | |
1241 | foot size or inuse information. | |
217c9dad WD |
1242 | |
1243 | Available chunks are kept in any of several places (all declared below): | |
1244 | ||
1245 | * `av': An array of chunks serving as bin headers for consolidated | |
1246 | chunks. Each bin is doubly linked. The bins are approximately | |
1247 | proportionally (log) spaced. There are a lot of these bins | |
1248 | (128). This may look excessive, but works very well in | |
1249 | practice. All procedures maintain the invariant that no | |
1250 | consolidated chunk physically borders another one. Chunks in | |
1251 | bins are kept in size order, with ties going to the | |
1252 | approximately least recently used chunk. | |
1253 | ||
1254 | The chunks in each bin are maintained in decreasing sorted order by | |
1255 | size. This is irrelevant for the small bins, which all contain | |
1256 | the same-sized chunks, but facilitates best-fit allocation for | |
1257 | larger chunks. (These lists are just sequential. Keeping them in | |
1258 | order almost never requires enough traversal to warrant using | |
1259 | fancier ordered data structures.) Chunks of the same size are | |
1260 | linked with the most recently freed at the front, and allocations | |
1261 | are taken from the back. This results in LRU or FIFO allocation | |
1262 | order, which tends to give each chunk an equal opportunity to be | |
1263 | consolidated with adjacent freed chunks, resulting in larger free | |
1264 | chunks and less fragmentation. | |
1265 | ||
1266 | * `top': The top-most available chunk (i.e., the one bordering the | |
1267 | end of available memory) is treated specially. It is never | |
1268 | included in any bin, is used only if no other chunk is | |
1269 | available, and is released back to the system if it is very | |
1270 | large (see M_TRIM_THRESHOLD). | |
1271 | ||
1272 | * `last_remainder': A bin holding only the remainder of the | |
1273 | most recently split (non-top) chunk. This bin is checked | |
1274 | before other non-fitting chunks, so as to provide better | |
1275 | locality for runs of sequentially allocated chunks. | |
1276 | ||
1277 | * Implicitly, through the host system's memory mapping tables. | |
1278 | If supported, requests greater than a threshold are usually | |
1279 | serviced via calls to mmap, and then later released via munmap. | |
1280 | ||
1281 | */ | |
217c9dad | 1282 | \f |
217c9dad WD |
1283 | /* sizes, alignments */ |
1284 | ||
1285 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) | |
1286 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) | |
1287 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) | |
1288 | #define MINSIZE (sizeof(struct malloc_chunk)) | |
1289 | ||
1290 | /* conversion from malloc headers to user pointers, and back */ | |
1291 | ||
1292 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) | |
1293 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) | |
1294 | ||
1295 | /* pad request bytes into a usable size */ | |
1296 | ||
1297 | #define request2size(req) \ | |
1298 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ | |
1299 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ | |
1300 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) | |
1301 | ||
1302 | /* Check if m has acceptable alignment */ | |
1303 | ||
1304 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) | |
1305 | ||
1306 | ||
1307 | \f | |
1308 | ||
1309 | /* | |
1310 | Physical chunk operations | |
1311 | */ | |
1312 | ||
1313 | ||
1314 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ | |
1315 | ||
1316 | #define PREV_INUSE 0x1 | |
1317 | ||
1318 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ | |
1319 | ||
1320 | #define IS_MMAPPED 0x2 | |
1321 | ||
1322 | /* Bits to mask off when extracting size */ | |
1323 | ||
1324 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) | |
1325 | ||
1326 | ||
1327 | /* Ptr to next physical malloc_chunk. */ | |
1328 | ||
1329 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) | |
1330 | ||
1331 | /* Ptr to previous physical malloc_chunk */ | |
1332 | ||
1333 | #define prev_chunk(p)\ | |
1334 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) | |
1335 | ||
1336 | ||
1337 | /* Treat space at ptr + offset as a chunk */ | |
1338 | ||
1339 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) | |
1340 | ||
1341 | ||
1342 | \f | |
1343 | ||
1344 | /* | |
1345 | Dealing with use bits | |
1346 | */ | |
1347 | ||
1348 | /* extract p's inuse bit */ | |
1349 | ||
1350 | #define inuse(p)\ | |
1351 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) | |
1352 | ||
1353 | /* extract inuse bit of previous chunk */ | |
1354 | ||
1355 | #define prev_inuse(p) ((p)->size & PREV_INUSE) | |
1356 | ||
1357 | /* check for mmap()'ed chunk */ | |
1358 | ||
1359 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) | |
1360 | ||
1361 | /* set/clear chunk as in use without otherwise disturbing */ | |
1362 | ||
1363 | #define set_inuse(p)\ | |
1364 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE | |
1365 | ||
1366 | #define clear_inuse(p)\ | |
1367 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) | |
1368 | ||
1369 | /* check/set/clear inuse bits in known places */ | |
1370 | ||
1371 | #define inuse_bit_at_offset(p, s)\ | |
1372 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) | |
1373 | ||
1374 | #define set_inuse_bit_at_offset(p, s)\ | |
1375 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) | |
1376 | ||
1377 | #define clear_inuse_bit_at_offset(p, s)\ | |
1378 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) | |
1379 | ||
1380 | ||
1381 | \f | |
1382 | ||
1383 | /* | |
1384 | Dealing with size fields | |
1385 | */ | |
1386 | ||
1387 | /* Get size, ignoring use bits */ | |
1388 | ||
1389 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) | |
1390 | ||
1391 | /* Set size at head, without disturbing its use bit */ | |
1392 | ||
1393 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) | |
1394 | ||
1395 | /* Set size/use ignoring previous bits in header */ | |
1396 | ||
1397 | #define set_head(p, s) ((p)->size = (s)) | |
1398 | ||
1399 | /* Set size at footer (only when chunk is not in use) */ | |
1400 | ||
1401 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) | |
1402 | ||
1403 | ||
1404 | \f | |
1405 | ||
1406 | ||
1407 | /* | |
1408 | Bins | |
1409 | ||
1410 | The bins, `av_' are an array of pairs of pointers serving as the | |
1411 | heads of (initially empty) doubly-linked lists of chunks, laid out | |
1412 | in a way so that each pair can be treated as if it were in a | |
1413 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads | |
1414 | and chunks are the same). | |
1415 | ||
1416 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced | |
1417 | 8 bytes apart. Larger bins are approximately logarithmically | |
1418 | spaced. (See the table below.) The `av_' array is never mentioned | |
1419 | directly in the code, but instead via bin access macros. | |
1420 | ||
1421 | Bin layout: | |
1422 | ||
1423 | 64 bins of size 8 | |
1424 | 32 bins of size 64 | |
1425 | 16 bins of size 512 | |
1426 | 8 bins of size 4096 | |
1427 | 4 bins of size 32768 | |
1428 | 2 bins of size 262144 | |
1429 | 1 bin of size what's left | |
1430 | ||
1431 | There is actually a little bit of slop in the numbers in bin_index | |
1432 | for the sake of speed. This makes no difference elsewhere. | |
1433 | ||
1434 | The special chunks `top' and `last_remainder' get their own bins, | |
1435 | (this is implemented via yet more trickery with the av_ array), | |
1436 | although `top' is never properly linked to its bin since it is | |
1437 | always handled specially. | |
1438 | ||
1439 | */ | |
1440 | ||
1441 | #define NAV 128 /* number of bins */ | |
1442 | ||
1443 | typedef struct malloc_chunk* mbinptr; | |
1444 | ||
1445 | /* access macros */ | |
1446 | ||
1447 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) | |
1448 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) | |
1449 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) | |
1450 | ||
1451 | /* | |
1452 | The first 2 bins are never indexed. The corresponding av_ cells are instead | |
1453 | used for bookkeeping. This is not to save space, but to simplify | |
1454 | indexing, maintain locality, and avoid some initialization tests. | |
1455 | */ | |
1456 | ||
f2302d44 | 1457 | #define top (av_[2]) /* The topmost chunk */ |
217c9dad WD |
1458 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
1459 | ||
1460 | ||
1461 | /* | |
1462 | Because top initially points to its own bin with initial | |
1463 | zero size, thus forcing extension on the first malloc request, | |
1464 | we avoid having any special code in malloc to check whether | |
1465 | it even exists yet. But we still need to in malloc_extend_top. | |
1466 | */ | |
1467 | ||
1468 | #define initial_top ((mchunkptr)(bin_at(0))) | |
1469 | ||
1470 | /* Helper macro to initialize bins */ | |
1471 | ||
1472 | #define IAV(i) bin_at(i), bin_at(i) | |
1473 | ||
1474 | static mbinptr av_[NAV * 2 + 2] = { | |
1475 | 0, 0, | |
1476 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), | |
1477 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), | |
1478 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), | |
1479 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), | |
