1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
37 struct anon_vma_chain;
42 extern int sysctl_page_lock_unfairness;
44 void mm_core_init(void);
45 void init_mm_internals(void);
47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
50 static inline void set_max_mapnr(unsigned long limit)
55 static inline void set_max_mapnr(unsigned long limit) { }
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
61 return (unsigned long)atomic_long_read(&_totalram_pages);
64 static inline void totalram_pages_inc(void)
66 atomic_long_inc(&_totalram_pages);
69 static inline void totalram_pages_dec(void)
71 atomic_long_dec(&_totalram_pages);
74 static inline void totalram_pages_add(long count)
76 atomic_long_add(count, &_totalram_pages);
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
100 #include <asm/page.h>
101 #include <asm/processor.h>
104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
112 #define lm_alias(x) __va(__pa_symbol(x))
116 * To prevent common memory management code establishing
117 * a zero page mapping on a read fault.
118 * This macro should be defined within <asm/pgtable.h>.
119 * s390 does this to prevent multiplexing of hardware bits
120 * related to the physical page in case of virtualization.
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X) (0)
127 * On some architectures it is expensive to call memset() for small sizes.
128 * If an architecture decides to implement their own version of
129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130 * define their own version of this macro in <asm/pgtable.h>
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134 * or reduces below 56. The idea that compiler optimizes out switch()
135 * statement, and only leaves move/store instructions. Also the compiler can
136 * combine write statements if they are both assignments and can be reordered,
137 * this can result in several of the writes here being dropped.
139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
142 unsigned long *_pp = (void *)page;
144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 BUILD_BUG_ON(sizeof(struct page) & 7);
146 BUILD_BUG_ON(sizeof(struct page) < 56);
147 BUILD_BUG_ON(sizeof(struct page) > 96);
149 switch (sizeof(struct page)) {
176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
195 #define MAPCOUNT_ELF_CORE_MARGIN (5)
196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 extern int sysctl_max_map_count;
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231 static inline struct folio *lru_to_folio(struct list_head *head)
233 return list_entry((head)->prev, struct folio, lru);
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 void *end_data, void *brk);
240 * Linux kernel virtual memory manager primitives.
241 * The idea being to have a "virtual" mm in the same way
242 * we have a virtual fs - giving a cleaner interface to the
243 * mm details, and allowing different kinds of memory mappings
244 * (from shared memory to executable loading to arbitrary
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
258 extern unsigned int kobjsize(const void *objp);
262 * vm_flags in vm_area_struct, see mm_types.h.
263 * When changing, update also include/trace/events/mmflags.h
265 #define VM_NONE 0x00000000
267 #define VM_READ 0x00000001 /* currently active flags */
268 #define VM_WRITE 0x00000002
269 #define VM_EXEC 0x00000004
270 #define VM_SHARED 0x00000008
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274 #define VM_MAYWRITE 0x00000020
275 #define VM_MAYEXEC 0x00000040
276 #define VM_MAYSHARE 0x00000080
278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING 0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
288 #define VM_LOCKED 0x00002000
289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
291 /* Used by sys_madvise() */
292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
301 #define VM_SYNC 0x00800000 /* Synchronous page faults */
302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
309 # define VM_SOFTDIRTY 0
312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
341 # define VM_PKEY_BIT4 0
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
350 * These VMAs will get a single end guard page. This helps userspace protect
351 * itself from attacks. A single page is enough for current shadow stack archs
352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353 * for more details on the guard size.
355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
357 # define VM_SHADOW_STACK VM_NONE
360 #if defined(CONFIG_X86)
361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
380 # define VM_MTE VM_NONE
381 # define VM_MTE_ALLOWED VM_NONE
385 # define VM_GROWSUP VM_NONE
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT 38
390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
396 * This flag is used to connect VFIO to arch specific KVM code. It
397 * indicates that the memory under this VMA is safe for use with any
398 * non-cachable memory type inside KVM. Some VFIO devices, on some
399 * platforms, are thought to be unsafe and can cause machine crashes
400 * if KVM does not lock down the memory type.
403 #define VM_ALLOW_ANY_UNCACHED_BIT 39
404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
406 #define VM_ALLOW_ANY_UNCACHED VM_NONE
410 #define VM_DROPPABLE_BIT 40
411 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
413 #define VM_DROPPABLE VM_NONE
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED _BITUL(63)
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
430 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK VM_GROWSUP
446 #define VM_STACK_EARLY VM_GROWSDOWN
448 #define VM_STACK VM_GROWSDOWN
449 #define VM_STACK_EARLY 0
452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
459 * Special vmas that are non-mergable, non-mlock()able.
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR VM_NONE
476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479 * mapping from the currently active vm_flags protection bits (the
480 * low four bits) to a page protection mask..
484 * The default fault flags that should be used by most of the
485 * arch-specific page fault handlers.
487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
488 FAULT_FLAG_KILLABLE | \
489 FAULT_FLAG_INTERRUPTIBLE)
492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493 * @flags: Fault flags.
495 * This is mostly used for places where we want to try to avoid taking
496 * the mmap_lock for too long a time when waiting for another condition
497 * to change, in which case we can try to be polite to release the
498 * mmap_lock in the first round to avoid potential starvation of other
499 * processes that would also want the mmap_lock.
501 * Return: true if the page fault allows retry and this is the first
502 * attempt of the fault handling; false otherwise.
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 (!(flags & FAULT_FLAG_TRIED));
510 #define FAULT_FLAG_TRACE \
511 { FAULT_FLAG_WRITE, "WRITE" }, \
512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
516 { FAULT_FLAG_TRIED, "TRIED" }, \
517 { FAULT_FLAG_USER, "USER" }, \
518 { FAULT_FLAG_REMOTE, "REMOTE" }, \
519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
524 * vm_fault is filled by the pagefault handler and passed to the vma's
525 * ->fault function. The vma's ->fault is responsible for returning a bitmask
526 * of VM_FAULT_xxx flags that give details about how the fault was handled.
528 * MM layer fills up gfp_mask for page allocations but fault handler might
529 * alter it if its implementation requires a different allocation context.
531 * pgoff should be used in favour of virtual_address, if possible.
535 struct vm_area_struct *vma; /* Target VMA */
536 gfp_t gfp_mask; /* gfp mask to be used for allocations */
537 pgoff_t pgoff; /* Logical page offset based on vma */
538 unsigned long address; /* Faulting virtual address - masked */
539 unsigned long real_address; /* Faulting virtual address - unmasked */
541 enum fault_flag flags; /* FAULT_FLAG_xxx flags
542 * XXX: should really be 'const' */
543 pmd_t *pmd; /* Pointer to pmd entry matching
545 pud_t *pud; /* Pointer to pud entry matching
549 pte_t orig_pte; /* Value of PTE at the time of fault */
550 pmd_t orig_pmd; /* Value of PMD at the time of fault,
551 * used by PMD fault only.
555 struct page *cow_page; /* Page handler may use for COW fault */
556 struct page *page; /* ->fault handlers should return a
557 * page here, unless VM_FAULT_NOPAGE
558 * is set (which is also implied by
561 /* These three entries are valid only while holding ptl lock */
562 pte_t *pte; /* Pointer to pte entry matching
563 * the 'address'. NULL if the page
564 * table hasn't been allocated.
566 spinlock_t *ptl; /* Page table lock.
567 * Protects pte page table if 'pte'
568 * is not NULL, otherwise pmd.
570 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
571 * vm_ops->map_pages() sets up a page
572 * table from atomic context.
573 * do_fault_around() pre-allocates
574 * page table to avoid allocation from
580 * These are the virtual MM functions - opening of an area, closing and
581 * unmapping it (needed to keep files on disk up-to-date etc), pointer
582 * to the functions called when a no-page or a wp-page exception occurs.
584 struct vm_operations_struct {
585 void (*open)(struct vm_area_struct * area);
587 * @close: Called when the VMA is being removed from the MM.
588 * Context: User context. May sleep. Caller holds mmap_lock.
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if mprotect() can proceed.
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 pgoff_t start_pgoff, pgoff_t end_pgoff);
605 unsigned long (*pagesize)(struct vm_area_struct * area);
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614 /* called by access_process_vm when get_user_pages() fails, typically
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr, pgoff_t *ilx);
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
661 vma->numab_state = NULL;
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
665 kfree(vma->numab_state);
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
672 #ifdef CONFIG_PER_VMA_LOCK
674 * Try to read-lock a vma. The function is allowed to occasionally yield false
675 * locked result to avoid performance overhead, in which case we fall back to
676 * using mmap_lock. The function should never yield false unlocked result.
678 static inline bool vma_start_read(struct vm_area_struct *vma)
681 * Check before locking. A race might cause false locked result.
682 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
683 * ACQUIRE semantics, because this is just a lockless check whose result
684 * we don't rely on for anything - the mm_lock_seq read against which we
685 * need ordering is below.
687 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
690 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
694 * Overflow might produce false locked result.
695 * False unlocked result is impossible because we modify and check
696 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
697 * modification invalidates all existing locks.
699 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
700 * racing with vma_end_write_all(), we only start reading from the VMA
701 * after it has been unlocked.
702 * This pairs with RELEASE semantics in vma_end_write_all().
704 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
705 up_read(&vma->vm_lock->lock);
711 static inline void vma_end_read(struct vm_area_struct *vma)
713 rcu_read_lock(); /* keeps vma alive till the end of up_read */
714 up_read(&vma->vm_lock->lock);
718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
721 mmap_assert_write_locked(vma->vm_mm);
724 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
725 * mm->mm_lock_seq can't be concurrently modified.
727 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
728 return (vma->vm_lock_seq == *mm_lock_seq);
732 * Begin writing to a VMA.
733 * Exclude concurrent readers under the per-VMA lock until the currently
734 * write-locked mmap_lock is dropped or downgraded.
736 static inline void vma_start_write(struct vm_area_struct *vma)
740 if (__is_vma_write_locked(vma, &mm_lock_seq))
743 down_write(&vma->vm_lock->lock);
745 * We should use WRITE_ONCE() here because we can have concurrent reads
746 * from the early lockless pessimistic check in vma_start_read().
