]> Git Repo - J-u-boot.git/blame - common/dlmalloc.c
Merge tag 'u-boot-rockchip-20200501' of https://gitlab.denx.de/u-boot/custodians...
[J-u-boot.git] / common / dlmalloc.c
CommitLineData
81673e9a
KG
1#include <common.h>
2
be621c11 3#if CONFIG_IS_ENABLED(UNIT_TEST)
6d7601e7
SG
4#define DEBUG
5#endif
6
217c9dad 7#include <malloc.h>
d59476b6
SG
8#include <asm/io.h>
9
ea882baf 10#ifdef DEBUG
217c9dad
WD
11#if __STD_C
12static void malloc_update_mallinfo (void);
13void malloc_stats (void);
14#else
15static void malloc_update_mallinfo ();
16void malloc_stats();
17#endif
ea882baf 18#endif /* DEBUG */
217c9dad 19
d87080b7
WD
20DECLARE_GLOBAL_DATA_PTR;
21
217c9dad
WD
22/*
23 Emulation of sbrk for WIN32
24 All code within the ifdef WIN32 is untested by me.
25
26 Thanks to Martin Fong and others for supplying this.
27*/
28
29
30#ifdef WIN32
31
32#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
33~(malloc_getpagesize-1))
34#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
35
36/* resrve 64MB to insure large contiguous space */
37#define RESERVED_SIZE (1024*1024*64)
38#define NEXT_SIZE (2048*1024)
39#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
40
41struct GmListElement;
42typedef struct GmListElement GmListElement;
43
44struct GmListElement
45{
46 GmListElement* next;
47 void* base;
48};
49
50static GmListElement* head = 0;
51static unsigned int gNextAddress = 0;
52static unsigned int gAddressBase = 0;
53static unsigned int gAllocatedSize = 0;
54
55static
56GmListElement* makeGmListElement (void* bas)
57{
58 GmListElement* this;
59 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
60 assert (this);
61 if (this)
62 {
63 this->base = bas;
64 this->next = head;
65 head = this;
66 }
67 return this;
68}
69
70void gcleanup ()
71{
72 BOOL rval;
73 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
74 if (gAddressBase && (gNextAddress - gAddressBase))
75 {
76 rval = VirtualFree ((void*)gAddressBase,
77 gNextAddress - gAddressBase,
78 MEM_DECOMMIT);
8bde7f77 79 assert (rval);
217c9dad
WD
80 }
81 while (head)
82 {
83 GmListElement* next = head->next;
84 rval = VirtualFree (head->base, 0, MEM_RELEASE);
85 assert (rval);
86 LocalFree (head);
87 head = next;
88 }
89}
90
91static
92void* findRegion (void* start_address, unsigned long size)
93{
94 MEMORY_BASIC_INFORMATION info;
95 if (size >= TOP_MEMORY) return NULL;
96
97 while ((unsigned long)start_address + size < TOP_MEMORY)
98 {
99 VirtualQuery (start_address, &info, sizeof (info));
100 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
101 return start_address;
102 else
103 {
8bde7f77
WD
104 /* Requested region is not available so see if the */
105 /* next region is available. Set 'start_address' */
106 /* to the next region and call 'VirtualQuery()' */
107 /* again. */
217c9dad
WD
108
109 start_address = (char*)info.BaseAddress + info.RegionSize;
110
8bde7f77
WD
111 /* Make sure we start looking for the next region */
112 /* on the *next* 64K boundary. Otherwise, even if */
113 /* the new region is free according to */
114 /* 'VirtualQuery()', the subsequent call to */
115 /* 'VirtualAlloc()' (which follows the call to */
116 /* this routine in 'wsbrk()') will round *down* */
117 /* the requested address to a 64K boundary which */
118 /* we already know is an address in the */
119 /* unavailable region. Thus, the subsequent call */
120 /* to 'VirtualAlloc()' will fail and bring us back */
121 /* here, causing us to go into an infinite loop. */
217c9dad
WD
122
123 start_address =
124 (void *) AlignPage64K((unsigned long) start_address);
125 }
126 }
127 return NULL;
128
129}
130
131
132void* wsbrk (long size)
133{
134 void* tmp;
135 if (size > 0)
136 {
137 if (gAddressBase == 0)
138 {
139 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
140 gNextAddress = gAddressBase =
141 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
142 MEM_RESERVE, PAGE_NOACCESS);
143 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
144gAllocatedSize))
145 {
146 long new_size = max (NEXT_SIZE, AlignPage (size));
147 void* new_address = (void*)(gAddressBase+gAllocatedSize);
148 do
149 {
150 new_address = findRegion (new_address, new_size);
151
a874cac3 152 if (!new_address)
217c9dad
WD
153 return (void*)-1;
154
155 gAddressBase = gNextAddress =
156 (unsigned int)VirtualAlloc (new_address, new_size,
157 MEM_RESERVE, PAGE_NOACCESS);
8bde7f77
WD
158 /* repeat in case of race condition */
159 /* The region that we found has been snagged */
160 /* by another thread */
217c9dad
WD
161 }
162 while (gAddressBase == 0);
163
164 assert (new_address == (void*)gAddressBase);
165
166 gAllocatedSize = new_size;
167
168 if (!makeGmListElement ((void*)gAddressBase))
169 return (void*)-1;
170 }
171 if ((size + gNextAddress) > AlignPage (gNextAddress))
172 {
173 void* res;
174 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
175 (size + gNextAddress -
176 AlignPage (gNextAddress)),
177 MEM_COMMIT, PAGE_READWRITE);
a874cac3 178 if (!res)
217c9dad
WD
179 return (void*)-1;
180 }
181 tmp = (void*)gNextAddress;
182 gNextAddress = (unsigned int)tmp + size;
183 return tmp;
184 }
185 else if (size < 0)
186 {
187 unsigned int alignedGoal = AlignPage (gNextAddress + size);
188 /* Trim by releasing the virtual memory */
189 if (alignedGoal >= gAddressBase)
190 {
191 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
192 MEM_DECOMMIT);
193 gNextAddress = gNextAddress + size;
194 return (void*)gNextAddress;
195 }
196 else
197 {
198 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
199 MEM_DECOMMIT);
200 gNextAddress = gAddressBase;
201 return (void*)-1;
202 }
203 }
204 else
205 {
206 return (void*)gNextAddress;
207 }
208}
209
210#endif
211
d93041a4 212
217c9dad
WD
213
214/*
215 Type declarations
216*/
217
218
219struct malloc_chunk
220{
221 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
222 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
223 struct malloc_chunk* fd; /* double links -- used only if free. */
224 struct malloc_chunk* bk;
1ba91ba2 225} __attribute__((__may_alias__)) ;
217c9dad
WD
226
227typedef struct malloc_chunk* mchunkptr;
228
229/*
230
231 malloc_chunk details:
232
233 (The following includes lightly edited explanations by Colin Plumb.)
234
235 Chunks of memory are maintained using a `boundary tag' method as
236 described in e.g., Knuth or Standish. (See the paper by Paul
237 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
238 survey of such techniques.) Sizes of free chunks are stored both
239 in the front of each chunk and at the end. This makes
240 consolidating fragmented chunks into bigger chunks very fast. The
241 size fields also hold bits representing whether chunks are free or
242 in use.
243
244 An allocated chunk looks like this:
245
246
247 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
248 | Size of previous chunk, if allocated | |
249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 | Size of chunk, in bytes |P|
217c9dad 251 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
252 | User data starts here... .
253 . .
254 . (malloc_usable_space() bytes) .
255 . |
217c9dad 256nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
257 | Size of chunk |
258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
259
260
261 Where "chunk" is the front of the chunk for the purpose of most of
262 the malloc code, but "mem" is the pointer that is returned to the
263 user. "Nextchunk" is the beginning of the next contiguous chunk.
264
265 Chunks always begin on even word boundries, so the mem portion
266 (which is returned to the user) is also on an even word boundary, and
267 thus double-word aligned.
268
269 Free chunks are stored in circular doubly-linked lists, and look like this:
270
271 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
272 | Size of previous chunk |
273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
274 `head:' | Size of chunk, in bytes |P|
275 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
276 | Forward pointer to next chunk in list |
277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
278 | Back pointer to previous chunk in list |
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 | Unused space (may be 0 bytes long) .
281 . .
282 . |
9297e366 283
217c9dad
WD
284nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
285 `foot:' | Size of chunk, in bytes |
8bde7f77 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
287
288 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
289 chunk size (which is always a multiple of two words), is an in-use
290 bit for the *previous* chunk. If that bit is *clear*, then the
291 word before the current chunk size contains the previous chunk
292 size, and can be used to find the front of the previous chunk.
293 (The very first chunk allocated always has this bit set,
294 preventing access to non-existent (or non-owned) memory.)
295
296 Note that the `foot' of the current chunk is actually represented
297 as the prev_size of the NEXT chunk. (This makes it easier to
298 deal with alignments etc).
299
300 The two exceptions to all this are
301
302 1. The special chunk `top', which doesn't bother using the
8bde7f77
WD
303 trailing size field since there is no
304 next contiguous chunk that would have to index off it. (After
305 initialization, `top' is forced to always exist. If it would
306 become less than MINSIZE bytes long, it is replenished via
307 malloc_extend_top.)
217c9dad
WD
308
309 2. Chunks allocated via mmap, which have the second-lowest-order
8bde7f77
WD
310 bit (IS_MMAPPED) set in their size fields. Because they are
311 never merged or traversed from any other chunk, they have no
312 foot size or inuse information.
217c9dad
WD
313
314 Available chunks are kept in any of several places (all declared below):
315
316 * `av': An array of chunks serving as bin headers for consolidated
317 chunks. Each bin is doubly linked. The bins are approximately
318 proportionally (log) spaced. There are a lot of these bins
319 (128). This may look excessive, but works very well in
320 practice. All procedures maintain the invariant that no
321 consolidated chunk physically borders another one. Chunks in
322 bins are kept in size order, with ties going to the
323 approximately least recently used chunk.
