]>
Commit | Line | Data |
---|---|---|
81673e9a KG |
1 | #include <common.h> |
2 | ||
be621c11 | 3 | #if CONFIG_IS_ENABLED(UNIT_TEST) |
6d7601e7 SG |
4 | #define DEBUG |
5 | #endif | |
6 | ||
217c9dad | 7 | #include <malloc.h> |
d59476b6 SG |
8 | #include <asm/io.h> |
9 | ||
ea882baf | 10 | #ifdef DEBUG |
217c9dad WD |
11 | #if __STD_C |
12 | static void malloc_update_mallinfo (void); | |
13 | void malloc_stats (void); | |
14 | #else | |
15 | static void malloc_update_mallinfo (); | |
16 | void malloc_stats(); | |
17 | #endif | |
ea882baf | 18 | #endif /* DEBUG */ |
217c9dad | 19 | |
d87080b7 WD |
20 | DECLARE_GLOBAL_DATA_PTR; |
21 | ||
217c9dad WD |
22 | /* |
23 | Emulation of sbrk for WIN32 | |
24 | All code within the ifdef WIN32 is untested by me. | |
25 | ||
26 | Thanks to Martin Fong and others for supplying this. | |
27 | */ | |
28 | ||
29 | ||
30 | #ifdef WIN32 | |
31 | ||
32 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ | |
33 | ~(malloc_getpagesize-1)) | |
34 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) | |
35 | ||
36 | /* resrve 64MB to insure large contiguous space */ | |
37 | #define RESERVED_SIZE (1024*1024*64) | |
38 | #define NEXT_SIZE (2048*1024) | |
39 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) | |
40 | ||
41 | struct GmListElement; | |
42 | typedef struct GmListElement GmListElement; | |
43 | ||
44 | struct GmListElement | |
45 | { | |
46 | GmListElement* next; | |
47 | void* base; | |
48 | }; | |
49 | ||
50 | static GmListElement* head = 0; | |
51 | static unsigned int gNextAddress = 0; | |
52 | static unsigned int gAddressBase = 0; | |
53 | static unsigned int gAllocatedSize = 0; | |
54 | ||
55 | static | |
56 | GmListElement* makeGmListElement (void* bas) | |
57 | { | |
58 | GmListElement* this; | |
59 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); | |
60 | assert (this); | |
61 | if (this) | |
62 | { | |
63 | this->base = bas; | |
64 | this->next = head; | |
65 | head = this; | |
66 | } | |
67 | return this; | |
68 | } | |
69 | ||
70 | void gcleanup () | |
71 | { | |
72 | BOOL rval; | |
73 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); | |
74 | if (gAddressBase && (gNextAddress - gAddressBase)) | |
75 | { | |
76 | rval = VirtualFree ((void*)gAddressBase, | |
77 | gNextAddress - gAddressBase, | |
78 | MEM_DECOMMIT); | |
8bde7f77 | 79 | assert (rval); |
217c9dad WD |
80 | } |
81 | while (head) | |
82 | { | |
83 | GmListElement* next = head->next; | |
84 | rval = VirtualFree (head->base, 0, MEM_RELEASE); | |
85 | assert (rval); | |
86 | LocalFree (head); | |
87 | head = next; | |
88 | } | |
89 | } | |
90 | ||
91 | static | |
92 | void* findRegion (void* start_address, unsigned long size) | |
93 | { | |
94 | MEMORY_BASIC_INFORMATION info; | |
95 | if (size >= TOP_MEMORY) return NULL; | |
96 | ||
97 | while ((unsigned long)start_address + size < TOP_MEMORY) | |
98 | { | |
99 | VirtualQuery (start_address, &info, sizeof (info)); | |
100 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) | |
101 | return start_address; | |
102 | else | |
103 | { | |
8bde7f77 WD |
104 | /* Requested region is not available so see if the */ |
105 | /* next region is available. Set 'start_address' */ | |
106 | /* to the next region and call 'VirtualQuery()' */ | |
107 | /* again. */ | |
217c9dad WD |
108 | |
109 | start_address = (char*)info.BaseAddress + info.RegionSize; | |
110 | ||
8bde7f77 WD |
111 | /* Make sure we start looking for the next region */ |
112 | /* on the *next* 64K boundary. Otherwise, even if */ | |
113 | /* the new region is free according to */ | |
114 | /* 'VirtualQuery()', the subsequent call to */ | |
115 | /* 'VirtualAlloc()' (which follows the call to */ | |
116 | /* this routine in 'wsbrk()') will round *down* */ | |
117 | /* the requested address to a 64K boundary which */ | |
118 | /* we already know is an address in the */ | |
119 | /* unavailable region. Thus, the subsequent call */ | |
120 | /* to 'VirtualAlloc()' will fail and bring us back */ | |
121 | /* here, causing us to go into an infinite loop. */ | |
217c9dad WD |
122 | |
123 | start_address = | |
124 | (void *) AlignPage64K((unsigned long) start_address); | |
125 | } | |
126 | } | |
127 | return NULL; | |
128 | ||
129 | } | |
130 | ||
131 | ||
132 | void* wsbrk (long size) | |
133 | { | |
134 | void* tmp; | |
135 | if (size > 0) | |
136 | { | |
137 | if (gAddressBase == 0) | |
138 | { | |
139 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); | |
140 | gNextAddress = gAddressBase = | |
141 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, | |
142 | MEM_RESERVE, PAGE_NOACCESS); | |
143 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + | |
144 | gAllocatedSize)) | |
145 | { | |
146 | long new_size = max (NEXT_SIZE, AlignPage (size)); | |
147 | void* new_address = (void*)(gAddressBase+gAllocatedSize); | |
148 | do | |
149 | { | |
150 | new_address = findRegion (new_address, new_size); | |
151 | ||
a874cac3 | 152 | if (!new_address) |
217c9dad WD |
153 | return (void*)-1; |
154 | ||
155 | gAddressBase = gNextAddress = | |
156 | (unsigned int)VirtualAlloc (new_address, new_size, | |
157 | MEM_RESERVE, PAGE_NOACCESS); | |
8bde7f77 WD |
158 | /* repeat in case of race condition */ |
159 | /* The region that we found has been snagged */ | |
160 | /* by another thread */ | |
217c9dad WD |
161 | } |
162 | while (gAddressBase == 0); | |
163 | ||
164 | assert (new_address == (void*)gAddressBase); | |
165 | ||
166 | gAllocatedSize = new_size; | |
167 | ||
168 | if (!makeGmListElement ((void*)gAddressBase)) | |
169 | return (void*)-1; | |
170 | } | |
171 | if ((size + gNextAddress) > AlignPage (gNextAddress)) | |
172 | { | |
173 | void* res; | |
174 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), | |
175 | (size + gNextAddress - | |
176 | AlignPage (gNextAddress)), | |
177 | MEM_COMMIT, PAGE_READWRITE); | |
a874cac3 | 178 | if (!res) |
217c9dad WD |
179 | return (void*)-1; |
180 | } | |
181 | tmp = (void*)gNextAddress; | |
182 | gNextAddress = (unsigned int)tmp + size; | |
183 | return tmp; | |
184 | } | |
185 | else if (size < 0) | |
186 | { | |
187 | unsigned int alignedGoal = AlignPage (gNextAddress + size); | |
188 | /* Trim by releasing the virtual memory */ | |
189 | if (alignedGoal >= gAddressBase) | |
190 | { | |
191 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, | |
192 | MEM_DECOMMIT); | |
193 | gNextAddress = gNextAddress + size; | |
194 | return (void*)gNextAddress; | |
195 | } | |
196 | else | |
197 | { | |
198 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, | |
199 | MEM_DECOMMIT); | |
200 | gNextAddress = gAddressBase; | |
201 | return (void*)-1; | |
202 | } | |
203 | } | |
204 | else | |
205 | { | |
206 | return (void*)gNextAddress; | |
207 | } | |
208 | } | |
209 | ||
210 | #endif | |
211 | ||
d93041a4 | 212 | |
217c9dad WD |
213 | |
214 | /* | |
215 | Type declarations | |
216 | */ | |
217 | ||
218 | ||
219 | struct malloc_chunk | |
220 | { | |
221 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ | |
222 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ | |
223 | struct malloc_chunk* fd; /* double links -- used only if free. */ | |
224 | struct malloc_chunk* bk; | |
1ba91ba2 | 225 | } __attribute__((__may_alias__)) ; |
217c9dad WD |
226 | |
227 | typedef struct malloc_chunk* mchunkptr; | |
228 | ||
229 | /* | |
230 | ||
231 | malloc_chunk details: | |
232 | ||
233 | (The following includes lightly edited explanations by Colin Plumb.) | |
234 | ||
235 | Chunks of memory are maintained using a `boundary tag' method as | |
236 | described in e.g., Knuth or Standish. (See the paper by Paul | |
237 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a | |
238 | survey of such techniques.) Sizes of free chunks are stored both | |
239 | in the front of each chunk and at the end. This makes | |
240 | consolidating fragmented chunks into bigger chunks very fast. The | |
241 | size fields also hold bits representing whether chunks are free or | |
242 | in use. | |
243 | ||
244 | An allocated chunk looks like this: | |
245 | ||
246 | ||
247 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
248 | | Size of previous chunk, if allocated | | |
249 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
250 | | Size of chunk, in bytes |P| | |
217c9dad | 251 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
252 | | User data starts here... . |
253 | . . | |
254 | . (malloc_usable_space() bytes) . | |
255 | . | | |
217c9dad | 256 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
257 | | Size of chunk | |
258 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
259 | |
260 | ||
261 | Where "chunk" is the front of the chunk for the purpose of most of | |
262 | the malloc code, but "mem" is the pointer that is returned to the | |
263 | user. "Nextchunk" is the beginning of the next contiguous chunk. | |
264 | ||
265 | Chunks always begin on even word boundries, so the mem portion | |
266 | (which is returned to the user) is also on an even word boundary, and | |
267 | thus double-word aligned. | |
268 | ||
269 | Free chunks are stored in circular doubly-linked lists, and look like this: | |
270 | ||
271 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
272 | | Size of previous chunk | |
273 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
274 | `head:' | Size of chunk, in bytes |P| |
275 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
276 | | Forward pointer to next chunk in list | |
277 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
278 | | Back pointer to previous chunk in list | | |
279 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
280 | | Unused space (may be 0 bytes long) . | |
281 | . . | |
282 | . | | |
9297e366 | 283 | |
217c9dad WD |
284 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
285 | `foot:' | Size of chunk, in bytes | | |
8bde7f77 | 286 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
217c9dad WD |
287 | |
288 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the | |
289 | chunk size (which is always a multiple of two words), is an in-use | |
290 | bit for the *previous* chunk. If that bit is *clear*, then the | |
291 | word before the current chunk size contains the previous chunk | |
292 | size, and can be used to find the front of the previous chunk. | |
293 | (The very first chunk allocated always has this bit set, | |
294 | preventing access to non-existent (or non-owned) memory.) | |
295 | ||
296 | Note that the `foot' of the current chunk is actually represented | |
297 | as the prev_size of the NEXT chunk. (This makes it easier to | |
298 | deal with alignments etc). | |
299 | ||
300 | The two exceptions to all this are | |
301 | ||
302 | 1. The special chunk `top', which doesn't bother using the | |
8bde7f77 WD |
303 | trailing size field since there is no |
304 | next contiguous chunk that would have to index off it. (After | |
305 | initialization, `top' is forced to always exist. If it would | |
306 | become less than MINSIZE bytes long, it is replenished via | |
307 | malloc_extend_top.) | |
217c9dad WD |
308 | |
309 | 2. Chunks allocated via mmap, which have the second-lowest-order | |
8bde7f77 WD |
310 | bit (IS_MMAPPED) set in their size fields. Because they are |
311 | never merged or traversed from any other chunk, they have no | |
312 | foot size or inuse information. | |
217c9dad WD |
313 | |
314 | Available chunks are kept in any of several places (all declared below): | |