747 * We don't really care about the correctness of that early check, but
748 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
750 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
751 up_write(&vma->vm_lock->lock);
754 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
758 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
761 static inline void vma_assert_locked(struct vm_area_struct *vma)
763 if (!rwsem_is_locked(&vma->vm_lock->lock))
764 vma_assert_write_locked(vma);
767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
769 /* When detaching vma should be write-locked */
771 vma_assert_write_locked(vma);
772 vma->detached = detached;
775 static inline void release_fault_lock(struct vm_fault *vmf)
777 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
778 vma_end_read(vmf->vma);
780 mmap_read_unlock(vmf->vma->vm_mm);
783 static inline void assert_fault_locked(struct vm_fault *vmf)
785 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
786 vma_assert_locked(vmf->vma);
788 mmap_assert_locked(vmf->vma->vm_mm);
791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
792 unsigned long address);
794 #else /* CONFIG_PER_VMA_LOCK */
796 static inline bool vma_start_read(struct vm_area_struct *vma)
798 static inline void vma_end_read(struct vm_area_struct *vma) {}
799 static inline void vma_start_write(struct vm_area_struct *vma) {}
800 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
801 { mmap_assert_write_locked(vma->vm_mm); }
802 static inline void vma_mark_detached(struct vm_area_struct *vma,
805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 unsigned long address)
811 static inline void vma_assert_locked(struct vm_area_struct *vma)
813 mmap_assert_locked(vma->vm_mm);
816 static inline void release_fault_lock(struct vm_fault *vmf)
818 mmap_read_unlock(vmf->vma->vm_mm);
821 static inline void assert_fault_locked(struct vm_fault *vmf)
823 mmap_assert_locked(vmf->vma->vm_mm);
826 #endif /* CONFIG_PER_VMA_LOCK */
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
831 * WARNING: vma_init does not initialize vma->vm_lock.
832 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
836 memset(vma, 0, sizeof(*vma));
838 vma->vm_ops = &vma_dummy_vm_ops;
839 INIT_LIST_HEAD(&vma->anon_vma_chain);
840 vma_mark_detached(vma, false);
841 vma_numab_state_init(vma);
844 /* Use when VMA is not part of the VMA tree and needs no locking */
845 static inline void vm_flags_init(struct vm_area_struct *vma,
848 ACCESS_PRIVATE(vma, __vm_flags) = flags;
852 * Use when VMA is part of the VMA tree and modifications need coordination
853 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854 * it should be locked explicitly beforehand.
856 static inline void vm_flags_reset(struct vm_area_struct *vma,
859 vma_assert_write_locked(vma);
860 vm_flags_init(vma, flags);
863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
866 vma_assert_write_locked(vma);
867 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
870 static inline void vm_flags_set(struct vm_area_struct *vma,
873 vma_start_write(vma);
874 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
877 static inline void vm_flags_clear(struct vm_area_struct *vma,
880 vma_start_write(vma);
881 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
885 * Use only if VMA is not part of the VMA tree or has no other users and
886 * therefore needs no locking.
888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 vm_flags_t set, vm_flags_t clear)
891 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
895 * Use only when the order of set/clear operations is unimportant, otherwise
896 * use vm_flags_{set|clear} explicitly.
898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 vm_flags_t set, vm_flags_t clear)
901 vma_start_write(vma);
902 __vm_flags_mod(vma, set, clear);
905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
916 * Indicate if the VMA is a heap for the given task; for
917 * /proc/PID/maps that is the heap of the main task.
919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
921 return vma->vm_start < vma->vm_mm->brk &&
922 vma->vm_end > vma->vm_mm->start_brk;
926 * Indicate if the VMA is a stack for the given task; for
927 * /proc/PID/maps that is the stack of the main task.
929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
932 * We make no effort to guess what a given thread considers to be
933 * its "stack". It's not even well-defined for programs written
936 return vma->vm_start <= vma->vm_mm->start_stack &&
937 vma->vm_end >= vma->vm_mm->start_stack;
940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
942 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
947 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 VM_STACK_INCOMPLETE_SETUP)
954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
959 if (current->mm != vma->vm_mm)
965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
967 return vma->vm_flags & VM_ACCESS_FLAGS;
970 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
972 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
973 (VM_SHARED | VM_MAYWRITE);
976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
978 return is_shared_maywrite(vma->vm_flags);
982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
984 return mas_find(&vmi->mas, max - 1);
987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
990 * Uses mas_find() to get the first VMA when the iterator starts.
991 * Calling mas_next() could skip the first entry.
993 return mas_find(&vmi->mas, ULONG_MAX);
997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
999 return mas_next_range(&vmi->mas, ULONG_MAX);
1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1005 return mas_prev(&vmi->mas, 0);
1009 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1011 return mas_prev_range(&vmi->mas, 0);
1014 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1016 return vmi->mas.index;
1019 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1021 return vmi->mas.last + 1;
1023 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1024 unsigned long count)
1026 return mas_expected_entries(&vmi->mas, count);
1029 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1030 unsigned long start, unsigned long end, gfp_t gfp)
1032 __mas_set_range(&vmi->mas, start, end - 1);
1033 mas_store_gfp(&vmi->mas, NULL, gfp);
1034 if (unlikely(mas_is_err(&vmi->mas)))
1040 /* Free any unused preallocations */
1041 static inline void vma_iter_free(struct vma_iterator *vmi)
1043 mas_destroy(&vmi->mas);
1046 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1047 struct vm_area_struct *vma)
1049 vmi->mas.index = vma->vm_start;
1050 vmi->mas.last = vma->vm_end - 1;
1051 mas_store(&vmi->mas, vma);
1052 if (unlikely(mas_is_err(&vmi->mas)))
1058 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1060 mas_pause(&vmi->mas);
1063 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1065 mas_set(&vmi->mas, addr);
1068 #define for_each_vma(__vmi, __vma) \
1069 while (((__vma) = vma_next(&(__vmi))) != NULL)
1071 /* The MM code likes to work with exclusive end addresses */
1072 #define for_each_vma_range(__vmi, __vma, __end) \
1073 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1077 * The vma_is_shmem is not inline because it is used only by slow
1078 * paths in userfault.
1080 bool vma_is_shmem(struct vm_area_struct *vma);
1081 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1083 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1084 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1087 int vma_is_stack_for_current(struct vm_area_struct *vma);
1089 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1090 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1096 * compound_order() can be called without holding a reference, which means
1097 * that niceties like page_folio() don't work. These callers should be
1098 * prepared to handle wild return values. For example, PG_head may be
1099 * set before the order is initialised, or this may be a tail page.
1100 * See compaction.c for some good examples.
1102 static inline unsigned int compound_order(struct page *page)
1104 struct folio *folio = (struct folio *)page;
1106 if (!test_bit(PG_head, &folio->flags))
1108 return folio->_flags_1 & 0xff;
1112 * folio_order - The allocation order of a folio.
1113 * @folio: The folio.
1115 * A folio is composed of 2^order pages. See get_order() for the definition
1118 * Return: The order of the folio.
1120 static inline unsigned int folio_order(const struct folio *folio)
1122 if (!folio_test_large(folio))
1124 return folio->_flags_1 & 0xff;
1127 #include <linux/huge_mm.h>
1130 * Methods to modify the page usage count.
1132 * What counts for a page usage:
1133 * - cache mapping (page->mapping)
1134 * - private data (page->private)
1135 * - page mapped in a task's page tables, each mapping
1136 * is counted separately
1138 * Also, many kernel routines increase the page count before a critical
1139 * routine so they can be sure the page doesn't go away from under them.
1143 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1145 static inline int put_page_testzero(struct page *page)
1147 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1148 return page_ref_dec_and_test(page);
1151 static inline int folio_put_testzero(struct folio *folio)
1153 return put_page_testzero(&folio->page);
1157 * Try to grab a ref unless the page has a refcount of zero, return false if
1159 * This can be called when MMU is off so it must not access
1160 * any of the virtual mappings.
1162 static inline bool get_page_unless_zero(struct page *page)
1164 return page_ref_add_unless(page, 1, 0);
1167 static inline struct folio *folio_get_nontail_page(struct page *page)
1169 if (unlikely(!get_page_unless_zero(page)))
1171 return (struct folio *)page;
1174 extern int page_is_ram(unsigned long pfn);
1182 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1183 unsigned long desc);
1185 /* Support for virtually mapped pages */
1186 struct page *vmalloc_to_page(const void *addr);
1187 unsigned long vmalloc_to_pfn(const void *addr);
1190 * Determine if an address is within the vmalloc range
1192 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1193 * is no special casing required.
1196 extern bool is_vmalloc_addr(const void *x);
1197 extern int is_vmalloc_or_module_addr(const void *x);
1199 static inline bool is_vmalloc_addr(const void *x)
1203 static inline int is_vmalloc_or_module_addr(const void *x)
1210 * How many times the entire folio is mapped as a single unit (eg by a
1211 * PMD or PUD entry). This is probably not what you want, except for
1212 * debugging purposes or implementation of other core folio_*() primitives.
1214 static inline int folio_entire_mapcount(const struct folio *folio)
1216 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1217 return atomic_read(&folio->_entire_mapcount) + 1;
1220 static inline int folio_large_mapcount(const struct folio *folio)
1222 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1223 return atomic_read(&folio->_large_mapcount) + 1;
1227 * folio_mapcount() - Number of mappings of this folio.
1228 * @folio: The folio.
1230 * The folio mapcount corresponds to the number of present user page table
1231 * entries that reference any part of a folio. Each such present user page
1232 * table entry must be paired with exactly on folio reference.
1234 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1237 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1238 * references the entire folio counts exactly once, even when such special
1239 * page table entries are comprised of multiple ordinary page table entries.
1241 * Will report 0 for pages which cannot be mapped into userspace, such as
1242 * slab, page tables and similar.
1244 * Return: The number of times this folio is mapped.
1246 static inline int folio_mapcount(const struct folio *folio)
1250 if (likely(!folio_test_large(folio))) {
1251 mapcount = atomic_read(&folio->_mapcount) + 1;
1252 /* Handle page_has_type() pages */
1253 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1257 return folio_large_mapcount(folio);
1261 * folio_mapped - Is this folio mapped into userspace?
1262 * @folio: The folio.
1264 * Return: True if any page in this folio is referenced by user page tables.
1266 static inline bool folio_mapped(const struct folio *folio)
1268 return folio_mapcount(folio) >= 1;
1272 * Return true if this page is mapped into pagetables.
1273 * For compound page it returns true if any sub-page of compound page is mapped,
1274 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1276 static inline bool page_mapped(const struct page *page)
1278 return folio_mapped(page_folio(page));
1281 static inline struct page *virt_to_head_page(const void *x)
1283 struct page *page = virt_to_page(x);
1285 return compound_head(page);
1288 static inline struct folio *virt_to_folio(const void *x)
1290 struct page *page = virt_to_page(x);
1292 return page_folio(page);
1295 void __folio_put(struct folio *folio);
1297 void put_pages_list(struct list_head *pages);
1299 void split_page(struct page *page, unsigned int order);
1300 void folio_copy(struct folio *dst, struct folio *src);
1301 int folio_mc_copy(struct folio *dst, struct folio *src);
1303 unsigned long nr_free_buffer_pages(void);
1305 /* Returns the number of bytes in this potentially compound page. */
1306 static inline unsigned long page_size(struct page *page)
1308 return PAGE_SIZE << compound_order(page);
1311 /* Returns the number of bits needed for the number of bytes in a page */
1312 static inline unsigned int page_shift(struct page *page)
1314 return PAGE_SHIFT + compound_order(page);
1318 * thp_order - Order of a transparent huge page.