1480 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), | |
1481 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), | |
1482 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), | |
1483 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), | |
1484 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), | |
1485 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), | |
1486 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), | |
1487 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), | |
1488 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), | |
1489 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), | |
1490 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), | |
1491 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) | |
1492 | }; | |
1493 | ||
521af04d | 1494 | #ifndef CONFIG_RELOC_FIXUP_WORKS |
217c9dad WD |
1495 | void malloc_bin_reloc (void) |
1496 | { | |
217c9dad WD |
1497 | unsigned long *p = (unsigned long *)(&av_[2]); |
1498 | int i; | |
1499 | for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) { | |
1500 | *p++ += gd->reloc_off; | |
1501 | } | |
1502 | } | |
521af04d | 1503 | #endif |
5e93bd1c PT |
1504 | |
1505 | ulong mem_malloc_start = 0; | |
1506 | ulong mem_malloc_end = 0; | |
1507 | ulong mem_malloc_brk = 0; | |
1508 | ||
1509 | void *sbrk(ptrdiff_t increment) | |
1510 | { | |
1511 | ulong old = mem_malloc_brk; | |
1512 | ulong new = old + increment; | |
1513 | ||
1514 | if ((new < mem_malloc_start) || (new > mem_malloc_end)) | |
ae30b8c2 | 1515 | return (void *)MORECORE_FAILURE; |
5e93bd1c PT |
1516 | |
1517 | mem_malloc_brk = new; | |
1518 | ||
1519 | return (void *)old; | |
1520 | } | |
217c9dad | 1521 | |
d4e8ada0 PT |
1522 | void mem_malloc_init(ulong start, ulong size) |
1523 | { | |
1524 | mem_malloc_start = start; | |
1525 | mem_malloc_end = start + size; | |
1526 | mem_malloc_brk = start; | |
1527 | ||
1528 | memset((void *)mem_malloc_start, 0, size); | |
1529 | } | |
d4e8ada0 | 1530 | |
217c9dad WD |
1531 | /* field-extraction macros */ |
1532 | ||
1533 | #define first(b) ((b)->fd) | |
1534 | #define last(b) ((b)->bk) | |
1535 | ||
1536 | /* | |
1537 | Indexing into bins | |
1538 | */ | |
1539 | ||
1540 | #define bin_index(sz) \ | |
1541 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ | |
1542 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ | |
1543 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ | |
1544 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ | |
1545 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ | |
1546 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ | |
8bde7f77 | 1547 | 126) |
217c9dad WD |
1548 | /* |
1549 | bins for chunks < 512 are all spaced 8 bytes apart, and hold | |
1550 | identically sized chunks. This is exploited in malloc. | |
1551 | */ | |
1552 | ||
1553 | #define MAX_SMALLBIN 63 | |
1554 | #define MAX_SMALLBIN_SIZE 512 | |
1555 | #define SMALLBIN_WIDTH 8 | |
1556 | ||
1557 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) | |
1558 | ||
1559 | /* | |
1560 | Requests are `small' if both the corresponding and the next bin are small | |
1561 | */ | |
1562 | ||
1563 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) | |
1564 | ||
1565 | \f | |
1566 | ||
1567 | /* | |
1568 | To help compensate for the large number of bins, a one-level index | |
1569 | structure is used for bin-by-bin searching. `binblocks' is a | |
1570 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins | |
1571 | have any (possibly) non-empty bins, so they can be skipped over | |
1572 | all at once during during traversals. The bits are NOT always | |
1573 | cleared as soon as all bins in a block are empty, but instead only | |
1574 | when all are noticed to be empty during traversal in malloc. | |
1575 | */ | |
1576 | ||
1577 | #define BINBLOCKWIDTH 4 /* bins per block */ | |
1578 | ||
f2302d44 SR |
1579 | #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ |
1580 | #define binblocks_w (av_[1]) | |
217c9dad WD |
1581 | |
1582 | /* bin<->block macros */ | |
1583 | ||
1584 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) | |
f2302d44 SR |
1585 | #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) |
1586 | #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) | |
217c9dad WD |
1587 | |
1588 | ||
1589 | \f | |
1590 | ||
1591 | ||
1592 | /* Other static bookkeeping data */ | |
1593 | ||
1594 | /* variables holding tunable values */ | |
1595 | ||
1596 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
1597 | static unsigned long top_pad = DEFAULT_TOP_PAD; | |
1598 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; | |
1599 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
1600 | ||
1601 | /* The first value returned from sbrk */ | |
1602 | static char* sbrk_base = (char*)(-1); | |
1603 | ||
1604 | /* The maximum memory obtained from system via sbrk */ | |
1605 | static unsigned long max_sbrked_mem = 0; | |
1606 | ||
1607 | /* The maximum via either sbrk or mmap */ | |
1608 | static unsigned long max_total_mem = 0; | |
1609 | ||
1610 | /* internal working copy of mallinfo */ | |
1611 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
1612 | ||
1613 | /* The total memory obtained from system via sbrk */ | |
1614 | #define sbrked_mem (current_mallinfo.arena) | |
1615 | ||
1616 | /* Tracking mmaps */ | |
1617 | ||
ea882baf | 1618 | #ifdef DEBUG |
217c9dad | 1619 | static unsigned int n_mmaps = 0; |
ea882baf | 1620 | #endif /* DEBUG */ |
217c9dad WD |
1621 | static unsigned long mmapped_mem = 0; |
1622 | #if HAVE_MMAP | |
1623 | static unsigned int max_n_mmaps = 0; | |
1624 | static unsigned long max_mmapped_mem = 0; | |
1625 | #endif | |
1626 | ||
1627 | \f | |
1628 | ||
1629 | /* | |
1630 | Debugging support | |
1631 | */ | |
1632 | ||
1633 | #ifdef DEBUG | |
1634 | ||
1635 | ||
1636 | /* | |
1637 | These routines make a number of assertions about the states | |
1638 | of data structures that should be true at all times. If any | |
1639 | are not true, it's very likely that a user program has somehow | |
1640 | trashed memory. (It's also possible that there is a coding error | |
1641 | in malloc. In which case, please report it!) | |
1642 | */ | |
1643 | ||
1644 | #if __STD_C | |
1645 | static void do_check_chunk(mchunkptr p) | |
1646 | #else | |
1647 | static void do_check_chunk(p) mchunkptr p; | |
1648 | #endif | |
1649 | { | |
1650 | #if 0 /* causes warnings because assert() is off */ | |
1651 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1652 | #endif /* 0 */ | |
1653 | ||
1654 | /* No checkable chunk is mmapped */ | |
1655 | assert(!chunk_is_mmapped(p)); | |
1656 | ||
1657 | /* Check for legal address ... */ | |
1658 | assert((char*)p >= sbrk_base); | |
1659 | if (p != top) | |
1660 | assert((char*)p + sz <= (char*)top); | |
1661 | else | |
1662 | assert((char*)p + sz <= sbrk_base + sbrked_mem); | |
1663 | ||
1664 | } | |
1665 | ||
1666 | ||
1667 | #if __STD_C | |
1668 | static void do_check_free_chunk(mchunkptr p) | |
1669 | #else | |
1670 | static void do_check_free_chunk(p) mchunkptr p; | |
1671 | #endif | |
1672 | { | |
1673 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1674 | #if 0 /* causes warnings because assert() is off */ | |
1675 | mchunkptr next = chunk_at_offset(p, sz); | |
1676 | #endif /* 0 */ | |
1677 | ||
1678 | do_check_chunk(p); | |
1679 | ||
1680 | /* Check whether it claims to be free ... */ | |
1681 | assert(!inuse(p)); | |
1682 | ||
1683 | /* Unless a special marker, must have OK fields */ | |
1684 | if ((long)sz >= (long)MINSIZE) | |
1685 | { | |
1686 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1687 | assert(aligned_OK(chunk2mem(p))); | |
1688 | /* ... matching footer field */ | |
1689 | assert(next->prev_size == sz); | |
1690 | /* ... and is fully consolidated */ | |
1691 | assert(prev_inuse(p)); | |
1692 | assert (next == top || inuse(next)); | |
1693 | ||
1694 | /* ... and has minimally sane links */ | |
1695 | assert(p->fd->bk == p); | |
1696 | assert(p->bk->fd == p); | |
1697 | } | |
1698 | else /* markers are always of size SIZE_SZ */ | |
1699 | assert(sz == SIZE_SZ); | |
1700 | } | |
1701 | ||
1702 | #if __STD_C | |
1703 | static void do_check_inuse_chunk(mchunkptr p) | |
1704 | #else | |
1705 | static void do_check_inuse_chunk(p) mchunkptr p; | |
1706 | #endif | |
1707 | { | |
1708 | mchunkptr next = next_chunk(p); | |
1709 | do_check_chunk(p); | |
1710 | ||
1711 | /* Check whether it claims to be in use ... */ | |
1712 | assert(inuse(p)); | |
1713 | ||
1714 | /* ... and is surrounded by OK chunks. | |
1715 | Since more things can be checked with free chunks than inuse ones, | |
1716 | if an inuse chunk borders them and debug is on, it's worth doing them. | |
1717 | */ | |
1718 | if (!prev_inuse(p)) | |
1719 | { | |
1720 | mchunkptr prv = prev_chunk(p); | |
1721 | assert(next_chunk(prv) == p); | |
1722 | do_check_free_chunk(prv); | |
1723 | } | |
1724 | if (next == top) | |
1725 | { | |
1726 | assert(prev_inuse(next)); | |
1727 | assert(chunksize(next) >= MINSIZE); | |
1728 | } | |
1729 | else if (!inuse(next)) | |
1730 | do_check_free_chunk(next); | |
1731 | ||
1732 | } | |
1733 | ||
1734 | #if __STD_C | |
1735 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) | |
1736 | #else | |
1737 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; | |
1738 | #endif | |