315 | ||
316 | * `av': An array of chunks serving as bin headers for consolidated | |
317 | chunks. Each bin is doubly linked. The bins are approximately | |
318 | proportionally (log) spaced. There are a lot of these bins | |
319 | (128). This may look excessive, but works very well in | |
320 | practice. All procedures maintain the invariant that no | |
321 | consolidated chunk physically borders another one. Chunks in | |
322 | bins are kept in size order, with ties going to the | |
323 | approximately least recently used chunk. | |
324 | ||
325 | The chunks in each bin are maintained in decreasing sorted order by | |
326 | size. This is irrelevant for the small bins, which all contain | |
327 | the same-sized chunks, but facilitates best-fit allocation for | |
328 | larger chunks. (These lists are just sequential. Keeping them in | |
329 | order almost never requires enough traversal to warrant using | |
330 | fancier ordered data structures.) Chunks of the same size are | |
331 | linked with the most recently freed at the front, and allocations | |
332 | are taken from the back. This results in LRU or FIFO allocation | |
333 | order, which tends to give each chunk an equal opportunity to be | |
334 | consolidated with adjacent freed chunks, resulting in larger free | |
335 | chunks and less fragmentation. | |
336 | ||
337 | * `top': The top-most available chunk (i.e., the one bordering the | |
338 | end of available memory) is treated specially. It is never | |
339 | included in any bin, is used only if no other chunk is | |
340 | available, and is released back to the system if it is very | |
341 | large (see M_TRIM_THRESHOLD). | |
342 | ||
343 | * `last_remainder': A bin holding only the remainder of the | |
344 | most recently split (non-top) chunk. This bin is checked | |
345 | before other non-fitting chunks, so as to provide better | |
346 | locality for runs of sequentially allocated chunks. | |
347 | ||
348 | * Implicitly, through the host system's memory mapping tables. | |
349 | If supported, requests greater than a threshold are usually | |
350 | serviced via calls to mmap, and then later released via munmap. | |
351 | ||
352 | */ | |
d93041a4 | 353 | |
217c9dad WD |
354 | /* sizes, alignments */ |
355 | ||
356 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) | |
357 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) | |
358 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) | |
359 | #define MINSIZE (sizeof(struct malloc_chunk)) | |
360 | ||
361 | /* conversion from malloc headers to user pointers, and back */ | |
362 | ||
363 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) | |
364 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) | |
365 | ||
366 | /* pad request bytes into a usable size */ | |
367 | ||
368 | #define request2size(req) \ | |
369 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ | |
370 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ | |
371 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) | |
372 | ||
373 | /* Check if m has acceptable alignment */ | |
374 | ||
375 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) | |
376 | ||
377 | ||
d93041a4 | 378 | |
217c9dad WD |
379 | |
380 | /* | |
381 | Physical chunk operations | |
382 | */ | |
383 | ||
384 | ||
385 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ | |
386 | ||
387 | #define PREV_INUSE 0x1 | |
388 | ||
389 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ | |
390 | ||
391 | #define IS_MMAPPED 0x2 | |
392 | ||
393 | /* Bits to mask off when extracting size */ | |
394 | ||
395 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) | |
396 | ||
397 | ||
398 | /* Ptr to next physical malloc_chunk. */ | |
399 | ||
400 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) | |
401 | ||
402 | /* Ptr to previous physical malloc_chunk */ | |
403 | ||
404 | #define prev_chunk(p)\ | |
405 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) | |
406 | ||
407 | ||
408 | /* Treat space at ptr + offset as a chunk */ | |
409 | ||
410 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) | |
411 | ||
412 | ||
d93041a4 | 413 | |
217c9dad WD |
414 | |
415 | /* | |
416 | Dealing with use bits | |
417 | */ | |
418 | ||
419 | /* extract p's inuse bit */ | |
420 | ||
421 | #define inuse(p)\ | |
422 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) | |
423 | ||
424 | /* extract inuse bit of previous chunk */ | |
425 | ||
426 | #define prev_inuse(p) ((p)->size & PREV_INUSE) | |
427 | ||
428 | /* check for mmap()'ed chunk */ | |
429 | ||
430 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) | |
431 | ||
432 | /* set/clear chunk as in use without otherwise disturbing */ | |
433 | ||
434 | #define set_inuse(p)\ | |
435 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE | |
436 | ||
437 | #define clear_inuse(p)\ | |
438 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) | |
439 | ||
440 | /* check/set/clear inuse bits in known places */ | |
441 | ||
442 | #define inuse_bit_at_offset(p, s)\ | |
443 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) | |
444 | ||
445 | #define set_inuse_bit_at_offset(p, s)\ | |
446 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) | |
447 | ||
448 | #define clear_inuse_bit_at_offset(p, s)\ | |
449 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) | |
450 | ||
451 | ||
d93041a4 | 452 | |
217c9dad WD |
453 | |
454 | /* | |
455 | Dealing with size fields | |
456 | */ | |
457 | ||
458 | /* Get size, ignoring use bits */ | |
459 | ||
460 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) | |
461 | ||
462 | /* Set size at head, without disturbing its use bit */ | |
463 | ||
464 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) | |
465 | ||
466 | /* Set size/use ignoring previous bits in header */ | |
467 | ||
468 | #define set_head(p, s) ((p)->size = (s)) | |
469 | ||
470 | /* Set size at footer (only when chunk is not in use) */ | |
471 | ||
472 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) | |
473 | ||
474 | ||
d93041a4 | 475 | |
217c9dad WD |
476 | |
477 | ||
478 | /* | |
479 | Bins | |
480 | ||
481 | The bins, `av_' are an array of pairs of pointers serving as the | |
482 | heads of (initially empty) doubly-linked lists of chunks, laid out | |
483 | in a way so that each pair can be treated as if it were in a | |
484 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads | |
485 | and chunks are the same). | |
486 | ||
487 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced | |
488 | 8 bytes apart. Larger bins are approximately logarithmically | |
489 | spaced. (See the table below.) The `av_' array is never mentioned | |
490 | directly in the code, but instead via bin access macros. | |
491 | ||
492 | Bin layout: | |
493 | ||
494 | 64 bins of size 8 | |
495 | 32 bins of size 64 | |
496 | 16 bins of size 512 | |
497 | 8 bins of size 4096 | |
498 | 4 bins of size 32768 | |
499 | 2 bins of size 262144 | |
500 | 1 bin of size what's left | |
501 | ||
502 | There is actually a little bit of slop in the numbers in bin_index | |
503 | for the sake of speed. This makes no difference elsewhere. | |
504 | ||
505 | The special chunks `top' and `last_remainder' get their own bins, | |
506 | (this is implemented via yet more trickery with the av_ array), | |
507 | although `top' is never properly linked to its bin since it is | |
508 | always handled specially. | |
509 | ||
510 | */ | |
511 | ||
512 | #define NAV 128 /* number of bins */ | |
513 | ||
514 | typedef struct malloc_chunk* mbinptr; | |
515 | ||
516 | /* access macros */ | |
517 | ||
518 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) | |
519 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) | |
520 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) | |
521 | ||
522 | /* | |
523 | The first 2 bins are never indexed. The corresponding av_ cells are instead | |
524 | used for bookkeeping. This is not to save space, but to simplify | |
525 | indexing, maintain locality, and avoid some initialization tests. | |
526 | */ | |
527 | ||
f2302d44 | 528 | #define top (av_[2]) /* The topmost chunk */ |
217c9dad WD |
529 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
530 | ||
531 | ||
532 | /* | |
533 | Because top initially points to its own bin with initial | |
534 | zero size, thus forcing extension on the first malloc request, | |
535 | we avoid having any special code in malloc to check whether | |
536 | it even exists yet. But we still need to in malloc_extend_top. | |
537 | */ | |
538 | ||
539 | #define initial_top ((mchunkptr)(bin_at(0))) | |
540 | ||
541 | /* Helper macro to initialize bins */ | |
542 | ||
543 | #define IAV(i) bin_at(i), bin_at(i) | |
544 | ||
545 | static mbinptr av_[NAV * 2 + 2] = { | |
199adb60 | 546 | NULL, NULL, |
217c9dad WD |
547 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), |
548 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), | |
549 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), | |
550 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), | |
551 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), | |
552 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), | |
553 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), | |
554 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), | |
555 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), | |
556 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), | |
557 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), | |
558 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), | |
559 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), | |
560 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), | |
561 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), | |
562 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) | |
563 | }; | |
564 | ||
2e5167cc | 565 | #ifdef CONFIG_NEEDS_MANUAL_RELOC |
7b395232 | 566 | static void malloc_bin_reloc(void) |
217c9dad | 567 | { |
93691842 SG |
568 | mbinptr *p = &av_[2]; |
569 | size_t i; | |
570 | ||
571 | for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p) | |
572 | *p = (mbinptr)((ulong)*p + gd->reloc_off); | |
217c9dad | 573 | } |
7b395232 GJ |
574 | #else |
575 | static inline void malloc_bin_reloc(void) {} | |
521af04d | 576 | #endif |
5e93bd1c | 577 | |
9297e366 MB |
578 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
579 | static void malloc_init(void); | |
580 | #endif | |
581 | ||
5e93bd1c PT |
582 | ulong mem_malloc_start = 0; |
583 | ulong mem_malloc_end = 0; | |
584 | ulong mem_malloc_brk = 0; | |
585 | ||
586 | void *sbrk(ptrdiff_t increment) | |
587 | { | |
588 | ulong old = mem_malloc_brk; | |
589 | ulong new = old + increment; | |
590 | ||
6163f5b4 KG |
591 | /* |
592 | * if we are giving memory back make sure we clear it out since | |
593 | * we set MORECORE_CLEARS to 1 | |
594 | */ | |
595 | if (increment < 0) | |
596 | memset((void *)new, 0, -increment); | |
597 | ||
5e93bd1c | 598 | if ((new < mem_malloc_start) || (new > mem_malloc_end)) |
ae30b8c2 | 599 | return (void *)MORECORE_FAILURE; |
5e93bd1c PT |
600 | |
601 | mem_malloc_brk = new; | |
602 | ||
603 | return (void *)old; | |
604 | } | |
217c9dad | 605 | |
d4e8ada0 PT |
606 | void mem_malloc_init(ulong start, ulong size) |
607 | { | |
608 | mem_malloc_start = start; | |
609 | mem_malloc_end = start + size; | |
610 | mem_malloc_brk = start; | |
611 | ||
9297e366 MB |