1319 * @page: Head page of a transparent huge page.
1321 static inline unsigned int thp_order(struct page *page)
1323 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1324 return compound_order(page);
1328 * thp_size - Size of a transparent huge page.
1329 * @page: Head page of a transparent huge page.
1331 * Return: Number of bytes in this page.
1333 static inline unsigned long thp_size(struct page *page)
1335 return PAGE_SIZE << thp_order(page);
1340 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1341 * servicing faults for write access. In the normal case, do always want
1342 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1343 * that do not have writing enabled, when used by access_process_vm.
1345 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1347 if (likely(vma->vm_flags & VM_WRITE))
1348 pte = pte_mkwrite(pte, vma);
1352 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1353 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1354 struct page *page, unsigned int nr, unsigned long addr);
1356 vm_fault_t finish_fault(struct vm_fault *vmf);
1360 * Multiple processes may "see" the same page. E.g. for untouched
1361 * mappings of /dev/null, all processes see the same page full of
1362 * zeroes, and text pages of executables and shared libraries have
1363 * only one copy in memory, at most, normally.
1365 * For the non-reserved pages, page_count(page) denotes a reference count.
1366 * page_count() == 0 means the page is free. page->lru is then used for
1367 * freelist management in the buddy allocator.
1368 * page_count() > 0 means the page has been allocated.
1370 * Pages are allocated by the slab allocator in order to provide memory
1371 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1372 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1373 * unless a particular usage is carefully commented. (the responsibility of
1374 * freeing the kmalloc memory is the caller's, of course).
1376 * A page may be used by anyone else who does a __get_free_page().
1377 * In this case, page_count still tracks the references, and should only
1378 * be used through the normal accessor functions. The top bits of page->flags
1379 * and page->virtual store page management information, but all other fields
1380 * are unused and could be used privately, carefully. The management of this
1381 * page is the responsibility of the one who allocated it, and those who have
1382 * subsequently been given references to it.
1384 * The other pages (we may call them "pagecache pages") are completely
1385 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1386 * The following discussion applies only to them.
1388 * A pagecache page contains an opaque `private' member, which belongs to the
1389 * page's address_space. Usually, this is the address of a circular list of
1390 * the page's disk buffers. PG_private must be set to tell the VM to call
1391 * into the filesystem to release these pages.
1393 * A page may belong to an inode's memory mapping. In this case, page->mapping
1394 * is the pointer to the inode, and page->index is the file offset of the page,
1395 * in units of PAGE_SIZE.
1397 * If pagecache pages are not associated with an inode, they are said to be
1398 * anonymous pages. These may become associated with the swapcache, and in that
1399 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1401 * In either case (swapcache or inode backed), the pagecache itself holds one
1402 * reference to the page. Setting PG_private should also increment the
1403 * refcount. The each user mapping also has a reference to the page.
1405 * The pagecache pages are stored in a per-mapping radix tree, which is
1406 * rooted at mapping->i_pages, and indexed by offset.
1407 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1408 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1410 * All pagecache pages may be subject to I/O:
1411 * - inode pages may need to be read from disk,
1412 * - inode pages which have been modified and are MAP_SHARED may need
1413 * to be written back to the inode on disk,
1414 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1415 * modified may need to be swapped out to swap space and (later) to be read
1419 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1420 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1422 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1423 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1425 if (!static_branch_unlikely(&devmap_managed_key))
1427 if (!folio_is_zone_device(folio))
1429 return __put_devmap_managed_folio_refs(folio, refs);
1431 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1432 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1436 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1438 /* 127: arbitrary random number, small enough to assemble well */
1439 #define folio_ref_zero_or_close_to_overflow(folio) \
1440 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1443 * folio_get - Increment the reference count on a folio.
1444 * @folio: The folio.
1446 * Context: May be called in any context, as long as you know that
1447 * you have a refcount on the folio. If you do not already have one,
1448 * folio_try_get() may be the right interface for you to use.
1450 static inline void folio_get(struct folio *folio)
1452 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1453 folio_ref_inc(folio);
1456 static inline void get_page(struct page *page)
1458 folio_get(page_folio(page));
1461 static inline __must_check bool try_get_page(struct page *page)
1463 page = compound_head(page);
1464 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1471 * folio_put - Decrement the reference count on a folio.
1472 * @folio: The folio.
1474 * If the folio's reference count reaches zero, the memory will be
1475 * released back to the page allocator and may be used by another
1476 * allocation immediately. Do not access the memory or the struct folio
1477 * after calling folio_put() unless you can be sure that it wasn't the
1480 * Context: May be called in process or interrupt context, but not in NMI
1481 * context. May be called while holding a spinlock.
1483 static inline void folio_put(struct folio *folio)
1485 if (folio_put_testzero(folio))
1490 * folio_put_refs - Reduce the reference count on a folio.
1491 * @folio: The folio.
1492 * @refs: The amount to subtract from the folio's reference count.
1494 * If the folio's reference count reaches zero, the memory will be
1495 * released back to the page allocator and may be used by another
1496 * allocation immediately. Do not access the memory or the struct folio
1497 * after calling folio_put_refs() unless you can be sure that these weren't
1498 * the last references.
1500 * Context: May be called in process or interrupt context, but not in NMI
1501 * context. May be called while holding a spinlock.
1503 static inline void folio_put_refs(struct folio *folio, int refs)
1505 if (folio_ref_sub_and_test(folio, refs))
1509 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1512 * union release_pages_arg - an array of pages or folios
1514 * release_pages() releases a simple array of multiple pages, and
1515 * accepts various different forms of said page array: either
1516 * a regular old boring array of pages, an array of folios, or
1517 * an array of encoded page pointers.
1519 * The transparent union syntax for this kind of "any of these
1520 * argument types" is all kinds of ugly, so look away.
1523 struct page **pages;
1524 struct folio **folios;
1525 struct encoded_page **encoded_pages;
1526 } release_pages_arg __attribute__ ((__transparent_union__));
1528 void release_pages(release_pages_arg, int nr);
1531 * folios_put - Decrement the reference count on an array of folios.
1532 * @folios: The folios.
1534 * Like folio_put(), but for a batch of folios. This is more efficient
1535 * than writing the loop yourself as it will optimise the locks which need
1536 * to be taken if the folios are freed. The folios batch is returned
1537 * empty and ready to be reused for another batch; there is no need to
1540 * Context: May be called in process or interrupt context, but not in NMI
1541 * context. May be called while holding a spinlock.
1543 static inline void folios_put(struct folio_batch *folios)
1545 folios_put_refs(folios, NULL);
1548 static inline void put_page(struct page *page)
1550 struct folio *folio = page_folio(page);
1553 * For some devmap managed pages we need to catch refcount transition
1556 if (put_devmap_managed_folio_refs(folio, 1))
1562 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1563 * the page's refcount so that two separate items are tracked: the original page
1564 * reference count, and also a new count of how many pin_user_pages() calls were
1565 * made against the page. ("gup-pinned" is another term for the latter).
1567 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1568 * distinct from normal pages. As such, the unpin_user_page() call (and its
1569 * variants) must be used in order to release gup-pinned pages.
1573 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1574 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1575 * simpler, due to the fact that adding an even power of two to the page
1576 * refcount has the effect of using only the upper N bits, for the code that
1577 * counts up using the bias value. This means that the lower bits are left for
1578 * the exclusive use of the original code that increments and decrements by one
1579 * (or at least, by much smaller values than the bias value).
1581 * Of course, once the lower bits overflow into the upper bits (and this is
1582 * OK, because subtraction recovers the original values), then visual inspection
1583 * no longer suffices to directly view the separate counts. However, for normal
1584 * applications that don't have huge page reference counts, this won't be an
1587 * Locking: the lockless algorithm described in folio_try_get_rcu()
1588 * provides safe operation for get_user_pages(), folio_mkclean() and
1589 * other calls that race to set up page table entries.
1591 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1593 void unpin_user_page(struct page *page);
1594 void unpin_folio(struct folio *folio);
1595 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1597 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1599 void unpin_user_pages(struct page **pages, unsigned long npages);
1600 void unpin_folios(struct folio **folios, unsigned long nfolios);
1602 static inline bool is_cow_mapping(vm_flags_t flags)
1604 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1608 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1611 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1612 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1613 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1614 * underlying memory if ptrace is active, so this is only possible if
1615 * ptrace does not apply. Note that there is no mprotect() to upgrade
1616 * write permissions later.
1618 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1622 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1623 #define SECTION_IN_PAGE_FLAGS
1627 * The identification function is mainly used by the buddy allocator for
1628 * determining if two pages could be buddies. We are not really identifying
1629 * the zone since we could be using the section number id if we do not have
1630 * node id available in page flags.
1631 * We only guarantee that it will return the same value for two combinable
1634 static inline int page_zone_id(struct page *page)
1636 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1639 #ifdef NODE_NOT_IN_PAGE_FLAGS
1640 int page_to_nid(const struct page *page);
1642 static inline int page_to_nid(const struct page *page)
1644 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1648 static inline int folio_nid(const struct folio *folio)
1650 return page_to_nid(&folio->page);
1653 #ifdef CONFIG_NUMA_BALANCING
1654 /* page access time bits needs to hold at least 4 seconds */
1655 #define PAGE_ACCESS_TIME_MIN_BITS 12
1656 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1657 #define PAGE_ACCESS_TIME_BUCKETS \
1658 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1660 #define PAGE_ACCESS_TIME_BUCKETS 0
1663 #define PAGE_ACCESS_TIME_MASK \
1664 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1666 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1668 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1671 static inline int cpupid_to_pid(int cpupid)
1673 return cpupid & LAST__PID_MASK;
1676 static inline int cpupid_to_cpu(int cpupid)
1678 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1681 static inline int cpupid_to_nid(int cpupid)
1683 return cpu_to_node(cpupid_to_cpu(cpupid));
1686 static inline bool cpupid_pid_unset(int cpupid)
1688 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1691 static inline bool cpupid_cpu_unset(int cpupid)
1693 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1696 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1698 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1701 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1702 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1703 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1705 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1708 static inline int folio_last_cpupid(struct folio *folio)
1710 return folio->_last_cpupid;
1712 static inline void page_cpupid_reset_last(struct page *page)
1714 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1717 static inline int folio_last_cpupid(struct folio *folio)
1719 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1722 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1724 static inline void page_cpupid_reset_last(struct page *page)
1726 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1728 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1730 static inline int folio_xchg_access_time(struct folio *folio, int time)
1734 last_time = folio_xchg_last_cpupid(folio,
1735 time >> PAGE_ACCESS_TIME_BUCKETS);
1736 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1739 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1741 unsigned int pid_bit;
1743 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1744 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1745 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1748 #else /* !CONFIG_NUMA_BALANCING */
1749 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1751 return folio_nid(folio); /* XXX */
1754 static inline int folio_xchg_access_time(struct folio *folio, int time)
1759 static inline int folio_last_cpupid(struct folio *folio)
1761 return folio_nid(folio); /* XXX */
1764 static inline int cpupid_to_nid(int cpupid)
1769 static inline int cpupid_to_pid(int cpupid)
1774 static inline int cpupid_to_cpu(int cpupid)
1779 static inline int cpu_pid_to_cpupid(int nid, int pid)
1784 static inline bool cpupid_pid_unset(int cpupid)
1789 static inline void page_cpupid_reset_last(struct page *page)
1793 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1798 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1801 #endif /* CONFIG_NUMA_BALANCING */
1803 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1806 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1807 * setting tags for all pages to native kernel tag value 0xff, as the default
1808 * value 0x00 maps to 0xff.