324
325 The chunks in each bin are maintained in decreasing sorted order by
326 size. This is irrelevant for the small bins, which all contain
327 the same-sized chunks, but facilitates best-fit allocation for
328 larger chunks. (These lists are just sequential. Keeping them in
329 order almost never requires enough traversal to warrant using
330 fancier ordered data structures.) Chunks of the same size are
331 linked with the most recently freed at the front, and allocations
332 are taken from the back. This results in LRU or FIFO allocation
333 order, which tends to give each chunk an equal opportunity to be
334 consolidated with adjacent freed chunks, resulting in larger free
335 chunks and less fragmentation.
336
337 * `top': The top-most available chunk (i.e., the one bordering the
338 end of available memory) is treated specially. It is never
339 included in any bin, is used only if no other chunk is
340 available, and is released back to the system if it is very
341 large (see M_TRIM_THRESHOLD).
342
343 * `last_remainder': A bin holding only the remainder of the
344 most recently split (non-top) chunk. This bin is checked
345 before other non-fitting chunks, so as to provide better
346 locality for runs of sequentially allocated chunks.
347
348 * Implicitly, through the host system's memory mapping tables.
349 If supported, requests greater than a threshold are usually
350 serviced via calls to mmap, and then later released via munmap.
351
352*/
d93041a4 353
217c9dad
WD
354/* sizes, alignments */
355
356#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
357#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
358#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
359#define MINSIZE (sizeof(struct malloc_chunk))
360
361/* conversion from malloc headers to user pointers, and back */
362
363#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
364#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
365
366/* pad request bytes into a usable size */
367
368#define request2size(req) \
369 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
370 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
371 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
372
373/* Check if m has acceptable alignment */
374
375#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
376
377
d93041a4 378
217c9dad
WD
379
380/*
381 Physical chunk operations
382*/
383
384
385/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
386
387#define PREV_INUSE 0x1
388
389/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
390
391#define IS_MMAPPED 0x2
392
393/* Bits to mask off when extracting size */
394
395#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
396
397
398/* Ptr to next physical malloc_chunk. */
399
400#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
401
402/* Ptr to previous physical malloc_chunk */
403
404#define prev_chunk(p)\
405 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
406
407
408/* Treat space at ptr + offset as a chunk */
409
410#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
411
412
d93041a4 413
217c9dad
WD
414
415/*
416 Dealing with use bits
417*/
418
419/* extract p's inuse bit */
420
421#define inuse(p)\
422((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
423
424/* extract inuse bit of previous chunk */
425
426#define prev_inuse(p) ((p)->size & PREV_INUSE)
427
428/* check for mmap()'ed chunk */
429
430#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
431
432/* set/clear chunk as in use without otherwise disturbing */
433
434#define set_inuse(p)\
435((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
436
437#define clear_inuse(p)\
438((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
439
440/* check/set/clear inuse bits in known places */
441
442#define inuse_bit_at_offset(p, s)\
443 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
444
445#define set_inuse_bit_at_offset(p, s)\
446 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
447
448#define clear_inuse_bit_at_offset(p, s)\
449 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
450
451
d93041a4 452
217c9dad
WD
453
454/*
455 Dealing with size fields
456*/
457
458/* Get size, ignoring use bits */
459
460#define chunksize(p) ((p)->size & ~(SIZE_BITS))
461
462/* Set size at head, without disturbing its use bit */
463
464#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
465
466/* Set size/use ignoring previous bits in header */
467
468#define set_head(p, s) ((p)->size = (s))
469
470/* Set size at footer (only when chunk is not in use) */
471
472#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
473
474
d93041a4 475
217c9dad
WD
476
477
478/*
479 Bins
480
481 The bins, `av_' are an array of pairs of pointers serving as the
482 heads of (initially empty) doubly-linked lists of chunks, laid out
483 in a way so that each pair can be treated as if it were in a
484 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
485 and chunks are the same).
486
487 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
488 8 bytes apart. Larger bins are approximately logarithmically
489 spaced. (See the table below.) The `av_' array is never mentioned
490 directly in the code, but instead via bin access macros.
491
492 Bin layout:
493
494 64 bins of size 8
495 32 bins of size 64
496 16 bins of size 512
497 8 bins of size 4096
498 4 bins of size 32768
499 2 bins of size 262144
500 1 bin of size what's left
501
502 There is actually a little bit of slop in the numbers in bin_index
503 for the sake of speed. This makes no difference elsewhere.
504
505 The special chunks `top' and `last_remainder' get their own bins,
506 (this is implemented via yet more trickery with the av_ array),
507 although `top' is never properly linked to its bin since it is
508 always handled specially.
509
510*/
511
512#define NAV 128 /* number of bins */
513
514typedef struct malloc_chunk* mbinptr;
515
516/* access macros */
517
518#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
519#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
520#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
521
522/*
523 The first 2 bins are never indexed. The corresponding av_ cells are instead
524 used for bookkeeping. This is not to save space, but to simplify
525 indexing, maintain locality, and avoid some initialization tests.
526*/
527
f2302d44 528#define top (av_[2]) /* The topmost chunk */
217c9dad
WD
529#define last_remainder (bin_at(1)) /* remainder from last split */
530
531
532/*
533 Because top initially points to its own bin with initial
534 zero size, thus forcing extension on the first malloc request,
535 we avoid having any special code in malloc to check whether
536 it even exists yet. But we still need to in malloc_extend_top.
537*/
538
539#define initial_top ((mchunkptr)(bin_at(0)))
540
541/* Helper macro to initialize bins */
542
543#define IAV(i) bin_at(i), bin_at(i)
544
545static mbinptr av_[NAV * 2 + 2] = {
199adb60 546 NULL, NULL,
217c9dad
WD
547 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
548 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
549 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
550 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
551 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
552 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
553 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
554 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
555 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
556 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
557 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
558 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
559 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
560 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
561 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
562 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
563};
564
2e5167cc 565#ifdef CONFIG_NEEDS_MANUAL_RELOC
7b395232 566static void malloc_bin_reloc(void)
217c9dad 567{
93691842
SG
568 mbinptr *p = &av_[2];
569 size_t i;
570
571 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
572 *p = (mbinptr)((ulong)*p + gd->reloc_off);
217c9dad 573}
7b395232
GJ
574#else
575static inline void malloc_bin_reloc(void) {}
521af04d 576#endif
5e93bd1c 577
9297e366
MB
578#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
579static void malloc_init(void);
580#endif
581
5e93bd1c
PT
582ulong mem_malloc_start = 0;
583ulong mem_malloc_end = 0;
584ulong mem_malloc_brk = 0;
585
586void *sbrk(ptrdiff_t increment)
587{
588 ulong old = mem_malloc_brk;
589 ulong new = old + increment;
590
6163f5b4
KG
591 /*
592 * if we are giving memory back make sure we clear it out since
593 * we set MORECORE_CLEARS to 1
594 */
595 if (increment < 0)
596 memset((void *)new, 0, -increment);
597
5e93bd1c 598 if ((new < mem_malloc_start) || (new > mem_malloc_end))
ae30b8c2 599 return (void *)MORECORE_FAILURE;
5e93bd1c
PT
600
601 mem_malloc_brk = new;
602
603 return (void *)old;
604}
217c9dad 605
d4e8ada0
PT
606void mem_malloc_init(ulong start, ulong size)
607{
608 mem_malloc_start = start;
609 mem_malloc_end = start + size;
610 mem_malloc_brk = start;
611
9297e366
MB
612#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
613 malloc_init();
614#endif
615
868de51d
TR
616 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
617 mem_malloc_end);
0aa8a4ad
PM
618#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
619 memset((void *)mem_malloc_start, 0x0, size);
620#endif
7b395232 621 malloc_bin_reloc();
d4e8ada0 622}
d4e8ada0 623
217c9dad
WD
624/* field-extraction macros */
625
626#define first(b) ((b)->fd)
627#define last(b) ((b)->bk)
628
629/*
630 Indexing into bins
631*/
632
633#define bin_index(sz) \
634(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
635 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
636 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
637 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
638 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
639 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
8bde7f77 640 126)
217c9dad
WD
641/*
642 bins for chunks < 512 are all spaced 8 bytes apart, and hold
643 identically sized chunks. This is exploited in malloc.
644*/
645
646#define MAX_SMALLBIN 63
647#define MAX_SMALLBIN_SIZE 512
648#define SMALLBIN_WIDTH 8
649
650#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
651
652/*
653 Requests are `small' if both the corresponding and the next bin are small
654*/
655
656#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
657
d93041a4 658
217c9dad
WD
659
660/*
661 To help compensate for the large number of bins, a one-level index
662 structure is used for bin-by-bin searching. `binblocks' is a
663 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
664 have any (possibly) non-empty bins, so they can be skipped over
665 all at once during during traversals. The bits are NOT always
666 cleared as soon as all bins in a block are empty, but instead only
667 when all are noticed to be empty during traversal in malloc.