612 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
613 | malloc_init(); | |
614 | #endif | |
615 | ||
868de51d TR |
616 | debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start, |
617 | mem_malloc_end); | |
0aa8a4ad PM |
618 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
619 | memset((void *)mem_malloc_start, 0x0, size); | |
620 | #endif | |
7b395232 | 621 | malloc_bin_reloc(); |
d4e8ada0 | 622 | } |
d4e8ada0 | 623 | |
217c9dad WD |
624 | /* field-extraction macros */ |
625 | ||
626 | #define first(b) ((b)->fd) | |
627 | #define last(b) ((b)->bk) | |
628 | ||
629 | /* | |
630 | Indexing into bins | |
631 | */ | |
632 | ||
633 | #define bin_index(sz) \ | |
634 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ | |
635 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ | |
636 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ | |
637 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ | |
638 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ | |
639 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ | |
8bde7f77 | 640 | 126) |
217c9dad WD |
641 | /* |
642 | bins for chunks < 512 are all spaced 8 bytes apart, and hold | |
643 | identically sized chunks. This is exploited in malloc. | |
644 | */ | |
645 | ||
646 | #define MAX_SMALLBIN 63 | |
647 | #define MAX_SMALLBIN_SIZE 512 | |
648 | #define SMALLBIN_WIDTH 8 | |
649 | ||
650 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) | |
651 | ||
652 | /* | |
653 | Requests are `small' if both the corresponding and the next bin are small | |
654 | */ | |
655 | ||
656 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) | |
657 | ||
d93041a4 | 658 | |
217c9dad WD |
659 | |
660 | /* | |
661 | To help compensate for the large number of bins, a one-level index | |
662 | structure is used for bin-by-bin searching. `binblocks' is a | |
663 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins | |
664 | have any (possibly) non-empty bins, so they can be skipped over | |
665 | all at once during during traversals. The bits are NOT always | |
666 | cleared as soon as all bins in a block are empty, but instead only | |
667 | when all are noticed to be empty during traversal in malloc. | |
668 | */ | |
669 | ||
670 | #define BINBLOCKWIDTH 4 /* bins per block */ | |
671 | ||
f2302d44 SR |
672 | #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ |
673 | #define binblocks_w (av_[1]) | |
217c9dad WD |
674 | |
675 | /* bin<->block macros */ | |
676 | ||
677 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) | |
f2302d44 SR |
678 | #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) |
679 | #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) | |
217c9dad WD |
680 | |
681 | ||
d93041a4 | 682 | |
217c9dad WD |
683 | |
684 | ||
685 | /* Other static bookkeeping data */ | |
686 | ||
687 | /* variables holding tunable values */ | |
688 | ||
689 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
690 | static unsigned long top_pad = DEFAULT_TOP_PAD; | |
691 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; | |
692 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
693 | ||
694 | /* The first value returned from sbrk */ | |
695 | static char* sbrk_base = (char*)(-1); | |
696 | ||
697 | /* The maximum memory obtained from system via sbrk */ | |
698 | static unsigned long max_sbrked_mem = 0; | |
699 | ||
700 | /* The maximum via either sbrk or mmap */ | |
701 | static unsigned long max_total_mem = 0; | |
702 | ||
703 | /* internal working copy of mallinfo */ | |
704 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
705 | ||
706 | /* The total memory obtained from system via sbrk */ | |
707 | #define sbrked_mem (current_mallinfo.arena) | |
708 | ||
709 | /* Tracking mmaps */ | |
710 | ||
ea882baf | 711 | #ifdef DEBUG |
217c9dad | 712 | static unsigned int n_mmaps = 0; |
ea882baf | 713 | #endif /* DEBUG */ |
217c9dad WD |
714 | static unsigned long mmapped_mem = 0; |
715 | #if HAVE_MMAP | |
716 | static unsigned int max_n_mmaps = 0; | |
717 | static unsigned long max_mmapped_mem = 0; | |
718 | #endif | |
719 | ||
9297e366 MB |
720 | #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT |
721 | static void malloc_init(void) | |
722 | { | |
723 | int i, j; | |
724 | ||
725 | debug("bins (av_ array) are at %p\n", (void *)av_); | |
726 | ||
727 | av_[0] = NULL; av_[1] = NULL; | |
728 | for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) { | |
729 | av_[i] = bin_at(j - 2); | |
730 | av_[i + 1] = bin_at(j - 2); | |
731 | ||
732 | /* Just print the first few bins so that | |
733 | * we can see there are alright. | |
734 | */ | |
735 | if (i < 10) | |
736 | debug("av_[%d]=%lx av_[%d]=%lx\n", | |
737 | i, (ulong)av_[i], | |
738 | i + 1, (ulong)av_[i + 1]); | |
739 | } | |
d93041a4 | 740 | |
9297e366 MB |
741 | /* Init the static bookkeeping as well */ |
742 | sbrk_base = (char *)(-1); | |
743 | max_sbrked_mem = 0; | |
744 | max_total_mem = 0; | |
745 | #ifdef DEBUG | |
746 | memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo)); | |
747 | #endif | |
748 | } | |
749 | #endif | |
217c9dad WD |
750 | |
751 | /* | |
752 | Debugging support | |
753 | */ | |
754 | ||
755 | #ifdef DEBUG | |
756 | ||
757 | ||
758 | /* | |
759 | These routines make a number of assertions about the states | |
760 | of data structures that should be true at all times. If any | |
761 | are not true, it's very likely that a user program has somehow | |
762 | trashed memory. (It's also possible that there is a coding error | |
763 | in malloc. In which case, please report it!) | |
764 | */ | |
765 | ||
766 | #if __STD_C | |
767 | static void do_check_chunk(mchunkptr p) | |
768 | #else | |
769 | static void do_check_chunk(p) mchunkptr p; | |
770 | #endif | |
771 | { | |
217c9dad | 772 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
217c9dad WD |
773 | |
774 | /* No checkable chunk is mmapped */ | |
775 | assert(!chunk_is_mmapped(p)); | |
776 | ||
777 | /* Check for legal address ... */ | |
778 | assert((char*)p >= sbrk_base); | |
779 | if (p != top) | |
780 | assert((char*)p + sz <= (char*)top); | |
781 | else | |
782 | assert((char*)p + sz <= sbrk_base + sbrked_mem); | |
783 | ||
784 | } | |
785 | ||
786 | ||
787 | #if __STD_C | |
788 | static void do_check_free_chunk(mchunkptr p) | |
789 | #else | |
790 | static void do_check_free_chunk(p) mchunkptr p; | |
791 | #endif | |
792 | { | |
793 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
217c9dad | 794 | mchunkptr next = chunk_at_offset(p, sz); |
217c9dad WD |
795 | |
796 | do_check_chunk(p); | |
797 | ||
798 | /* Check whether it claims to be free ... */ | |
799 | assert(!inuse(p)); | |
800 | ||
801 | /* Unless a special marker, must have OK fields */ | |
802 | if ((long)sz >= (long)MINSIZE) | |
803 | { | |
804 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
805 | assert(aligned_OK(chunk2mem(p))); | |
806 | /* ... matching footer field */ | |
807 | assert(next->prev_size == sz); | |
808 | /* ... and is fully consolidated */ | |
809 | assert(prev_inuse(p)); | |
810 | assert (next == top || inuse(next)); | |
811 | ||
812 | /* ... and has minimally sane links */ | |
813 | assert(p->fd->bk == p); | |
814 | assert(p->bk->fd == p); | |
815 | } | |
816 | else /* markers are always of size SIZE_SZ */ | |
817 | assert(sz == SIZE_SZ); | |
818 | } | |
819 | ||
820 | #if __STD_C | |
821 | static void do_check_inuse_chunk(mchunkptr p) | |
822 | #else | |
823 | static void do_check_inuse_chunk(p) mchunkptr p; | |
824 | #endif | |
825 | { | |
826 | mchunkptr next = next_chunk(p); | |
827 | do_check_chunk(p); | |
828 | ||
829 | /* Check whether it claims to be in use ... */ | |
830 | assert(inuse(p)); | |
831 | ||
832 | /* ... and is surrounded by OK chunks. | |
833 | Since more things can be checked with free chunks than inuse ones, | |
834 | if an inuse chunk borders them and debug is on, it's worth doing them. | |
835 | */ | |
836 | if (!prev_inuse(p)) | |
837 | { | |
838 | mchunkptr prv = prev_chunk(p); | |
839 | assert(next_chunk(prv) == p); | |
840 | do_check_free_chunk(prv); | |
841 | } | |
842 | if (next == top) | |
843 | { | |
844 | assert(prev_inuse(next)); | |
845 | assert(chunksize(next) >= MINSIZE); | |
846 | } | |
847 | else if (!inuse(next)) | |
848 | do_check_free_chunk(next); | |
849 | ||
850 | } | |
851 | ||
852 | #if __STD_C | |
853 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) | |
854 | #else | |
855 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; | |
856 | #endif | |
857 | { | |
217c9dad WD |
858 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
859 | long room = sz - s; | |
217c9dad WD |
860 | |
861 | do_check_inuse_chunk(p); | |
862 | ||
863 | /* Legal size ... */ | |
864 | assert((long)sz >= (long)MINSIZE); | |
865 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
866 | assert(room >= 0); | |
867 | assert(room < (long)MINSIZE); | |
868 | ||
869 | /* ... and alignment */ | |
870 | assert(aligned_OK(chunk2mem(p))); | |
871 | ||
872 | ||
873 | /* ... and was allocated at front of an available chunk */ | |
874 | assert(prev_inuse(p)); | |
875 | ||
876 | } | |
877 | ||
878 | ||
879 | #define check_free_chunk(P) do_check_free_chunk(P) | |
880 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) | |
881 | #define check_chunk(P) do_check_chunk(P) | |
882 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) | |
883 | #else | |
884 | #define check_free_chunk(P) | |
885 | #define check_inuse_chunk(P) | |
886 | #define check_chunk(P) | |
887 | #define check_malloced_chunk(P,N) | |
888 | #endif | |
889 | ||
d93041a4 | 890 | |
217c9dad WD |
891 | |
892 | /* | |
893 | Macro-based internal utilities | |
894 | */ | |
895 | ||
896 | ||
897 | /* | |
898 | Linking chunks in bin lists. | |
899 | Call these only with variables, not arbitrary expressions, as arguments. | |
900 | */ | |
901 | ||
902 | /* | |
903 | Place chunk p of size s in its bin, in size order, | |
904 | putting it ahead of others of same size. | |
905 | */ | |
906 | ||
907 | ||
908 | #define frontlink(P, S, IDX, BK, FD) \ | |
909 | { \ | |
910 | if (S < MAX_SMALLBIN_SIZE) \ | |
911 | { \ | |
912 | IDX = smallbin_index(S); \ | |
913 | mark_binblock(IDX); \ | |
914 | BK = bin_at(IDX); \ | |
915 | FD = BK->fd; \ | |
916 | P->bk = BK; \ | |
917 | P->fd = FD; \ | |
918 | FD->bk = BK->fd = P; \ | |
919 | } \ | |
920 | else \ | |
921 | { \ | |
922 | IDX = bin_index(S); \ | |
923 | BK = bin_at(IDX); \ | |
924 | FD = BK->fd; \ | |
925 | if (FD == BK) mark_binblock(IDX); \ | |
926 | else \ | |
927 | { \ | |
928 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ | |
929 | BK = FD->bk; \ | |
930 | } \ | |
931 | P->bk = BK; \ | |
932 | P->fd = FD; \ | |
933 | FD->bk = BK->fd = P; \ | |
934 | } \ | |
935 | } | |
936 | ||
937 | ||
938 | /* take a chunk off a list */ | |
939 | ||
940 | #define unlink(P, BK, FD) \ | |
941 | { \ | |
942 | BK = P->bk; \ | |
943 | FD = P->fd; \ | |
944 | FD->bk = BK; \ | |
945 | BK->fd = FD; \ | |
946 | } \ | |
947 | ||
948 | /* Place p as the last remainder */ | |
949 | ||
950 | #define link_last_remainder(P) \ | |
951 | { \ | |
952 | last_remainder->fd = last_remainder->bk = P; \ | |
953 | P->fd = P->bk = last_remainder; \ | |
954 | } | |
955 | ||
956 | /* Clear the last_remainder bin */ | |
957 | ||
958 | #define clear_last_remainder \ | |
959 | (last_remainder->fd = last_remainder->bk = last_remainder) | |
960 | ||
961 | ||
d93041a4 | 962 | |
217c9dad WD |
963 | |
964 | ||
965 | /* Routines dealing with mmap(). */ | |