1811 static inline u8 page_kasan_tag(const struct page *page)
1813 u8 tag = KASAN_TAG_KERNEL;
1815 if (kasan_enabled()) {
1816 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1823 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1825 unsigned long old_flags, flags;
1827 if (!kasan_enabled())
1831 old_flags = READ_ONCE(page->flags);
1834 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1835 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1836 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1839 static inline void page_kasan_tag_reset(struct page *page)
1841 if (kasan_enabled())
1842 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1845 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1847 static inline u8 page_kasan_tag(const struct page *page)
1852 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1853 static inline void page_kasan_tag_reset(struct page *page) { }
1855 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1857 static inline struct zone *page_zone(const struct page *page)
1859 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1862 static inline pg_data_t *page_pgdat(const struct page *page)
1864 return NODE_DATA(page_to_nid(page));
1867 static inline struct zone *folio_zone(const struct folio *folio)
1869 return page_zone(&folio->page);
1872 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1874 return page_pgdat(&folio->page);
1877 #ifdef SECTION_IN_PAGE_FLAGS
1878 static inline void set_page_section(struct page *page, unsigned long section)
1880 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1881 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1884 static inline unsigned long page_to_section(const struct page *page)
1886 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1891 * folio_pfn - Return the Page Frame Number of a folio.
1892 * @folio: The folio.
1894 * A folio may contain multiple pages. The pages have consecutive
1895 * Page Frame Numbers.
1897 * Return: The Page Frame Number of the first page in the folio.
1899 static inline unsigned long folio_pfn(struct folio *folio)
1901 return page_to_pfn(&folio->page);
1904 static inline struct folio *pfn_folio(unsigned long pfn)
1906 return page_folio(pfn_to_page(pfn));
1910 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1911 * @folio: The folio.
1913 * This function checks if a folio has been pinned via a call to
1914 * a function in the pin_user_pages() family.
1916 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1917 * because it means "definitely not pinned for DMA", but true means "probably
1918 * pinned for DMA, but possibly a false positive due to having at least
1919 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1921 * False positives are OK, because: a) it's unlikely for a folio to
1922 * get that many refcounts, and b) all the callers of this routine are
1923 * expected to be able to deal gracefully with a false positive.
1925 * For large folios, the result will be exactly correct. That's because
1926 * we have more tracking data available: the _pincount field is used
1927 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1929 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1931 * Return: True, if it is likely that the folio has been "dma-pinned".
1932 * False, if the folio is definitely not dma-pinned.
1934 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1936 if (folio_test_large(folio))
1937 return atomic_read(&folio->_pincount) > 0;
1940 * folio_ref_count() is signed. If that refcount overflows, then
1941 * folio_ref_count() returns a negative value, and callers will avoid
1942 * further incrementing the refcount.
1944 * Here, for that overflow case, use the sign bit to count a little
1945 * bit higher via unsigned math, and thus still get an accurate result.
1947 return ((unsigned int)folio_ref_count(folio)) >=
1948 GUP_PIN_COUNTING_BIAS;
1952 * This should most likely only be called during fork() to see whether we
1953 * should break the cow immediately for an anon page on the src mm.
1955 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1957 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1958 struct folio *folio)
1960 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1962 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1965 return folio_maybe_dma_pinned(folio);
1969 * is_zero_page - Query if a page is a zero page
1970 * @page: The page to query
1972 * This returns true if @page is one of the permanent zero pages.
1974 static inline bool is_zero_page(const struct page *page)
1976 return is_zero_pfn(page_to_pfn(page));
1980 * is_zero_folio - Query if a folio is a zero page
1981 * @folio: The folio to query
1983 * This returns true if @folio is one of the permanent zero pages.
1985 static inline bool is_zero_folio(const struct folio *folio)
1987 return is_zero_page(&folio->page);
1990 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1991 #ifdef CONFIG_MIGRATION
1992 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1995 int mt = folio_migratetype(folio);
1997 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2000 /* The zero page can be "pinned" but gets special handling. */
2001 if (is_zero_folio(folio))
2004 /* Coherent device memory must always allow eviction. */
2005 if (folio_is_device_coherent(folio))
2008 /* Otherwise, non-movable zone folios can be pinned. */
2009 return !folio_is_zone_movable(folio);
2013 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2019 static inline void set_page_zone(struct page *page, enum zone_type zone)
2021 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2022 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2025 static inline void set_page_node(struct page *page, unsigned long node)
2027 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2028 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2031 static inline void set_page_links(struct page *page, enum zone_type zone,
2032 unsigned long node, unsigned long pfn)
2034 set_page_zone(page, zone);
2035 set_page_node(page, node);
2036 #ifdef SECTION_IN_PAGE_FLAGS
2037 set_page_section(page, pfn_to_section_nr(pfn));
2042 * folio_nr_pages - The number of pages in the folio.
2043 * @folio: The folio.
2045 * Return: A positive power of two.
2047 static inline long folio_nr_pages(const struct folio *folio)
2049 if (!folio_test_large(folio))
2052 return folio->_folio_nr_pages;
2054 return 1L << (folio->_flags_1 & 0xff);
2058 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2059 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2060 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2062 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2066 * compound_nr() returns the number of pages in this potentially compound
2067 * page. compound_nr() can be called on a tail page, and is defined to
2068 * return 1 in that case.
2070 static inline unsigned long compound_nr(struct page *page)
2072 struct folio *folio = (struct folio *)page;
2074 if (!test_bit(PG_head, &folio->flags))
2077 return folio->_folio_nr_pages;
2079 return 1L << (folio->_flags_1 & 0xff);
2084 * thp_nr_pages - The number of regular pages in this huge page.
2085 * @page: The head page of a huge page.
2087 static inline int thp_nr_pages(struct page *page)
2089 return folio_nr_pages((struct folio *)page);
2093 * folio_next - Move to the next physical folio.
2094 * @folio: The folio we're currently operating on.
2096 * If you have physically contiguous memory which may span more than
2097 * one folio (eg a &struct bio_vec), use this function to move from one
2098 * folio to the next. Do not use it if the memory is only virtually
2099 * contiguous as the folios are almost certainly not adjacent to each
2100 * other. This is the folio equivalent to writing ``page++``.
2102 * Context: We assume that the folios are refcounted and/or locked at a
2103 * higher level and do not adjust the reference counts.
2104 * Return: The next struct folio.
2106 static inline struct folio *folio_next(struct folio *folio)
2108 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2112 * folio_shift - The size of the memory described by this folio.
2113 * @folio: The folio.
2115 * A folio represents a number of bytes which is a power-of-two in size.
2116 * This function tells you which power-of-two the folio is. See also
2117 * folio_size() and folio_order().
2119 * Context: The caller should have a reference on the folio to prevent
2120 * it from being split. It is not necessary for the folio to be locked.
2121 * Return: The base-2 logarithm of the size of this folio.
2123 static inline unsigned int folio_shift(const struct folio *folio)
2125 return PAGE_SHIFT + folio_order(folio);
2129 * folio_size - The number of bytes in a folio.
2130 * @folio: The folio.
2132 * Context: The caller should have a reference on the folio to prevent
2133 * it from being split. It is not necessary for the folio to be locked.
2134 * Return: The number of bytes in this folio.
2136 static inline size_t folio_size(const struct folio *folio)
2138 return PAGE_SIZE << folio_order(folio);
2142 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2143 * tables of more than one MM
2144 * @folio: The folio.
2146 * This function checks if the folio is currently mapped into more than one
2147 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2148 * ("mapped exclusively").
2150 * As precise information is not easily available for all folios, this function
2151 * estimates the number of MMs ("sharers") that are currently mapping a folio
2152 * using the number of times the first page of the folio is currently mapped
2155 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2156 * the return value will be exactly correct, because they can only be mapped
2157 * at most once into an MM, and they cannot be partially mapped.
2159 * For other folios, the result can be fuzzy:
2160 * #. For partially-mappable large folios (THP), the return value can wrongly
2161 * indicate "mapped exclusively" (false negative) when the folio is
2162 * only partially mapped into at least one MM.
2163 * #. For pagecache folios (including hugetlb), the return value can wrongly
2164 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2165 * cover the same file range.
2166 * #. For (small) KSM folios, the return value can wrongly indicate "mapped
2167 * shared" (false positive), when the folio is mapped multiple times into
2170 * Further, this function only considers current page table mappings that
2171 * are tracked using the folio mapcount(s).
2173 * This function does not consider:
2174 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2175 * pagecache, temporary unmapping for migration).
2176 * #. If the folio is mapped differently (VM_PFNMAP).
2177 * #. If hugetlb page table sharing applies. Callers might want to check
2178 * hugetlb_pmd_shared().
2180 * Return: Whether the folio is estimated to be mapped into more than one MM.