668*/
669
670#define BINBLOCKWIDTH 4 /* bins per block */
671
f2302d44
SR
672#define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
673#define binblocks_w (av_[1])
217c9dad
WD
674
675/* bin<->block macros */
676
677#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
f2302d44
SR
678#define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
679#define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
217c9dad
WD
680
681
d93041a4 682
217c9dad
WD
683
684
685/* Other static bookkeeping data */
686
687/* variables holding tunable values */
688
689static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
690static unsigned long top_pad = DEFAULT_TOP_PAD;
691static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
692static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
693
694/* The first value returned from sbrk */
695static char* sbrk_base = (char*)(-1);
696
697/* The maximum memory obtained from system via sbrk */
698static unsigned long max_sbrked_mem = 0;
699
700/* The maximum via either sbrk or mmap */
701static unsigned long max_total_mem = 0;
702
703/* internal working copy of mallinfo */
704static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
705
706/* The total memory obtained from system via sbrk */
707#define sbrked_mem (current_mallinfo.arena)
708
709/* Tracking mmaps */
710
ea882baf 711#ifdef DEBUG
217c9dad 712static unsigned int n_mmaps = 0;
ea882baf 713#endif /* DEBUG */
217c9dad
WD
714static unsigned long mmapped_mem = 0;
715#if HAVE_MMAP
716static unsigned int max_n_mmaps = 0;
717static unsigned long max_mmapped_mem = 0;
718#endif
719
9297e366
MB
720#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
721static void malloc_init(void)
722{
723 int i, j;
724
725 debug("bins (av_ array) are at %p\n", (void *)av_);
726
727 av_[0] = NULL; av_[1] = NULL;
728 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
729 av_[i] = bin_at(j - 2);
730 av_[i + 1] = bin_at(j - 2);
731
732 /* Just print the first few bins so that
733 * we can see there are alright.
734 */
735 if (i < 10)
736 debug("av_[%d]=%lx av_[%d]=%lx\n",
737 i, (ulong)av_[i],
738 i + 1, (ulong)av_[i + 1]);
739 }
d93041a4 740
9297e366
MB
741 /* Init the static bookkeeping as well */
742 sbrk_base = (char *)(-1);
743 max_sbrked_mem = 0;
744 max_total_mem = 0;
745#ifdef DEBUG
746 memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
747#endif
748}
749#endif
217c9dad
WD
750
751/*
752 Debugging support
753*/
754
755#ifdef DEBUG
756
757
758/*
759 These routines make a number of assertions about the states
760 of data structures that should be true at all times. If any
761 are not true, it's very likely that a user program has somehow
762 trashed memory. (It's also possible that there is a coding error
763 in malloc. In which case, please report it!)
764*/
765
766#if __STD_C
767static void do_check_chunk(mchunkptr p)
768#else
769static void do_check_chunk(p) mchunkptr p;
770#endif
771{
217c9dad 772 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad
WD
773
774 /* No checkable chunk is mmapped */
775 assert(!chunk_is_mmapped(p));
776
777 /* Check for legal address ... */
778 assert((char*)p >= sbrk_base);
779 if (p != top)
780 assert((char*)p + sz <= (char*)top);
781 else
782 assert((char*)p + sz <= sbrk_base + sbrked_mem);
783
784}
785
786
787#if __STD_C
788static void do_check_free_chunk(mchunkptr p)
789#else
790static void do_check_free_chunk(p) mchunkptr p;
791#endif
792{
793 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad 794 mchunkptr next = chunk_at_offset(p, sz);
217c9dad
WD
795
796 do_check_chunk(p);
797
798 /* Check whether it claims to be free ... */
799 assert(!inuse(p));
800
801 /* Unless a special marker, must have OK fields */
802 if ((long)sz >= (long)MINSIZE)
803 {
804 assert((sz & MALLOC_ALIGN_MASK) == 0);
805 assert(aligned_OK(chunk2mem(p)));
806 /* ... matching footer field */
807 assert(next->prev_size == sz);
808 /* ... and is fully consolidated */
809 assert(prev_inuse(p));
810 assert (next == top || inuse(next));
811
812 /* ... and has minimally sane links */
813 assert(p->fd->bk == p);
814 assert(p->bk->fd == p);
815 }
816 else /* markers are always of size SIZE_SZ */
817 assert(sz == SIZE_SZ);
818}
819
820#if __STD_C
821static void do_check_inuse_chunk(mchunkptr p)
822#else
823static void do_check_inuse_chunk(p) mchunkptr p;
824#endif
825{
826 mchunkptr next = next_chunk(p);
827 do_check_chunk(p);
828
829 /* Check whether it claims to be in use ... */
830 assert(inuse(p));
831
832 /* ... and is surrounded by OK chunks.
833 Since more things can be checked with free chunks than inuse ones,
834 if an inuse chunk borders them and debug is on, it's worth doing them.
835 */
836 if (!prev_inuse(p))
837 {
838 mchunkptr prv = prev_chunk(p);
839 assert(next_chunk(prv) == p);
840 do_check_free_chunk(prv);
841 }
842 if (next == top)
843 {
844 assert(prev_inuse(next));
845 assert(chunksize(next) >= MINSIZE);
846 }
847 else if (!inuse(next))
848 do_check_free_chunk(next);
849
850}
851
852#if __STD_C
853static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
854#else
855static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
856#endif
857{
217c9dad
WD
858 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
859 long room = sz - s;
217c9dad
WD
860
861 do_check_inuse_chunk(p);
862
863 /* Legal size ... */
864 assert((long)sz >= (long)MINSIZE);
865 assert((sz & MALLOC_ALIGN_MASK) == 0);
866 assert(room >= 0);
867 assert(room < (long)MINSIZE);
868
869 /* ... and alignment */
870 assert(aligned_OK(chunk2mem(p)));
871
872
873 /* ... and was allocated at front of an available chunk */
874 assert(prev_inuse(p));
875
876}
877
878
879#define check_free_chunk(P) do_check_free_chunk(P)
880#define check_inuse_chunk(P) do_check_inuse_chunk(P)
881#define check_chunk(P) do_check_chunk(P)
882#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
883#else
884#define check_free_chunk(P)
885#define check_inuse_chunk(P)
886#define check_chunk(P)
887#define check_malloced_chunk(P,N)
888#endif
889
d93041a4 890
217c9dad
WD
891
892/*
893 Macro-based internal utilities
894*/
895
896
897/*
898 Linking chunks in bin lists.
899 Call these only with variables, not arbitrary expressions, as arguments.
900*/
901
902/*
903 Place chunk p of size s in its bin, in size order,
904 putting it ahead of others of same size.
905*/
906
907
908#define frontlink(P, S, IDX, BK, FD) \
909{ \
910 if (S < MAX_SMALLBIN_SIZE) \
911 { \
912 IDX = smallbin_index(S); \
913 mark_binblock(IDX); \
914 BK = bin_at(IDX); \
915 FD = BK->fd; \
916 P->bk = BK; \
917 P->fd = FD; \
918 FD->bk = BK->fd = P; \
919 } \
920 else \
921 { \
922 IDX = bin_index(S); \
923 BK = bin_at(IDX); \
924 FD = BK->fd; \
925 if (FD == BK) mark_binblock(IDX); \
926 else \
927 { \
928 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
929 BK = FD->bk; \
930 } \
931 P->bk = BK; \
932 P->fd = FD; \
933 FD->bk = BK->fd = P; \
934 } \
935}
936
937
938/* take a chunk off a list */
939
940#define unlink(P, BK, FD) \
941{ \
942 BK = P->bk; \
943 FD = P->fd; \
944 FD->bk = BK; \
945 BK->fd = FD; \
946} \
947
948/* Place p as the last remainder */
949
950#define link_last_remainder(P) \
951{ \
952 last_remainder->fd = last_remainder->bk = P; \
953 P->fd = P->bk = last_remainder; \
954}
955
956/* Clear the last_remainder bin */
957
958#define clear_last_remainder \
959 (last_remainder->fd = last_remainder->bk = last_remainder)
960
961
d93041a4 962
217c9dad
WD
963
964
965/* Routines dealing with mmap(). */
966
967#if HAVE_MMAP
968
969#if __STD_C
970static mchunkptr mmap_chunk(size_t size)
971#else
972static mchunkptr mmap_chunk(size) size_t size;
973#endif
974{
975 size_t page_mask = malloc_getpagesize - 1;
976 mchunkptr p;
977
978#ifndef MAP_ANONYMOUS
979 static int fd = -1;
980#endif
981
982 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
983
984 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
985 * there is no following chunk whose prev_size field could be used.
986 */
987 size = (size + SIZE_SZ + page_mask) & ~page_mask;
988
989#ifdef MAP_ANONYMOUS
990 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
991 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
992#else /* !MAP_ANONYMOUS */
993 if (fd < 0)
994 {
995 fd = open("/dev/zero", O_RDWR);
996 if(fd < 0) return 0;
997 }
998 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
999#endif
1000
1001 if(p == (mchunkptr)-1) return 0;
1002
1003 n_mmaps++;
1004 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1005
1006 /* We demand that eight bytes into a page must be 8-byte aligned. */
1007 assert(aligned_OK(chunk2mem(p)));
1008
1009 /* The offset to the start of the mmapped region is stored
1010 * in the prev_size field of the chunk; normally it is zero,
1011 * but that can be changed in memalign().