966 | ||
967 | #if HAVE_MMAP | |
968 | ||
969 | #if __STD_C | |
970 | static mchunkptr mmap_chunk(size_t size) | |
971 | #else | |
972 | static mchunkptr mmap_chunk(size) size_t size; | |
973 | #endif | |
974 | { | |
975 | size_t page_mask = malloc_getpagesize - 1; | |
976 | mchunkptr p; | |
977 | ||
978 | #ifndef MAP_ANONYMOUS | |
979 | static int fd = -1; | |
980 | #endif | |
981 | ||
982 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ | |
983 | ||
984 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because | |
985 | * there is no following chunk whose prev_size field could be used. | |
986 | */ | |
987 | size = (size + SIZE_SZ + page_mask) & ~page_mask; | |
988 | ||
989 | #ifdef MAP_ANONYMOUS | |
990 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, | |
991 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | |
992 | #else /* !MAP_ANONYMOUS */ | |
993 | if (fd < 0) | |
994 | { | |
995 | fd = open("/dev/zero", O_RDWR); | |
996 | if(fd < 0) return 0; | |
997 | } | |
998 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | |
999 | #endif | |
1000 | ||
1001 | if(p == (mchunkptr)-1) return 0; | |
1002 | ||
1003 | n_mmaps++; | |
1004 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; | |
1005 | ||
1006 | /* We demand that eight bytes into a page must be 8-byte aligned. */ | |
1007 | assert(aligned_OK(chunk2mem(p))); | |
1008 | ||
1009 | /* The offset to the start of the mmapped region is stored | |
1010 | * in the prev_size field of the chunk; normally it is zero, | |
1011 | * but that can be changed in memalign(). | |
1012 | */ | |
1013 | p->prev_size = 0; | |
1014 | set_head(p, size|IS_MMAPPED); | |
1015 | ||
1016 | mmapped_mem += size; | |
1017 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1018 | max_mmapped_mem = mmapped_mem; | |
1019 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1020 | max_total_mem = mmapped_mem + sbrked_mem; | |
1021 | return p; | |
1022 | } | |
1023 | ||
1024 | #if __STD_C | |
1025 | static void munmap_chunk(mchunkptr p) | |
1026 | #else | |
1027 | static void munmap_chunk(p) mchunkptr p; | |
1028 | #endif | |
1029 | { | |
1030 | INTERNAL_SIZE_T size = chunksize(p); | |
1031 | int ret; | |
1032 | ||
1033 | assert (chunk_is_mmapped(p)); | |
1034 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1035 | assert((n_mmaps > 0)); | |
1036 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); | |
1037 | ||
1038 | n_mmaps--; | |
1039 | mmapped_mem -= (size + p->prev_size); | |
1040 | ||
1041 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); | |
1042 | ||
1043 | /* munmap returns non-zero on failure */ | |
1044 | assert(ret == 0); | |
1045 | } | |
1046 | ||
1047 | #if HAVE_MREMAP | |
1048 | ||
1049 | #if __STD_C | |
1050 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) | |
1051 | #else | |
1052 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; | |
1053 | #endif | |
1054 | { | |
1055 | size_t page_mask = malloc_getpagesize - 1; | |
1056 | INTERNAL_SIZE_T offset = p->prev_size; | |
1057 | INTERNAL_SIZE_T size = chunksize(p); | |
1058 | char *cp; | |
1059 | ||
1060 | assert (chunk_is_mmapped(p)); | |
1061 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1062 | assert((n_mmaps > 0)); | |
1063 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); | |
1064 | ||
1065 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ | |
1066 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; | |
1067 | ||
1068 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); | |
1069 | ||
1070 | if (cp == (char *)-1) return 0; | |
1071 | ||
1072 | p = (mchunkptr)(cp + offset); | |
1073 | ||
1074 | assert(aligned_OK(chunk2mem(p))); | |
1075 | ||
1076 | assert((p->prev_size == offset)); | |
1077 | set_head(p, (new_size - offset)|IS_MMAPPED); | |
1078 | ||
1079 | mmapped_mem -= size + offset; | |
1080 | mmapped_mem += new_size; | |
1081 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1082 | max_mmapped_mem = mmapped_mem; | |
1083 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1084 | max_total_mem = mmapped_mem + sbrked_mem; | |
1085 | return p; | |
1086 | } | |
1087 | ||
1088 | #endif /* HAVE_MREMAP */ | |
1089 | ||
1090 | #endif /* HAVE_MMAP */ | |
1091 | ||
217c9dad WD |
1092 | /* |
1093 | Extend the top-most chunk by obtaining memory from system. | |
1094 | Main interface to sbrk (but see also malloc_trim). | |
1095 | */ | |
1096 | ||
1097 | #if __STD_C | |
1098 | static void malloc_extend_top(INTERNAL_SIZE_T nb) | |
1099 | #else | |
1100 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; | |
1101 | #endif | |
1102 | { | |
1103 | char* brk; /* return value from sbrk */ | |
1104 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ | |
1105 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ | |
1106 | char* new_brk; /* return of 2nd sbrk call */ | |
1107 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ | |
1108 | ||
1109 | mchunkptr old_top = top; /* Record state of old top */ | |
1110 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); | |
1111 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); | |
1112 | ||
1113 | /* Pad request with top_pad plus minimal overhead */ | |
1114 | ||
1115 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; | |
1116 | unsigned long pagesz = malloc_getpagesize; | |
1117 | ||
1118 | /* If not the first time through, round to preserve page boundary */ | |
1119 | /* Otherwise, we need to correct to a page size below anyway. */ | |
1120 | /* (We also correct below if an intervening foreign sbrk call.) */ | |
1121 | ||
1122 | if (sbrk_base != (char*)(-1)) | |
1123 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); | |
1124 | ||
1125 | brk = (char*)(MORECORE (sbrk_size)); | |
1126 | ||
1127 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ | |
1128 | if (brk == (char*)(MORECORE_FAILURE) || | |
1129 | (brk < old_end && old_top != initial_top)) | |
1130 | return; | |
1131 | ||
1132 | sbrked_mem += sbrk_size; | |
1133 | ||
1134 | if (brk == old_end) /* can just add bytes to current top */ | |
1135 | { | |
1136 | top_size = sbrk_size + old_top_size; | |
1137 | set_head(top, top_size | PREV_INUSE); | |
1138 | } | |
1139 | else | |
1140 | { | |
1141 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ | |
1142 | sbrk_base = brk; | |
1143 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ | |
1144 | sbrked_mem += brk - (char*)old_end; | |
1145 | ||
1146 | /* Guarantee alignment of first new chunk made from this space */ | |
1147 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; | |
1148 | if (front_misalign > 0) | |
1149 | { | |
1150 | correction = (MALLOC_ALIGNMENT) - front_misalign; | |
1151 | brk += correction; | |
1152 | } | |
1153 | else | |
1154 | correction = 0; | |
1155 | ||
1156 | /* Guarantee the next brk will be at a page boundary */ | |
1157 | ||
1158 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & | |
8bde7f77 | 1159 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
217c9dad WD |
1160 | |
1161 | /* Allocate correction */ | |
1162 | new_brk = (char*)(MORECORE (correction)); | |
1163 | if (new_brk == (char*)(MORECORE_FAILURE)) return; | |
1164 | ||
1165 | sbrked_mem += correction; | |
1166 | ||
1167 | top = (mchunkptr)brk; | |
1168 | top_size = new_brk - brk + correction; | |
1169 | set_head(top, top_size | PREV_INUSE); | |
1170 | ||
1171 | if (old_top != initial_top) | |
1172 | { | |
1173 | ||
1174 | /* There must have been an intervening foreign sbrk call. */ | |
1175 | /* A double fencepost is necessary to prevent consolidation */ | |
1176 | ||
1177 | /* If not enough space to do this, then user did something very wrong */ | |
1178 | if (old_top_size < MINSIZE) | |
1179 | { | |
8bde7f77 WD |
1180 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
1181 | return; | |
217c9dad WD |
1182 | } |
1183 | ||
1184 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ | |
1185 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; | |
1186 | set_head_size(old_top, old_top_size); | |
1187 | chunk_at_offset(old_top, old_top_size )->size = | |
8bde7f77 | 1188 | SIZE_SZ|PREV_INUSE; |
217c9dad | 1189 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
8bde7f77 | 1190 | SIZE_SZ|PREV_INUSE; |
217c9dad WD |
1191 | /* If possible, release the rest. */ |
1192 | if (old_top_size >= MINSIZE) | |
8bde7f77 | 1193 | fREe(chunk2mem(old_top)); |
217c9dad WD |
1194 | } |
1195 | } | |
1196 | ||
1197 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) | |
1198 | max_sbrked_mem = sbrked_mem; | |
1199 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1200 | max_total_mem = mmapped_mem + sbrked_mem; | |
1201 | ||
1202 | /* We always land on a page boundary */ | |
1203 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); | |
1204 | } | |
1205 | ||
1206 | ||
d93041a4 | 1207 | |
217c9dad WD |
1208 | |
1209 | /* Main public routines */ | |
1210 | ||
1211 | ||
1212 | /* | |
1213 | Malloc Algorthim: | |
1214 | ||
1215 | The requested size is first converted into a usable form, `nb'. | |
1216 | This currently means to add 4 bytes overhead plus possibly more to | |
1217 | obtain 8-byte alignment and/or to obtain a size of at least | |
1218 | MINSIZE (currently 16 bytes), the smallest allocatable size. | |
1219 | (All fits are considered `exact' if they are within MINSIZE bytes.) | |
1220 | ||
1221 | From there, the first successful of the following steps is taken: | |
1222 | ||
1223 | 1. The bin corresponding to the request size is scanned, and if | |
8bde7f77 | 1224 | a chunk of exactly the right size is found, it is taken. |
217c9dad WD |
1225 | |
1226 | 2. The most recently remaindered chunk is used if it is big | |
8bde7f77 WD |
1227 | enough. This is a form of (roving) first fit, used only in |
1228 | the absence of exact fits. Runs of consecutive requests use | |
1229 | the remainder of the chunk used for the previous such request | |
1230 | whenever possible. This limited use of a first-fit style | |
1231 | allocation strategy tends to give contiguous chunks | |
1232 | coextensive lifetimes, which improves locality and can reduce | |
1233 | fragmentation in the long run. | |
217c9dad WD |
1234 | |
1235 | 3. Other bins are scanned in increasing size order, using a | |
8bde7f77 WD |
1236 | chunk big enough to fulfill the request, and splitting off |
1237 | any remainder. This search is strictly by best-fit; i.e., | |
1238 | the smallest (with ties going to approximately the least | |
1239 | recently used) chunk that fits is selected. | |
217c9dad WD |
1240 | |
1241 | 4. If large enough, the chunk bordering the end of memory | |
8bde7f77 WD |
1242 | (`top') is split off. (This use of `top' is in accord with |
1243 | the best-fit search rule. In effect, `top' is treated as | |
1244 | larger (and thus less well fitting) than any other available | |
1245 | chunk since it can be extended to be as large as necessary | |
1246 | (up to system limitations). | |
217c9dad WD |
1247 | |
1248 | 5. If the request size meets the mmap threshold and the | |
8bde7f77 WD |
1249 | system supports mmap, and there are few enough currently |
1250 | allocated mmapped regions, and a call to mmap succeeds, | |
1251 | the request is allocated via direct memory mapping. | |
217c9dad WD |
1252 | |
1253 | 6. Otherwise, the top of memory is extended by | |
8bde7f77 WD |
1254 | obtaining more space from the system (normally using sbrk, |
1255 | but definable to anything else via the MORECORE macro). | |
