1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
38 struct anon_vma_chain;
43 extern int sysctl_page_lock_unfairness;
45 void mm_core_init(void);
46 void init_mm_internals(void);
48 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
51 static inline void set_max_mapnr(unsigned long limit)
56 static inline void set_max_mapnr(unsigned long limit) { }
59 extern atomic_long_t _totalram_pages;
60 static inline unsigned long totalram_pages(void)
62 return (unsigned long)atomic_long_read(&_totalram_pages);
65 static inline void totalram_pages_inc(void)
67 atomic_long_inc(&_totalram_pages);
70 static inline void totalram_pages_dec(void)
72 atomic_long_dec(&_totalram_pages);
75 static inline void totalram_pages_add(long count)
77 atomic_long_add(count, &_totalram_pages);
80 extern void * high_memory;
81 extern int page_cluster;
82 extern const int page_cluster_max;
85 extern int sysctl_legacy_va_layout;
87 #define sysctl_legacy_va_layout 0
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern int mmap_rnd_bits_max __ro_after_init;
93 extern int mmap_rnd_bits __read_mostly;
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
101 #ifndef DIRECT_MAP_PHYSMEM_END
102 # ifdef MAX_PHYSMEM_BITS
103 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
105 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
109 #include <asm/page.h>
110 #include <asm/processor.h>
113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121 #define lm_alias(x) __va(__pa_symbol(x))
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X) (0)
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 96
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statements if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
151 unsigned long *_pp = (void *)page;
153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 96);
158 switch (sizeof(struct page)) {
185 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
189 * Default maximum number of active map areas, this limits the number of vmas
190 * per mm struct. Users can overwrite this number by sysctl but there is a
193 * When a program's coredump is generated as ELF format, a section is created
194 * per a vma. In ELF, the number of sections is represented in unsigned short.
195 * This means the number of sections should be smaller than 65535 at coredump.
196 * Because the kernel adds some informative sections to a image of program at
197 * generating coredump, we need some margin. The number of extra sections is
198 * 1-3 now and depends on arch. We use "5" as safe margin, here.
200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201 * not a hard limit any more. Although some userspace tools can be surprised by
204 #define MAPCOUNT_ELF_CORE_MARGIN (5)
205 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
207 extern int sysctl_max_map_count;
209 extern unsigned long sysctl_user_reserve_kbytes;
210 extern unsigned long sysctl_admin_reserve_kbytes;
212 extern int sysctl_overcommit_memory;
213 extern int sysctl_overcommit_ratio;
214 extern unsigned long sysctl_overcommit_kbytes;
216 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
218 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
220 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
225 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
227 #define nth_page(page,n) ((page) + (n))
228 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
231 /* to align the pointer to the (next) page boundary */
232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
234 /* to align the pointer to the (prev) page boundary */
235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
240 static inline struct folio *lru_to_folio(struct list_head *head)
242 return list_entry((head)->prev, struct folio, lru);
245 void setup_initial_init_mm(void *start_code, void *end_code,
246 void *end_data, void *brk);
249 * Linux kernel virtual memory manager primitives.
250 * The idea being to have a "virtual" mm in the same way
251 * we have a virtual fs - giving a cleaner interface to the
252 * mm details, and allowing different kinds of memory mappings
253 * (from shared memory to executable loading to arbitrary
257 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
258 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259 void vm_area_free(struct vm_area_struct *);
260 /* Use only if VMA has no other users */
261 void __vm_area_free(struct vm_area_struct *vma);
264 extern struct rb_root nommu_region_tree;
265 extern struct rw_semaphore nommu_region_sem;
267 extern unsigned int kobjsize(const void *objp);
271 * vm_flags in vm_area_struct, see mm_types.h.