1012 */
1013 p->prev_size = 0;
1014 set_head(p, size|IS_MMAPPED);
1015
1016 mmapped_mem += size;
1017 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1018 max_mmapped_mem = mmapped_mem;
1019 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1020 max_total_mem = mmapped_mem + sbrked_mem;
1021 return p;
1022}
1023
1024#if __STD_C
1025static void munmap_chunk(mchunkptr p)
1026#else
1027static void munmap_chunk(p) mchunkptr p;
1028#endif
1029{
1030 INTERNAL_SIZE_T size = chunksize(p);
1031 int ret;
1032
1033 assert (chunk_is_mmapped(p));
1034 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1035 assert((n_mmaps > 0));
1036 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1037
1038 n_mmaps--;
1039 mmapped_mem -= (size + p->prev_size);
1040
1041 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1042
1043 /* munmap returns non-zero on failure */
1044 assert(ret == 0);
1045}
1046
1047#if HAVE_MREMAP
1048
1049#if __STD_C
1050static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1051#else
1052static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1053#endif
1054{
1055 size_t page_mask = malloc_getpagesize - 1;
1056 INTERNAL_SIZE_T offset = p->prev_size;
1057 INTERNAL_SIZE_T size = chunksize(p);
1058 char *cp;
1059
1060 assert (chunk_is_mmapped(p));
1061 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1062 assert((n_mmaps > 0));
1063 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1064
1065 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1066 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1067
1068 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1069
1070 if (cp == (char *)-1) return 0;
1071
1072 p = (mchunkptr)(cp + offset);
1073
1074 assert(aligned_OK(chunk2mem(p)));
1075
1076 assert((p->prev_size == offset));
1077 set_head(p, (new_size - offset)|IS_MMAPPED);
1078
1079 mmapped_mem -= size + offset;
1080 mmapped_mem += new_size;
1081 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1082 max_mmapped_mem = mmapped_mem;
1083 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1084 max_total_mem = mmapped_mem + sbrked_mem;
1085 return p;
1086}
1087
1088#endif /* HAVE_MREMAP */
1089
1090#endif /* HAVE_MMAP */
1091
217c9dad
WD
1092/*
1093 Extend the top-most chunk by obtaining memory from system.
1094 Main interface to sbrk (but see also malloc_trim).
1095*/
1096
1097#if __STD_C
1098static void malloc_extend_top(INTERNAL_SIZE_T nb)
1099#else
1100static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1101#endif
1102{
1103 char* brk; /* return value from sbrk */
1104 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1105 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1106 char* new_brk; /* return of 2nd sbrk call */
1107 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1108
1109 mchunkptr old_top = top; /* Record state of old top */
1110 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1111 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1112
1113 /* Pad request with top_pad plus minimal overhead */
1114
1115 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1116 unsigned long pagesz = malloc_getpagesize;
1117
1118 /* If not the first time through, round to preserve page boundary */
1119 /* Otherwise, we need to correct to a page size below anyway. */
1120 /* (We also correct below if an intervening foreign sbrk call.) */
1121
1122 if (sbrk_base != (char*)(-1))
1123 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1124
1125 brk = (char*)(MORECORE (sbrk_size));
1126
1127 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1128 if (brk == (char*)(MORECORE_FAILURE) ||
1129 (brk < old_end && old_top != initial_top))
1130 return;
1131
1132 sbrked_mem += sbrk_size;
1133
1134 if (brk == old_end) /* can just add bytes to current top */
1135 {
1136 top_size = sbrk_size + old_top_size;
1137 set_head(top, top_size | PREV_INUSE);
1138 }
1139 else
1140 {
1141 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1142 sbrk_base = brk;
1143 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1144 sbrked_mem += brk - (char*)old_end;
1145
1146 /* Guarantee alignment of first new chunk made from this space */
1147 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1148 if (front_misalign > 0)
1149 {
1150 correction = (MALLOC_ALIGNMENT) - front_misalign;
1151 brk += correction;
1152 }
1153 else
1154 correction = 0;
1155
1156 /* Guarantee the next brk will be at a page boundary */
1157
1158 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
8bde7f77 1159 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
217c9dad
WD
1160
1161 /* Allocate correction */
1162 new_brk = (char*)(MORECORE (correction));
1163 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1164
1165 sbrked_mem += correction;
1166
1167 top = (mchunkptr)brk;
1168 top_size = new_brk - brk + correction;
1169 set_head(top, top_size | PREV_INUSE);
1170
1171 if (old_top != initial_top)
1172 {
1173
1174 /* There must have been an intervening foreign sbrk call. */
1175 /* A double fencepost is necessary to prevent consolidation */
1176
1177 /* If not enough space to do this, then user did something very wrong */
1178 if (old_top_size < MINSIZE)
1179 {
8bde7f77
WD
1180 set_head(top, PREV_INUSE); /* will force null return from malloc */
1181 return;
217c9dad
WD
1182 }
1183
1184 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1185 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1186 set_head_size(old_top, old_top_size);
1187 chunk_at_offset(old_top, old_top_size )->size =
8bde7f77 1188 SIZE_SZ|PREV_INUSE;
217c9dad 1189 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
8bde7f77 1190 SIZE_SZ|PREV_INUSE;
217c9dad
WD
1191 /* If possible, release the rest. */
1192 if (old_top_size >= MINSIZE)
8bde7f77 1193 fREe(chunk2mem(old_top));
217c9dad
WD
1194 }
1195 }
1196
1197 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1198 max_sbrked_mem = sbrked_mem;
1199 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1200 max_total_mem = mmapped_mem + sbrked_mem;
1201
1202 /* We always land on a page boundary */
1203 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1204}
1205
1206
d93041a4 1207
217c9dad
WD
1208
1209/* Main public routines */
1210
1211
1212/*
1213 Malloc Algorthim:
1214
1215 The requested size is first converted into a usable form, `nb'.
1216 This currently means to add 4 bytes overhead plus possibly more to
1217 obtain 8-byte alignment and/or to obtain a size of at least
1218 MINSIZE (currently 16 bytes), the smallest allocatable size.
1219 (All fits are considered `exact' if they are within MINSIZE bytes.)
1220
1221 From there, the first successful of the following steps is taken:
1222
1223 1. The bin corresponding to the request size is scanned, and if
8bde7f77 1224 a chunk of exactly the right size is found, it is taken.
217c9dad
WD
1225
1226 2. The most recently remaindered chunk is used if it is big
8bde7f77
WD
1227 enough. This is a form of (roving) first fit, used only in
1228 the absence of exact fits. Runs of consecutive requests use
1229 the remainder of the chunk used for the previous such request
1230 whenever possible. This limited use of a first-fit style
1231 allocation strategy tends to give contiguous chunks
1232 coextensive lifetimes, which improves locality and can reduce
1233 fragmentation in the long run.
217c9dad
WD
1234
1235 3. Other bins are scanned in increasing size order, using a
8bde7f77
WD
1236 chunk big enough to fulfill the request, and splitting off
1237 any remainder. This search is strictly by best-fit; i.e.,
1238 the smallest (with ties going to approximately the least
1239 recently used) chunk that fits is selected.
217c9dad
WD
1240
1241 4. If large enough, the chunk bordering the end of memory
8bde7f77
WD
1242 (`top') is split off. (This use of `top' is in accord with
1243 the best-fit search rule. In effect, `top' is treated as
1244 larger (and thus less well fitting) than any other available
1245 chunk since it can be extended to be as large as necessary
1246 (up to system limitations).
217c9dad
WD
1247
1248 5. If the request size meets the mmap threshold and the
8bde7f77
WD
1249 system supports mmap, and there are few enough currently
1250 allocated mmapped regions, and a call to mmap succeeds,
1251 the request is allocated via direct memory mapping.
217c9dad
WD
1252
1253 6. Otherwise, the top of memory is extended by
8bde7f77
WD
1254 obtaining more space from the system (normally using sbrk,
1255 but definable to anything else via the MORECORE macro).
1256 Memory is gathered from the system (in system page-sized
1257 units) in a way that allows chunks obtained across different
1258 sbrk calls to be consolidated, but does not require
1259 contiguous memory. Thus, it should be safe to intersperse
1260 mallocs with other sbrk calls.
217c9dad
WD
1261
1262
1263 All allocations are made from the the `lowest' part of any found
1264 chunk. (The implementation invariant is that prev_inuse is
1265 always true of any allocated chunk; i.e., that each allocated
1266 chunk borders either a previously allocated and still in-use chunk,
1267 or the base of its memory arena.)
1268
1269*/
1270
1271#if __STD_C
1272Void_t* mALLOc(size_t bytes)
1273#else
1274Void_t* mALLOc(bytes) size_t bytes;
1275#endif
1276{
1277 mchunkptr victim; /* inspected/selected chunk */
1278 INTERNAL_SIZE_T victim_size; /* its size */
1279 int idx; /* index for bin traversal */
1280 mbinptr bin; /* associated bin */
1281 mchunkptr remainder; /* remainder from a split */
1282 long remainder_size; /* its size */
1283 int remainder_index; /* its bin index */
1284 unsigned long block; /* block traverser bit */
1285 int startidx; /* first bin of a traversed block */
1286 mchunkptr fwd; /* misc temp for linking */
1287 mchunkptr bck; /* misc temp for linking */
1288 mbinptr q; /* misc temp */
1289
1290 INTERNAL_SIZE_T nb;
1291
f1896c45 1292#if CONFIG_VAL(SYS_MALLOC_F_LEN)
deff6fb3 1293 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
c9356be3 1294 return malloc_simple(bytes);
d59476b6
SG
1295#endif
1296
27405448
WD
1297 /* check if mem_malloc_init() was run */
1298 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1299 /* not initialized yet */
199adb60 1300 return NULL;
27405448
WD
1301 }
1302
199adb60 1303 if ((long)bytes < 0) return NULL;
217c9dad
WD
1304
1305 nb = request2size(bytes); /* padded request size; */
1306
1307 /* Check for exact match in a bin */
1308
1309 if (is_small_request(nb)) /* Faster version for small requests */
1310 {
1311 idx = smallbin_index(nb);
1312
1313 /* No traversal or size check necessary for small bins. */
1314
1315 q = bin_at(idx);
1316 victim = last(q);
1317
1318 /* Also scan the next one, since it would have a remainder < MINSIZE */
1319 if (victim == q)
1320 {
1321 q = next_bin(q);
1322 victim = last(q);
1323 }
1324 if (victim != q)
1325 {
1326 victim_size = chunksize(victim);
1327 unlink(victim, bck, fwd);
1328 set_inuse_bit_at_offset(victim, victim_size);
1329 check_malloced_chunk(victim, nb);
1330 return chunk2mem(victim);
1331 }
1332
1333 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1334
1335 }
1336 else
1337 {
1338 idx = bin_index(nb);
1339 bin = bin_at(idx);
1340
1341 for (victim = last(bin); victim != bin; victim = victim->bk)
1342 {
1343 victim_size = chunksize(victim);
1344 remainder_size = victim_size - nb;
1345
1346 if (remainder_size >= (long)MINSIZE) /* too big */
1347 {
8bde7f77
WD
1348 --idx; /* adjust to rescan below after checking last remainder */
1349 break;
217c9dad
WD
1350 }
1351
1352 else if (remainder_size >= 0) /* exact fit */
1353 {
8bde7f77
WD
1354 unlink(victim, bck, fwd);
1355 set_inuse_bit_at_offset(victim, victim_size);
1356 check_malloced_chunk(victim, nb);
1357 return chunk2mem(victim);
217c9dad
WD
1358 }
1359 }
1360
1361 ++idx;
1362
1363 }
1364
1365 /* Try to use the last split-off remainder */
1366
1367 if ( (victim = last_remainder->fd) != last_remainder)
1368 {
1369 victim_size = chunksize(victim);
1370 remainder_size = victim_size - nb;
1371
1372 if (remainder_size >= (long)MINSIZE) /* re-split */
1373 {
1374 remainder = chunk_at_offset(victim, nb);
1375 set_head(victim, nb | PREV_INUSE);
1376 link_last_remainder(remainder);
1377 set_head(remainder, remainder_size | PREV_INUSE);
1378 set_foot(remainder, remainder_size);
1379 check_malloced_chunk(victim, nb);
1380 return chunk2mem(victim);
1381 }
1382
1383 clear_last_remainder;
1384
1385 if (remainder_size >= 0) /* exhaust */
1386 {
1387 set_inuse_bit_at_offset(victim, victim_size);
1388 check_malloced_chunk(victim, nb);
1389 return chunk2mem(victim);
1390 }
1391
1392 /* Else place in bin */
1393
1394 frontlink(victim, victim_size, remainder_index, bck, fwd);
1395 }
1396
1397 /*
1398 If there are any possibly nonempty big-enough blocks,
1399 search for best fitting chunk by scanning bins in blockwidth units.