1256 | Memory is gathered from the system (in system page-sized | |
1257 | units) in a way that allows chunks obtained across different | |
1258 | sbrk calls to be consolidated, but does not require | |
1259 | contiguous memory. Thus, it should be safe to intersperse | |
1260 | mallocs with other sbrk calls. | |
217c9dad WD |
1261 | |
1262 | ||
1263 | All allocations are made from the the `lowest' part of any found | |
1264 | chunk. (The implementation invariant is that prev_inuse is | |
1265 | always true of any allocated chunk; i.e., that each allocated | |
1266 | chunk borders either a previously allocated and still in-use chunk, | |
1267 | or the base of its memory arena.) | |
1268 | ||
1269 | */ | |
1270 | ||
1271 | #if __STD_C | |
1272 | Void_t* mALLOc(size_t bytes) | |
1273 | #else | |
1274 | Void_t* mALLOc(bytes) size_t bytes; | |
1275 | #endif | |
1276 | { | |
1277 | mchunkptr victim; /* inspected/selected chunk */ | |
1278 | INTERNAL_SIZE_T victim_size; /* its size */ | |
1279 | int idx; /* index for bin traversal */ | |
1280 | mbinptr bin; /* associated bin */ | |
1281 | mchunkptr remainder; /* remainder from a split */ | |
1282 | long remainder_size; /* its size */ | |
1283 | int remainder_index; /* its bin index */ | |
1284 | unsigned long block; /* block traverser bit */ | |
1285 | int startidx; /* first bin of a traversed block */ | |
1286 | mchunkptr fwd; /* misc temp for linking */ | |
1287 | mchunkptr bck; /* misc temp for linking */ | |
1288 | mbinptr q; /* misc temp */ | |
1289 | ||
1290 | INTERNAL_SIZE_T nb; | |
1291 | ||
f1896c45 | 1292 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
deff6fb3 | 1293 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
c9356be3 | 1294 | return malloc_simple(bytes); |
d59476b6 SG |
1295 | #endif |
1296 | ||
27405448 WD |
1297 | /* check if mem_malloc_init() was run */ |
1298 | if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { | |
1299 | /* not initialized yet */ | |
199adb60 | 1300 | return NULL; |
27405448 WD |
1301 | } |
1302 | ||
199adb60 | 1303 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
1304 | |
1305 | nb = request2size(bytes); /* padded request size; */ | |
1306 | ||
1307 | /* Check for exact match in a bin */ | |
1308 | ||
1309 | if (is_small_request(nb)) /* Faster version for small requests */ | |
1310 | { | |
1311 | idx = smallbin_index(nb); | |
1312 | ||
1313 | /* No traversal or size check necessary for small bins. */ | |
1314 | ||
1315 | q = bin_at(idx); | |
1316 | victim = last(q); | |
1317 | ||
1318 | /* Also scan the next one, since it would have a remainder < MINSIZE */ | |
1319 | if (victim == q) | |
1320 | { | |
1321 | q = next_bin(q); | |
1322 | victim = last(q); | |
1323 | } | |
1324 | if (victim != q) | |
1325 | { | |
1326 | victim_size = chunksize(victim); | |
1327 | unlink(victim, bck, fwd); | |
1328 | set_inuse_bit_at_offset(victim, victim_size); | |
1329 | check_malloced_chunk(victim, nb); | |
1330 | return chunk2mem(victim); | |
1331 | } | |
1332 | ||
1333 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ | |
1334 | ||
1335 | } | |
1336 | else | |
1337 | { | |
1338 | idx = bin_index(nb); | |
1339 | bin = bin_at(idx); | |
1340 | ||
1341 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
1342 | { | |
1343 | victim_size = chunksize(victim); | |
1344 | remainder_size = victim_size - nb; | |
1345 | ||
1346 | if (remainder_size >= (long)MINSIZE) /* too big */ | |
1347 | { | |
8bde7f77 WD |
1348 | --idx; /* adjust to rescan below after checking last remainder */ |
1349 | break; | |
217c9dad WD |
1350 | } |
1351 | ||
1352 | else if (remainder_size >= 0) /* exact fit */ | |
1353 | { | |
8bde7f77 WD |
1354 | unlink(victim, bck, fwd); |
1355 | set_inuse_bit_at_offset(victim, victim_size); | |
1356 | check_malloced_chunk(victim, nb); | |
1357 | return chunk2mem(victim); | |
217c9dad WD |
1358 | } |
1359 | } | |
1360 | ||
1361 | ++idx; | |
1362 | ||
1363 | } | |
1364 | ||
1365 | /* Try to use the last split-off remainder */ | |
1366 | ||
1367 | if ( (victim = last_remainder->fd) != last_remainder) | |
1368 | { | |
1369 | victim_size = chunksize(victim); | |
1370 | remainder_size = victim_size - nb; | |
1371 | ||
1372 | if (remainder_size >= (long)MINSIZE) /* re-split */ | |
1373 | { | |
1374 | remainder = chunk_at_offset(victim, nb); | |
1375 | set_head(victim, nb | PREV_INUSE); | |
1376 | link_last_remainder(remainder); | |
1377 | set_head(remainder, remainder_size | PREV_INUSE); | |
1378 | set_foot(remainder, remainder_size); | |
1379 | check_malloced_chunk(victim, nb); | |
1380 | return chunk2mem(victim); | |
1381 | } | |
1382 | ||
1383 | clear_last_remainder; | |
1384 | ||
1385 | if (remainder_size >= 0) /* exhaust */ | |
1386 | { | |
1387 | set_inuse_bit_at_offset(victim, victim_size); | |
1388 | check_malloced_chunk(victim, nb); | |
1389 | return chunk2mem(victim); | |
1390 | } | |
1391 | ||
1392 | /* Else place in bin */ | |
1393 | ||
1394 | frontlink(victim, victim_size, remainder_index, bck, fwd); | |
1395 | } | |
1396 | ||
1397 | /* | |
1398 | If there are any possibly nonempty big-enough blocks, | |
1399 | search for best fitting chunk by scanning bins in blockwidth units. | |
1400 | */ | |
1401 | ||
f2302d44 | 1402 | if ( (block = idx2binblock(idx)) <= binblocks_r) |
217c9dad WD |
1403 | { |
1404 | ||
1405 | /* Get to the first marked block */ | |
1406 | ||
f2302d44 | 1407 | if ( (block & binblocks_r) == 0) |
217c9dad WD |
1408 | { |
1409 | /* force to an even block boundary */ | |
1410 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; | |
1411 | block <<= 1; | |
f2302d44 | 1412 | while ((block & binblocks_r) == 0) |
217c9dad | 1413 | { |
8bde7f77 WD |
1414 | idx += BINBLOCKWIDTH; |
1415 | block <<= 1; | |
217c9dad WD |
1416 | } |
1417 | } | |
1418 | ||
1419 | /* For each possibly nonempty block ... */ | |
1420 | for (;;) | |
1421 | { | |
1422 | startidx = idx; /* (track incomplete blocks) */ | |
1423 | q = bin = bin_at(idx); | |
1424 | ||
1425 | /* For each bin in this block ... */ | |
1426 | do | |
1427 | { | |
8bde7f77 WD |
1428 | /* Find and use first big enough chunk ... */ |
1429 | ||
1430 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
1431 | { | |
1432 | victim_size = chunksize(victim); | |
1433 | remainder_size = victim_size - nb; | |
1434 | ||
1435 | if (remainder_size >= (long)MINSIZE) /* split */ | |
1436 | { | |
1437 | remainder = chunk_at_offset(victim, nb); | |
1438 | set_head(victim, nb | PREV_INUSE); | |
1439 | unlink(victim, bck, fwd); | |
1440 | link_last_remainder(remainder); | |
1441 | set_head(remainder, remainder_size | PREV_INUSE); | |
1442 | set_foot(remainder, remainder_size); | |
1443 | check_malloced_chunk(victim, nb); | |
1444 | return chunk2mem(victim); | |
1445 | } | |
1446 | ||
1447 | else if (remainder_size >= 0) /* take */ | |
1448 | { | |
1449 | set_inuse_bit_at_offset(victim, victim_size); | |
1450 | unlink(victim, bck, fwd); | |
1451 | check_malloced_chunk(victim, nb); | |
1452 | return chunk2mem(victim); | |
1453 | } | |
1454 | ||
1455 | } | |
217c9dad WD |
1456 | |
1457 | bin = next_bin(bin); | |
1458 | ||
1459 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); | |
1460 | ||
1461 | /* Clear out the block bit. */ | |
1462 | ||
1463 | do /* Possibly backtrack to try to clear a partial block */ | |
1464 | { | |
8bde7f77 WD |
1465 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
1466 | { | |
f2302d44 | 1467 | av_[1] = (mbinptr)(binblocks_r & ~block); |
8bde7f77 WD |
1468 | break; |
1469 | } | |
1470 | --startidx; | |
217c9dad WD |
1471 | q = prev_bin(q); |
1472 | } while (first(q) == q); | |
1473 | ||
1474 | /* Get to the next possibly nonempty block */ | |
1475 | ||
f2302d44 | 1476 | if ( (block <<= 1) <= binblocks_r && (block != 0) ) |
217c9dad | 1477 | { |
f2302d44 | 1478 | while ((block & binblocks_r) == 0) |
8bde7f77 WD |
1479 | { |
1480 | idx += BINBLOCKWIDTH; | |
1481 | block <<= 1; | |
1482 | } | |
217c9dad WD |
1483 | } |
1484 | else | |
8bde7f77 | 1485 | break; |
217c9dad WD |
1486 | } |
1487 | } | |
1488 | ||
1489 | ||
1490 | /* Try to use top chunk */ | |
1491 | ||
1492 | /* Require that there be a remainder, ensuring top always exists */ | |
1493 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
1494 | { | |
1495 | ||
1496 | #if HAVE_MMAP | |
1497 | /* If big and would otherwise need to extend, try to use mmap instead */ | |
1498 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && | |
a874cac3 | 1499 | (victim = mmap_chunk(nb))) |
217c9dad WD |
1500 | return chunk2mem(victim); |
1501 | #endif | |
1502 | ||
1503 | /* Try to extend */ | |
1504 | malloc_extend_top(nb); | |
1505 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
199adb60 | 1506 | return NULL; /* propagate failure */ |
217c9dad WD |
1507 | } |
1508 | ||
1509 | victim = top; | |
1510 | set_head(victim, nb | PREV_INUSE); | |
1511 | top = chunk_at_offset(victim, nb); | |
1512 | set_head(top, remainder_size | PREV_INUSE); | |
1513 | check_malloced_chunk(victim, nb); | |
1514 | return chunk2mem(victim); | |
1515 | ||
1516 | } | |
1517 | ||
1518 | ||
d93041a4 | 1519 | |
217c9dad WD |
1520 | |
1521 | /* | |
1522 | ||
1523 | free() algorithm : | |
1524 | ||
1525 | cases: | |
1526 | ||
1527 | 1. free(0) has no effect. | |
1528 | ||
1529 | 2. If the chunk was allocated via mmap, it is release via munmap(). | |
1530 | ||
1531 | 3. If a returned chunk borders the current high end of memory, | |
8bde7f77 WD |
1532 | it is consolidated into the top, and if the total unused |
1533 | topmost memory exceeds the trim threshold, malloc_trim is | |
1534 | called. | |
217c9dad WD |
1535 | |
1536 | 4. Other chunks are consolidated as they arrive, and | |
8bde7f77 WD |
1537 | placed in corresponding bins. (This includes the case of |
1538 | consolidating with the current `last_remainder'). | |
217c9dad WD |
1539 | |
1540 | */ | |
1541 | ||
1542 | ||
1543 | #if __STD_C | |
1544 | void fREe(Void_t* mem) | |
1545 | #else | |
1546 | void fREe(mem) Void_t* mem; | |
1547 | #endif | |
1548 | { | |
1549 | mchunkptr p; /* chunk corresponding to mem */ | |
1550 | INTERNAL_SIZE_T hd; /* its head field */ | |
1551 | INTERNAL_SIZE_T sz; /* its size */ | |
1552 | int idx; /* its bin index */ | |
1553 | mchunkptr next; /* next contiguous chunk */ | |
1554 | INTERNAL_SIZE_T nextsz; /* its size */ | |
1555 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ | |
1556 | mchunkptr bck; /* misc temp for linking */ | |
1557 | mchunkptr fwd; /* misc temp for linking */ | |
1558 | int islr; /* track whether merging with last_remainder */ | |
1559 | ||
f1896c45 | 1560 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
d59476b6 | 1561 | /* free() is a no-op - all the memory will be freed on relocation */ |
c9356be3 | 1562 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
d59476b6 SG |
1563 | return; |
1564 | #endif | |
1565 | ||
199adb60 | 1566 | if (mem == NULL) /* free(0) has no effect */ |
217c9dad WD |
1567 | return; |
1568 | ||
1569 | p = mem2chunk(mem); | |
1570 | hd = p->size; | |
1571 | ||
1572 | #if HAVE_MMAP | |
1573 | if (hd & IS_MMAPPED) /* release mmapped memory. */ | |
1574 | { | |
1575 | munmap_chunk(p); | |
1576 | return; | |
1577 | } | |
1578 | #endif | |
1579 | ||
1580 | check_inuse_chunk(p); | |
1581 | ||
1582 | sz = hd & ~PREV_INUSE; | |
1583 | next = chunk_at_offset(p, sz); | |
1584 | nextsz = chunksize(next); | |
1585 | ||
1586 | if (next == top) /* merge with top */ | |
1587 | { | |
1588 | sz += nextsz; | |
1589 | ||