1739 | { | |
1740 | #if 0 /* causes warnings because assert() is off */ | |
1741 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1742 | long room = sz - s; | |
1743 | #endif /* 0 */ | |
1744 | ||
1745 | do_check_inuse_chunk(p); | |
1746 | ||
1747 | /* Legal size ... */ | |
1748 | assert((long)sz >= (long)MINSIZE); | |
1749 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1750 | assert(room >= 0); | |
1751 | assert(room < (long)MINSIZE); | |
1752 | ||
1753 | /* ... and alignment */ | |
1754 | assert(aligned_OK(chunk2mem(p))); | |
1755 | ||
1756 | ||
1757 | /* ... and was allocated at front of an available chunk */ | |
1758 | assert(prev_inuse(p)); | |
1759 | ||
1760 | } | |
1761 | ||
1762 | ||
1763 | #define check_free_chunk(P) do_check_free_chunk(P) | |
1764 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) | |
1765 | #define check_chunk(P) do_check_chunk(P) | |
1766 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) | |
1767 | #else | |
1768 | #define check_free_chunk(P) | |
1769 | #define check_inuse_chunk(P) | |
1770 | #define check_chunk(P) | |
1771 | #define check_malloced_chunk(P,N) | |
1772 | #endif | |
1773 | ||
1774 | \f | |
1775 | ||
1776 | /* | |
1777 | Macro-based internal utilities | |
1778 | */ | |
1779 | ||
1780 | ||
1781 | /* | |
1782 | Linking chunks in bin lists. | |
1783 | Call these only with variables, not arbitrary expressions, as arguments. | |
1784 | */ | |
1785 | ||
1786 | /* | |
1787 | Place chunk p of size s in its bin, in size order, | |
1788 | putting it ahead of others of same size. | |
1789 | */ | |
1790 | ||
1791 | ||
1792 | #define frontlink(P, S, IDX, BK, FD) \ | |
1793 | { \ | |
1794 | if (S < MAX_SMALLBIN_SIZE) \ | |
1795 | { \ | |
1796 | IDX = smallbin_index(S); \ | |
1797 | mark_binblock(IDX); \ | |
1798 | BK = bin_at(IDX); \ | |
1799 | FD = BK->fd; \ | |
1800 | P->bk = BK; \ | |
1801 | P->fd = FD; \ | |
1802 | FD->bk = BK->fd = P; \ | |
1803 | } \ | |
1804 | else \ | |
1805 | { \ | |
1806 | IDX = bin_index(S); \ | |
1807 | BK = bin_at(IDX); \ | |
1808 | FD = BK->fd; \ | |
1809 | if (FD == BK) mark_binblock(IDX); \ | |
1810 | else \ | |
1811 | { \ | |
1812 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ | |
1813 | BK = FD->bk; \ | |
1814 | } \ | |
1815 | P->bk = BK; \ | |
1816 | P->fd = FD; \ | |
1817 | FD->bk = BK->fd = P; \ | |
1818 | } \ | |
1819 | } | |
1820 | ||
1821 | ||
1822 | /* take a chunk off a list */ | |
1823 | ||
1824 | #define unlink(P, BK, FD) \ | |
1825 | { \ | |
1826 | BK = P->bk; \ | |
1827 | FD = P->fd; \ | |
1828 | FD->bk = BK; \ | |
1829 | BK->fd = FD; \ | |
1830 | } \ | |
1831 | ||
1832 | /* Place p as the last remainder */ | |
1833 | ||
1834 | #define link_last_remainder(P) \ | |
1835 | { \ | |
1836 | last_remainder->fd = last_remainder->bk = P; \ | |
1837 | P->fd = P->bk = last_remainder; \ | |
1838 | } | |
1839 | ||
1840 | /* Clear the last_remainder bin */ | |
1841 | ||
1842 | #define clear_last_remainder \ | |
1843 | (last_remainder->fd = last_remainder->bk = last_remainder) | |
1844 | ||
1845 | ||
217c9dad WD |
1846 | \f |
1847 | ||
1848 | ||
1849 | /* Routines dealing with mmap(). */ | |
1850 | ||
1851 | #if HAVE_MMAP | |
1852 | ||
1853 | #if __STD_C | |
1854 | static mchunkptr mmap_chunk(size_t size) | |
1855 | #else | |
1856 | static mchunkptr mmap_chunk(size) size_t size; | |
1857 | #endif | |
1858 | { | |
1859 | size_t page_mask = malloc_getpagesize - 1; | |
1860 | mchunkptr p; | |
1861 | ||
1862 | #ifndef MAP_ANONYMOUS | |
1863 | static int fd = -1; | |
1864 | #endif | |
1865 | ||
1866 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ | |
1867 | ||
1868 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because | |
1869 | * there is no following chunk whose prev_size field could be used. | |
1870 | */ | |
1871 | size = (size + SIZE_SZ + page_mask) & ~page_mask; | |
1872 | ||
1873 | #ifdef MAP_ANONYMOUS | |
1874 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, | |
1875 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | |
1876 | #else /* !MAP_ANONYMOUS */ | |
1877 | if (fd < 0) | |
1878 | { | |
1879 | fd = open("/dev/zero", O_RDWR); | |
1880 | if(fd < 0) return 0; | |
1881 | } | |
1882 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | |
1883 | #endif | |
1884 | ||
1885 | if(p == (mchunkptr)-1) return 0; | |
1886 | ||
1887 | n_mmaps++; | |
1888 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; | |
1889 | ||
1890 | /* We demand that eight bytes into a page must be 8-byte aligned. */ | |
1891 | assert(aligned_OK(chunk2mem(p))); | |
1892 | ||
1893 | /* The offset to the start of the mmapped region is stored | |
1894 | * in the prev_size field of the chunk; normally it is zero, | |
1895 | * but that can be changed in memalign(). | |
1896 | */ | |
1897 | p->prev_size = 0; | |
1898 | set_head(p, size|IS_MMAPPED); | |
1899 | ||
1900 | mmapped_mem += size; | |
1901 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1902 | max_mmapped_mem = mmapped_mem; | |
1903 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1904 | max_total_mem = mmapped_mem + sbrked_mem; | |
1905 | return p; | |
1906 | } | |
1907 | ||
1908 | #if __STD_C | |
1909 | static void munmap_chunk(mchunkptr p) | |
1910 | #else | |
1911 | static void munmap_chunk(p) mchunkptr p; | |
1912 | #endif | |
1913 | { | |
1914 | INTERNAL_SIZE_T size = chunksize(p); | |
1915 | int ret; | |
1916 | ||
1917 | assert (chunk_is_mmapped(p)); | |
1918 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1919 | assert((n_mmaps > 0)); | |
1920 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); | |
1921 | ||
1922 | n_mmaps--; | |
1923 | mmapped_mem -= (size + p->prev_size); | |
1924 | ||
1925 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); | |
1926 | ||
1927 | /* munmap returns non-zero on failure */ | |
1928 | assert(ret == 0); | |
1929 | } | |
1930 | ||
1931 | #if HAVE_MREMAP | |
1932 | ||
1933 | #if __STD_C | |
1934 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) | |
1935 | #else | |
1936 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; | |
1937 | #endif | |
1938 | { | |
1939 | size_t page_mask = malloc_getpagesize - 1; | |
1940 | INTERNAL_SIZE_T offset = p->prev_size; | |
1941 | INTERNAL_SIZE_T size = chunksize(p); | |
1942 | char *cp; | |
1943 | ||
1944 | assert (chunk_is_mmapped(p)); | |
1945 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1946 | assert((n_mmaps > 0)); | |
1947 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); | |
1948 | ||
1949 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ | |
1950 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; | |
1951 | ||
1952 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); | |
1953 | ||
1954 | if (cp == (char *)-1) return 0; | |
1955 | ||
1956 | p = (mchunkptr)(cp + offset); | |
1957 | ||
1958 | assert(aligned_OK(chunk2mem(p))); | |
1959 | ||
1960 | assert((p->prev_size == offset)); | |
1961 | set_head(p, (new_size - offset)|IS_MMAPPED); | |
1962 | ||
1963 | mmapped_mem -= size + offset; | |
1964 | mmapped_mem += new_size; | |
1965 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1966 | max_mmapped_mem = mmapped_mem; | |
1967 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1968 | max_total_mem = mmapped_mem + sbrked_mem; | |
1969 | return p; | |
1970 | } | |
1971 | ||
1972 | #endif /* HAVE_MREMAP */ | |
1973 | ||
1974 | #endif /* HAVE_MMAP */ | |
1975 | ||
1976 | ||
1977 | \f | |
1978 | ||
1979 | /* | |
1980 | Extend the top-most chunk by obtaining memory from system. | |
1981 | Main interface to sbrk (but see also malloc_trim). | |
1982 | */ | |
1983 | ||
1984 | #if __STD_C | |
1985 | static void malloc_extend_top(INTERNAL_SIZE_T nb) | |
1986 | #else | |
1987 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; | |
1988 | #endif | |
1989 | { | |
1990 | char* brk; /* return value from sbrk */ | |
1991 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ | |
1992 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ | |
1993 | char* new_brk; /* return of 2nd sbrk call */ | |
1994 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ | |
1995 | ||
1996 | mchunkptr old_top = top; /* Record state of old top */ | |
1997 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); | |
1998 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); | |
1999 | ||
2000 | /* Pad request with top_pad plus minimal overhead */ | |
2001 | ||
2002 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; | |
2003 | unsigned long pagesz = malloc_getpagesize; | |
2004 | ||
2005 | /* If not the first time through, round to preserve page boundary */ | |
2006 | /* Otherwise, we need to correct to a page size below anyway. */ | |
2007 | /* (We also correct below if an intervening foreign sbrk call.) */ | |
2008 | ||
2009 | if (sbrk_base != (char*)(-1)) | |
2010 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); | |
2011 | ||
2012 | brk = (char*)(MORECORE (sbrk_size)); | |
2013 | ||
2014 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ | |
2015 | if (brk == (char*)(MORECORE_FAILURE) || | |
2016 | (brk < old_end && old_top != initial_top)) | |
2017 | return; | |
2018 | ||
2019 | sbrked_mem += sbrk_size; | |
2020 | ||
2021 | if (brk == old_end) /* can just add bytes to current top */ | |
2022 | { | |
2023 | top_size = sbrk_size + old_top_size; | |
2024 | set_head(top, top_size | PREV_INUSE); | |
2025 | } | |
2026 | else | |