272 * When changing, update also include/trace/events/mmflags.h
274 #define VM_NONE 0x00000000
276 #define VM_READ 0x00000001 /* currently active flags */
277 #define VM_WRITE 0x00000002
278 #define VM_EXEC 0x00000004
279 #define VM_SHARED 0x00000008
281 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
282 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
283 #define VM_MAYWRITE 0x00000020
284 #define VM_MAYEXEC 0x00000040
285 #define VM_MAYSHARE 0x00000080
287 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
289 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
290 #else /* CONFIG_MMU */
291 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
292 #define VM_UFFD_MISSING 0
293 #endif /* CONFIG_MMU */
294 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
295 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
297 #define VM_LOCKED 0x00002000
298 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
300 /* Used by sys_madvise() */
301 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
302 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
304 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
305 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
306 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
307 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
308 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
309 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
310 #define VM_SYNC 0x00800000 /* Synchronous page faults */
311 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
312 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
313 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
315 #ifdef CONFIG_MEM_SOFT_DIRTY
316 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
318 # define VM_SOFTDIRTY 0
321 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
322 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
323 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
324 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
326 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
327 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
343 #ifdef CONFIG_ARCH_HAS_PKEYS
344 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
345 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
346 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
347 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
348 #if CONFIG_ARCH_PKEY_BITS > 3
349 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
351 # define VM_PKEY_BIT3 0
353 #if CONFIG_ARCH_PKEY_BITS > 4
354 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
356 # define VM_PKEY_BIT4 0
358 #endif /* CONFIG_ARCH_HAS_PKEYS */
360 #ifdef CONFIG_X86_USER_SHADOW_STACK
362 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365 * These VMAs will get a single end guard page. This helps userspace protect
366 * itself from attacks. A single page is enough for current shadow stack archs
367 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
368 * for more details on the guard size.
370 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
373 #if defined(CONFIG_ARM64_GCS)
375 * arm64's Guarded Control Stack implements similar functionality and
376 * has similar constraints to shadow stacks.
378 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
381 #ifndef VM_SHADOW_STACK
382 # define VM_SHADOW_STACK VM_NONE
385 #if defined(CONFIG_X86)
386 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
387 #elif defined(CONFIG_PPC64)
388 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
389 #elif defined(CONFIG_PARISC)
390 # define VM_GROWSUP VM_ARCH_1
391 #elif defined(CONFIG_SPARC64)
392 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
393 # define VM_ARCH_CLEAR VM_SPARC_ADI
394 #elif defined(CONFIG_ARM64)
395 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
396 # define VM_ARCH_CLEAR VM_ARM64_BTI
397 #elif !defined(CONFIG_MMU)
398 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
401 #if defined(CONFIG_ARM64_MTE)
402 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
403 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
405 # define VM_MTE VM_NONE
406 # define VM_MTE_ALLOWED VM_NONE
410 # define VM_GROWSUP VM_NONE
413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414 # define VM_UFFD_MINOR_BIT 38
415 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417 # define VM_UFFD_MINOR VM_NONE
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
421 * This flag is used to connect VFIO to arch specific KVM code. It
422 * indicates that the memory under this VMA is safe for use with any
423 * non-cachable memory type inside KVM. Some VFIO devices, on some
424 * platforms, are thought to be unsafe and can cause machine crashes
425 * if KVM does not lock down the memory type.
428 #define VM_ALLOW_ANY_UNCACHED_BIT 39
429 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
431 #define VM_ALLOW_ANY_UNCACHED VM_NONE
435 #define VM_DROPPABLE_BIT 40
436 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
437 #elif defined(CONFIG_PPC32)
438 #define VM_DROPPABLE VM_ARCH_1
440 #define VM_DROPPABLE VM_NONE
444 /* VM is sealed, in vm_flags */
445 #define VM_SEALED _BITUL(63)
448 /* Bits set in the VMA until the stack is in its final location */
449 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
451 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
453 /* Common data flag combinations */
454 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
455 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
456 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
457 VM_MAYWRITE | VM_MAYEXEC)
458 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
459 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
461 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
462 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
465 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
466 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
469 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
471 #ifdef CONFIG_STACK_GROWSUP
472 #define VM_STACK VM_GROWSUP
473 #define VM_STACK_EARLY VM_GROWSDOWN
475 #define VM_STACK VM_GROWSDOWN
476 #define VM_STACK_EARLY 0
479 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
481 /* VMA basic access permission flags */
482 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
486 * Special vmas that are non-mergable, non-mlock()able.