1590 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
1591 | { | |
1592 | prevsz = p->prev_size; | |
1593 | p = chunk_at_offset(p, -((long) prevsz)); | |
1594 | sz += prevsz; | |
1595 | unlink(p, bck, fwd); | |
1596 | } | |
1597 | ||
1598 | set_head(p, sz | PREV_INUSE); | |
1599 | top = p; | |
1600 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) | |
1601 | malloc_trim(top_pad); | |
1602 | return; | |
1603 | } | |
1604 | ||
1605 | set_head(next, nextsz); /* clear inuse bit */ | |
1606 | ||
1607 | islr = 0; | |
1608 | ||
1609 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
1610 | { | |
1611 | prevsz = p->prev_size; | |
1612 | p = chunk_at_offset(p, -((long) prevsz)); | |
1613 | sz += prevsz; | |
1614 | ||
1615 | if (p->fd == last_remainder) /* keep as last_remainder */ | |
1616 | islr = 1; | |
1617 | else | |
1618 | unlink(p, bck, fwd); | |
1619 | } | |
1620 | ||
1621 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ | |
1622 | { | |
1623 | sz += nextsz; | |
1624 | ||
1625 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ | |
1626 | { | |
1627 | islr = 1; | |
1628 | link_last_remainder(p); | |
1629 | } | |
1630 | else | |
1631 | unlink(next, bck, fwd); | |
1632 | } | |
1633 | ||
1634 | ||
1635 | set_head(p, sz | PREV_INUSE); | |
1636 | set_foot(p, sz); | |
1637 | if (!islr) | |
1638 | frontlink(p, sz, idx, bck, fwd); | |
1639 | } | |
1640 | ||
1641 | ||
d93041a4 | 1642 | |
217c9dad WD |
1643 | |
1644 | ||
1645 | /* | |
1646 | ||
1647 | Realloc algorithm: | |
1648 | ||
1649 | Chunks that were obtained via mmap cannot be extended or shrunk | |
1650 | unless HAVE_MREMAP is defined, in which case mremap is used. | |
1651 | Otherwise, if their reallocation is for additional space, they are | |
1652 | copied. If for less, they are just left alone. | |
1653 | ||
1654 | Otherwise, if the reallocation is for additional space, and the | |
1655 | chunk can be extended, it is, else a malloc-copy-free sequence is | |
1656 | taken. There are several different ways that a chunk could be | |
1657 | extended. All are tried: | |
1658 | ||
1659 | * Extending forward into following adjacent free chunk. | |
1660 | * Shifting backwards, joining preceding adjacent space | |
1661 | * Both shifting backwards and extending forward. | |
1662 | * Extending into newly sbrked space | |
1663 | ||
1664 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a | |
1665 | size argument of zero (re)allocates a minimum-sized chunk. | |
1666 | ||
1667 | If the reallocation is for less space, and the new request is for | |
1668 | a `small' (<512 bytes) size, then the newly unused space is lopped | |
1669 | off and freed. | |
1670 | ||
1671 | The old unix realloc convention of allowing the last-free'd chunk | |
1672 | to be used as an argument to realloc is no longer supported. | |
1673 | I don't know of any programs still relying on this feature, | |
1674 | and allowing it would also allow too many other incorrect | |
1675 | usages of realloc to be sensible. | |
1676 | ||
1677 | ||
1678 | */ | |
1679 | ||
1680 | ||
1681 | #if __STD_C | |
1682 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) | |
1683 | #else | |
1684 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; | |
1685 | #endif | |
1686 | { | |
1687 | INTERNAL_SIZE_T nb; /* padded request size */ | |
1688 | ||
1689 | mchunkptr oldp; /* chunk corresponding to oldmem */ | |
1690 | INTERNAL_SIZE_T oldsize; /* its size */ | |
1691 | ||
1692 | mchunkptr newp; /* chunk to return */ | |
1693 | INTERNAL_SIZE_T newsize; /* its size */ | |
1694 | Void_t* newmem; /* corresponding user mem */ | |
1695 | ||
1696 | mchunkptr next; /* next contiguous chunk after oldp */ | |
1697 | INTERNAL_SIZE_T nextsize; /* its size */ | |
1698 | ||
1699 | mchunkptr prev; /* previous contiguous chunk before oldp */ | |
1700 | INTERNAL_SIZE_T prevsize; /* its size */ | |
1701 | ||
1702 | mchunkptr remainder; /* holds split off extra space from newp */ | |
1703 | INTERNAL_SIZE_T remainder_size; /* its size */ | |
1704 | ||
1705 | mchunkptr bck; /* misc temp for linking */ | |
1706 | mchunkptr fwd; /* misc temp for linking */ | |
1707 | ||
1708 | #ifdef REALLOC_ZERO_BYTES_FREES | |
a874cac3 HS |
1709 | if (!bytes) { |
1710 | fREe(oldmem); | |
1711 | return NULL; | |
1712 | } | |
217c9dad WD |
1713 | #endif |
1714 | ||
199adb60 | 1715 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
1716 | |
1717 | /* realloc of null is supposed to be same as malloc */ | |
199adb60 | 1718 | if (oldmem == NULL) return mALLOc(bytes); |
217c9dad | 1719 | |
f1896c45 | 1720 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
c9356be3 | 1721 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
d59476b6 SG |
1722 | /* This is harder to support and should not be needed */ |
1723 | panic("pre-reloc realloc() is not supported"); | |
1724 | } | |
1725 | #endif | |
1726 | ||
217c9dad WD |
1727 | newp = oldp = mem2chunk(oldmem); |
1728 | newsize = oldsize = chunksize(oldp); | |
1729 | ||
1730 | ||
1731 | nb = request2size(bytes); | |
1732 | ||
1733 | #if HAVE_MMAP | |
1734 | if (chunk_is_mmapped(oldp)) | |
1735 | { | |
1736 | #if HAVE_MREMAP | |
1737 | newp = mremap_chunk(oldp, nb); | |
1738 | if(newp) return chunk2mem(newp); | |
1739 | #endif | |
1740 | /* Note the extra SIZE_SZ overhead. */ | |
1741 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ | |
1742 | /* Must alloc, copy, free. */ | |
1743 | newmem = mALLOc(bytes); | |
a874cac3 HS |
1744 | if (!newmem) |
1745 | return NULL; /* propagate failure */ | |
217c9dad WD |
1746 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); |
1747 | munmap_chunk(oldp); | |
1748 | return newmem; | |
1749 | } | |
1750 | #endif | |
1751 | ||
1752 | check_inuse_chunk(oldp); | |
1753 | ||
1754 | if ((long)(oldsize) < (long)(nb)) | |
1755 | { | |
1756 | ||
1757 | /* Try expanding forward */ | |
1758 | ||
1759 | next = chunk_at_offset(oldp, oldsize); | |
1760 | if (next == top || !inuse(next)) | |
1761 | { | |
1762 | nextsize = chunksize(next); | |
1763 | ||
1764 | /* Forward into top only if a remainder */ | |
1765 | if (next == top) | |
1766 | { | |
8bde7f77 WD |
1767 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
1768 | { | |
1769 | newsize += nextsize; | |
1770 | top = chunk_at_offset(oldp, nb); | |
1771 | set_head(top, (newsize - nb) | PREV_INUSE); | |
1772 | set_head_size(oldp, nb); | |
1773 | return chunk2mem(oldp); | |
1774 | } | |
217c9dad WD |
1775 | } |
1776 | ||
1777 | /* Forward into next chunk */ | |
1778 | else if (((long)(nextsize + newsize) >= (long)(nb))) | |
1779 | { | |
8bde7f77 WD |
1780 | unlink(next, bck, fwd); |
1781 | newsize += nextsize; | |
1782 | goto split; | |
217c9dad WD |
1783 | } |
1784 | } | |
1785 | else | |
1786 | { | |
199adb60 | 1787 | next = NULL; |
217c9dad WD |
1788 | nextsize = 0; |
1789 | } | |
1790 | ||
1791 | /* Try shifting backwards. */ | |
1792 | ||
1793 | if (!prev_inuse(oldp)) | |
1794 | { | |
1795 | prev = prev_chunk(oldp); | |
1796 | prevsize = chunksize(prev); | |
1797 | ||
1798 | /* try forward + backward first to save a later consolidation */ | |
1799 | ||
199adb60 | 1800 | if (next != NULL) |
217c9dad | 1801 | { |
8bde7f77 WD |
1802 | /* into top */ |
1803 | if (next == top) | |
1804 | { | |
1805 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) | |
1806 | { | |
1807 | unlink(prev, bck, fwd); | |
1808 | newp = prev; | |
1809 | newsize += prevsize + nextsize; | |
1810 | newmem = chunk2mem(newp); | |
1811 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1812 | top = chunk_at_offset(newp, nb); | |
1813 | set_head(top, (newsize - nb) | PREV_INUSE); | |
1814 | set_head_size(newp, nb); | |
1815 | return newmem; | |
1816 | } | |
1817 | } | |
1818 | ||
1819 | /* into next chunk */ | |
1820 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) | |
1821 | { | |
1822 | unlink(next, bck, fwd); | |
1823 | unlink(prev, bck, fwd); | |
1824 | newp = prev; | |
1825 | newsize += nextsize + prevsize; | |
1826 | newmem = chunk2mem(newp); | |
1827 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1828 | goto split; | |
1829 | } | |
217c9dad WD |
1830 | } |
1831 | ||
1832 | /* backward only */ | |
199adb60 | 1833 | if (prev != NULL && (long)(prevsize + newsize) >= (long)nb) |
217c9dad | 1834 | { |
8bde7f77 WD |
1835 | unlink(prev, bck, fwd); |
1836 | newp = prev; | |
1837 | newsize += prevsize; | |
1838 | newmem = chunk2mem(newp); | |
1839 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1840 | goto split; | |
217c9dad WD |
1841 | } |
1842 | } | |
1843 | ||
1844 | /* Must allocate */ | |
1845 | ||
1846 | newmem = mALLOc (bytes); | |
1847 | ||
199adb60 KP |
1848 | if (newmem == NULL) /* propagate failure */ |
1849 | return NULL; | |
217c9dad WD |
1850 | |
1851 | /* Avoid copy if newp is next chunk after oldp. */ | |
1852 | /* (This can only happen when new chunk is sbrk'ed.) */ | |
1853 | ||
1854 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) | |
1855 | { | |
1856 | newsize += chunksize(newp); | |
1857 | newp = oldp; | |
1858 | goto split; | |
1859 | } | |
1860 | ||
1861 | /* Otherwise copy, free, and exit */ | |
1862 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
1863 | fREe(oldmem); | |
1864 | return newmem; | |
1865 | } | |
1866 | ||
1867 | ||
1868 | split: /* split off extra room in old or expanded chunk */ | |
1869 | ||
1870 | if (newsize - nb >= MINSIZE) /* split off remainder */ | |
1871 | { | |
1872 | remainder = chunk_at_offset(newp, nb); | |
1873 | remainder_size = newsize - nb; | |
1874 | set_head_size(newp, nb); | |
1875 | set_head(remainder, remainder_size | PREV_INUSE); | |
1876 | set_inuse_bit_at_offset(remainder, remainder_size); | |
1877 | fREe(chunk2mem(remainder)); /* let free() deal with it */ | |
1878 | } | |
1879 | else | |
1880 | { | |
1881 | set_head_size(newp, newsize); | |
1882 | set_inuse_bit_at_offset(newp, newsize); | |
1883 | } | |
1884 | ||
1885 | check_inuse_chunk(newp); | |
1886 | return chunk2mem(newp); | |
1887 | } | |
1888 | ||
1889 | ||
d93041a4 | 1890 | |
217c9dad WD |
1891 | |
1892 | /* | |
1893 | ||
1894 | memalign algorithm: | |
1895 | ||
1896 | memalign requests more than enough space from malloc, finds a spot | |
1897 | within that chunk that meets the alignment request, and then | |
1898 | possibly frees the leading and trailing space. | |
1899 | ||
1900 | The alignment argument must be a power of two. This property is not | |
1901 | checked by memalign, so misuse may result in random runtime errors. | |
1902 | ||
1903 | 8-byte alignment is guaranteed by normal malloc calls, so don't | |
1904 | bother calling memalign with an argument of 8 or less. | |
1905 | ||
1906 | Overreliance on memalign is a sure way to fragment space. | |
1907 | ||
1908 | */ | |
1909 | ||
1910 | ||
1911 | #if __STD_C | |
1912 | Void_t* mEMALIGn(size_t alignment, size_t bytes) | |
1913 | #else | |
1914 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; | |
1915 | #endif | |
1916 | { | |
1917 | INTERNAL_SIZE_T nb; /* padded request size */ | |
1918 | char* m; /* memory returned by malloc call */ | |
1919 | mchunkptr p; /* corresponding chunk */ | |
1920 | char* brk; /* alignment point within p */ | |
1921 | mchunkptr newp; /* chunk to return */ | |
1922 | INTERNAL_SIZE_T newsize; /* its size */ | |
1923 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ | |
1924 | mchunkptr remainder; /* spare room at end to split off */ | |
1925 | long remainder_size; /* its size */ | |
1926 | ||