2027 | { | |
2028 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ | |
2029 | sbrk_base = brk; | |
2030 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ | |
2031 | sbrked_mem += brk - (char*)old_end; | |
2032 | ||
2033 | /* Guarantee alignment of first new chunk made from this space */ | |
2034 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; | |
2035 | if (front_misalign > 0) | |
2036 | { | |
2037 | correction = (MALLOC_ALIGNMENT) - front_misalign; | |
2038 | brk += correction; | |
2039 | } | |
2040 | else | |
2041 | correction = 0; | |
2042 | ||
2043 | /* Guarantee the next brk will be at a page boundary */ | |
2044 | ||
2045 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & | |
8bde7f77 | 2046 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
217c9dad WD |
2047 | |
2048 | /* Allocate correction */ | |
2049 | new_brk = (char*)(MORECORE (correction)); | |
2050 | if (new_brk == (char*)(MORECORE_FAILURE)) return; | |
2051 | ||
2052 | sbrked_mem += correction; | |
2053 | ||
2054 | top = (mchunkptr)brk; | |
2055 | top_size = new_brk - brk + correction; | |
2056 | set_head(top, top_size | PREV_INUSE); | |
2057 | ||
2058 | if (old_top != initial_top) | |
2059 | { | |
2060 | ||
2061 | /* There must have been an intervening foreign sbrk call. */ | |
2062 | /* A double fencepost is necessary to prevent consolidation */ | |
2063 | ||
2064 | /* If not enough space to do this, then user did something very wrong */ | |
2065 | if (old_top_size < MINSIZE) | |
2066 | { | |
8bde7f77 WD |
2067 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
2068 | return; | |
217c9dad WD |
2069 | } |
2070 | ||
2071 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ | |
2072 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; | |
2073 | set_head_size(old_top, old_top_size); | |
2074 | chunk_at_offset(old_top, old_top_size )->size = | |
8bde7f77 | 2075 | SIZE_SZ|PREV_INUSE; |
217c9dad | 2076 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
8bde7f77 | 2077 | SIZE_SZ|PREV_INUSE; |
217c9dad WD |
2078 | /* If possible, release the rest. */ |
2079 | if (old_top_size >= MINSIZE) | |
8bde7f77 | 2080 | fREe(chunk2mem(old_top)); |
217c9dad WD |
2081 | } |
2082 | } | |
2083 | ||
2084 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) | |
2085 | max_sbrked_mem = sbrked_mem; | |
2086 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
2087 | max_total_mem = mmapped_mem + sbrked_mem; | |
2088 | ||
2089 | /* We always land on a page boundary */ | |
2090 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); | |
2091 | } | |
2092 | ||
2093 | ||
2094 | \f | |
2095 | ||
2096 | /* Main public routines */ | |
2097 | ||
2098 | ||
2099 | /* | |
2100 | Malloc Algorthim: | |
2101 | ||
2102 | The requested size is first converted into a usable form, `nb'. | |
2103 | This currently means to add 4 bytes overhead plus possibly more to | |
2104 | obtain 8-byte alignment and/or to obtain a size of at least | |
2105 | MINSIZE (currently 16 bytes), the smallest allocatable size. | |
2106 | (All fits are considered `exact' if they are within MINSIZE bytes.) | |
2107 | ||
2108 | From there, the first successful of the following steps is taken: | |
2109 | ||
2110 | 1. The bin corresponding to the request size is scanned, and if | |
8bde7f77 | 2111 | a chunk of exactly the right size is found, it is taken. |
217c9dad WD |
2112 | |
2113 | 2. The most recently remaindered chunk is used if it is big | |
8bde7f77 WD |
2114 | enough. This is a form of (roving) first fit, used only in |
2115 | the absence of exact fits. Runs of consecutive requests use | |
2116 | the remainder of the chunk used for the previous such request | |
2117 | whenever possible. This limited use of a first-fit style | |
2118 | allocation strategy tends to give contiguous chunks | |
2119 | coextensive lifetimes, which improves locality and can reduce | |
2120 | fragmentation in the long run. | |
217c9dad WD |
2121 | |
2122 | 3. Other bins are scanned in increasing size order, using a | |
8bde7f77 WD |
2123 | chunk big enough to fulfill the request, and splitting off |
2124 | any remainder. This search is strictly by best-fit; i.e., | |
2125 | the smallest (with ties going to approximately the least | |
2126 | recently used) chunk that fits is selected. | |
217c9dad WD |
2127 | |
2128 | 4. If large enough, the chunk bordering the end of memory | |
8bde7f77 WD |
2129 | (`top') is split off. (This use of `top' is in accord with |
2130 | the best-fit search rule. In effect, `top' is treated as | |
2131 | larger (and thus less well fitting) than any other available | |
2132 | chunk since it can be extended to be as large as necessary | |
2133 | (up to system limitations). | |
217c9dad WD |
2134 | |
2135 | 5. If the request size meets the mmap threshold and the | |
8bde7f77 WD |
2136 | system supports mmap, and there are few enough currently |
2137 | allocated mmapped regions, and a call to mmap succeeds, | |
2138 | the request is allocated via direct memory mapping. | |
217c9dad WD |
2139 | |
2140 | 6. Otherwise, the top of memory is extended by | |
8bde7f77 WD |
2141 | obtaining more space from the system (normally using sbrk, |
2142 | but definable to anything else via the MORECORE macro). | |
2143 | Memory is gathered from the system (in system page-sized | |
2144 | units) in a way that allows chunks obtained across different | |
2145 | sbrk calls to be consolidated, but does not require | |
2146 | contiguous memory. Thus, it should be safe to intersperse | |
2147 | mallocs with other sbrk calls. | |
217c9dad WD |
2148 | |
2149 | ||
2150 | All allocations are made from the the `lowest' part of any found | |
2151 | chunk. (The implementation invariant is that prev_inuse is | |
2152 | always true of any allocated chunk; i.e., that each allocated | |
2153 | chunk borders either a previously allocated and still in-use chunk, | |
2154 | or the base of its memory arena.) | |
2155 | ||
2156 | */ | |
2157 | ||
2158 | #if __STD_C | |
2159 | Void_t* mALLOc(size_t bytes) | |
2160 | #else | |
2161 | Void_t* mALLOc(bytes) size_t bytes; | |
2162 | #endif | |
2163 | { | |
2164 | mchunkptr victim; /* inspected/selected chunk */ | |
2165 | INTERNAL_SIZE_T victim_size; /* its size */ | |
2166 | int idx; /* index for bin traversal */ | |
2167 | mbinptr bin; /* associated bin */ | |
2168 | mchunkptr remainder; /* remainder from a split */ | |
2169 | long remainder_size; /* its size */ | |
2170 | int remainder_index; /* its bin index */ | |
2171 | unsigned long block; /* block traverser bit */ | |
2172 | int startidx; /* first bin of a traversed block */ | |
2173 | mchunkptr fwd; /* misc temp for linking */ | |
2174 | mchunkptr bck; /* misc temp for linking */ | |
2175 | mbinptr q; /* misc temp */ | |
2176 | ||
2177 | INTERNAL_SIZE_T nb; | |
2178 | ||
27405448 WD |
2179 | /* check if mem_malloc_init() was run */ |
2180 | if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { | |
2181 | /* not initialized yet */ | |
2182 | return 0; | |
2183 | } | |
2184 | ||
217c9dad WD |
2185 | if ((long)bytes < 0) return 0; |
2186 | ||
2187 | nb = request2size(bytes); /* padded request size; */ | |
2188 | ||
2189 | /* Check for exact match in a bin */ | |
2190 | ||
2191 | if (is_small_request(nb)) /* Faster version for small requests */ | |
2192 | { | |
2193 | idx = smallbin_index(nb); | |
2194 | ||
2195 | /* No traversal or size check necessary for small bins. */ | |
2196 | ||
2197 | q = bin_at(idx); | |
2198 | victim = last(q); | |
2199 | ||
2200 | /* Also scan the next one, since it would have a remainder < MINSIZE */ | |
2201 | if (victim == q) | |
2202 | { | |
2203 | q = next_bin(q); | |
2204 | victim = last(q); | |
2205 | } | |
2206 | if (victim != q) | |
2207 | { | |
2208 | victim_size = chunksize(victim); | |
2209 | unlink(victim, bck, fwd); | |
2210 | set_inuse_bit_at_offset(victim, victim_size); | |
2211 | check_malloced_chunk(victim, nb); | |
2212 | return chunk2mem(victim); | |
2213 | } | |
2214 | ||
2215 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ | |
2216 | ||
2217 | } | |
2218 | else | |
2219 | { | |
2220 | idx = bin_index(nb); | |
2221 | bin = bin_at(idx); | |
2222 | ||
2223 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2224 | { | |
2225 | victim_size = chunksize(victim); | |
2226 | remainder_size = victim_size - nb; | |
2227 | ||
2228 | if (remainder_size >= (long)MINSIZE) /* too big */ | |
2229 | { | |
8bde7f77 WD |
2230 | --idx; /* adjust to rescan below after checking last remainder */ |
2231 | break; | |
217c9dad WD |
2232 | } |
2233 | ||
2234 | else if (remainder_size >= 0) /* exact fit */ | |
2235 | { | |
8bde7f77 WD |
2236 | unlink(victim, bck, fwd); |
2237 | set_inuse_bit_at_offset(victim, victim_size); | |
2238 | check_malloced_chunk(victim, nb); | |
2239 | return chunk2mem(victim); | |
217c9dad WD |
2240 | } |
2241 | } | |
2242 | ||
2243 | ++idx; | |
2244 | ||
2245 | } | |
2246 | ||
2247 | /* Try to use the last split-off remainder */ | |
2248 | ||
2249 | if ( (victim = last_remainder->fd) != last_remainder) | |
2250 | { | |
2251 | victim_size = chunksize(victim); | |
2252 | remainder_size = victim_size - nb; | |
2253 | ||
2254 | if (remainder_size >= (long)MINSIZE) /* re-split */ | |
2255 | { | |
2256 | remainder = chunk_at_offset(victim, nb); | |
2257 | set_head(victim, nb | PREV_INUSE); | |