1400 */
1401
f2302d44 1402 if ( (block = idx2binblock(idx)) <= binblocks_r)
217c9dad
WD
1403 {
1404
1405 /* Get to the first marked block */
1406
f2302d44 1407 if ( (block & binblocks_r) == 0)
217c9dad
WD
1408 {
1409 /* force to an even block boundary */
1410 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1411 block <<= 1;
f2302d44 1412 while ((block & binblocks_r) == 0)
217c9dad 1413 {
8bde7f77
WD
1414 idx += BINBLOCKWIDTH;
1415 block <<= 1;
217c9dad
WD
1416 }
1417 }
1418
1419 /* For each possibly nonempty block ... */
1420 for (;;)
1421 {
1422 startidx = idx; /* (track incomplete blocks) */
1423 q = bin = bin_at(idx);
1424
1425 /* For each bin in this block ... */
1426 do
1427 {
8bde7f77
WD
1428 /* Find and use first big enough chunk ... */
1429
1430 for (victim = last(bin); victim != bin; victim = victim->bk)
1431 {
1432 victim_size = chunksize(victim);
1433 remainder_size = victim_size - nb;
1434
1435 if (remainder_size >= (long)MINSIZE) /* split */
1436 {
1437 remainder = chunk_at_offset(victim, nb);
1438 set_head(victim, nb | PREV_INUSE);
1439 unlink(victim, bck, fwd);
1440 link_last_remainder(remainder);
1441 set_head(remainder, remainder_size | PREV_INUSE);
1442 set_foot(remainder, remainder_size);
1443 check_malloced_chunk(victim, nb);
1444 return chunk2mem(victim);
1445 }
1446
1447 else if (remainder_size >= 0) /* take */
1448 {
1449 set_inuse_bit_at_offset(victim, victim_size);
1450 unlink(victim, bck, fwd);
1451 check_malloced_chunk(victim, nb);
1452 return chunk2mem(victim);
1453 }
1454
1455 }
217c9dad
WD
1456
1457 bin = next_bin(bin);
1458
1459 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1460
1461 /* Clear out the block bit. */
1462
1463 do /* Possibly backtrack to try to clear a partial block */
1464 {
8bde7f77
WD
1465 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1466 {
f2302d44 1467 av_[1] = (mbinptr)(binblocks_r & ~block);
8bde7f77
WD
1468 break;
1469 }
1470 --startidx;
217c9dad
WD
1471 q = prev_bin(q);
1472 } while (first(q) == q);
1473
1474 /* Get to the next possibly nonempty block */
1475
f2302d44 1476 if ( (block <<= 1) <= binblocks_r && (block != 0) )
217c9dad 1477 {
f2302d44 1478 while ((block & binblocks_r) == 0)
8bde7f77
WD
1479 {
1480 idx += BINBLOCKWIDTH;
1481 block <<= 1;
1482 }
217c9dad
WD
1483 }
1484 else
8bde7f77 1485 break;
217c9dad
WD
1486 }
1487 }
1488
1489
1490 /* Try to use top chunk */
1491
1492 /* Require that there be a remainder, ensuring top always exists */
1493 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1494 {
1495
1496#if HAVE_MMAP
1497 /* If big and would otherwise need to extend, try to use mmap instead */
1498 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
a874cac3 1499 (victim = mmap_chunk(nb)))
217c9dad
WD
1500 return chunk2mem(victim);
1501#endif
1502
1503 /* Try to extend */
1504 malloc_extend_top(nb);
1505 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
199adb60 1506 return NULL; /* propagate failure */
217c9dad
WD
1507 }
1508
1509 victim = top;
1510 set_head(victim, nb | PREV_INUSE);
1511 top = chunk_at_offset(victim, nb);
1512 set_head(top, remainder_size | PREV_INUSE);
1513 check_malloced_chunk(victim, nb);
1514 return chunk2mem(victim);
1515
1516}
1517
1518
d93041a4 1519
217c9dad
WD
1520
1521/*
1522
1523 free() algorithm :
1524
1525 cases:
1526
1527 1. free(0) has no effect.
1528
1529 2. If the chunk was allocated via mmap, it is release via munmap().
1530
1531 3. If a returned chunk borders the current high end of memory,
8bde7f77
WD
1532 it is consolidated into the top, and if the total unused
1533 topmost memory exceeds the trim threshold, malloc_trim is
1534 called.
217c9dad
WD
1535
1536 4. Other chunks are consolidated as they arrive, and
8bde7f77
WD
1537 placed in corresponding bins. (This includes the case of
1538 consolidating with the current `last_remainder').
217c9dad
WD
1539
1540*/
1541
1542
1543#if __STD_C
1544void fREe(Void_t* mem)
1545#else
1546void fREe(mem) Void_t* mem;
1547#endif
1548{
1549 mchunkptr p; /* chunk corresponding to mem */
1550 INTERNAL_SIZE_T hd; /* its head field */
1551 INTERNAL_SIZE_T sz; /* its size */
1552 int idx; /* its bin index */
1553 mchunkptr next; /* next contiguous chunk */
1554 INTERNAL_SIZE_T nextsz; /* its size */
1555 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1556 mchunkptr bck; /* misc temp for linking */
1557 mchunkptr fwd; /* misc temp for linking */
1558 int islr; /* track whether merging with last_remainder */
1559
f1896c45 1560#if CONFIG_VAL(SYS_MALLOC_F_LEN)
d59476b6 1561 /* free() is a no-op - all the memory will be freed on relocation */
c9356be3 1562 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
d59476b6
SG
1563 return;
1564#endif
1565
199adb60 1566 if (mem == NULL) /* free(0) has no effect */
217c9dad
WD
1567 return;
1568
1569 p = mem2chunk(mem);
1570 hd = p->size;
1571
1572#if HAVE_MMAP
1573 if (hd & IS_MMAPPED) /* release mmapped memory. */
1574 {
1575 munmap_chunk(p);
1576 return;
1577 }
1578#endif
1579
1580 check_inuse_chunk(p);
1581
1582 sz = hd & ~PREV_INUSE;
1583 next = chunk_at_offset(p, sz);
1584 nextsz = chunksize(next);
1585
1586 if (next == top) /* merge with top */
1587 {
1588 sz += nextsz;
1589
1590 if (!(hd & PREV_INUSE)) /* consolidate backward */
1591 {
1592 prevsz = p->prev_size;
1593 p = chunk_at_offset(p, -((long) prevsz));
1594 sz += prevsz;
1595 unlink(p, bck, fwd);
1596 }
1597
1598 set_head(p, sz | PREV_INUSE);
1599 top = p;
1600 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1601 malloc_trim(top_pad);
1602 return;
1603 }
1604
1605 set_head(next, nextsz); /* clear inuse bit */
1606
1607 islr = 0;
1608
1609 if (!(hd & PREV_INUSE)) /* consolidate backward */
1610 {
1611 prevsz = p->prev_size;
1612 p = chunk_at_offset(p, -((long) prevsz));
1613 sz += prevsz;
1614
1615 if (p->fd == last_remainder) /* keep as last_remainder */
1616 islr = 1;
1617 else
1618 unlink(p, bck, fwd);
1619 }
1620
1621 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1622 {
1623 sz += nextsz;
1624
1625 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1626 {
1627 islr = 1;
1628 link_last_remainder(p);
1629 }
1630 else
1631 unlink(next, bck, fwd);
1632 }
1633
1634
1635 set_head(p, sz | PREV_INUSE);
1636 set_foot(p, sz);
1637 if (!islr)
1638 frontlink(p, sz, idx, bck, fwd);
1639}
1640
1641
d93041a4 1642
217c9dad
WD
1643
1644
1645/*
1646
1647 Realloc algorithm:
1648
1649 Chunks that were obtained via mmap cannot be extended or shrunk
1650 unless HAVE_MREMAP is defined, in which case mremap is used.
1651 Otherwise, if their reallocation is for additional space, they are
1652 copied. If for less, they are just left alone.