488 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
490 /* This mask prevents VMA from being scanned with khugepaged */
491 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
493 /* This mask defines which mm->def_flags a process can inherit its parent */
494 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
496 /* This mask represents all the VMA flag bits used by mlock */
497 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
499 /* Arch-specific flags to clear when updating VM flags on protection change */
500 #ifndef VM_ARCH_CLEAR
501 # define VM_ARCH_CLEAR VM_NONE
503 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
506 * mapping from the currently active vm_flags protection bits (the
507 * low four bits) to a page protection mask..
511 * The default fault flags that should be used by most of the
512 * arch-specific page fault handlers.
514 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
515 FAULT_FLAG_KILLABLE | \
516 FAULT_FLAG_INTERRUPTIBLE)
519 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
520 * @flags: Fault flags.
522 * This is mostly used for places where we want to try to avoid taking
523 * the mmap_lock for too long a time when waiting for another condition
524 * to change, in which case we can try to be polite to release the
525 * mmap_lock in the first round to avoid potential starvation of other
526 * processes that would also want the mmap_lock.
528 * Return: true if the page fault allows retry and this is the first
529 * attempt of the fault handling; false otherwise.
531 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
533 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
534 (!(flags & FAULT_FLAG_TRIED));
537 #define FAULT_FLAG_TRACE \
538 { FAULT_FLAG_WRITE, "WRITE" }, \
539 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
540 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
541 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
542 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
543 { FAULT_FLAG_TRIED, "TRIED" }, \
544 { FAULT_FLAG_USER, "USER" }, \
545 { FAULT_FLAG_REMOTE, "REMOTE" }, \
546 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
547 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
548 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
551 * vm_fault is filled by the pagefault handler and passed to the vma's
552 * ->fault function. The vma's ->fault is responsible for returning a bitmask
553 * of VM_FAULT_xxx flags that give details about how the fault was handled.
555 * MM layer fills up gfp_mask for page allocations but fault handler might
556 * alter it if its implementation requires a different allocation context.
558 * pgoff should be used in favour of virtual_address, if possible.
562 struct vm_area_struct *vma; /* Target VMA */
563 gfp_t gfp_mask; /* gfp mask to be used for allocations */
564 pgoff_t pgoff; /* Logical page offset based on vma */
565 unsigned long address; /* Faulting virtual address - masked */
566 unsigned long real_address; /* Faulting virtual address - unmasked */
568 enum fault_flag flags; /* FAULT_FLAG_xxx flags
569 * XXX: should really be 'const' */
570 pmd_t *pmd; /* Pointer to pmd entry matching
572 pud_t *pud; /* Pointer to pud entry matching
576 pte_t orig_pte; /* Value of PTE at the time of fault */
577 pmd_t orig_pmd; /* Value of PMD at the time of fault,
578 * used by PMD fault only.
582 struct page *cow_page; /* Page handler may use for COW fault */
583 struct page *page; /* ->fault handlers should return a
584 * page here, unless VM_FAULT_NOPAGE
585 * is set (which is also implied by
588 /* These three entries are valid only while holding ptl lock */
589 pte_t *pte; /* Pointer to pte entry matching
590 * the 'address'. NULL if the page
591 * table hasn't been allocated.
593 spinlock_t *ptl; /* Page table lock.
594 * Protects pte page table if 'pte'
595 * is not NULL, otherwise pmd.
597 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
598 * vm_ops->map_pages() sets up a page
599 * table from atomic context.
600 * do_fault_around() pre-allocates
601 * page table to avoid allocation from
607 * These are the virtual MM functions - opening of an area, closing and
608 * unmapping it (needed to keep files on disk up-to-date etc), pointer
609 * to the functions called when a no-page or a wp-page exception occurs.
611 struct vm_operations_struct {
612 void (*open)(struct vm_area_struct * area);
614 * @close: Called when the VMA is being removed from the MM.
615 * Context: User context. May sleep. Caller holds mmap_lock.
617 void (*close)(struct vm_area_struct * area);
618 /* Called any time before splitting to check if it's allowed */
619 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
620 int (*mremap)(struct vm_area_struct *area);
622 * Called by mprotect() to make driver-specific permission
623 * checks before mprotect() is finalised. The VMA must not
624 * be modified. Returns 0 if mprotect() can proceed.