2258 | link_last_remainder(remainder); | |
2259 | set_head(remainder, remainder_size | PREV_INUSE); | |
2260 | set_foot(remainder, remainder_size); | |
2261 | check_malloced_chunk(victim, nb); | |
2262 | return chunk2mem(victim); | |
2263 | } | |
2264 | ||
2265 | clear_last_remainder; | |
2266 | ||
2267 | if (remainder_size >= 0) /* exhaust */ | |
2268 | { | |
2269 | set_inuse_bit_at_offset(victim, victim_size); | |
2270 | check_malloced_chunk(victim, nb); | |
2271 | return chunk2mem(victim); | |
2272 | } | |
2273 | ||
2274 | /* Else place in bin */ | |
2275 | ||
2276 | frontlink(victim, victim_size, remainder_index, bck, fwd); | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | If there are any possibly nonempty big-enough blocks, | |
2281 | search for best fitting chunk by scanning bins in blockwidth units. | |
2282 | */ | |
2283 | ||
f2302d44 | 2284 | if ( (block = idx2binblock(idx)) <= binblocks_r) |
217c9dad WD |
2285 | { |
2286 | ||
2287 | /* Get to the first marked block */ | |
2288 | ||
f2302d44 | 2289 | if ( (block & binblocks_r) == 0) |
217c9dad WD |
2290 | { |
2291 | /* force to an even block boundary */ | |
2292 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; | |
2293 | block <<= 1; | |
f2302d44 | 2294 | while ((block & binblocks_r) == 0) |
217c9dad | 2295 | { |
8bde7f77 WD |
2296 | idx += BINBLOCKWIDTH; |
2297 | block <<= 1; | |
217c9dad WD |
2298 | } |
2299 | } | |
2300 | ||
2301 | /* For each possibly nonempty block ... */ | |
2302 | for (;;) | |
2303 | { | |
2304 | startidx = idx; /* (track incomplete blocks) */ | |
2305 | q = bin = bin_at(idx); | |
2306 | ||
2307 | /* For each bin in this block ... */ | |
2308 | do | |
2309 | { | |
8bde7f77 WD |
2310 | /* Find and use first big enough chunk ... */ |
2311 | ||
2312 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2313 | { | |
2314 | victim_size = chunksize(victim); | |
2315 | remainder_size = victim_size - nb; | |
2316 | ||
2317 | if (remainder_size >= (long)MINSIZE) /* split */ | |
2318 | { | |
2319 | remainder = chunk_at_offset(victim, nb); | |
2320 | set_head(victim, nb | PREV_INUSE); | |
2321 | unlink(victim, bck, fwd); | |
2322 | link_last_remainder(remainder); | |
2323 | set_head(remainder, remainder_size | PREV_INUSE); | |
2324 | set_foot(remainder, remainder_size); | |
2325 | check_malloced_chunk(victim, nb); | |
2326 | return chunk2mem(victim); | |
2327 | } | |
2328 | ||
2329 | else if (remainder_size >= 0) /* take */ | |
2330 | { | |
2331 | set_inuse_bit_at_offset(victim, victim_size); | |
2332 | unlink(victim, bck, fwd); | |
2333 | check_malloced_chunk(victim, nb); | |
2334 | return chunk2mem(victim); | |
2335 | } | |
2336 | ||
2337 | } | |
217c9dad WD |
2338 | |
2339 | bin = next_bin(bin); | |
2340 | ||
2341 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); | |
2342 | ||
2343 | /* Clear out the block bit. */ | |
2344 | ||
2345 | do /* Possibly backtrack to try to clear a partial block */ | |
2346 | { | |
8bde7f77 WD |
2347 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
2348 | { | |
f2302d44 | 2349 | av_[1] = (mbinptr)(binblocks_r & ~block); |
8bde7f77 WD |
2350 | break; |
2351 | } | |
2352 | --startidx; | |
217c9dad WD |
2353 | q = prev_bin(q); |
2354 | } while (first(q) == q); | |
2355 | ||
2356 | /* Get to the next possibly nonempty block */ | |
2357 | ||
f2302d44 | 2358 | if ( (block <<= 1) <= binblocks_r && (block != 0) ) |
217c9dad | 2359 | { |
f2302d44 | 2360 | while ((block & binblocks_r) == 0) |
8bde7f77 WD |
2361 | { |
2362 | idx += BINBLOCKWIDTH; | |
2363 | block <<= 1; | |
2364 | } | |
217c9dad WD |
2365 | } |
2366 | else | |
8bde7f77 | 2367 | break; |
217c9dad WD |
2368 | } |
2369 | } | |
2370 | ||
2371 | ||
2372 | /* Try to use top chunk */ | |
2373 | ||
2374 | /* Require that there be a remainder, ensuring top always exists */ | |
2375 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
2376 | { | |
2377 | ||
2378 | #if HAVE_MMAP | |
2379 | /* If big and would otherwise need to extend, try to use mmap instead */ | |
2380 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && | |
8bde7f77 | 2381 | (victim = mmap_chunk(nb)) != 0) |
217c9dad WD |
2382 | return chunk2mem(victim); |
2383 | #endif | |
2384 | ||
2385 | /* Try to extend */ | |
2386 | malloc_extend_top(nb); | |
2387 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
2388 | return 0; /* propagate failure */ | |
2389 | } | |
2390 | ||
2391 | victim = top; | |
2392 | set_head(victim, nb | PREV_INUSE); | |
2393 | top = chunk_at_offset(victim, nb); | |
2394 | set_head(top, remainder_size | PREV_INUSE); | |
2395 | check_malloced_chunk(victim, nb); | |
2396 | return chunk2mem(victim); | |
2397 | ||
2398 | } | |
2399 | ||
2400 | ||
2401 | \f | |
2402 | ||
2403 | /* | |
2404 | ||
2405 | free() algorithm : | |
2406 | ||
2407 | cases: | |
2408 | ||
2409 | 1. free(0) has no effect. | |
2410 | ||
2411 | 2. If the chunk was allocated via mmap, it is release via munmap(). | |
2412 | ||
2413 | 3. If a returned chunk borders the current high end of memory, | |
8bde7f77 WD |
2414 | it is consolidated into the top, and if the total unused |
2415 | topmost memory exceeds the trim threshold, malloc_trim is | |
2416 | called. | |
217c9dad WD |
2417 | |
2418 | 4. Other chunks are consolidated as they arrive, and | |
8bde7f77 WD |
2419 | placed in corresponding bins. (This includes the case of |
2420 | consolidating with the current `last_remainder'). | |
217c9dad WD |
2421 | |
2422 | */ | |
2423 | ||
2424 | ||
2425 | #if __STD_C | |
2426 | void fREe(Void_t* mem) | |
2427 | #else | |
2428 | void fREe(mem) Void_t* mem; | |
2429 | #endif | |
2430 | { | |
2431 | mchunkptr p; /* chunk corresponding to mem */ | |
2432 | INTERNAL_SIZE_T hd; /* its head field */ | |
2433 | INTERNAL_SIZE_T sz; /* its size */ | |
2434 | int idx; /* its bin index */ | |
2435 | mchunkptr next; /* next contiguous chunk */ | |
2436 | INTERNAL_SIZE_T nextsz; /* its size */ | |
2437 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ | |
2438 | mchunkptr bck; /* misc temp for linking */ | |
2439 | mchunkptr fwd; /* misc temp for linking */ | |
2440 | int islr; /* track whether merging with last_remainder */ | |
2441 | ||
2442 | if (mem == 0) /* free(0) has no effect */ | |
2443 | return; | |
2444 | ||
2445 | p = mem2chunk(mem); | |
2446 | hd = p->size; | |
2447 | ||
2448 | #if HAVE_MMAP | |
2449 | if (hd & IS_MMAPPED) /* release mmapped memory. */ | |
2450 | { | |
2451 | munmap_chunk(p); | |
2452 | return; | |
2453 | } | |
2454 | #endif | |
2455 | ||
2456 | check_inuse_chunk(p); | |
2457 | ||
2458 | sz = hd & ~PREV_INUSE; | |
2459 | next = chunk_at_offset(p, sz); | |
2460 | nextsz = chunksize(next); | |
2461 | ||
2462 | if (next == top) /* merge with top */ | |
2463 | { | |
2464 | sz += nextsz; | |
2465 | ||
2466 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2467 | { | |
2468 | prevsz = p->prev_size; | |
2469 | p = chunk_at_offset(p, -((long) prevsz)); | |
2470 | sz += prevsz; | |
2471 | unlink(p, bck, fwd); | |
2472 | } | |
2473 | ||
2474 | set_head(p, sz | PREV_INUSE); | |
2475 | top = p; | |
2476 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) | |
2477 | malloc_trim(top_pad); | |
2478 | return; | |
2479 | } | |
2480 | ||
2481 | set_head(next, nextsz); /* clear inuse bit */ | |
2482 | ||
2483 | islr = 0; | |
2484 | ||
2485 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2486 | { | |
2487 | prevsz = p->prev_size; | |
2488 | p = chunk_at_offset(p, -((long) prevsz)); | |
2489 | sz += prevsz; | |
2490 | ||
2491 | if (p->fd == last_remainder) /* keep as last_remainder */ | |
2492 | islr = 1; | |
2493 | else | |
2494 | unlink(p, bck, fwd); | |
2495 | } | |
2496 | ||
2497 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ | |
2498 | { | |
2499 | sz += nextsz; | |
2500 | ||
2501 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ | |
2502 | { | |
2503 | islr = 1; | |
2504 | link_last_remainder(p); | |
2505 | } | |
2506 | else | |
2507 | unlink(next, bck, fwd); | |
2508 | } | |
2509 | ||
2510 | ||
2511 | set_head(p, sz | PREV_INUSE); | |
2512 | set_foot(p, sz); | |
2513 | if (!islr) | |
2514 | frontlink(p, sz, idx, bck, fwd); | |
2515 | } | |
2516 | ||
2517 | ||
2518 | \f | |
2519 | ||
2520 | ||
2521 | /* | |
2522 | ||
2523 | Realloc algorithm: | |
2524 | ||
2525 | Chunks that were obtained via mmap cannot be extended or shrunk | |
2526 | unless HAVE_MREMAP is defined, in which case mremap is used. | |
2527 | Otherwise, if their reallocation is for additional space, they are | |
2528 | copied. If for less, they are just left alone. | |
2529 | ||
2530 | Otherwise, if the reallocation is for additional space, and the | |
2531 | chunk can be extended, it is, else a malloc-copy-free sequence is | |
2532 | taken. There are several different ways that a chunk could be | |
2533 | extended. All are tried: | |
2534 | ||
2535 | * Extending forward into following adjacent free chunk. | |
2536 | * Shifting backwards, joining preceding adjacent space | |
2537 | * Both shifting backwards and extending forward. | |
2538 | * Extending into newly sbrked space | |
2539 | ||
2540 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a | |
2541 | size argument of zero (re)allocates a minimum-sized chunk. | |
2542 | ||
2543 | If the reallocation is for less space, and the new request is for | |
2544 | a `small' (<512 bytes) size, then the newly unused space is lopped | |