2182 static inline bool folio_likely_mapped_shared(struct folio *folio)
2184 int mapcount = folio_mapcount(folio);
2186 /* Only partially-mappable folios require more care. */
2187 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2188 return mapcount > 1;
2190 /* A single mapping implies "mapped exclusively". */
2194 /* If any page is mapped more than once we treat it "mapped shared". */
2195 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2198 /* Let's guess based on the first subpage. */
2199 return atomic_read(&folio->_mapcount) > 0;
2202 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2203 static inline int arch_make_page_accessible(struct page *page)
2209 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2210 static inline int arch_make_folio_accessible(struct folio *folio)
2213 long i, nr = folio_nr_pages(folio);
2215 for (i = 0; i < nr; i++) {
2216 ret = arch_make_page_accessible(folio_page(folio, i));
2226 * Some inline functions in vmstat.h depend on page_zone()
2228 #include <linux/vmstat.h>
2230 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2231 #define HASHED_PAGE_VIRTUAL
2234 #if defined(WANT_PAGE_VIRTUAL)
2235 static inline void *page_address(const struct page *page)
2237 return page->virtual;
2239 static inline void set_page_address(struct page *page, void *address)
2241 page->virtual = address;
2243 #define page_address_init() do { } while(0)
2246 #if defined(HASHED_PAGE_VIRTUAL)
2247 void *page_address(const struct page *page);
2248 void set_page_address(struct page *page, void *virtual);
2249 void page_address_init(void);
2252 static __always_inline void *lowmem_page_address(const struct page *page)
2254 return page_to_virt(page);
2257 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2258 #define page_address(page) lowmem_page_address(page)
2259 #define set_page_address(page, address) do { } while(0)
2260 #define page_address_init() do { } while(0)
2263 static inline void *folio_address(const struct folio *folio)
2265 return page_address(&folio->page);
2269 * Return true only if the page has been allocated with
2270 * ALLOC_NO_WATERMARKS and the low watermark was not
2271 * met implying that the system is under some pressure.
2273 static inline bool page_is_pfmemalloc(const struct page *page)
2276 * lru.next has bit 1 set if the page is allocated from the
2277 * pfmemalloc reserves. Callers may simply overwrite it if
2278 * they do not need to preserve that information.
2280 return (uintptr_t)page->lru.next & BIT(1);
2284 * Return true only if the folio has been allocated with
2285 * ALLOC_NO_WATERMARKS and the low watermark was not
2286 * met implying that the system is under some pressure.
2288 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2291 * lru.next has bit 1 set if the page is allocated from the
2292 * pfmemalloc reserves. Callers may simply overwrite it if
2293 * they do not need to preserve that information.
2295 return (uintptr_t)folio->lru.next & BIT(1);
2299 * Only to be called by the page allocator on a freshly allocated
2302 static inline void set_page_pfmemalloc(struct page *page)
2304 page->lru.next = (void *)BIT(1);
2307 static inline void clear_page_pfmemalloc(struct page *page)
2309 page->lru.next = NULL;
2313 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2315 extern void pagefault_out_of_memory(void);
2317 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2318 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2319 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2322 * Parameter block passed down to zap_pte_range in exceptional cases.
2324 struct zap_details {
2325 struct folio *single_folio; /* Locked folio to be unmapped */
2326 bool even_cows; /* Zap COWed private pages too? */
2327 zap_flags_t zap_flags; /* Extra flags for zapping */
2331 * Whether to drop the pte markers, for example, the uffd-wp information for
2332 * file-backed memory. This should only be specified when we will completely
2333 * drop the page in the mm, either by truncation or unmapping of the vma. By
2334 * default, the flag is not set.
2336 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2337 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2338 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2340 #ifdef CONFIG_SCHED_MM_CID
2341 void sched_mm_cid_before_execve(struct task_struct *t);
2342 void sched_mm_cid_after_execve(struct task_struct *t);
2343 void sched_mm_cid_fork(struct task_struct *t);
2344 void sched_mm_cid_exit_signals(struct task_struct *t);
2345 static inline int task_mm_cid(struct task_struct *t)
2350 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2351 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2352 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2353 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2354 static inline int task_mm_cid(struct task_struct *t)
2357 * Use the processor id as a fall-back when the mm cid feature is
2358 * disabled. This provides functional per-cpu data structure accesses
2359 * in user-space, althrough it won't provide the memory usage benefits.
2361 return raw_smp_processor_id();
2366 extern bool can_do_mlock(void);
2368 static inline bool can_do_mlock(void) { return false; }
2370 extern int user_shm_lock(size_t, struct ucounts *);
2371 extern void user_shm_unlock(size_t, struct ucounts *);
2373 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2375 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2377 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2378 unsigned long addr, pmd_t pmd);
2379 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2382 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2383 unsigned long size);
2384 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2385 unsigned long size, struct zap_details *details);
2386 static inline void zap_vma_pages(struct vm_area_struct *vma)
2388 zap_page_range_single(vma, vma->vm_start,
2389 vma->vm_end - vma->vm_start, NULL);
2391 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2392 struct vm_area_struct *start_vma, unsigned long start,
2393 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2395 struct mmu_notifier_range;
2397 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2398 unsigned long end, unsigned long floor, unsigned long ceiling);
2400 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2401 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2402 pte_t **ptepp, spinlock_t **ptlp);
2403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2404 void *buf, int len, int write);
2406 extern void truncate_pagecache(struct inode *inode, loff_t new);
2407 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2408 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2409 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2410 int generic_error_remove_folio(struct address_space *mapping,
2411 struct folio *folio);
2413 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2414 unsigned long address, struct pt_regs *regs);
2417 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2418 unsigned long address, unsigned int flags,
2419 struct pt_regs *regs);
2420 extern int fixup_user_fault(struct mm_struct *mm,
2421 unsigned long address, unsigned int fault_flags,
2423 void unmap_mapping_pages(struct address_space *mapping,
2424 pgoff_t start, pgoff_t nr, bool even_cows);
2425 void unmap_mapping_range(struct address_space *mapping,
2426 loff_t const holebegin, loff_t const holelen, int even_cows);
2428 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2429 unsigned long address, unsigned int flags,
2430 struct pt_regs *regs)
2432 /* should never happen if there's no MMU */
2434 return VM_FAULT_SIGBUS;
2436 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2437 unsigned int fault_flags, bool *unlocked)
2439 /* should never happen if there's no MMU */
2443 static inline void unmap_mapping_pages(struct address_space *mapping,
2444 pgoff_t start, pgoff_t nr, bool even_cows) { }
2445 static inline void unmap_mapping_range(struct address_space *mapping,
2446 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2449 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen)
2452 unmap_mapping_range(mapping, holebegin, holelen, 0);
2455 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2456 unsigned long addr);
2458 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2459 void *buf, int len, unsigned int gup_flags);
2460 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2461 void *buf, int len, unsigned int gup_flags);
2463 long get_user_pages_remote(struct mm_struct *mm,
2464 unsigned long start, unsigned long nr_pages,
2465 unsigned int gup_flags, struct page **pages,
2467 long pin_user_pages_remote(struct mm_struct *mm,
2468 unsigned long start, unsigned long nr_pages,
2469 unsigned int gup_flags, struct page **pages,
2473 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2475 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2478 struct vm_area_struct **vmap)
2481 struct vm_area_struct *vma;
2484 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2485 return ERR_PTR(-EINVAL);
2487 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2490 return ERR_PTR(got);
2492 vma = vma_lookup(mm, addr);
2493 if (WARN_ON_ONCE(!vma)) {
2495 return ERR_PTR(-EINVAL);
2502 long get_user_pages(unsigned long start, unsigned long nr_pages,
2503 unsigned int gup_flags, struct page **pages);
2504 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2505 unsigned int gup_flags, struct page **pages);
2506 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2507 struct page **pages, unsigned int gup_flags);
2508 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2509 struct page **pages, unsigned int gup_flags);
2510 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2511 struct folio **folios, unsigned int max_folios,
2514 int get_user_pages_fast(unsigned long start, int nr_pages,
2515 unsigned int gup_flags, struct page **pages);
2516 int pin_user_pages_fast(unsigned long start, int nr_pages,
2517 unsigned int gup_flags, struct page **pages);
2518 void folio_add_pin(struct folio *folio);
2520 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2521 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2522 struct task_struct *task, bool bypass_rlim);
2525 struct page *get_dump_page(unsigned long addr);
2527 bool folio_mark_dirty(struct folio *folio);
2528 bool set_page_dirty(struct page *page);
2529 int set_page_dirty_lock(struct page *page);
2531 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2533 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2534 unsigned long old_addr, struct vm_area_struct *new_vma,
2535 unsigned long new_addr, unsigned long len,
2536 bool need_rmap_locks, bool for_stack);
2539 * Flags used by change_protection(). For now we make it a bitmap so
2540 * that we can pass in multiple flags just like parameters. However
2541 * for now all the callers are only use one of the flags at the same
2545 * Whether we should manually check if we can map individual PTEs writable,
2546 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2547 * PTEs automatically in a writable mapping.
2549 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2550 /* Whether this protection change is for NUMA hints */
2551 #define MM_CP_PROT_NUMA (1UL << 1)
2552 /* Whether this change is for write protecting */
2553 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2554 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2555 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2556 MM_CP_UFFD_WP_RESOLVE)
2558 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2559 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2560 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2563 * We want to check manually if we can change individual PTEs writable
2564 * if we can't do that automatically for all PTEs in a mapping. For
2565 * private mappings, that's always the case when we have write
2566 * permissions as we properly have to handle COW.
2568 if (vma->vm_flags & VM_SHARED)
2569 return vma_wants_writenotify(vma, vma->vm_page_prot);
2570 return !!(vma->vm_flags & VM_WRITE);
2573 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2575 extern long change_protection(struct mmu_gather *tlb,
2576 struct vm_area_struct *vma, unsigned long start,
2577 unsigned long end, unsigned long cp_flags);
2578 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2579 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2580 unsigned long start, unsigned long end, unsigned long newflags);
2583 * doesn't attempt to fault and will return short.
2585 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2586 unsigned int gup_flags, struct page **pages);
2588 static inline bool get_user_page_fast_only(unsigned long addr,
2589 unsigned int gup_flags, struct page **pagep)
2591 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2594 * per-process(per-mm_struct) statistics.