626 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
627 unsigned long end, unsigned long newflags);
628 vm_fault_t (*fault)(struct vm_fault *vmf);
629 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
630 vm_fault_t (*map_pages)(struct vm_fault *vmf,
631 pgoff_t start_pgoff, pgoff_t end_pgoff);
632 unsigned long (*pagesize)(struct vm_area_struct * area);
634 /* notification that a previously read-only page is about to become
635 * writable, if an error is returned it will cause a SIGBUS */
636 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
638 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
639 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
641 /* called by access_process_vm when get_user_pages() fails, typically
642 * for use by special VMAs. See also generic_access_phys() for a generic
643 * implementation useful for any iomem mapping.
645 int (*access)(struct vm_area_struct *vma, unsigned long addr,
646 void *buf, int len, int write);
648 /* Called by the /proc/PID/maps code to ask the vma whether it
649 * has a special name. Returning non-NULL will also cause this
650 * vma to be dumped unconditionally. */
651 const char *(*name)(struct vm_area_struct *vma);
655 * set_policy() op must add a reference to any non-NULL @new mempolicy
656 * to hold the policy upon return. Caller should pass NULL @new to
657 * remove a policy and fall back to surrounding context--i.e. do not
658 * install a MPOL_DEFAULT policy, nor the task or system default
661 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
664 * get_policy() op must add reference [mpol_get()] to any policy at
665 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
666 * in mm/mempolicy.c will do this automatically.
667 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
668 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
669 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
670 * must return NULL--i.e., do not "fallback" to task or system default
673 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
674 unsigned long addr, pgoff_t *ilx);
677 * Called by vm_normal_page() for special PTEs to find the
678 * page for @addr. This is useful if the default behavior
679 * (using pte_page()) would not find the correct page.
681 struct page *(*find_special_page)(struct vm_area_struct *vma,
685 #ifdef CONFIG_NUMA_BALANCING
686 static inline void vma_numab_state_init(struct vm_area_struct *vma)
688 vma->numab_state = NULL;
690 static inline void vma_numab_state_free(struct vm_area_struct *vma)
692 kfree(vma->numab_state);
695 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
696 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
697 #endif /* CONFIG_NUMA_BALANCING */
699 #ifdef CONFIG_PER_VMA_LOCK
701 * Try to read-lock a vma. The function is allowed to occasionally yield false
702 * locked result to avoid performance overhead, in which case we fall back to
703 * using mmap_lock. The function should never yield false unlocked result.
705 static inline bool vma_start_read(struct vm_area_struct *vma)
708 * Check before locking. A race might cause false locked result.
709 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
710 * ACQUIRE semantics, because this is just a lockless check whose result
711 * we don't rely on for anything - the mm_lock_seq read against which we
712 * need ordering is below.
714 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
717 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
721 * Overflow might produce false locked result.
722 * False unlocked result is impossible because we modify and check
723 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
724 * modification invalidates all existing locks.
726 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
727 * racing with vma_end_write_all(), we only start reading from the VMA
728 * after it has been unlocked.
729 * This pairs with RELEASE semantics in vma_end_write_all().
731 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
732 up_read(&vma->vm_lock->lock);
738 static inline void vma_end_read(struct vm_area_struct *vma)
740 rcu_read_lock(); /* keeps vma alive till the end of up_read */
741 up_read(&vma->vm_lock->lock);
745 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
746 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
748 mmap_assert_write_locked(vma->vm_mm);
751 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
752 * mm->mm_lock_seq can't be concurrently modified.
754 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
755 return (vma->vm_lock_seq == *mm_lock_seq);
759 * Begin writing to a VMA.
760 * Exclude concurrent readers under the per-VMA lock until the currently
761 * write-locked mmap_lock is dropped or downgraded.
763 static inline void vma_start_write(struct vm_area_struct *vma)
767 if (__is_vma_write_locked(vma, &mm_lock_seq))
770 down_write(&vma->vm_lock->lock);
772 * We should use WRITE_ONCE() here because we can have concurrent reads
773 * from the early lockless pessimistic check in vma_start_read().