2545 | off and freed. | |
2546 | ||
2547 | The old unix realloc convention of allowing the last-free'd chunk | |
2548 | to be used as an argument to realloc is no longer supported. | |
2549 | I don't know of any programs still relying on this feature, | |
2550 | and allowing it would also allow too many other incorrect | |
2551 | usages of realloc to be sensible. | |
2552 | ||
2553 | ||
2554 | */ | |
2555 | ||
2556 | ||
2557 | #if __STD_C | |
2558 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) | |
2559 | #else | |
2560 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; | |
2561 | #endif | |
2562 | { | |
2563 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2564 | ||
2565 | mchunkptr oldp; /* chunk corresponding to oldmem */ | |
2566 | INTERNAL_SIZE_T oldsize; /* its size */ | |
2567 | ||
2568 | mchunkptr newp; /* chunk to return */ | |
2569 | INTERNAL_SIZE_T newsize; /* its size */ | |
2570 | Void_t* newmem; /* corresponding user mem */ | |
2571 | ||
2572 | mchunkptr next; /* next contiguous chunk after oldp */ | |
2573 | INTERNAL_SIZE_T nextsize; /* its size */ | |
2574 | ||
2575 | mchunkptr prev; /* previous contiguous chunk before oldp */ | |
2576 | INTERNAL_SIZE_T prevsize; /* its size */ | |
2577 | ||
2578 | mchunkptr remainder; /* holds split off extra space from newp */ | |
2579 | INTERNAL_SIZE_T remainder_size; /* its size */ | |
2580 | ||
2581 | mchunkptr bck; /* misc temp for linking */ | |
2582 | mchunkptr fwd; /* misc temp for linking */ | |
2583 | ||
2584 | #ifdef REALLOC_ZERO_BYTES_FREES | |
2585 | if (bytes == 0) { fREe(oldmem); return 0; } | |
2586 | #endif | |
2587 | ||
2588 | if ((long)bytes < 0) return 0; | |
2589 | ||
2590 | /* realloc of null is supposed to be same as malloc */ | |
2591 | if (oldmem == 0) return mALLOc(bytes); | |
2592 | ||
2593 | newp = oldp = mem2chunk(oldmem); | |
2594 | newsize = oldsize = chunksize(oldp); | |
2595 | ||
2596 | ||
2597 | nb = request2size(bytes); | |
2598 | ||
2599 | #if HAVE_MMAP | |
2600 | if (chunk_is_mmapped(oldp)) | |
2601 | { | |
2602 | #if HAVE_MREMAP | |
2603 | newp = mremap_chunk(oldp, nb); | |
2604 | if(newp) return chunk2mem(newp); | |
2605 | #endif | |
2606 | /* Note the extra SIZE_SZ overhead. */ | |
2607 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ | |
2608 | /* Must alloc, copy, free. */ | |
2609 | newmem = mALLOc(bytes); | |
2610 | if (newmem == 0) return 0; /* propagate failure */ | |
2611 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); | |
2612 | munmap_chunk(oldp); | |
2613 | return newmem; | |
2614 | } | |
2615 | #endif | |
2616 | ||
2617 | check_inuse_chunk(oldp); | |
2618 | ||
2619 | if ((long)(oldsize) < (long)(nb)) | |
2620 | { | |
2621 | ||
2622 | /* Try expanding forward */ | |
2623 | ||
2624 | next = chunk_at_offset(oldp, oldsize); | |
2625 | if (next == top || !inuse(next)) | |
2626 | { | |
2627 | nextsize = chunksize(next); | |
2628 | ||
2629 | /* Forward into top only if a remainder */ | |
2630 | if (next == top) | |
2631 | { | |
8bde7f77 WD |
2632 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
2633 | { | |
2634 | newsize += nextsize; | |
2635 | top = chunk_at_offset(oldp, nb); | |
2636 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2637 | set_head_size(oldp, nb); | |
2638 | return chunk2mem(oldp); | |
2639 | } | |
217c9dad WD |
2640 | } |
2641 | ||
2642 | /* Forward into next chunk */ | |
2643 | else if (((long)(nextsize + newsize) >= (long)(nb))) | |
2644 | { | |
8bde7f77 WD |
2645 | unlink(next, bck, fwd); |
2646 | newsize += nextsize; | |
2647 | goto split; | |
217c9dad WD |
2648 | } |
2649 | } | |
2650 | else | |
2651 | { | |
2652 | next = 0; | |
2653 | nextsize = 0; | |
2654 | } | |
2655 | ||
2656 | /* Try shifting backwards. */ | |
2657 | ||
2658 | if (!prev_inuse(oldp)) | |
2659 | { | |
2660 | prev = prev_chunk(oldp); | |
2661 | prevsize = chunksize(prev); | |
2662 | ||
2663 | /* try forward + backward first to save a later consolidation */ | |
2664 | ||
2665 | if (next != 0) | |
2666 | { | |
8bde7f77 WD |
2667 | /* into top */ |
2668 | if (next == top) | |
2669 | { | |
2670 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) | |
2671 | { | |
2672 | unlink(prev, bck, fwd); | |
2673 | newp = prev; | |
2674 | newsize += prevsize + nextsize; | |
2675 | newmem = chunk2mem(newp); | |
2676 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2677 | top = chunk_at_offset(newp, nb); | |
2678 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2679 | set_head_size(newp, nb); | |
2680 | return newmem; | |
2681 | } | |
2682 | } | |
2683 | ||
2684 | /* into next chunk */ | |
2685 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) | |
2686 | { | |
2687 | unlink(next, bck, fwd); | |
2688 | unlink(prev, bck, fwd); | |
2689 | newp = prev; | |
2690 | newsize += nextsize + prevsize; | |
2691 | newmem = chunk2mem(newp); | |
2692 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2693 | goto split; | |
2694 | } | |
217c9dad WD |
2695 | } |
2696 | ||
2697 | /* backward only */ | |
2698 | if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) | |
2699 | { | |
8bde7f77 WD |
2700 | unlink(prev, bck, fwd); |
2701 | newp = prev; | |
2702 | newsize += prevsize; | |
2703 | newmem = chunk2mem(newp); | |
2704 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2705 | goto split; | |
217c9dad WD |
2706 | } |
2707 | } | |
2708 | ||
2709 | /* Must allocate */ | |
2710 | ||
2711 | newmem = mALLOc (bytes); | |
2712 | ||
2713 | if (newmem == 0) /* propagate failure */ | |
2714 | return 0; | |
2715 | ||
2716 | /* Avoid copy if newp is next chunk after oldp. */ | |
2717 | /* (This can only happen when new chunk is sbrk'ed.) */ | |
2718 | ||
2719 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) | |
2720 | { | |
2721 | newsize += chunksize(newp); | |
2722 | newp = oldp; | |
2723 | goto split; | |
2724 | } | |
2725 | ||
2726 | /* Otherwise copy, free, and exit */ | |
2727 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2728 | fREe(oldmem); | |
2729 | return newmem; | |
2730 | } | |
2731 | ||
2732 | ||
2733 | split: /* split off extra room in old or expanded chunk */ | |
2734 | ||
2735 | if (newsize - nb >= MINSIZE) /* split off remainder */ | |
2736 | { | |
2737 | remainder = chunk_at_offset(newp, nb); | |
2738 | remainder_size = newsize - nb; | |
2739 | set_head_size(newp, nb); | |
2740 | set_head(remainder, remainder_size | PREV_INUSE); | |
2741 | set_inuse_bit_at_offset(remainder, remainder_size); | |
2742 | fREe(chunk2mem(remainder)); /* let free() deal with it */ | |
2743 | } | |
2744 | else | |
2745 | { | |
2746 | set_head_size(newp, newsize); | |
2747 | set_inuse_bit_at_offset(newp, newsize); | |
2748 | } | |
2749 | ||
2750 | check_inuse_chunk(newp); | |
2751 | return chunk2mem(newp); | |
2752 | } | |
2753 | ||
2754 | ||
2755 | \f | |
2756 | ||
2757 | /* | |
2758 | ||
2759 | memalign algorithm: | |
2760 | ||
2761 | memalign requests more than enough space from malloc, finds a spot | |
2762 | within that chunk that meets the alignment request, and then | |
2763 | possibly frees the leading and trailing space. | |
2764 | ||
2765 | The alignment argument must be a power of two. This property is not | |
2766 | checked by memalign, so misuse may result in random runtime errors. | |
2767 | ||
2768 | 8-byte alignment is guaranteed by normal malloc calls, so don't | |
2769 | bother calling memalign with an argument of 8 or less. | |
2770 | ||
2771 | Overreliance on memalign is a sure way to fragment space. | |
2772 | ||
2773 | */ | |
2774 | ||
2775 | ||
2776 | #if __STD_C | |
2777 | Void_t* mEMALIGn(size_t alignment, size_t bytes) | |
2778 | #else | |
2779 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; | |
2780 | #endif | |
2781 | { | |
2782 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2783 | char* m; /* memory returned by malloc call */ | |
2784 | mchunkptr p; /* corresponding chunk */ | |
2785 | char* brk; /* alignment point within p */ | |
2786 | mchunkptr newp; /* chunk to return */ | |
2787 | INTERNAL_SIZE_T newsize; /* its size */ | |
2788 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ | |
2789 | mchunkptr remainder; /* spare room at end to split off */ | |
2790 | long remainder_size; /* its size */ | |
2791 | ||
2792 | if ((long)bytes < 0) return 0; | |
2793 | ||
2794 | /* If need less alignment than we give anyway, just relay to malloc */ | |
2795 | ||
2796 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); | |
2797 | ||
2798 | /* Otherwise, ensure that it is at least a minimum chunk size */ | |
2799 | ||
2800 | if (alignment < MINSIZE) alignment = MINSIZE; | |
2801 | ||
2802 | /* Call malloc with worst case padding to hit alignment. */ | |
2803 | ||
2804 | nb = request2size(bytes); | |
2805 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); | |
2806 | ||
2807 | if (m == 0) return 0; /* propagate failure */ | |
2808 | ||
2809 | p = mem2chunk(m); | |
2810 | ||
2811 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ | |
2812 | { | |
2813 | #if HAVE_MMAP | |
2814 | if(chunk_is_mmapped(p)) | |
2815 | return chunk2mem(p); /* nothing more to do */ | |
2816 | #endif | |
2817 | } | |
2818 | else /* misaligned */ | |
2819 | { | |
2820 | /* | |
2821 | Find an aligned spot inside chunk. | |
2822 | Since we need to give back leading space in a chunk of at | |