2596 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2598 return percpu_counter_read_positive(&mm->rss_stat[member]);
2601 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2603 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2605 percpu_counter_add(&mm->rss_stat[member], value);
2607 mm_trace_rss_stat(mm, member);
2610 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2612 percpu_counter_inc(&mm->rss_stat[member]);
2614 mm_trace_rss_stat(mm, member);
2617 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2619 percpu_counter_dec(&mm->rss_stat[member]);
2621 mm_trace_rss_stat(mm, member);
2624 /* Optimized variant when folio is already known not to be anon */
2625 static inline int mm_counter_file(struct folio *folio)
2627 if (folio_test_swapbacked(folio))
2628 return MM_SHMEMPAGES;
2629 return MM_FILEPAGES;
2632 static inline int mm_counter(struct folio *folio)
2634 if (folio_test_anon(folio))
2635 return MM_ANONPAGES;
2636 return mm_counter_file(folio);
2639 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2641 return get_mm_counter(mm, MM_FILEPAGES) +
2642 get_mm_counter(mm, MM_ANONPAGES) +
2643 get_mm_counter(mm, MM_SHMEMPAGES);
2646 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2648 return max(mm->hiwater_rss, get_mm_rss(mm));
2651 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2653 return max(mm->hiwater_vm, mm->total_vm);
2656 static inline void update_hiwater_rss(struct mm_struct *mm)
2658 unsigned long _rss = get_mm_rss(mm);
2660 if ((mm)->hiwater_rss < _rss)
2661 (mm)->hiwater_rss = _rss;
2664 static inline void update_hiwater_vm(struct mm_struct *mm)
2666 if (mm->hiwater_vm < mm->total_vm)
2667 mm->hiwater_vm = mm->total_vm;
2670 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2672 mm->hiwater_rss = get_mm_rss(mm);
2675 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2676 struct mm_struct *mm)
2678 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2680 if (*maxrss < hiwater_rss)
2681 *maxrss = hiwater_rss;
2684 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2685 static inline int pte_special(pte_t pte)
2690 static inline pte_t pte_mkspecial(pte_t pte)
2696 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2697 static inline int pte_devmap(pte_t pte)
2703 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2705 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2709 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2713 #ifdef __PAGETABLE_P4D_FOLDED
2714 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2715 unsigned long address)
2720 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2723 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2724 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2725 unsigned long address)
2729 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2730 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2733 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2735 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2737 if (mm_pud_folded(mm))
2739 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2742 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2744 if (mm_pud_folded(mm))
2746 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2750 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2751 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2752 unsigned long address)
2757 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2758 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2761 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2763 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2765 if (mm_pmd_folded(mm))
2767 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2770 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2772 if (mm_pmd_folded(mm))
2774 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2779 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2781 atomic_long_set(&mm->pgtables_bytes, 0);
2784 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2786 return atomic_long_read(&mm->pgtables_bytes);
2789 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2791 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2794 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2796 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2800 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2801 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2806 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2807 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2810 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2811 int __pte_alloc_kernel(pmd_t *pmd);
2813 #if defined(CONFIG_MMU)
2815 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2816 unsigned long address)
2818 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2819 NULL : p4d_offset(pgd, address);
2822 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2823 unsigned long address)
2825 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2826 NULL : pud_offset(p4d, address);
2829 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2831 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2832 NULL: pmd_offset(pud, address);
2834 #endif /* CONFIG_MMU */
2836 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2838 return page_ptdesc(virt_to_page(x));
2841 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2843 return page_to_virt(ptdesc_page(pt));
2846 static inline void *ptdesc_address(const struct ptdesc *pt)
2848 return folio_address(ptdesc_folio(pt));
2851 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2853 return folio_test_reserved(ptdesc_folio(pt));
2857 * pagetable_alloc - Allocate pagetables
2859 * @order: desired pagetable order
2861 * pagetable_alloc allocates memory for page tables as well as a page table
2862 * descriptor to describe that memory.
2864 * Return: The ptdesc describing the allocated page tables.
2866 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2868 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2870 return page_ptdesc(page);
2872 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2875 * pagetable_free - Free pagetables
2876 * @pt: The page table descriptor
2878 * pagetable_free frees the memory of all page tables described by a page
2879 * table descriptor and the memory for the descriptor itself.
2881 static inline void pagetable_free(struct ptdesc *pt)
2883 struct page *page = ptdesc_page(pt);
2885 __free_pages(page, compound_order(page));
2888 #if USE_SPLIT_PTE_PTLOCKS
2889 #if ALLOC_SPLIT_PTLOCKS
2890 void __init ptlock_cache_init(void);
2891 bool ptlock_alloc(struct ptdesc *ptdesc);
2892 void ptlock_free(struct ptdesc *ptdesc);
2894 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2898 #else /* ALLOC_SPLIT_PTLOCKS */
2899 static inline void ptlock_cache_init(void)
2903 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2908 static inline void ptlock_free(struct ptdesc *ptdesc)
2912 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2914 return &ptdesc->ptl;
2916 #endif /* ALLOC_SPLIT_PTLOCKS */
2918 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2920 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2923 static inline bool ptlock_init(struct ptdesc *ptdesc)
2926 * prep_new_page() initialize page->private (and therefore page->ptl)
2927 * with 0. Make sure nobody took it in use in between.
2929 * It can happen if arch try to use slab for page table allocation:
2930 * slab code uses page->slab_cache, which share storage with page->ptl.
2932 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2933 if (!ptlock_alloc(ptdesc))
2935 spin_lock_init(ptlock_ptr(ptdesc));
2939 #else /* !USE_SPLIT_PTE_PTLOCKS */
2941 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2943 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2945 return &mm->page_table_lock;
2947 static inline void ptlock_cache_init(void) {}
2948 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2949 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2950 #endif /* USE_SPLIT_PTE_PTLOCKS */
2952 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2954 struct folio *folio = ptdesc_folio(ptdesc);
2956 if (!ptlock_init(ptdesc))
2958 __folio_set_pgtable(folio);
2959 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2963 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2965 struct folio *folio = ptdesc_folio(ptdesc);
2967 ptlock_free(ptdesc);
2968 __folio_clear_pgtable(folio);
2969 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2972 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2973 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2975 return __pte_offset_map(pmd, addr, NULL);
2978 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2979 unsigned long addr, spinlock_t **ptlp);
2980 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2981 unsigned long addr, spinlock_t **ptlp)
2985 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2989 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2990 unsigned long addr, spinlock_t **ptlp);
2992 #define pte_unmap_unlock(pte, ptl) do { \
2997 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2999 #define pte_alloc_map(mm, pmd, address) \
3000 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3002 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3003 (pte_alloc(mm, pmd) ? \
3004 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3006 #define pte_alloc_kernel(pmd, address) \
3007 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3008 NULL: pte_offset_kernel(pmd, address))
3010 #if USE_SPLIT_PMD_PTLOCKS
3012 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3014 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3015 return virt_to_page((void *)((unsigned long) pmd & mask));
3018 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3020 return page_ptdesc(pmd_pgtable_page(pmd));
3023 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3025 return ptlock_ptr(pmd_ptdesc(pmd));
3028 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3031 ptdesc->pmd_huge_pte = NULL;
3033 return ptlock_init(ptdesc);
3036 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3039 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3041 ptlock_free(ptdesc);
3044 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3048 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3050 return &mm->page_table_lock;
3053 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3054 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3056 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3060 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3062 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3067 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3069 struct folio *folio = ptdesc_folio(ptdesc);
3071 if (!pmd_ptlock_init(ptdesc))
3073 __folio_set_pgtable(folio);
3074 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3078 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3080 struct folio *folio = ptdesc_folio(ptdesc);
3082 pmd_ptlock_free(ptdesc);
3083 __folio_clear_pgtable(folio);
3084 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3088 * No scalability reason to split PUD locks yet, but follow the same pattern
3089 * as the PMD locks to make it easier if we decide to. The VM should not be
3090 * considered ready to switch to split PUD locks yet; there may be places
3091 * which need to be converted from page_table_lock.
3093 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3095 return &mm->page_table_lock;
3098 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3100 spinlock_t *ptl = pud_lockptr(mm, pud);
3106 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3108 struct folio *folio = ptdesc_folio(ptdesc);
3110 __folio_set_pgtable(folio);
3111 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3114 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3116 struct folio *folio = ptdesc_folio(ptdesc);
3118 __folio_clear_pgtable(folio);
3119 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3122 extern void __init pagecache_init(void);
3123 extern void free_initmem(void);
3126 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3127 * into the buddy system. The freed pages will be poisoned with pattern
3128 * "poison" if it's within range [0, UCHAR_MAX].
3129 * Return pages freed into the buddy system.
3131 extern unsigned long free_reserved_area(void *start, void *end,
3132 int poison, const char *s);
3134 extern void adjust_managed_page_count(struct page *page, long count);
3136 extern void reserve_bootmem_region(phys_addr_t start,
3137 phys_addr_t end, int nid);
3139 /* Free the reserved page into the buddy system, so it gets managed. */
3140 void free_reserved_page(struct page *page);
3141 #define free_highmem_page(page) free_reserved_page(page)
3143 static inline void mark_page_reserved(struct page *page)
3145 SetPageReserved(page);
3146 adjust_managed_page_count(page, -1);
3149 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3151 free_reserved_page(ptdesc_page(pt));
3155 * Default method to free all the __init memory into the buddy system.
3156 * The freed pages will be poisoned with pattern "poison" if it's within
3157 * range [0, UCHAR_MAX].
3158 * Return pages freed into the buddy system.
3160 static inline unsigned long free_initmem_default(int poison)
3162 extern char __init_begin[], __init_end[];
3164 return free_reserved_area(&__init_begin, &__init_end,
3165 poison, "unused kernel image (initmem)");
3168 static inline unsigned long get_num_physpages(void)
3171 unsigned long phys_pages = 0;
3173 for_each_online_node(nid)
3174 phys_pages += node_present_pages(nid);
3180 * Using memblock node mappings, an architecture may initialise its
3181 * zones, allocate the backing mem_map and account for memory holes in an
3182 * architecture independent manner.