774 * We don't really care about the correctness of that early check, but
775 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
777 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
778 up_write(&vma->vm_lock->lock);
781 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
785 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
788 static inline void vma_assert_locked(struct vm_area_struct *vma)
790 if (!rwsem_is_locked(&vma->vm_lock->lock))
791 vma_assert_write_locked(vma);
794 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
796 /* When detaching vma should be write-locked */
798 vma_assert_write_locked(vma);
799 vma->detached = detached;
802 static inline void release_fault_lock(struct vm_fault *vmf)
804 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
805 vma_end_read(vmf->vma);
807 mmap_read_unlock(vmf->vma->vm_mm);
810 static inline void assert_fault_locked(struct vm_fault *vmf)
812 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
813 vma_assert_locked(vmf->vma);
815 mmap_assert_locked(vmf->vma->vm_mm);
818 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
819 unsigned long address);
821 #else /* CONFIG_PER_VMA_LOCK */
823 static inline bool vma_start_read(struct vm_area_struct *vma)
825 static inline void vma_end_read(struct vm_area_struct *vma) {}
826 static inline void vma_start_write(struct vm_area_struct *vma) {}
827 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
828 { mmap_assert_write_locked(vma->vm_mm); }
829 static inline void vma_mark_detached(struct vm_area_struct *vma,
832 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
833 unsigned long address)
838 static inline void vma_assert_locked(struct vm_area_struct *vma)
840 mmap_assert_locked(vma->vm_mm);
843 static inline void release_fault_lock(struct vm_fault *vmf)
845 mmap_read_unlock(vmf->vma->vm_mm);
848 static inline void assert_fault_locked(struct vm_fault *vmf)
850 mmap_assert_locked(vmf->vma->vm_mm);
853 #endif /* CONFIG_PER_VMA_LOCK */
855 extern const struct vm_operations_struct vma_dummy_vm_ops;
858 * WARNING: vma_init does not initialize vma->vm_lock.
859 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
861 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
863 memset(vma, 0, sizeof(*vma));
865 vma->vm_ops = &vma_dummy_vm_ops;
866 INIT_LIST_HEAD(&vma->anon_vma_chain);
867 vma_mark_detached(vma, false);
868 vma_numab_state_init(vma);
871 /* Use when VMA is not part of the VMA tree and needs no locking */
872 static inline void vm_flags_init(struct vm_area_struct *vma,
875 ACCESS_PRIVATE(vma, __vm_flags) = flags;
879 * Use when VMA is part of the VMA tree and modifications need coordination
880 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
881 * it should be locked explicitly beforehand.
883 static inline void vm_flags_reset(struct vm_area_struct *vma,
886 vma_assert_write_locked(vma);
887 vm_flags_init(vma, flags);
890 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
893 vma_assert_write_locked(vma);
894 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
897 static inline void vm_flags_set(struct vm_area_struct *vma,
900 vma_start_write(vma);
901 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
904 static inline void vm_flags_clear(struct vm_area_struct *vma,
907 vma_start_write(vma);
908 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
912 * Use only if VMA is not part of the VMA tree or has no other users and
913 * therefore needs no locking.
915 static inline void __vm_flags_mod(struct vm_area_struct *vma,
916 vm_flags_t set, vm_flags_t clear)
918 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
922 * Use only when the order of set/clear operations is unimportant, otherwise
923 * use vm_flags_{set|clear} explicitly.
925 static inline void vm_flags_mod(struct vm_area_struct *vma,
926 vm_flags_t set, vm_flags_t clear)
928 vma_start_write(vma);
929 __vm_flags_mod(vma, set, clear);
932 static inline void vma_set_anonymous(struct vm_area_struct *vma)
937 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
943 * Indicate if the VMA is a heap for the given task; for
944 * /proc/PID/maps that is the heap of the main task.
946 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
948 return vma->vm_start < vma->vm_mm->brk &&
949 vma->vm_end > vma->vm_mm->start_brk;
953 * Indicate if the VMA is a stack for the given task; for
954 * /proc/PID/maps that is the stack of the main task.