1653
1654 Otherwise, if the reallocation is for additional space, and the
1655 chunk can be extended, it is, else a malloc-copy-free sequence is
1656 taken. There are several different ways that a chunk could be
1657 extended. All are tried:
1658
1659 * Extending forward into following adjacent free chunk.
1660 * Shifting backwards, joining preceding adjacent space
1661 * Both shifting backwards and extending forward.
1662 * Extending into newly sbrked space
1663
1664 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1665 size argument of zero (re)allocates a minimum-sized chunk.
1666
1667 If the reallocation is for less space, and the new request is for
1668 a `small' (<512 bytes) size, then the newly unused space is lopped
1669 off and freed.
1670
1671 The old unix realloc convention of allowing the last-free'd chunk
1672 to be used as an argument to realloc is no longer supported.
1673 I don't know of any programs still relying on this feature,
1674 and allowing it would also allow too many other incorrect
1675 usages of realloc to be sensible.
1676
1677
1678*/
1679
1680
1681#if __STD_C
1682Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1683#else
1684Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1685#endif
1686{
1687 INTERNAL_SIZE_T nb; /* padded request size */
1688
1689 mchunkptr oldp; /* chunk corresponding to oldmem */
1690 INTERNAL_SIZE_T oldsize; /* its size */
1691
1692 mchunkptr newp; /* chunk to return */
1693 INTERNAL_SIZE_T newsize; /* its size */
1694 Void_t* newmem; /* corresponding user mem */
1695
1696 mchunkptr next; /* next contiguous chunk after oldp */
1697 INTERNAL_SIZE_T nextsize; /* its size */
1698
1699 mchunkptr prev; /* previous contiguous chunk before oldp */
1700 INTERNAL_SIZE_T prevsize; /* its size */
1701
1702 mchunkptr remainder; /* holds split off extra space from newp */
1703 INTERNAL_SIZE_T remainder_size; /* its size */
1704
1705 mchunkptr bck; /* misc temp for linking */
1706 mchunkptr fwd; /* misc temp for linking */
1707
1708#ifdef REALLOC_ZERO_BYTES_FREES
a874cac3
HS
1709 if (!bytes) {
1710 fREe(oldmem);
1711 return NULL;
1712 }
217c9dad
WD
1713#endif
1714
199adb60 1715 if ((long)bytes < 0) return NULL;
217c9dad
WD
1716
1717 /* realloc of null is supposed to be same as malloc */
199adb60 1718 if (oldmem == NULL) return mALLOc(bytes);
217c9dad 1719
f1896c45 1720#if CONFIG_VAL(SYS_MALLOC_F_LEN)
c9356be3 1721 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
d59476b6
SG
1722 /* This is harder to support and should not be needed */
1723 panic("pre-reloc realloc() is not supported");
1724 }
1725#endif
1726
217c9dad
WD
1727 newp = oldp = mem2chunk(oldmem);
1728 newsize = oldsize = chunksize(oldp);
1729
1730
1731 nb = request2size(bytes);
1732
1733#if HAVE_MMAP
1734 if (chunk_is_mmapped(oldp))
1735 {
1736#if HAVE_MREMAP
1737 newp = mremap_chunk(oldp, nb);
1738 if(newp) return chunk2mem(newp);
1739#endif
1740 /* Note the extra SIZE_SZ overhead. */
1741 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1742 /* Must alloc, copy, free. */
1743 newmem = mALLOc(bytes);
a874cac3
HS
1744 if (!newmem)
1745 return NULL; /* propagate failure */
217c9dad
WD
1746 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1747 munmap_chunk(oldp);
1748 return newmem;
1749 }
1750#endif
1751
1752 check_inuse_chunk(oldp);
1753
1754 if ((long)(oldsize) < (long)(nb))
1755 {
1756
1757 /* Try expanding forward */
1758
1759 next = chunk_at_offset(oldp, oldsize);
1760 if (next == top || !inuse(next))
1761 {
1762 nextsize = chunksize(next);
1763
1764 /* Forward into top only if a remainder */
1765 if (next == top)
1766 {
8bde7f77
WD
1767 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1768 {
1769 newsize += nextsize;
1770 top = chunk_at_offset(oldp, nb);
1771 set_head(top, (newsize - nb) | PREV_INUSE);
1772 set_head_size(oldp, nb);
1773 return chunk2mem(oldp);
1774 }
217c9dad
WD
1775 }
1776
1777 /* Forward into next chunk */
1778 else if (((long)(nextsize + newsize) >= (long)(nb)))
1779 {
8bde7f77
WD
1780 unlink(next, bck, fwd);
1781 newsize += nextsize;
1782 goto split;
217c9dad
WD
1783 }
1784 }
1785 else
1786 {
199adb60 1787 next = NULL;
217c9dad
WD
1788 nextsize = 0;
1789 }
1790
1791 /* Try shifting backwards. */
1792
1793 if (!prev_inuse(oldp))
1794 {
1795 prev = prev_chunk(oldp);
1796 prevsize = chunksize(prev);
1797
1798 /* try forward + backward first to save a later consolidation */
1799
199adb60 1800 if (next != NULL)
217c9dad 1801 {
8bde7f77
WD
1802 /* into top */
1803 if (next == top)
1804 {
1805 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1806 {
1807 unlink(prev, bck, fwd);
1808 newp = prev;
1809 newsize += prevsize + nextsize;
1810 newmem = chunk2mem(newp);
1811 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1812 top = chunk_at_offset(newp, nb);
1813 set_head(top, (newsize - nb) | PREV_INUSE);
1814 set_head_size(newp, nb);
1815 return newmem;
1816 }
1817 }
1818
1819 /* into next chunk */
1820 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1821 {
1822 unlink(next, bck, fwd);
1823 unlink(prev, bck, fwd);
1824 newp = prev;
1825 newsize += nextsize + prevsize;
1826 newmem = chunk2mem(newp);
1827 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1828 goto split;
1829 }
217c9dad
WD
1830 }
1831
1832 /* backward only */
199adb60 1833 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
217c9dad 1834 {
8bde7f77
WD
1835 unlink(prev, bck, fwd);
1836 newp = prev;
1837 newsize += prevsize;
1838 newmem = chunk2mem(newp);
1839 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1840 goto split;
217c9dad
WD
1841 }
1842 }
1843
1844 /* Must allocate */
1845
1846 newmem = mALLOc (bytes);
1847
199adb60
KP
1848 if (newmem == NULL) /* propagate failure */
1849 return NULL;
217c9dad
WD
1850
1851 /* Avoid copy if newp is next chunk after oldp. */
1852 /* (This can only happen when new chunk is sbrk'ed.) */
1853
1854 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1855 {
1856 newsize += chunksize(newp);
1857 newp = oldp;
1858 goto split;
1859 }
1860
1861 /* Otherwise copy, free, and exit */
1862 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1863 fREe(oldmem);
1864 return newmem;
1865 }
1866
1867
1868 split: /* split off extra room in old or expanded chunk */
1869
1870 if (newsize - nb >= MINSIZE) /* split off remainder */
1871 {
1872 remainder = chunk_at_offset(newp, nb);
1873 remainder_size = newsize - nb;
1874 set_head_size(newp, nb);
1875 set_head(remainder, remainder_size | PREV_INUSE);
1876 set_inuse_bit_at_offset(remainder, remainder_size);
1877 fREe(chunk2mem(remainder)); /* let free() deal with it */
1878 }
1879 else
1880 {
1881 set_head_size(newp, newsize);
1882 set_inuse_bit_at_offset(newp, newsize);
1883 }
1884
1885 check_inuse_chunk(newp);
1886 return chunk2mem(newp);
1887}
1888
1889
d93041a4 1890
217c9dad
WD
1891
1892/*
1893
1894 memalign algorithm:
1895
1896 memalign requests more than enough space from malloc, finds a spot
1897 within that chunk that meets the alignment request, and then
1898 possibly frees the leading and trailing space.
1899
1900 The alignment argument must be a power of two. This property is not
1901 checked by memalign, so misuse may result in random runtime errors.
1902
1903 8-byte alignment is guaranteed by normal malloc calls, so don't
1904 bother calling memalign with an argument of 8 or less.
1905
1906 Overreliance on memalign is a sure way to fragment space.
1907
1908*/
1909
1910
1911#if __STD_C
1912Void_t* mEMALIGn(size_t alignment, size_t bytes)
1913#else
1914Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1915#endif
1916{
1917 INTERNAL_SIZE_T nb; /* padded request size */
1918 char* m; /* memory returned by malloc call */
1919 mchunkptr p; /* corresponding chunk */
1920 char* brk; /* alignment point within p */
1921 mchunkptr newp; /* chunk to return */
1922 INTERNAL_SIZE_T newsize; /* its size */
1923 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1924 mchunkptr remainder; /* spare room at end to split off */
1925 long remainder_size; /* its size */
1926
199adb60 1927 if ((long)bytes < 0) return NULL;
217c9dad 1928
ee038c58
LFT
1929#if CONFIG_VAL(SYS_MALLOC_F_LEN)
1930 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
4c6be01c 1931 return memalign_simple(alignment, bytes);
ee038c58
LFT
1932 }
1933#endif
1934
217c9dad
WD
1935 /* If need less alignment than we give anyway, just relay to malloc */
1936
1937 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1938
1939 /* Otherwise, ensure that it is at least a minimum chunk size */
1940
1941 if (alignment < MINSIZE) alignment = MINSIZE;
1942
1943 /* Call malloc with worst case padding to hit alignment. */
1944
1945 nb = request2size(bytes);
1946 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1947
4f144a41
SW
1948 /*
1949 * The attempt to over-allocate (with a size large enough to guarantee the
1950 * ability to find an aligned region within allocated memory) failed.