3184 * An architecture is expected to register range of page frames backed by
3185 * physical memory with memblock_add[_node]() before calling
3186 * free_area_init() passing in the PFN each zone ends at. At a basic
3187 * usage, an architecture is expected to do something like
3189 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3191 * for_each_valid_physical_page_range()
3192 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3193 * free_area_init(max_zone_pfns);
3195 void free_area_init(unsigned long *max_zone_pfn);
3196 unsigned long node_map_pfn_alignment(void);
3197 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3198 unsigned long end_pfn);
3199 extern void get_pfn_range_for_nid(unsigned int nid,
3200 unsigned long *start_pfn, unsigned long *end_pfn);
3203 static inline int early_pfn_to_nid(unsigned long pfn)
3208 /* please see mm/page_alloc.c */
3209 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3212 extern void mem_init(void);
3213 extern void __init mmap_init(void);
3215 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3216 static inline void show_mem(void)
3218 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3220 extern long si_mem_available(void);
3221 extern void si_meminfo(struct sysinfo * val);
3222 extern void si_meminfo_node(struct sysinfo *val, int nid);
3224 extern __printf(3, 4)
3225 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3227 extern void setup_per_cpu_pageset(void);
3230 extern atomic_long_t mmap_pages_allocated;
3231 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3233 /* interval_tree.c */
3234 void vma_interval_tree_insert(struct vm_area_struct *node,
3235 struct rb_root_cached *root);
3236 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3237 struct vm_area_struct *prev,
3238 struct rb_root_cached *root);
3239 void vma_interval_tree_remove(struct vm_area_struct *node,
3240 struct rb_root_cached *root);
3241 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3242 unsigned long start, unsigned long last);
3243 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3244 unsigned long start, unsigned long last);
3246 #define vma_interval_tree_foreach(vma, root, start, last) \
3247 for (vma = vma_interval_tree_iter_first(root, start, last); \
3248 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3250 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3251 struct rb_root_cached *root);
3252 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3253 struct rb_root_cached *root);
3254 struct anon_vma_chain *
3255 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3256 unsigned long start, unsigned long last);
3257 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3258 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3259 #ifdef CONFIG_DEBUG_VM_RB
3260 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3263 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3264 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3265 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3268 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3269 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3270 unsigned long start, unsigned long end, pgoff_t pgoff,
3271 struct vm_area_struct *next);
3272 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3273 unsigned long start, unsigned long end, pgoff_t pgoff);
3274 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3275 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3276 extern void unlink_file_vma(struct vm_area_struct *);
3277 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3278 unsigned long addr, unsigned long len, pgoff_t pgoff,
3279 bool *need_rmap_locks);
3280 extern void exit_mmap(struct mm_struct *);
3281 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3282 struct vm_area_struct *prev,
3283 struct vm_area_struct *vma,
3284 unsigned long start, unsigned long end,
3285 unsigned long vm_flags,
3286 struct mempolicy *policy,
3287 struct vm_userfaultfd_ctx uffd_ctx,
3288 struct anon_vma_name *anon_name);
3290 /* We are about to modify the VMA's flags. */
3291 static inline struct vm_area_struct
3292 *vma_modify_flags(struct vma_iterator *vmi,
3293 struct vm_area_struct *prev,
3294 struct vm_area_struct *vma,
3295 unsigned long start, unsigned long end,
3296 unsigned long new_flags)
3298 return vma_modify(vmi, prev, vma, start, end, new_flags,
3299 vma_policy(vma), vma->vm_userfaultfd_ctx,
3300 anon_vma_name(vma));
3303 /* We are about to modify the VMA's flags and/or anon_name. */
3304 static inline struct vm_area_struct
3305 *vma_modify_flags_name(struct vma_iterator *vmi,
3306 struct vm_area_struct *prev,
3307 struct vm_area_struct *vma,
3308 unsigned long start,
3310 unsigned long new_flags,
3311 struct anon_vma_name *new_name)
3313 return vma_modify(vmi, prev, vma, start, end, new_flags,
3314 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3317 /* We are about to modify the VMA's memory policy. */
3318 static inline struct vm_area_struct
3319 *vma_modify_policy(struct vma_iterator *vmi,
3320 struct vm_area_struct *prev,
3321 struct vm_area_struct *vma,
3322 unsigned long start, unsigned long end,
3323 struct mempolicy *new_pol)
3325 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3326 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3329 /* We are about to modify the VMA's flags and/or uffd context. */
3330 static inline struct vm_area_struct
3331 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3332 struct vm_area_struct *prev,
3333 struct vm_area_struct *vma,
3334 unsigned long start, unsigned long end,
3335 unsigned long new_flags,
3336 struct vm_userfaultfd_ctx new_ctx)
3338 return vma_modify(vmi, prev, vma, start, end, new_flags,
3339 vma_policy(vma), new_ctx, anon_vma_name(vma));
3342 static inline int check_data_rlimit(unsigned long rlim,
3344 unsigned long start,
3345 unsigned long end_data,
3346 unsigned long start_data)
3348 if (rlim < RLIM_INFINITY) {
3349 if (((new - start) + (end_data - start_data)) > rlim)
3356 extern int mm_take_all_locks(struct mm_struct *mm);
3357 extern void mm_drop_all_locks(struct mm_struct *mm);
3359 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3360 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3361 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3362 extern struct file *get_task_exe_file(struct task_struct *task);
3364 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3365 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3367 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3368 const struct vm_special_mapping *sm);
3369 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3370 unsigned long addr, unsigned long len,
3371 unsigned long flags,
3372 const struct vm_special_mapping *spec);
3373 /* This is an obsolete alternative to _install_special_mapping. */
3374 extern int install_special_mapping(struct mm_struct *mm,
3375 unsigned long addr, unsigned long len,
3376 unsigned long flags, struct page **pages);
3378 unsigned long randomize_stack_top(unsigned long stack_top);
3379 unsigned long randomize_page(unsigned long start, unsigned long range);
3382 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3383 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3385 static inline unsigned long
3386 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3387 unsigned long pgoff, unsigned long flags)
3389 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3392 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3393 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3394 struct list_head *uf);
3395 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3396 unsigned long len, unsigned long prot, unsigned long flags,
3397 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3398 struct list_head *uf);
3399 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3400 unsigned long start, size_t len, struct list_head *uf,
3402 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3403 struct list_head *uf);
3404 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3407 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3408 unsigned long start, unsigned long end,
3409 struct list_head *uf, bool unlock);
3410 extern int __mm_populate(unsigned long addr, unsigned long len,
3412 static inline void mm_populate(unsigned long addr, unsigned long len)
3415 (void) __mm_populate(addr, len, 1);
3418 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3421 /* This takes the mm semaphore itself */
3422 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3423 extern int vm_munmap(unsigned long, size_t);
3424 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3425 unsigned long, unsigned long,
3426 unsigned long, unsigned long);
3428 struct vm_unmapped_area_info {
3429 #define VM_UNMAPPED_AREA_TOPDOWN 1
3430 unsigned long flags;
3431 unsigned long length;
3432 unsigned long low_limit;
3433 unsigned long high_limit;
3434 unsigned long align_mask;
3435 unsigned long align_offset;
3436 unsigned long start_gap;
3439 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3442 extern void truncate_inode_pages(struct address_space *, loff_t);
3443 extern void truncate_inode_pages_range(struct address_space *,
3444 loff_t lstart, loff_t lend);
3445 extern void truncate_inode_pages_final(struct address_space *);
3447 /* generic vm_area_ops exported for stackable file systems */
3448 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3449 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3450 pgoff_t start_pgoff, pgoff_t end_pgoff);
3451 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3453 extern unsigned long stack_guard_gap;
3454 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3455 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3456 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3458 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3459 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3461 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3462 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3463 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3464 struct vm_area_struct **pprev);
3467 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3468 * NULL if none. Assume start_addr < end_addr.
3470 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3471 unsigned long start_addr, unsigned long end_addr);
3474 * vma_lookup() - Find a VMA at a specific address
3475 * @mm: The process address space.
3476 * @addr: The user address.
3478 * Return: The vm_area_struct at the given address, %NULL otherwise.
3481 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3483 return mtree_load(&mm->mm_mt, addr);
3486 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3488 if (vma->vm_flags & VM_GROWSDOWN)
3489 return stack_guard_gap;
3491 /* See reasoning around the VM_SHADOW_STACK definition */
3492 if (vma->vm_flags & VM_SHADOW_STACK)
3498 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3500 unsigned long gap = stack_guard_start_gap(vma);
3501 unsigned long vm_start = vma->vm_start;
3504 if (vm_start > vma->vm_start)
3509 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3511 unsigned long vm_end = vma->vm_end;
3513 if (vma->vm_flags & VM_GROWSUP) {
3514 vm_end += stack_guard_gap;
3515 if (vm_end < vma->vm_end)
3516 vm_end = -PAGE_SIZE;
3521 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3523 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3526 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3527 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3528 unsigned long vm_start, unsigned long vm_end)
3530 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3532 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3538 static inline bool range_in_vma(struct vm_area_struct *vma,
3539 unsigned long start, unsigned long end)
3541 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3545 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3546 void vma_set_page_prot(struct vm_area_struct *vma);
3548 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3552 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3554 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3558 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3560 #ifdef CONFIG_NUMA_BALANCING
3561 unsigned long change_prot_numa(struct vm_area_struct *vma,
3562 unsigned long start, unsigned long end);
3565 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3566 unsigned long addr);
3567 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3568 unsigned long pfn, unsigned long size, pgprot_t);
3569 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3570 unsigned long pfn, unsigned long size, pgprot_t prot);
3571 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3572 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3573 struct page **pages, unsigned long *num);
3574 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3576 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3578 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3580 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3581 unsigned long pfn, pgprot_t pgprot);
3582 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3584 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3585 unsigned long addr, pfn_t pfn);
3586 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3588 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3589 unsigned long addr, struct page *page)
3591 int err = vm_insert_page(vma, addr, page);
3594 return VM_FAULT_OOM;
3595 if (err < 0 && err != -EBUSY)
3596 return VM_FAULT_SIGBUS;
3598 return VM_FAULT_NOPAGE;
3601 #ifndef io_remap_pfn_range
3602 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3603 unsigned long addr, unsigned long pfn,
3604 unsigned long size, pgprot_t prot)
3606 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3610 static inline vm_fault_t vmf_error(int err)
3613 return VM_FAULT_OOM;
3614 else if (err == -EHWPOISON)
3615 return VM_FAULT_HWPOISON;
3616 return VM_FAULT_SIGBUS;
3620 * Convert errno to return value for ->page_mkwrite() calls.
3622 * This should eventually be merged with vmf_error() above, but will need a
3623 * careful audit of all vmf_error() callers.
3625 static inline vm_fault_t vmf_fs_error(int err)
3628 return VM_FAULT_LOCKED;
3629 if (err == -EFAULT || err == -EAGAIN)
3630 return VM_FAULT_NOPAGE;
3632 return VM_FAULT_OOM;
3633 /* -ENOSPC, -EDQUOT, -EIO ... */
3634 return VM_FAULT_SIGBUS;
3637 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3638 unsigned int foll_flags);
3640 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3642 if (vm_fault & VM_FAULT_OOM)
3644 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3645 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3646 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3652 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3653 * a (NUMA hinting) fault is required.
3655 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3659 * If callers don't want to honor NUMA hinting faults, no need to
3660 * determine if we would actually have to trigger a NUMA hinting fault.
3662 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3666 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3668 * Requiring a fault here even for inaccessible VMAs would mean that
3669 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3670 * refuses to process NUMA hinting faults in inaccessible VMAs.
3672 return !vma_is_accessible(vma);
3675 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3676 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3677 unsigned long size, pte_fn_t fn, void *data);
3678 extern int apply_to_existing_page_range(struct mm_struct *mm,
3679 unsigned long address, unsigned long size,
3680 pte_fn_t fn, void *data);
3682 #ifdef CONFIG_PAGE_POISONING
3683 extern void __kernel_poison_pages(struct page *page, int numpages);
3684 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3685 extern bool _page_poisoning_enabled_early;
3686 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3687 static inline bool page_poisoning_enabled(void)
3689 return _page_poisoning_enabled_early;
3692 * For use in fast paths after init_mem_debugging() has run, or when a
3693 * false negative result is not harmful when called too early.