2823 | least MINSIZE, if the first calculation places us at | |
2824 | a spot with less than MINSIZE leader, we can move to the | |
2825 | next aligned spot -- we've allocated enough total room so that | |
2826 | this is always possible. | |
2827 | */ | |
2828 | ||
2829 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); | |
2830 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; | |
2831 | ||
2832 | newp = (mchunkptr)brk; | |
2833 | leadsize = brk - (char*)(p); | |
2834 | newsize = chunksize(p) - leadsize; | |
2835 | ||
2836 | #if HAVE_MMAP | |
2837 | if(chunk_is_mmapped(p)) | |
2838 | { | |
2839 | newp->prev_size = p->prev_size + leadsize; | |
2840 | set_head(newp, newsize|IS_MMAPPED); | |
2841 | return chunk2mem(newp); | |
2842 | } | |
2843 | #endif | |
2844 | ||
2845 | /* give back leader, use the rest */ | |
2846 | ||
2847 | set_head(newp, newsize | PREV_INUSE); | |
2848 | set_inuse_bit_at_offset(newp, newsize); | |
2849 | set_head_size(p, leadsize); | |
2850 | fREe(chunk2mem(p)); | |
2851 | p = newp; | |
2852 | ||
2853 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); | |
2854 | } | |
2855 | ||
2856 | /* Also give back spare room at the end */ | |
2857 | ||
2858 | remainder_size = chunksize(p) - nb; | |
2859 | ||
2860 | if (remainder_size >= (long)MINSIZE) | |
2861 | { | |
2862 | remainder = chunk_at_offset(p, nb); | |
2863 | set_head(remainder, remainder_size | PREV_INUSE); | |
2864 | set_head_size(p, nb); | |
2865 | fREe(chunk2mem(remainder)); | |
2866 | } | |
2867 | ||
2868 | check_inuse_chunk(p); | |
2869 | return chunk2mem(p); | |
2870 | ||
2871 | } | |
2872 | ||
2873 | \f | |
2874 | ||
2875 | ||
2876 | /* | |
2877 | valloc just invokes memalign with alignment argument equal | |
2878 | to the page size of the system (or as near to this as can | |
2879 | be figured out from all the includes/defines above.) | |
2880 | */ | |
2881 | ||
2882 | #if __STD_C | |
2883 | Void_t* vALLOc(size_t bytes) | |
2884 | #else | |
2885 | Void_t* vALLOc(bytes) size_t bytes; | |
2886 | #endif | |
2887 | { | |
2888 | return mEMALIGn (malloc_getpagesize, bytes); | |
2889 | } | |
2890 | ||
2891 | /* | |
2892 | pvalloc just invokes valloc for the nearest pagesize | |
2893 | that will accommodate request | |
2894 | */ | |
2895 | ||
2896 | ||
2897 | #if __STD_C | |
2898 | Void_t* pvALLOc(size_t bytes) | |
2899 | #else | |
2900 | Void_t* pvALLOc(bytes) size_t bytes; | |
2901 | #endif | |
2902 | { | |
2903 | size_t pagesize = malloc_getpagesize; | |
2904 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); | |
2905 | } | |
2906 | ||
2907 | /* | |
2908 | ||
2909 | calloc calls malloc, then zeroes out the allocated chunk. | |
2910 | ||
2911 | */ | |
2912 | ||
2913 | #if __STD_C | |
2914 | Void_t* cALLOc(size_t n, size_t elem_size) | |
2915 | #else | |
2916 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; | |
2917 | #endif | |
2918 | { | |
2919 | mchunkptr p; | |
2920 | INTERNAL_SIZE_T csz; | |
2921 | ||
2922 | INTERNAL_SIZE_T sz = n * elem_size; | |
2923 | ||
2924 | ||
2925 | /* check if expand_top called, in which case don't need to clear */ | |
2926 | #if MORECORE_CLEARS | |
2927 | mchunkptr oldtop = top; | |
2928 | INTERNAL_SIZE_T oldtopsize = chunksize(top); | |
2929 | #endif | |
2930 | Void_t* mem = mALLOc (sz); | |
2931 | ||
2932 | if ((long)n < 0) return 0; | |
2933 | ||
2934 | if (mem == 0) | |
2935 | return 0; | |
2936 | else | |
2937 | { | |
2938 | p = mem2chunk(mem); | |
2939 | ||
2940 | /* Two optional cases in which clearing not necessary */ | |
2941 | ||
2942 | ||
2943 | #if HAVE_MMAP | |
2944 | if (chunk_is_mmapped(p)) return mem; | |
2945 | #endif | |
2946 | ||
2947 | csz = chunksize(p); | |
2948 | ||
2949 | #if MORECORE_CLEARS | |
2950 | if (p == oldtop && csz > oldtopsize) | |
2951 | { | |
2952 | /* clear only the bytes from non-freshly-sbrked memory */ | |
2953 | csz = oldtopsize; | |
2954 | } | |
2955 | #endif | |
2956 | ||
2957 | MALLOC_ZERO(mem, csz - SIZE_SZ); | |
2958 | return mem; | |
2959 | } | |
2960 | } | |
2961 | ||
2962 | /* | |
2963 | ||
2964 | cfree just calls free. It is needed/defined on some systems | |
2965 | that pair it with calloc, presumably for odd historical reasons. | |
2966 | ||
2967 | */ | |
2968 | ||
2969 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) | |
2970 | #if __STD_C | |
2971 | void cfree(Void_t *mem) | |
2972 | #else | |
2973 | void cfree(mem) Void_t *mem; | |
2974 | #endif | |
2975 | { | |
2976 | fREe(mem); | |
2977 | } | |
2978 | #endif | |
2979 | ||
2980 | \f | |
2981 | ||
2982 | /* | |
2983 | ||
2984 | Malloc_trim gives memory back to the system (via negative | |
2985 | arguments to sbrk) if there is unused memory at the `high' end of | |
2986 | the malloc pool. You can call this after freeing large blocks of | |
2987 | memory to potentially reduce the system-level memory requirements | |
2988 | of a program. However, it cannot guarantee to reduce memory. Under | |
2989 | some allocation patterns, some large free blocks of memory will be | |
2990 | locked between two used chunks, so they cannot be given back to | |
2991 | the system. | |
2992 | ||
2993 | The `pad' argument to malloc_trim represents the amount of free | |
2994 | trailing space to leave untrimmed. If this argument is zero, | |
2995 | only the minimum amount of memory to maintain internal data | |
2996 | structures will be left (one page or less). Non-zero arguments | |
2997 | can be supplied to maintain enough trailing space to service | |
2998 | future expected allocations without having to re-obtain memory | |
2999 | from the system. | |
3000 | ||
3001 | Malloc_trim returns 1 if it actually released any memory, else 0. | |
3002 | ||
3003 | */ | |
3004 | ||
3005 | #if __STD_C | |
3006 | int malloc_trim(size_t pad) | |
3007 | #else | |
3008 | int malloc_trim(pad) size_t pad; | |
3009 | #endif | |
3010 | { | |
3011 | long top_size; /* Amount of top-most memory */ | |
3012 | long extra; /* Amount to release */ | |
3013 | char* current_brk; /* address returned by pre-check sbrk call */ | |
3014 | char* new_brk; /* address returned by negative sbrk call */ | |
3015 | ||
3016 | unsigned long pagesz = malloc_getpagesize; | |
3017 | ||
3018 | top_size = chunksize(top); | |
3019 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; | |
3020 | ||
3021 | if (extra < (long)pagesz) /* Not enough memory to release */ | |
3022 | return 0; | |
3023 | ||
3024 | else | |
3025 | { | |
3026 | /* Test to make sure no one else called sbrk */ | |
3027 | current_brk = (char*)(MORECORE (0)); | |
3028 | if (current_brk != (char*)(top) + top_size) | |
3029 | return 0; /* Apparently we don't own memory; must fail */ | |
3030 | ||
3031 | else | |
3032 | { | |
3033 | new_brk = (char*)(MORECORE (-extra)); | |
3034 | ||
3035 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ | |
3036 | { | |
8bde7f77 WD |
3037 | /* Try to figure out what we have */ |
3038 | current_brk = (char*)(MORECORE (0)); | |
3039 | top_size = current_brk - (char*)top; | |
3040 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ | |
3041 | { | |
3042 | sbrked_mem = current_brk - sbrk_base; | |
3043 | set_head(top, top_size | PREV_INUSE); | |
3044 | } | |
3045 | check_chunk(top); | |
3046 | return 0; | |
217c9dad WD |
3047 | } |
3048 | ||
3049 | else | |
3050 | { | |
8bde7f77 WD |
3051 | /* Success. Adjust top accordingly. */ |
3052 | set_head(top, (top_size - extra) | PREV_INUSE); | |
3053 | sbrked_mem -= extra; | |
3054 | check_chunk(top); | |
3055 | return 1; | |
217c9dad WD |
3056 | } |
3057 | } | |
3058 | } | |
3059 | } | |
3060 | ||
3061 | \f | |
3062 | ||
3063 | /* | |
3064 | malloc_usable_size: | |
3065 | ||
3066 | This routine tells you how many bytes you can actually use in an | |
3067 | allocated chunk, which may be more than you requested (although | |
3068 | often not). You can use this many bytes without worrying about | |
3069 | overwriting other allocated objects. Not a particularly great | |
3070 | programming practice, but still sometimes useful. | |
3071 | ||
3072 | */ | |
3073 | ||
3074 | #if __STD_C | |
3075 | size_t malloc_usable_size(Void_t* mem) | |
3076 | #else | |
3077 | size_t malloc_usable_size(mem) Void_t* mem; | |
3078 | #endif | |
3079 | { | |
3080 | mchunkptr p; | |
3081 | if (mem == 0) | |
3082 | return 0; | |
3083 | else | |
3084 | { | |
3085 | p = mem2chunk(mem); | |
3086 | if(!chunk_is_mmapped(p)) | |
3087 | { | |
3088 | if (!inuse(p)) return 0; | |
3089 | check_inuse_chunk(p); | |
3090 | return chunksize(p) - SIZE_SZ; | |
3091 | } | |
3092 | return chunksize(p) - 2*SIZE_SZ; | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | ||
3097 | \f | |
3098 | ||
3099 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ | |
3100 | ||
ea882baf | 3101 | #ifdef DEBUG |
217c9dad WD |
3102 | static void malloc_update_mallinfo() |
3103 | { | |
3104 | int i; | |
3105 | mbinptr b; | |
3106 | mchunkptr p; | |
3107 | #ifdef DEBUG | |
3108 | mchunkptr q; | |
3109 | #endif | |
3110 | ||
3111 | INTERNAL_SIZE_T avail = chunksize(top); | |
3112 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; | |
3113 | ||
3114 | for (i = 1; i < NAV; ++i) | |
3115 | { | |
3116 | b = bin_at(i); | |
3117 | for (p = last(b); p != b; p = p->bk) | |
3118 | { | |
3119 | #ifdef DEBUG | |
3120 | check_free_chunk(p); | |
3121 | for (q = next_chunk(p); | |
8bde7f77 WD |
3122 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