1951 *
1952 * Try again, this time only allocating exactly the size the user wants. If
1953 * the allocation now succeeds and just happens to be aligned, we can still
1954 * fulfill the user's request.
1955 */
1956 if (m == NULL) {
034eda86 1957 size_t extra, extra2;
4f144a41
SW
1958 /*
1959 * Use bytes not nb, since mALLOc internally calls request2size too, and
1960 * each call increases the size to allocate, to account for the header.
1961 */
1962 m = (char*)(mALLOc(bytes));
1963 /* Aligned -> return it */
1964 if ((((unsigned long)(m)) % alignment) == 0)
1965 return m;
034eda86
SW
1966 /*
1967 * Otherwise, try again, requesting enough extra space to be able to
1968 * acquire alignment.
1969 */
4f144a41 1970 fREe(m);
034eda86
SW
1971 /* Add in extra bytes to match misalignment of unexpanded allocation */
1972 extra = alignment - (((unsigned long)(m)) % alignment);
1973 m = (char*)(mALLOc(bytes + extra));
1974 /*
1975 * m might not be the same as before. Validate that the previous value of
1976 * extra still works for the current value of m.
1977 * If (!m), extra2=alignment so
1978 */
1979 if (m) {
1980 extra2 = alignment - (((unsigned long)(m)) % alignment);
1981 if (extra2 > extra) {
1982 fREe(m);
1983 m = NULL;
1984 }
1985 }
1986 /* Fall through to original NULL check and chunk splitting logic */
4f144a41
SW
1987 }
1988
199adb60 1989 if (m == NULL) return NULL; /* propagate failure */
217c9dad
WD
1990
1991 p = mem2chunk(m);
1992
1993 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1994 {
1995#if HAVE_MMAP
1996 if(chunk_is_mmapped(p))
1997 return chunk2mem(p); /* nothing more to do */
1998#endif
1999 }
2000 else /* misaligned */
2001 {
2002 /*
2003 Find an aligned spot inside chunk.
2004 Since we need to give back leading space in a chunk of at
2005 least MINSIZE, if the first calculation places us at
2006 a spot with less than MINSIZE leader, we can move to the
2007 next aligned spot -- we've allocated enough total room so that
2008 this is always possible.
2009 */
2010
2011 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2012 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2013
2014 newp = (mchunkptr)brk;
2015 leadsize = brk - (char*)(p);
2016 newsize = chunksize(p) - leadsize;
2017
2018#if HAVE_MMAP
2019 if(chunk_is_mmapped(p))
2020 {
2021 newp->prev_size = p->prev_size + leadsize;
2022 set_head(newp, newsize|IS_MMAPPED);
2023 return chunk2mem(newp);
2024 }
2025#endif
2026
2027 /* give back leader, use the rest */
2028
2029 set_head(newp, newsize | PREV_INUSE);
2030 set_inuse_bit_at_offset(newp, newsize);
2031 set_head_size(p, leadsize);
2032 fREe(chunk2mem(p));
2033 p = newp;
2034
2035 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2036 }
2037
2038 /* Also give back spare room at the end */
2039
2040 remainder_size = chunksize(p) - nb;
2041
2042 if (remainder_size >= (long)MINSIZE)
2043 {
2044 remainder = chunk_at_offset(p, nb);
2045 set_head(remainder, remainder_size | PREV_INUSE);
2046 set_head_size(p, nb);
2047 fREe(chunk2mem(remainder));
2048 }
2049
2050 check_inuse_chunk(p);
2051 return chunk2mem(p);
2052
2053}
2054
d93041a4 2055
217c9dad
WD
2056
2057
2058/*
2059 valloc just invokes memalign with alignment argument equal
2060 to the page size of the system (or as near to this as can
2061 be figured out from all the includes/defines above.)
2062*/
2063
2064#if __STD_C
2065Void_t* vALLOc(size_t bytes)
2066#else
2067Void_t* vALLOc(bytes) size_t bytes;
2068#endif
2069{
2070 return mEMALIGn (malloc_getpagesize, bytes);
2071}
2072
2073/*
2074 pvalloc just invokes valloc for the nearest pagesize
2075 that will accommodate request
2076*/
2077
2078
2079#if __STD_C
2080Void_t* pvALLOc(size_t bytes)
2081#else
2082Void_t* pvALLOc(bytes) size_t bytes;
2083#endif
2084{
2085 size_t pagesize = malloc_getpagesize;
2086 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2087}
2088
2089/*
2090
2091 calloc calls malloc, then zeroes out the allocated chunk.
2092
2093*/
2094
2095#if __STD_C
2096Void_t* cALLOc(size_t n, size_t elem_size)
2097#else
2098Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2099#endif
2100{
2101 mchunkptr p;
2102 INTERNAL_SIZE_T csz;
2103
2104 INTERNAL_SIZE_T sz = n * elem_size;
2105
2106
2107 /* check if expand_top called, in which case don't need to clear */
0aa8a4ad 2108#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
217c9dad
WD
2109#if MORECORE_CLEARS
2110 mchunkptr oldtop = top;
2111 INTERNAL_SIZE_T oldtopsize = chunksize(top);
0aa8a4ad 2112#endif
217c9dad
WD
2113#endif
2114 Void_t* mem = mALLOc (sz);
2115
199adb60 2116 if ((long)n < 0) return NULL;
217c9dad 2117
199adb60
KP
2118 if (mem == NULL)
2119 return NULL;
217c9dad
WD
2120 else
2121 {
f1896c45 2122#if CONFIG_VAL(SYS_MALLOC_F_LEN)
c9356be3 2123 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
bb71a2d9 2124 memset(mem, 0, sz);
d59476b6
SG
2125 return mem;
2126 }
2127#endif
217c9dad
WD
2128 p = mem2chunk(mem);
2129
2130 /* Two optional cases in which clearing not necessary */
2131
2132
2133#if HAVE_MMAP
2134 if (chunk_is_mmapped(p)) return mem;
2135#endif
2136
2137 csz = chunksize(p);
2138
0aa8a4ad 2139#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
217c9dad
WD
2140#if MORECORE_CLEARS
2141 if (p == oldtop && csz > oldtopsize)
2142 {
2143 /* clear only the bytes from non-freshly-sbrked memory */
2144 csz = oldtopsize;
2145 }
0aa8a4ad 2146#endif
217c9dad
WD
2147#endif
2148
2149 MALLOC_ZERO(mem, csz - SIZE_SZ);
2150 return mem;
2151 }
2152}
2153
2154/*
2155
2156 cfree just calls free. It is needed/defined on some systems
2157 that pair it with calloc, presumably for odd historical reasons.
2158
2159*/
2160
2161#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2162#if __STD_C
2163void cfree(Void_t *mem)
2164#else
2165void cfree(mem) Void_t *mem;
2166#endif
2167{
2168 fREe(mem);
2169}
2170#endif
2171
d93041a4 2172
217c9dad
WD
2173
2174/*
2175
2176 Malloc_trim gives memory back to the system (via negative
2177 arguments to sbrk) if there is unused memory at the `high' end of
2178 the malloc pool. You can call this after freeing large blocks of
2179 memory to potentially reduce the system-level memory requirements
2180 of a program. However, it cannot guarantee to reduce memory. Under
2181 some allocation patterns, some large free blocks of memory will be
2182 locked between two used chunks, so they cannot be given back to
2183 the system.
2184
2185 The `pad' argument to malloc_trim represents the amount of free
2186 trailing space to leave untrimmed. If this argument is zero,
2187 only the minimum amount of memory to maintain internal data
2188 structures will be left (one page or less). Non-zero arguments
2189 can be supplied to maintain enough trailing space to service
2190 future expected allocations without having to re-obtain memory
2191 from the system.
2192
2193 Malloc_trim returns 1 if it actually released any memory, else 0.
2194
2195*/
2196
2197#if __STD_C
2198int malloc_trim(size_t pad)
2199#else
2200int malloc_trim(pad) size_t pad;
2201#endif
2202{
2203 long top_size; /* Amount of top-most memory */
2204 long extra; /* Amount to release */
2205 char* current_brk; /* address returned by pre-check sbrk call */
2206 char* new_brk; /* address returned by negative sbrk call */
2207
2208 unsigned long pagesz = malloc_getpagesize;
2209
2210 top_size = chunksize(top);
2211 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2212
2213 if (extra < (long)pagesz) /* Not enough memory to release */
2214 return 0;
2215
2216 else
2217 {
2218 /* Test to make sure no one else called sbrk */
2219 current_brk = (char*)(MORECORE (0));
2220 if (current_brk != (char*)(top) + top_size)
2221 return 0; /* Apparently we don't own memory; must fail */
2222
2223 else
2224 {
2225 new_brk = (char*)(MORECORE (-extra));
2226
2227 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2228 {
8bde7f77
WD
2229 /* Try to figure out what we have */
2230 current_brk = (char*)(MORECORE (0));
2231 top_size = current_brk - (char*)top;
2232 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2233 {
2234 sbrked_mem = current_brk - sbrk_base;
2235 set_head(top, top_size | PREV_INUSE);
2236 }
2237 check_chunk(top);
2238 return 0;
217c9dad
WD
2239 }
2240
2241 else
2242 {
8bde7f77
WD
2243 /* Success. Adjust top accordingly. */
2244 set_head(top, (top_size - extra) | PREV_INUSE);
2245 sbrked_mem -= extra;
2246 check_chunk(top);
2247 return 1;
217c9dad
WD
2248 }
2249 }
2250 }
2251}
2252
d93041a4 2253
217c9dad
WD
2254
2255/*
2256 malloc_usable_size:
2257
2258 This routine tells you how many bytes you can actually use in an
2259 allocated chunk, which may be more than you requested (although
2260 often not). You can use this many bytes without worrying about
2261 overwriting other allocated objects. Not a particularly great
2262 programming practice, but still sometimes useful.