199adb60 | 1927 | if ((long)bytes < 0) return NULL; |
217c9dad | 1928 | |
ee038c58 LFT |
1929 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
1930 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { | |
4c6be01c | 1931 | return memalign_simple(alignment, bytes); |
ee038c58 LFT |
1932 | } |
1933 | #endif | |
1934 | ||
217c9dad WD |
1935 | /* If need less alignment than we give anyway, just relay to malloc */ |
1936 | ||
1937 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); | |
1938 | ||
1939 | /* Otherwise, ensure that it is at least a minimum chunk size */ | |
1940 | ||
1941 | if (alignment < MINSIZE) alignment = MINSIZE; | |
1942 | ||
1943 | /* Call malloc with worst case padding to hit alignment. */ | |
1944 | ||
1945 | nb = request2size(bytes); | |
1946 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); | |
1947 | ||
4f144a41 SW |
1948 | /* |
1949 | * The attempt to over-allocate (with a size large enough to guarantee the | |
1950 | * ability to find an aligned region within allocated memory) failed. | |
1951 | * | |
1952 | * Try again, this time only allocating exactly the size the user wants. If | |
1953 | * the allocation now succeeds and just happens to be aligned, we can still | |
1954 | * fulfill the user's request. | |
1955 | */ | |
1956 | if (m == NULL) { | |
034eda86 | 1957 | size_t extra, extra2; |
4f144a41 SW |
1958 | /* |
1959 | * Use bytes not nb, since mALLOc internally calls request2size too, and | |
1960 | * each call increases the size to allocate, to account for the header. | |
1961 | */ | |
1962 | m = (char*)(mALLOc(bytes)); | |
1963 | /* Aligned -> return it */ | |
1964 | if ((((unsigned long)(m)) % alignment) == 0) | |
1965 | return m; | |
034eda86 SW |
1966 | /* |
1967 | * Otherwise, try again, requesting enough extra space to be able to | |
1968 | * acquire alignment. | |
1969 | */ | |
4f144a41 | 1970 | fREe(m); |
034eda86 SW |
1971 | /* Add in extra bytes to match misalignment of unexpanded allocation */ |
1972 | extra = alignment - (((unsigned long)(m)) % alignment); | |
1973 | m = (char*)(mALLOc(bytes + extra)); | |
1974 | /* | |
1975 | * m might not be the same as before. Validate that the previous value of | |
1976 | * extra still works for the current value of m. | |
1977 | * If (!m), extra2=alignment so | |
1978 | */ | |
1979 | if (m) { | |
1980 | extra2 = alignment - (((unsigned long)(m)) % alignment); | |
1981 | if (extra2 > extra) { | |
1982 | fREe(m); | |
1983 | m = NULL; | |
1984 | } | |
1985 | } | |
1986 | /* Fall through to original NULL check and chunk splitting logic */ | |
4f144a41 SW |
1987 | } |
1988 | ||
199adb60 | 1989 | if (m == NULL) return NULL; /* propagate failure */ |
217c9dad WD |
1990 | |
1991 | p = mem2chunk(m); | |
1992 | ||
1993 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ | |
1994 | { | |
1995 | #if HAVE_MMAP | |
1996 | if(chunk_is_mmapped(p)) | |
1997 | return chunk2mem(p); /* nothing more to do */ | |
1998 | #endif | |
1999 | } | |
2000 | else /* misaligned */ | |
2001 | { | |
2002 | /* | |
2003 | Find an aligned spot inside chunk. | |
2004 | Since we need to give back leading space in a chunk of at | |
2005 | least MINSIZE, if the first calculation places us at | |
2006 | a spot with less than MINSIZE leader, we can move to the | |
2007 | next aligned spot -- we've allocated enough total room so that | |
2008 | this is always possible. | |
2009 | */ | |
2010 | ||
2011 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); | |
2012 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; | |
2013 | ||
2014 | newp = (mchunkptr)brk; | |
2015 | leadsize = brk - (char*)(p); | |
2016 | newsize = chunksize(p) - leadsize; | |
2017 | ||
2018 | #if HAVE_MMAP | |
2019 | if(chunk_is_mmapped(p)) | |
2020 | { | |
2021 | newp->prev_size = p->prev_size + leadsize; | |
2022 | set_head(newp, newsize|IS_MMAPPED); | |
2023 | return chunk2mem(newp); | |
2024 | } | |
2025 | #endif | |
2026 | ||
2027 | /* give back leader, use the rest */ | |
2028 | ||
2029 | set_head(newp, newsize | PREV_INUSE); | |
2030 | set_inuse_bit_at_offset(newp, newsize); | |
2031 | set_head_size(p, leadsize); | |
2032 | fREe(chunk2mem(p)); | |
2033 | p = newp; | |
2034 | ||
2035 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); | |
2036 | } | |
2037 | ||
2038 | /* Also give back spare room at the end */ | |
2039 | ||
2040 | remainder_size = chunksize(p) - nb; | |
2041 | ||
2042 | if (remainder_size >= (long)MINSIZE) | |
2043 | { | |
2044 | remainder = chunk_at_offset(p, nb); | |
2045 | set_head(remainder, remainder_size | PREV_INUSE); | |
2046 | set_head_size(p, nb); | |
2047 | fREe(chunk2mem(remainder)); | |
2048 | } | |
2049 | ||
2050 | check_inuse_chunk(p); | |
2051 | return chunk2mem(p); | |
2052 | ||
2053 | } | |
2054 | ||
d93041a4 | 2055 | |
217c9dad WD |
2056 | |
2057 | ||
2058 | /* | |
2059 | valloc just invokes memalign with alignment argument equal | |
2060 | to the page size of the system (or as near to this as can | |
2061 | be figured out from all the includes/defines above.) | |
2062 | */ | |
2063 | ||
2064 | #if __STD_C | |
2065 | Void_t* vALLOc(size_t bytes) | |
2066 | #else | |
2067 | Void_t* vALLOc(bytes) size_t bytes; | |
2068 | #endif | |
2069 | { | |
2070 | return mEMALIGn (malloc_getpagesize, bytes); | |
2071 | } | |
2072 | ||
2073 | /* | |
2074 | pvalloc just invokes valloc for the nearest pagesize | |
2075 | that will accommodate request | |
2076 | */ | |
2077 | ||
2078 | ||
2079 | #if __STD_C | |
2080 | Void_t* pvALLOc(size_t bytes) | |
2081 | #else | |
2082 | Void_t* pvALLOc(bytes) size_t bytes; | |
2083 | #endif | |
2084 | { | |
2085 | size_t pagesize = malloc_getpagesize; | |
2086 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); | |
2087 | } | |
2088 | ||
2089 | /* | |
2090 | ||
2091 | calloc calls malloc, then zeroes out the allocated chunk. | |
2092 | ||
2093 | */ | |
2094 | ||
2095 | #if __STD_C | |
2096 | Void_t* cALLOc(size_t n, size_t elem_size) | |
2097 | #else | |
2098 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; | |
2099 | #endif | |
2100 | { | |
2101 | mchunkptr p; | |
2102 | INTERNAL_SIZE_T csz; | |
2103 | ||
2104 | INTERNAL_SIZE_T sz = n * elem_size; | |
2105 | ||
2106 | ||
2107 | /* check if expand_top called, in which case don't need to clear */ | |
0aa8a4ad | 2108 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2109 | #if MORECORE_CLEARS |
2110 | mchunkptr oldtop = top; | |
2111 | INTERNAL_SIZE_T oldtopsize = chunksize(top); | |
0aa8a4ad | 2112 | #endif |
217c9dad WD |
2113 | #endif |
2114 | Void_t* mem = mALLOc (sz); | |
2115 | ||
199adb60 | 2116 | if ((long)n < 0) return NULL; |
217c9dad | 2117 | |
199adb60 KP |
2118 | if (mem == NULL) |
2119 | return NULL; | |
217c9dad WD |
2120 | else |
2121 | { | |
f1896c45 | 2122 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
c9356be3 | 2123 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
bb71a2d9 | 2124 | memset(mem, 0, sz); |
d59476b6 SG |
2125 | return mem; |
2126 | } | |
2127 | #endif | |
217c9dad WD |
2128 | p = mem2chunk(mem); |
2129 | ||
2130 | /* Two optional cases in which clearing not necessary */ | |
2131 | ||
2132 | ||
2133 | #if HAVE_MMAP | |
2134 | if (chunk_is_mmapped(p)) return mem; | |
2135 | #endif | |
2136 | ||
2137 | csz = chunksize(p); | |
2138 | ||
0aa8a4ad | 2139 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2140 | #if MORECORE_CLEARS |
2141 | if (p == oldtop && csz > oldtopsize) | |
2142 | { | |
2143 | /* clear only the bytes from non-freshly-sbrked memory */ | |
2144 | csz = oldtopsize; | |
2145 | } | |
0aa8a4ad | 2146 | #endif |
217c9dad WD |
2147 | #endif |
2148 | ||
2149 | MALLOC_ZERO(mem, csz - SIZE_SZ); | |
2150 | return mem; | |
2151 | } | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | ||
2156 | cfree just calls free. It is needed/defined on some systems | |
2157 | that pair it with calloc, presumably for odd historical reasons. | |
2158 | ||
2159 | */ | |
2160 | ||
2161 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) | |
2162 | #if __STD_C | |
2163 | void cfree(Void_t *mem) | |
2164 | #else | |
2165 | void cfree(mem) Void_t *mem; | |
2166 | #endif | |
2167 | { | |
2168 | fREe(mem); | |
2169 | } | |
2170 | #endif | |
2171 | ||
d93041a4 | 2172 | |
217c9dad WD |
2173 | |
2174 | /* | |
2175 | ||
2176 | Malloc_trim gives memory back to the system (via negative | |
2177 | arguments to sbrk) if there is unused memory at the `high' end of | |
2178 | the malloc pool. You can call this after freeing large blocks of | |
2179 | memory to potentially reduce the system-level memory requirements | |
2180 | of a program. However, it cannot guarantee to reduce memory. Under | |
2181 | some allocation patterns, some large free blocks of memory will be | |
2182 | locked between two used chunks, so they cannot be given back to | |
2183 | the system. | |
2184 | ||
2185 | The `pad' argument to malloc_trim represents the amount of free | |
2186 | trailing space to leave untrimmed. If this argument is zero, | |
2187 | only the minimum amount of memory to maintain internal data | |
2188 | structures will be left (one page or less). Non-zero arguments | |
2189 | can be supplied to maintain enough trailing space to service | |
2190 | future expected allocations without having to re-obtain memory | |
2191 | from the system. | |
2192 | ||
2193 | Malloc_trim returns 1 if it actually released any memory, else 0. | |
2194 | ||
2195 | */ | |
2196 | ||
2197 | #if __STD_C | |
2198 | int malloc_trim(size_t pad) | |
2199 | #else | |
2200 | int malloc_trim(pad) size_t pad; | |
2201 | #endif | |
2202 | { | |
2203 | long top_size; /* Amount of top-most memory */ | |
2204 | long extra; /* Amount to release */ | |
2205 | char* current_brk; /* address returned by pre-check sbrk call */ | |
2206 | char* new_brk; /* address returned by negative sbrk call */ | |
2207 | ||
2208 | unsigned long pagesz = malloc_getpagesize; | |
2209 | ||
2210 | top_size = chunksize(top); | |
2211 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; | |
2212 | ||
2213 | if (extra < (long)pagesz) /* Not enough memory to release */ | |
2214 | return 0; | |
2215 | ||
2216 | else | |
2217 | { | |
2218 | /* Test to make sure no one else called sbrk */ | |
2219 | current_brk = (char*)(MORECORE (0)); | |
2220 | if (current_brk != (char*)(top) + top_size) | |
2221 | return 0; /* Apparently we don't own memory; must fail */ | |
2222 | ||
2223 | else | |
2224 | { | |
2225 | new_brk = (char*)(MORECORE (-extra)); | |
2226 | ||
2227 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ | |
2228 | { | |
8bde7f77 WD |
2229 | /* Try to figure out what we have */ |
2230 | current_brk = (char*)(MORECORE (0)); | |
2231 | top_size = current_brk - (char*)top; | |
2232 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ | |
2233 | { | |
2234 | sbrked_mem = current_brk - sbrk_base; | |
2235 | set_head(top, top_size | PREV_INUSE); | |
2236 | } | |
2237 | check_chunk(top); | |
2238 | return 0; | |
217c9dad WD |
2239 | } |
2240 | ||
2241 | else | |
2242 | { | |
8bde7f77 WD |
2243 | /* Success. Adjust top accordingly. */ |
2244 | set_head(top, (top_size - extra) | PREV_INUSE); | |
2245 | sbrked_mem -= extra; | |
2246 | check_chunk(top); | |
2247 | return 1; | |
217c9dad WD |
2248 | } |
2249 | } | |
2250 | } | |
2251 | } | |
2252 | ||
d93041a4 | 2253 | |
217c9dad WD |
2254 | |
2255 | /* | |
2256 | malloc_usable_size: | |
2257 | ||
2258 | This routine tells you how many bytes you can actually use in an | |