3123 | q = next_chunk(q)) | |
3124 | check_inuse_chunk(q); | |
217c9dad WD |
3125 | #endif |
3126 | avail += chunksize(p); | |
3127 | navail++; | |
3128 | } | |
3129 | } | |
3130 | ||
3131 | current_mallinfo.ordblks = navail; | |
3132 | current_mallinfo.uordblks = sbrked_mem - avail; | |
3133 | current_mallinfo.fordblks = avail; | |
3134 | current_mallinfo.hblks = n_mmaps; | |
3135 | current_mallinfo.hblkhd = mmapped_mem; | |
3136 | current_mallinfo.keepcost = chunksize(top); | |
3137 | ||
3138 | } | |
ea882baf | 3139 | #endif /* DEBUG */ |
217c9dad WD |
3140 | |
3141 | \f | |
3142 | ||
3143 | /* | |
3144 | ||
3145 | malloc_stats: | |
3146 | ||
3147 | Prints on the amount of space obtain from the system (both | |
3148 | via sbrk and mmap), the maximum amount (which may be more than | |
3149 | current if malloc_trim and/or munmap got called), the maximum | |
3150 | number of simultaneous mmap regions used, and the current number | |
3151 | of bytes allocated via malloc (or realloc, etc) but not yet | |
3152 | freed. (Note that this is the number of bytes allocated, not the | |
3153 | number requested. It will be larger than the number requested | |
3154 | because of alignment and bookkeeping overhead.) | |
3155 | ||
3156 | */ | |
3157 | ||
ea882baf | 3158 | #ifdef DEBUG |
217c9dad WD |
3159 | void malloc_stats() |
3160 | { | |
3161 | malloc_update_mallinfo(); | |
3162 | printf("max system bytes = %10u\n", | |
8bde7f77 | 3163 | (unsigned int)(max_total_mem)); |
217c9dad | 3164 | printf("system bytes = %10u\n", |
8bde7f77 | 3165 | (unsigned int)(sbrked_mem + mmapped_mem)); |
217c9dad | 3166 | printf("in use bytes = %10u\n", |
8bde7f77 | 3167 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
217c9dad WD |
3168 | #if HAVE_MMAP |
3169 | printf("max mmap regions = %10u\n", | |
8bde7f77 | 3170 | (unsigned int)max_n_mmaps); |
217c9dad WD |
3171 | #endif |
3172 | } | |
ea882baf | 3173 | #endif /* DEBUG */ |
217c9dad WD |
3174 | |
3175 | /* | |
3176 | mallinfo returns a copy of updated current mallinfo. | |
3177 | */ | |
3178 | ||
ea882baf | 3179 | #ifdef DEBUG |
217c9dad WD |
3180 | struct mallinfo mALLINFo() |
3181 | { | |
3182 | malloc_update_mallinfo(); | |
3183 | return current_mallinfo; | |
3184 | } | |
ea882baf | 3185 | #endif /* DEBUG */ |
217c9dad WD |
3186 | |
3187 | ||
3188 | \f | |
3189 | ||
3190 | /* | |
3191 | mallopt: | |
3192 | ||
3193 | mallopt is the general SVID/XPG interface to tunable parameters. | |
3194 | The format is to provide a (parameter-number, parameter-value) pair. | |
3195 | mallopt then sets the corresponding parameter to the argument | |
3196 | value if it can (i.e., so long as the value is meaningful), | |
3197 | and returns 1 if successful else 0. | |
3198 | ||
3199 | See descriptions of tunable parameters above. | |
3200 | ||
3201 | */ | |
3202 | ||
3203 | #if __STD_C | |
3204 | int mALLOPt(int param_number, int value) | |
3205 | #else | |
3206 | int mALLOPt(param_number, value) int param_number; int value; | |
3207 | #endif | |
3208 | { | |
3209 | switch(param_number) | |
3210 | { | |
3211 | case M_TRIM_THRESHOLD: | |
3212 | trim_threshold = value; return 1; | |
3213 | case M_TOP_PAD: | |
3214 | top_pad = value; return 1; | |
3215 | case M_MMAP_THRESHOLD: | |
3216 | mmap_threshold = value; return 1; | |
3217 | case M_MMAP_MAX: | |
3218 | #if HAVE_MMAP | |
3219 | n_mmaps_max = value; return 1; | |
3220 | #else | |
3221 | if (value != 0) return 0; else n_mmaps_max = value; return 1; | |
3222 | #endif | |
3223 | ||
3224 | default: | |
3225 | return 0; | |
3226 | } | |
3227 | } | |
3228 | ||
3229 | /* | |
3230 | ||
3231 | History: | |
3232 | ||
3233 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) | |
3234 | * return null for negative arguments | |
3235 | * Added Several WIN32 cleanups from Martin C. Fong <[email protected]> | |
8bde7f77 WD |
3236 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
3237 | (e.g. WIN32 platforms) | |
3238 | * Cleanup up header file inclusion for WIN32 platforms | |
3239 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
3240 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
3241 | memory allocation routines | |
3242 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
3243 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
217c9dad | 3244 | usage of 'assert' in non-WIN32 code |
8bde7f77 WD |
3245 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
3246 | avoid infinite loop | |
217c9dad WD |
3247 | * Always call 'fREe()' rather than 'free()' |
3248 | ||
3249 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) | |
3250 | * Fixed ordering problem with boundary-stamping | |
3251 | ||
3252 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) | |
3253 | * Added pvalloc, as recommended by H.J. Liu | |
3254 | * Added 64bit pointer support mainly from Wolfram Gloger | |
3255 | * Added anonymously donated WIN32 sbrk emulation | |
3256 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
3257 | * malloc_extend_top: fix mask error that caused wastage after | |
8bde7f77 | 3258 | foreign sbrks |
217c9dad WD |
3259 | * Add linux mremap support code from HJ Liu |
3260 | ||
3261 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) | |
3262 | * Integrated most documentation with the code. | |
3263 | * Add support for mmap, with help from | |
8bde7f77 | 3264 | Wolfram Gloger ([email protected]). |
217c9dad WD |
3265 | * Use last_remainder in more cases. |
3266 | * Pack bins using idea from [email protected] | |
3267 | * Use ordered bins instead of best-fit threshhold | |
3268 | * Eliminate block-local decls to simplify tracing and debugging. | |
3269 | * Support another case of realloc via move into top | |
3270 | * Fix error occuring when initial sbrk_base not word-aligned. | |
3271 | * Rely on page size for units instead of SBRK_UNIT to | |
8bde7f77 | 3272 | avoid surprises about sbrk alignment conventions. |
217c9dad | 3273 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
8bde7f77 | 3274 | ([email protected]) for the suggestion. |
217c9dad WD |
3275 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
3276 | * More precautions for cases where other routines call sbrk, | |
8bde7f77 | 3277 | courtesy of Wolfram Gloger ([email protected]). |
217c9dad | 3278 | * Added macros etc., allowing use in linux libc from |
8bde7f77 | 3279 | H.J. Lu ([email protected]) |
217c9dad WD |
3280 | * Inverted this history list |
3281 | ||
3282 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) | |
3283 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
3284 | * Removed all preallocation code since under current scheme | |
8bde7f77 WD |
3285 | the work required to undo bad preallocations exceeds |
3286 | the work saved in good cases for most test programs. | |
217c9dad | 3287 | * No longer use return list or unconsolidated bins since |
8bde7f77 WD |
3288 | no scheme using them consistently outperforms those that don't |
3289 | given above changes. | |
217c9dad WD |
3290 | * Use best fit for very large chunks to prevent some worst-cases. |
3291 | * Added some support for debugging | |
3292 | ||
3293 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) | |
3294 | * Removed footers when chunks are in use. Thanks to | |
8bde7f77 | 3295 | Paul Wilson ([email protected]) for the suggestion. |
217c9dad WD |
3296 | |
3297 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) | |
3298 | * Added malloc_trim, with help from Wolfram Gloger | |
8bde7f77 | 3299 | ([email protected]). |
217c9dad WD |
3300 | |
3301 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) | |
3302 | ||
3303 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) | |
3304 | * realloc: try to expand in both directions | |
3305 | * malloc: swap order of clean-bin strategy; | |
3306 | * realloc: only conditionally expand backwards | |
3307 | * Try not to scavenge used bins | |
3308 | * Use bin counts as a guide to preallocation | |
3309 | * Occasionally bin return list chunks in first scan | |
3310 | * Add a few optimizations from [email protected] | |
3311 | ||
3312 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) | |
3313 | * faster bin computation & slightly different binning | |
3314 | * merged all consolidations to one part of malloc proper | |
8bde7f77 | 3315 | (eliminating old malloc_find_space & malloc_clean_bin) |
217c9dad WD |
3316 | * Scan 2 returns chunks (not just 1) |
3317 | * Propagate failure in realloc if malloc returns 0 | |
3318 | * Add stuff to allow compilation on non-ANSI compilers | |
8bde7f77 | 3319 | from [email protected] |
217c9dad WD |
3320 | |
3321 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) | |
3322 | * removed potential for odd address access in prev_chunk | |
3323 | * removed dependency on getpagesize.h | |
3324 | * misc cosmetics and a bit more internal documentation | |
3325 | * anticosmetics: mangled names in macros to evade debugger strangeness | |
3326 | * tested on sparc, hp-700, dec-mips, rs6000 | |
8bde7f77 WD |
3327 | with gcc & native cc (hp, dec only) allowing |
3328 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
217c9dad WD |
3329 | |
3330 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) | |
3331 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
8bde7f77 | 3332 | structure of old version, but most details differ.) |
217c9dad WD |
3333 | |
3334 | */ |