956 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
959 * We make no effort to guess what a given thread considers to be
960 * its "stack". It's not even well-defined for programs written
963 return vma->vm_start <= vma->vm_mm->start_stack &&
964 vma->vm_end >= vma->vm_mm->start_stack;
967 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
969 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
974 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
975 VM_STACK_INCOMPLETE_SETUP)
981 static inline bool vma_is_foreign(struct vm_area_struct *vma)
986 if (current->mm != vma->vm_mm)
992 static inline bool vma_is_accessible(struct vm_area_struct *vma)
994 return vma->vm_flags & VM_ACCESS_FLAGS;
997 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
999 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1000 (VM_SHARED | VM_MAYWRITE);
1003 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1005 return is_shared_maywrite(vma->vm_flags);
1009 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1011 return mas_find(&vmi->mas, max - 1);
1014 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1017 * Uses mas_find() to get the first VMA when the iterator starts.
1018 * Calling mas_next() could skip the first entry.
1020 return mas_find(&vmi->mas, ULONG_MAX);
1024 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1026 return mas_next_range(&vmi->mas, ULONG_MAX);
1030 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1032 return mas_prev(&vmi->mas, 0);
1035 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1036 unsigned long start, unsigned long end, gfp_t gfp)
1038 __mas_set_range(&vmi->mas, start, end - 1);
1039 mas_store_gfp(&vmi->mas, NULL, gfp);
1040 if (unlikely(mas_is_err(&vmi->mas)))
1046 /* Free any unused preallocations */
1047 static inline void vma_iter_free(struct vma_iterator *vmi)
1049 mas_destroy(&vmi->mas);
1052 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1053 struct vm_area_struct *vma)
1055 vmi->mas.index = vma->vm_start;
1056 vmi->mas.last = vma->vm_end - 1;
1057 mas_store(&vmi->mas, vma);
1058 if (unlikely(mas_is_err(&vmi->mas)))
1064 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1066 mas_pause(&vmi->mas);
1069 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1071 mas_set(&vmi->mas, addr);
1074 #define for_each_vma(__vmi, __vma) \
1075 while (((__vma) = vma_next(&(__vmi))) != NULL)
1077 /* The MM code likes to work with exclusive end addresses */
1078 #define for_each_vma_range(__vmi, __vma, __end) \
1079 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1083 * The vma_is_shmem is not inline because it is used only by slow
1084 * paths in userfault.
1086 bool vma_is_shmem(struct vm_area_struct *vma);
1087 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1089 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1090 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1093 int vma_is_stack_for_current(struct vm_area_struct *vma);
1095 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1096 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1102 * compound_order() can be called without holding a reference, which means
1103 * that niceties like page_folio() don't work. These callers should be
1104 * prepared to handle wild return values. For example, PG_head may be
1105 * set before the order is initialised, or this may be a tail page.
1106 * See compaction.c for some good examples.
1108 static inline unsigned int compound_order(struct page *page)
1110 struct folio *folio = (struct folio *)page;
1112 if (!test_bit(PG_head, &folio->flags))
1114 return folio->_flags_1 & 0xff;
1118 * folio_order - The allocation order of a folio.
1119 * @folio: The folio.
1121 * A folio is composed of 2^order pages. See get_order() for the definition
1124 * Return: The order of the folio.
1126 static inline unsigned int folio_order(const struct folio *folio)
1128 if (!folio_test_large(folio))
1130 return folio->_flags_1 & 0xff;
1133 #include <linux/huge_mm.h>
1136 * Methods to modify the page usage count.
1138 * What counts for a page usage:
1139 * - cache mapping (page->mapping)
1140 * - private data (page->private)
1141 * - page mapped in a task's page tables, each mapping
1142 * is counted separately
1144 * Also, many kernel routines increase the page count before a critical
1145 * routine so they can be sure the page doesn't go away from under them.
1149 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1151 static inline int put_page_testzero(struct page *page)
1153 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1154 return page_ref_dec_and_test(page);
1157 static inline int folio_put_testzero(struct folio *folio)
1159 return put_page_testzero(&folio->page);
1163 * Try to grab a ref unless the page has a refcount of zero, return false if
1165 * This can be called when MMU is off so it must not access
1166 * any of the virtual mappings.