2259 | allocated chunk, which may be more than you requested (although | |
2260 | often not). You can use this many bytes without worrying about | |
2261 | overwriting other allocated objects. Not a particularly great | |
2262 | programming practice, but still sometimes useful. | |
2263 | ||
2264 | */ | |
2265 | ||
2266 | #if __STD_C | |
2267 | size_t malloc_usable_size(Void_t* mem) | |
2268 | #else | |
2269 | size_t malloc_usable_size(mem) Void_t* mem; | |
2270 | #endif | |
2271 | { | |
2272 | mchunkptr p; | |
199adb60 | 2273 | if (mem == NULL) |
217c9dad WD |
2274 | return 0; |
2275 | else | |
2276 | { | |
2277 | p = mem2chunk(mem); | |
2278 | if(!chunk_is_mmapped(p)) | |
2279 | { | |
2280 | if (!inuse(p)) return 0; | |
2281 | check_inuse_chunk(p); | |
2282 | return chunksize(p) - SIZE_SZ; | |
2283 | } | |
2284 | return chunksize(p) - 2*SIZE_SZ; | |
2285 | } | |
2286 | } | |
2287 | ||
2288 | ||
d93041a4 | 2289 | |
217c9dad WD |
2290 | |
2291 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ | |
2292 | ||
ea882baf | 2293 | #ifdef DEBUG |
217c9dad WD |
2294 | static void malloc_update_mallinfo() |
2295 | { | |
2296 | int i; | |
2297 | mbinptr b; | |
2298 | mchunkptr p; | |
2299 | #ifdef DEBUG | |
2300 | mchunkptr q; | |
2301 | #endif | |
2302 | ||
2303 | INTERNAL_SIZE_T avail = chunksize(top); | |
2304 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; | |
2305 | ||
2306 | for (i = 1; i < NAV; ++i) | |
2307 | { | |
2308 | b = bin_at(i); | |
2309 | for (p = last(b); p != b; p = p->bk) | |
2310 | { | |
2311 | #ifdef DEBUG | |
2312 | check_free_chunk(p); | |
2313 | for (q = next_chunk(p); | |
8bde7f77 WD |
2314 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
2315 | q = next_chunk(q)) | |
2316 | check_inuse_chunk(q); | |
217c9dad WD |
2317 | #endif |
2318 | avail += chunksize(p); | |
2319 | navail++; | |
2320 | } | |
2321 | } | |
2322 | ||
2323 | current_mallinfo.ordblks = navail; | |
2324 | current_mallinfo.uordblks = sbrked_mem - avail; | |
2325 | current_mallinfo.fordblks = avail; | |
2326 | current_mallinfo.hblks = n_mmaps; | |
2327 | current_mallinfo.hblkhd = mmapped_mem; | |
2328 | current_mallinfo.keepcost = chunksize(top); | |
2329 | ||
2330 | } | |
ea882baf | 2331 | #endif /* DEBUG */ |
217c9dad | 2332 | |
d93041a4 | 2333 | |
217c9dad WD |
2334 | |
2335 | /* | |
2336 | ||
2337 | malloc_stats: | |
2338 | ||
2339 | Prints on the amount of space obtain from the system (both | |
2340 | via sbrk and mmap), the maximum amount (which may be more than | |
2341 | current if malloc_trim and/or munmap got called), the maximum | |
2342 | number of simultaneous mmap regions used, and the current number | |
2343 | of bytes allocated via malloc (or realloc, etc) but not yet | |
2344 | freed. (Note that this is the number of bytes allocated, not the | |
2345 | number requested. It will be larger than the number requested | |
2346 | because of alignment and bookkeeping overhead.) | |
2347 | ||
2348 | */ | |
2349 | ||
ea882baf | 2350 | #ifdef DEBUG |
217c9dad WD |
2351 | void malloc_stats() |
2352 | { | |
2353 | malloc_update_mallinfo(); | |
2354 | printf("max system bytes = %10u\n", | |
8bde7f77 | 2355 | (unsigned int)(max_total_mem)); |
217c9dad | 2356 | printf("system bytes = %10u\n", |
8bde7f77 | 2357 | (unsigned int)(sbrked_mem + mmapped_mem)); |
217c9dad | 2358 | printf("in use bytes = %10u\n", |
8bde7f77 | 2359 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
217c9dad WD |
2360 | #if HAVE_MMAP |
2361 | printf("max mmap regions = %10u\n", | |
8bde7f77 | 2362 | (unsigned int)max_n_mmaps); |
217c9dad WD |
2363 | #endif |
2364 | } | |
ea882baf | 2365 | #endif /* DEBUG */ |
217c9dad WD |
2366 | |
2367 | /* | |
2368 | mallinfo returns a copy of updated current mallinfo. | |
2369 | */ | |
2370 | ||
ea882baf | 2371 | #ifdef DEBUG |
217c9dad WD |
2372 | struct mallinfo mALLINFo() |
2373 | { | |
2374 | malloc_update_mallinfo(); | |
2375 | return current_mallinfo; | |
2376 | } | |
ea882baf | 2377 | #endif /* DEBUG */ |
217c9dad WD |
2378 | |
2379 | ||
d93041a4 | 2380 | |
217c9dad WD |
2381 | |
2382 | /* | |
2383 | mallopt: | |
2384 | ||
2385 | mallopt is the general SVID/XPG interface to tunable parameters. | |
2386 | The format is to provide a (parameter-number, parameter-value) pair. | |
2387 | mallopt then sets the corresponding parameter to the argument | |
2388 | value if it can (i.e., so long as the value is meaningful), | |
2389 | and returns 1 if successful else 0. | |
2390 | ||
2391 | See descriptions of tunable parameters above. | |
2392 | ||
2393 | */ | |
2394 | ||
2395 | #if __STD_C | |
2396 | int mALLOPt(int param_number, int value) | |
2397 | #else | |
2398 | int mALLOPt(param_number, value) int param_number; int value; | |
2399 | #endif | |
2400 | { | |
2401 | switch(param_number) | |
2402 | { | |
2403 | case M_TRIM_THRESHOLD: | |
2404 | trim_threshold = value; return 1; | |
2405 | case M_TOP_PAD: | |
2406 | top_pad = value; return 1; | |
2407 | case M_MMAP_THRESHOLD: | |
2408 | mmap_threshold = value; return 1; | |
2409 | case M_MMAP_MAX: | |
2410 | #if HAVE_MMAP | |
2411 | n_mmaps_max = value; return 1; | |
2412 | #else | |
2413 | if (value != 0) return 0; else n_mmaps_max = value; return 1; | |
2414 | #endif | |
2415 | ||
2416 | default: | |
2417 | return 0; | |
2418 | } | |
2419 | } | |
2420 | ||
fb5cf7f1 SG |
2421 | int initf_malloc(void) |
2422 | { | |
f1896c45 | 2423 | #if CONFIG_VAL(SYS_MALLOC_F_LEN) |
fb5cf7f1 | 2424 | assert(gd->malloc_base); /* Set up by crt0.S */ |
f1896c45 | 2425 | gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN); |
fb5cf7f1 SG |
2426 | gd->malloc_ptr = 0; |
2427 | #endif | |
2428 | ||
2429 | return 0; | |
2430 | } | |
2431 | ||
217c9dad WD |
2432 | /* |
2433 | ||
2434 | History: | |
2435 | ||
2436 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) | |
2437 | * return null for negative arguments | |
2438 | * Added Several WIN32 cleanups from Martin C. Fong <[email protected]> | |
8bde7f77 WD |
2439 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
2440 | (e.g. WIN32 platforms) | |
2441 | * Cleanup up header file inclusion for WIN32 platforms | |
2442 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
2443 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
2444 | memory allocation routines | |
2445 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
2446 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
217c9dad | 2447 | usage of 'assert' in non-WIN32 code |
8bde7f77 WD |
2448 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
2449 | avoid infinite loop | |
217c9dad WD |
2450 | * Always call 'fREe()' rather than 'free()' |
2451 | ||
2452 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) | |
2453 | * Fixed ordering problem with boundary-stamping | |
2454 | ||
2455 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) | |
2456 | * Added pvalloc, as recommended by H.J. Liu | |
2457 | * Added 64bit pointer support mainly from Wolfram Gloger | |
2458 | * Added anonymously donated WIN32 sbrk emulation | |
2459 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
2460 | * malloc_extend_top: fix mask error that caused wastage after | |
8bde7f77 | 2461 | foreign sbrks |
217c9dad WD |
2462 | * Add linux mremap support code from HJ Liu |
2463 | ||
2464 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) | |
2465 | * Integrated most documentation with the code. | |
2466 | * Add support for mmap, with help from | |
8bde7f77 | 2467 | Wolfram Gloger ([email protected]). |
217c9dad WD |
2468 | * Use last_remainder in more cases. |
2469 | * Pack bins using idea from [email protected] | |
2470 | * Use ordered bins instead of best-fit threshhold | |
2471 | * Eliminate block-local decls to simplify tracing and debugging. | |
2472 | * Support another case of realloc via move into top | |
2473 | * Fix error occuring when initial sbrk_base not word-aligned. | |
2474 | * Rely on page size for units instead of SBRK_UNIT to | |
8bde7f77 | 2475 | avoid surprises about sbrk alignment conventions. |
217c9dad | 2476 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
8bde7f77 | 2477 | ([email protected]) for the suggestion. |
217c9dad WD |
2478 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
2479 | * More precautions for cases where other routines call sbrk, | |
8bde7f77 | 2480 | courtesy of Wolfram Gloger ([email protected]). |
217c9dad | 2481 | * Added macros etc., allowing use in linux libc from |
8bde7f77 | 2482 | H.J. Lu ([email protected]) |
217c9dad WD |
2483 | * Inverted this history list |
2484 | ||
2485 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) | |
2486 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
2487 | * Removed all preallocation code since under current scheme | |
8bde7f77 WD |
2488 | the work required to undo bad preallocations exceeds |
2489 | the work saved in good cases for most test programs. | |
217c9dad | 2490 | * No longer use return list or unconsolidated bins since |
8bde7f77 WD |
2491 | no scheme using them consistently outperforms those that don't |
2492 | given above changes. | |
217c9dad WD |
2493 | * Use best fit for very large chunks to prevent some worst-cases. |
2494 | * Added some support for debugging | |
2495 | ||
2496 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) | |
2497 | * Removed footers when chunks are in use. Thanks to | |
8bde7f77 | 2498 | Paul Wilson ([email protected]) for the suggestion. |
217c9dad WD |
2499 | |
2500 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) | |
2501 | * Added malloc_trim, with help from Wolfram Gloger | |
8bde7f77 | 2502 | ([email protected]). |
217c9dad WD |
2503 | |
2504 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) | |
2505 | ||
2506 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) | |
2507 | * realloc: try to expand in both directions | |
2508 | * malloc: swap order of clean-bin strategy; | |
2509 | * realloc: only conditionally expand backwards | |
2510 | * Try not to scavenge used bins | |
2511 | * Use bin counts as a guide to preallocation | |
2512 | * Occasionally bin return list chunks in first scan | |
2513 | * Add a few optimizations from [email protected] | |
2514 | ||
2515 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) | |
2516 | * faster bin computation & slightly different binning | |
2517 | * merged all consolidations to one part of malloc proper | |
8bde7f77 | 2518 | (eliminating old malloc_find_space & malloc_clean_bin) |
217c9dad WD |
2519 | * Scan 2 returns chunks (not just 1) |
2520 | * Propagate failure in realloc if malloc returns 0 | |
2521 | * Add stuff to allow compilation on non-ANSI compilers | |
8bde7f77 | 2522 | from [email protected] |
217c9dad WD |
2523 | |
2524 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) | |
2525 | * removed potential for odd address access in prev_chunk | |
2526 | * removed dependency on getpagesize.h | |
2527 | * misc cosmetics and a bit more internal documentation | |
2528 | * anticosmetics: mangled names in macros to evade debugger strangeness | |
2529 | * tested on sparc, hp-700, dec-mips, rs6000 | |
8bde7f77 WD |
2530 | with gcc & native cc (hp, dec only) allowing |
2531 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
217c9dad WD |
2532 | |
2533 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) | |
2534 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
8bde7f77 | 2535 | structure of old version, but most details differ.) |
217c9dad WD |
2536 | |
2537 | */ |