2263
2264*/
2265
2266#if __STD_C
2267size_t malloc_usable_size(Void_t* mem)
2268#else
2269size_t malloc_usable_size(mem) Void_t* mem;
2270#endif
2271{
2272 mchunkptr p;
199adb60 2273 if (mem == NULL)
217c9dad
WD
2274 return 0;
2275 else
2276 {
2277 p = mem2chunk(mem);
2278 if(!chunk_is_mmapped(p))
2279 {
2280 if (!inuse(p)) return 0;
2281 check_inuse_chunk(p);
2282 return chunksize(p) - SIZE_SZ;
2283 }
2284 return chunksize(p) - 2*SIZE_SZ;
2285 }
2286}
2287
2288
d93041a4 2289
217c9dad
WD
2290
2291/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2292
ea882baf 2293#ifdef DEBUG
217c9dad
WD
2294static void malloc_update_mallinfo()
2295{
2296 int i;
2297 mbinptr b;
2298 mchunkptr p;
2299#ifdef DEBUG
2300 mchunkptr q;
2301#endif
2302
2303 INTERNAL_SIZE_T avail = chunksize(top);
2304 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2305
2306 for (i = 1; i < NAV; ++i)
2307 {
2308 b = bin_at(i);
2309 for (p = last(b); p != b; p = p->bk)
2310 {
2311#ifdef DEBUG
2312 check_free_chunk(p);
2313 for (q = next_chunk(p);
8bde7f77
WD
2314 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2315 q = next_chunk(q))
2316 check_inuse_chunk(q);
217c9dad
WD
2317#endif
2318 avail += chunksize(p);
2319 navail++;
2320 }
2321 }
2322
2323 current_mallinfo.ordblks = navail;
2324 current_mallinfo.uordblks = sbrked_mem - avail;
2325 current_mallinfo.fordblks = avail;
2326 current_mallinfo.hblks = n_mmaps;
2327 current_mallinfo.hblkhd = mmapped_mem;
2328 current_mallinfo.keepcost = chunksize(top);
2329
2330}
ea882baf 2331#endif /* DEBUG */
217c9dad 2332
d93041a4 2333
217c9dad
WD
2334
2335/*
2336
2337 malloc_stats:
2338
2339 Prints on the amount of space obtain from the system (both
2340 via sbrk and mmap), the maximum amount (which may be more than
2341 current if malloc_trim and/or munmap got called), the maximum
2342 number of simultaneous mmap regions used, and the current number
2343 of bytes allocated via malloc (or realloc, etc) but not yet
2344 freed. (Note that this is the number of bytes allocated, not the
2345 number requested. It will be larger than the number requested
2346 because of alignment and bookkeeping overhead.)
2347
2348*/
2349
ea882baf 2350#ifdef DEBUG
217c9dad
WD
2351void malloc_stats()
2352{
2353 malloc_update_mallinfo();
2354 printf("max system bytes = %10u\n",
8bde7f77 2355 (unsigned int)(max_total_mem));
217c9dad 2356 printf("system bytes = %10u\n",
8bde7f77 2357 (unsigned int)(sbrked_mem + mmapped_mem));
217c9dad 2358 printf("in use bytes = %10u\n",
8bde7f77 2359 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
217c9dad
WD
2360#if HAVE_MMAP
2361 printf("max mmap regions = %10u\n",
8bde7f77 2362 (unsigned int)max_n_mmaps);
217c9dad
WD
2363#endif
2364}
ea882baf 2365#endif /* DEBUG */
217c9dad
WD
2366
2367/*
2368 mallinfo returns a copy of updated current mallinfo.
2369*/
2370
ea882baf 2371#ifdef DEBUG
217c9dad
WD
2372struct mallinfo mALLINFo()
2373{
2374 malloc_update_mallinfo();
2375 return current_mallinfo;
2376}
ea882baf 2377#endif /* DEBUG */
217c9dad
WD
2378
2379
d93041a4 2380
217c9dad
WD
2381
2382/*
2383 mallopt:
2384
2385 mallopt is the general SVID/XPG interface to tunable parameters.
2386 The format is to provide a (parameter-number, parameter-value) pair.
2387 mallopt then sets the corresponding parameter to the argument
2388 value if it can (i.e., so long as the value is meaningful),
2389 and returns 1 if successful else 0.
2390
2391 See descriptions of tunable parameters above.
2392
2393*/
2394
2395#if __STD_C
2396int mALLOPt(int param_number, int value)
2397#else
2398int mALLOPt(param_number, value) int param_number; int value;
2399#endif
2400{
2401 switch(param_number)
2402 {
2403 case M_TRIM_THRESHOLD:
2404 trim_threshold = value; return 1;
2405 case M_TOP_PAD:
2406 top_pad = value; return 1;
2407 case M_MMAP_THRESHOLD:
2408 mmap_threshold = value; return 1;
2409 case M_MMAP_MAX:
2410#if HAVE_MMAP
2411 n_mmaps_max = value; return 1;
2412#else
2413 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2414#endif
2415
2416 default:
2417 return 0;
2418 }
2419}
2420
fb5cf7f1
SG
2421int initf_malloc(void)
2422{
f1896c45 2423#if CONFIG_VAL(SYS_MALLOC_F_LEN)
fb5cf7f1 2424 assert(gd->malloc_base); /* Set up by crt0.S */
f1896c45 2425 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
fb5cf7f1
SG
2426 gd->malloc_ptr = 0;
2427#endif
2428
2429 return 0;
2430}
2431
217c9dad
WD
2432/*
2433
2434History:
2435
2436 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2437 * return null for negative arguments
2438 * Added Several WIN32 cleanups from Martin C. Fong <[email protected]>
8bde7f77
WD
2439 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2440 (e.g. WIN32 platforms)
2441 * Cleanup up header file inclusion for WIN32 platforms
2442 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2443 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2444 memory allocation routines
2445 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2446 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
217c9dad 2447 usage of 'assert' in non-WIN32 code
8bde7f77
WD
2448 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2449 avoid infinite loop
217c9dad
WD
2450 * Always call 'fREe()' rather than 'free()'
2451
2452 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2453 * Fixed ordering problem with boundary-stamping
2454
2455 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2456 * Added pvalloc, as recommended by H.J. Liu
2457 * Added 64bit pointer support mainly from Wolfram Gloger
2458 * Added anonymously donated WIN32 sbrk emulation
2459 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2460 * malloc_extend_top: fix mask error that caused wastage after
8bde7f77 2461 foreign sbrks
217c9dad
WD
2462 * Add linux mremap support code from HJ Liu
2463
2464 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2465 * Integrated most documentation with the code.
2466 * Add support for mmap, with help from
8bde7f77 2467 Wolfram Gloger ([email protected]).
217c9dad
WD
2468 * Use last_remainder in more cases.
2469 * Pack bins using idea from [email protected]
2470 * Use ordered bins instead of best-fit threshhold
2471 * Eliminate block-local decls to simplify tracing and debugging.
2472 * Support another case of realloc via move into top
2473 * Fix error occuring when initial sbrk_base not word-aligned.
2474 * Rely on page size for units instead of SBRK_UNIT to
8bde7f77 2475 avoid surprises about sbrk alignment conventions.
217c9dad 2476 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
8bde7f77 2477 ([email protected]) for the suggestion.
217c9dad
WD
2478 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2479 * More precautions for cases where other routines call sbrk,
8bde7f77 2480 courtesy of Wolfram Gloger ([email protected]).
217c9dad 2481 * Added macros etc., allowing use in linux libc from
8bde7f77 2482 H.J. Lu ([email protected])
217c9dad
WD
2483 * Inverted this history list
2484
2485 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2486 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2487 * Removed all preallocation code since under current scheme
8bde7f77
WD
2488 the work required to undo bad preallocations exceeds
2489 the work saved in good cases for most test programs.
217c9dad 2490 * No longer use return list or unconsolidated bins since
8bde7f77
WD
2491 no scheme using them consistently outperforms those that don't
2492 given above changes.
217c9dad
WD
2493 * Use best fit for very large chunks to prevent some worst-cases.
2494 * Added some support for debugging
2495
2496 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2497 * Removed footers when chunks are in use. Thanks to
8bde7f77 2498 Paul Wilson ([email protected]) for the suggestion.
217c9dad
WD
2499
2500 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2501 * Added malloc_trim, with help from Wolfram Gloger
8bde7f77 2502 ([email protected]).
217c9dad
WD
2503
2504 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2505
2506 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2507 * realloc: try to expand in both directions
2508 * malloc: swap order of clean-bin strategy;
2509 * realloc: only conditionally expand backwards
2510 * Try not to scavenge used bins
2511 * Use bin counts as a guide to preallocation
2512 * Occasionally bin return list chunks in first scan
2513 * Add a few optimizations from [email protected]
2514
2515 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2516 * faster bin computation & slightly different binning
2517 * merged all consolidations to one part of malloc proper
8bde7f77 2518 (eliminating old malloc_find_space & malloc_clean_bin)
217c9dad
WD
2519 * Scan 2 returns chunks (not just 1)
2520 * Propagate failure in realloc if malloc returns 0
2521 * Add stuff to allow compilation on non-ANSI compilers
8bde7f77 2522 from [email protected]
217c9dad
WD
2523
2524 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2525 * removed potential for odd address access in prev_chunk
2526 * removed dependency on getpagesize.h
2527 * misc cosmetics and a bit more internal documentation
2528 * anticosmetics: mangled names in macros to evade debugger strangeness
2529 * tested on sparc, hp-700, dec-mips, rs6000
8bde7f77
WD
2530 with gcc & native cc (hp, dec only) allowing
2531 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
217c9dad
WD
2532
2533 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2534 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
8bde7f77 2535 structure of old version, but most details differ.)
217c9dad
WD
2536
2537*/
This page took 0.818236 seconds and 4 git commands to generate.