3695 static inline bool page_poisoning_enabled_static(void)
3697 return static_branch_unlikely(&_page_poisoning_enabled);
3699 static inline void kernel_poison_pages(struct page *page, int numpages)
3701 if (page_poisoning_enabled_static())
3702 __kernel_poison_pages(page, numpages);
3704 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3706 if (page_poisoning_enabled_static())
3707 __kernel_unpoison_pages(page, numpages);
3710 static inline bool page_poisoning_enabled(void) { return false; }
3711 static inline bool page_poisoning_enabled_static(void) { return false; }
3712 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3713 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3714 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3717 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3718 static inline bool want_init_on_alloc(gfp_t flags)
3720 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3723 return flags & __GFP_ZERO;
3726 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3727 static inline bool want_init_on_free(void)
3729 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3733 extern bool _debug_pagealloc_enabled_early;
3734 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3736 static inline bool debug_pagealloc_enabled(void)
3738 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3739 _debug_pagealloc_enabled_early;
3743 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3744 * or when a false negative result is not harmful when called too early.
3746 static inline bool debug_pagealloc_enabled_static(void)
3748 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3751 return static_branch_unlikely(&_debug_pagealloc_enabled);
3755 * To support DEBUG_PAGEALLOC architecture must ensure that
3756 * __kernel_map_pages() never fails
3758 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3759 #ifdef CONFIG_DEBUG_PAGEALLOC
3760 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3762 if (debug_pagealloc_enabled_static())
3763 __kernel_map_pages(page, numpages, 1);
3766 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3768 if (debug_pagealloc_enabled_static())
3769 __kernel_map_pages(page, numpages, 0);
3772 extern unsigned int _debug_guardpage_minorder;
3773 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3775 static inline unsigned int debug_guardpage_minorder(void)
3777 return _debug_guardpage_minorder;
3780 static inline bool debug_guardpage_enabled(void)
3782 return static_branch_unlikely(&_debug_guardpage_enabled);
3785 static inline bool page_is_guard(struct page *page)
3787 if (!debug_guardpage_enabled())
3790 return PageGuard(page);
3793 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3794 static inline bool set_page_guard(struct zone *zone, struct page *page,
3797 if (!debug_guardpage_enabled())
3799 return __set_page_guard(zone, page, order);
3802 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3803 static inline void clear_page_guard(struct zone *zone, struct page *page,
3806 if (!debug_guardpage_enabled())
3808 __clear_page_guard(zone, page, order);
3811 #else /* CONFIG_DEBUG_PAGEALLOC */
3812 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3813 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3814 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3815 static inline bool debug_guardpage_enabled(void) { return false; }
3816 static inline bool page_is_guard(struct page *page) { return false; }
3817 static inline bool set_page_guard(struct zone *zone, struct page *page,
3818 unsigned int order) { return false; }
3819 static inline void clear_page_guard(struct zone *zone, struct page *page,
3820 unsigned int order) {}
3821 #endif /* CONFIG_DEBUG_PAGEALLOC */
3823 #ifdef __HAVE_ARCH_GATE_AREA
3824 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3825 extern int in_gate_area_no_mm(unsigned long addr);
3826 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3828 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3832 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3833 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3837 #endif /* __HAVE_ARCH_GATE_AREA */
3839 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3841 #ifdef CONFIG_SYSCTL
3842 extern int sysctl_drop_caches;
3843 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3847 void drop_slab(void);
3850 #define randomize_va_space 0
3852 extern int randomize_va_space;
3855 const char * arch_vma_name(struct vm_area_struct *vma);
3857 void print_vma_addr(char *prefix, unsigned long rip);
3859 static inline void print_vma_addr(char *prefix, unsigned long rip)
3864 void *sparse_buffer_alloc(unsigned long size);
3865 struct page * __populate_section_memmap(unsigned long pfn,
3866 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3867 struct dev_pagemap *pgmap);
3868 void pmd_init(void *addr);
3869 void pud_init(void *addr);
3870 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3871 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3872 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3873 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3874 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3875 struct vmem_altmap *altmap, struct page *reuse);
3876 void *vmemmap_alloc_block(unsigned long size, int node);
3878 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3879 struct vmem_altmap *altmap);
3880 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3881 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3882 unsigned long addr, unsigned long next);
3883 int vmemmap_check_pmd(pmd_t *pmd, int node,
3884 unsigned long addr, unsigned long next);
3885 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3886 int node, struct vmem_altmap *altmap);
3887 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3888 int node, struct vmem_altmap *altmap);
3889 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3890 struct vmem_altmap *altmap);
3891 void vmemmap_populate_print_last(void);
3892 #ifdef CONFIG_MEMORY_HOTPLUG
3893 void vmemmap_free(unsigned long start, unsigned long end,
3894 struct vmem_altmap *altmap);
3897 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3898 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3900 /* number of pfns from base where pfn_to_page() is valid */
3902 return altmap->reserve + altmap->free;
3906 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3907 unsigned long nr_pfns)
3909 altmap->alloc -= nr_pfns;
3912 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3917 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3918 unsigned long nr_pfns)
3923 #define VMEMMAP_RESERVE_NR 2
3924 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3925 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3926 struct dev_pagemap *pgmap)
3928 unsigned long nr_pages;
3929 unsigned long nr_vmemmap_pages;
3931 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3934 nr_pages = pgmap_vmemmap_nr(pgmap);
3935 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3937 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3938 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3940 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3943 * If we don't have an architecture override, use the generic rule
3945 #ifndef vmemmap_can_optimize
3946 #define vmemmap_can_optimize __vmemmap_can_optimize
3950 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3951 struct dev_pagemap *pgmap)
3957 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3958 unsigned long nr_pages);
3961 MF_COUNT_INCREASED = 1 << 0,
3962 MF_ACTION_REQUIRED = 1 << 1,
3963 MF_MUST_KILL = 1 << 2,
3964 MF_SOFT_OFFLINE = 1 << 3,
3965 MF_UNPOISON = 1 << 4,
3966 MF_SW_SIMULATED = 1 << 5,
3967 MF_NO_RETRY = 1 << 6,
3968 MF_MEM_PRE_REMOVE = 1 << 7,
3970 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3971 unsigned long count, int mf_flags);
3972 extern int memory_failure(unsigned long pfn, int flags);
3973 extern void memory_failure_queue_kick(int cpu);
3974 extern int unpoison_memory(unsigned long pfn);
3975 extern atomic_long_t num_poisoned_pages __read_mostly;
3976 extern int soft_offline_page(unsigned long pfn, int flags);
3977 #ifdef CONFIG_MEMORY_FAILURE
3979 * Sysfs entries for memory failure handling statistics.
3981 extern const struct attribute_group memory_failure_attr_group;
3982 extern void memory_failure_queue(unsigned long pfn, int flags);
3983 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3984 bool *migratable_cleared);
3985 void num_poisoned_pages_inc(unsigned long pfn);
3986 void num_poisoned_pages_sub(unsigned long pfn, long i);
3988 static inline void memory_failure_queue(unsigned long pfn, int flags)
3992 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3993 bool *migratable_cleared)
3998 static inline void num_poisoned_pages_inc(unsigned long pfn)
4002 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4007 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4008 extern void memblk_nr_poison_inc(unsigned long pfn);
4009 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4011 static inline void memblk_nr_poison_inc(unsigned long pfn)
4015 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4020 #ifndef arch_memory_failure
4021 static inline int arch_memory_failure(unsigned long pfn, int flags)
4027 #ifndef arch_is_platform_page
4028 static inline bool arch_is_platform_page(u64 paddr)
4035 * Error handlers for various types of pages.
4038 MF_IGNORED, /* Error: cannot be handled */
4039 MF_FAILED, /* Error: handling failed */
4040 MF_DELAYED, /* Will be handled later */
4041 MF_RECOVERED, /* Successfully recovered */
4044 enum mf_action_page_type {
4046 MF_MSG_KERNEL_HIGH_ORDER,
4047 MF_MSG_DIFFERENT_COMPOUND,
4050 MF_MSG_GET_HWPOISON,
4051 MF_MSG_UNMAP_FAILED,
4052 MF_MSG_DIRTY_SWAPCACHE,
4053 MF_MSG_CLEAN_SWAPCACHE,
4054 MF_MSG_DIRTY_MLOCKED_LRU,
4055 MF_MSG_CLEAN_MLOCKED_LRU,
4056 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4057 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4060 MF_MSG_TRUNCATED_LRU,
4064 MF_MSG_ALREADY_POISONED,
4068 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4069 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4070 int copy_user_large_folio(struct folio *dst, struct folio *src,
4071 unsigned long addr_hint,
4072 struct vm_area_struct *vma);
4073 long copy_folio_from_user(struct folio *dst_folio,
4074 const void __user *usr_src,
4075 bool allow_pagefault);
4078 * vma_is_special_huge - Are transhuge page-table entries considered special?
4079 * @vma: Pointer to the struct vm_area_struct to consider
4081 * Whether transhuge page-table entries are considered "special" following
4082 * the definition in vm_normal_page().
4084 * Return: true if transhuge page-table entries should be considered special,
4087 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4089 return vma_is_dax(vma) || (vma->vm_file &&
4090 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4095 #if MAX_NUMNODES > 1
4096 void __init setup_nr_node_ids(void);
4098 static inline void setup_nr_node_ids(void) {}
4101 extern int memcmp_pages(struct page *page1, struct page *page2);
4103 static inline int pages_identical(struct page *page1, struct page *page2)
4105 return !memcmp_pages(page1, page2);
4108 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4109 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4110 pgoff_t first_index, pgoff_t nr,
4111 pgoff_t bitmap_pgoff,
4112 unsigned long *bitmap,
4116 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4117 pgoff_t first_index, pgoff_t nr);
4120 extern int sysctl_nr_trim_pages;
4122 #ifdef CONFIG_PRINTK
4123 void mem_dump_obj(void *object);
4125 static inline void mem_dump_obj(void *object) {}
4129 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4131 * @seals: the seals to check
4132 * @vma: the vma to operate on
4134 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4135 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4137 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4139 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4141 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4142 * write seals are active.
4144 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4148 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4149 * MAP_SHARED and read-only, take care to not allow mprotect to
4150 * revert protections on such mappings. Do this only for shared
4151 * mappings. For private mappings, don't need to mask
4152 * VM_MAYWRITE as we still want them to be COW-writable.
4154 if (vma->vm_flags & VM_SHARED)
4155 vm_flags_clear(vma, VM_MAYWRITE);
4161 #ifdef CONFIG_ANON_VMA_NAME
4162 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4163 unsigned long len_in,
4164 struct anon_vma_name *anon_name);
4167 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4168 unsigned long len_in, struct anon_vma_name *anon_name) {
4173 #ifdef CONFIG_UNACCEPTED_MEMORY
4175 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4176 void accept_memory(phys_addr_t start, phys_addr_t end);
4180 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4186 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4192 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4194 phys_addr_t paddr = pfn << PAGE_SHIFT;
4196 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4199 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4200 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4202 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4204 #endif /* _LINUX_MM_H */