1168 static inline bool get_page_unless_zero(struct page *page)
1170 return page_ref_add_unless(page, 1, 0);
1173 static inline struct folio *folio_get_nontail_page(struct page *page)
1175 if (unlikely(!get_page_unless_zero(page)))
1177 return (struct folio *)page;
1180 extern int page_is_ram(unsigned long pfn);
1188 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1189 unsigned long desc);
1191 /* Support for virtually mapped pages */
1192 struct page *vmalloc_to_page(const void *addr);
1193 unsigned long vmalloc_to_pfn(const void *addr);
1196 * Determine if an address is within the vmalloc range
1198 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1199 * is no special casing required.
1202 extern bool is_vmalloc_addr(const void *x);
1203 extern int is_vmalloc_or_module_addr(const void *x);
1205 static inline bool is_vmalloc_addr(const void *x)
1209 static inline int is_vmalloc_or_module_addr(const void *x)
1216 * How many times the entire folio is mapped as a single unit (eg by a
1217 * PMD or PUD entry). This is probably not what you want, except for
1218 * debugging purposes or implementation of other core folio_*() primitives.
1220 static inline int folio_entire_mapcount(const struct folio *folio)
1222 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1223 return atomic_read(&folio->_entire_mapcount) + 1;
1226 static inline int folio_large_mapcount(const struct folio *folio)
1228 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1229 return atomic_read(&folio->_large_mapcount) + 1;
1233 * folio_mapcount() - Number of mappings of this folio.
1234 * @folio: The folio.
1236 * The folio mapcount corresponds to the number of present user page table
1237 * entries that reference any part of a folio. Each such present user page
1238 * table entry must be paired with exactly on folio reference.
1240 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1243 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1244 * references the entire folio counts exactly once, even when such special
1245 * page table entries are comprised of multiple ordinary page table entries.
1247 * Will report 0 for pages which cannot be mapped into userspace, such as
1248 * slab, page tables and similar.
1250 * Return: The number of times this folio is mapped.
1252 static inline int folio_mapcount(const struct folio *folio)
1256 if (likely(!folio_test_large(folio))) {
1257 mapcount = atomic_read(&folio->_mapcount) + 1;
1258 if (page_mapcount_is_type(mapcount))
1262 return folio_large_mapcount(folio);
1266 * folio_mapped - Is this folio mapped into userspace?
1267 * @folio: The folio.
1269 * Return: True if any page in this folio is referenced by user page tables.
1271 static inline bool folio_mapped(const struct folio *folio)
1273 return folio_mapcount(folio) >= 1;
1277 * Return true if this page is mapped into pagetables.
1278 * For compound page it returns true if any sub-page of compound page is mapped,
1279 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1281 static inline bool page_mapped(const struct page *page)
1283 return folio_mapped(page_folio(page));
1286 static inline struct page *virt_to_head_page(const void *x)
1288 struct page *page = virt_to_page(x);
1290 return compound_head(page);
1293 static inline struct folio *virt_to_folio(const void *x)
1295 struct page *page = virt_to_page(x);
1297 return page_folio(page);
1300 void __folio_put(struct folio *folio);
1302 void split_page(struct page *page, unsigned int order);
1303 void folio_copy(struct folio *dst, struct folio *src);
1304 int folio_mc_copy(struct folio *dst, struct folio *src);
1306 unsigned long nr_free_buffer_pages(void);
1308 /* Returns the number of bytes in this potentially compound page. */
1309 static inline unsigned long page_size(struct page *page)
1311 return PAGE_SIZE << compound_order(page);
1314 /* Returns the number of bits needed for the number of bytes in a page */
1315 static inline unsigned int page_shift(struct page *page)
1317 return PAGE_SHIFT + compound_order(page);
1321 * thp_order - Order of a transparent huge page.
1322 * @page: Head page of a transparent huge page.
1324 static inline unsigned int thp_order(struct page *page)
1326 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 return compound_order(page);
1331 * thp_size - Size of a transparent huge page.
1332 * @page: Head page of a transparent huge page.
1334 * Return: Number of bytes in this page.
1336 static inline unsigned long thp_size(struct page *page)
1338 return PAGE_SIZE << thp_order(page);
1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1344 * servicing faults for write access. In the normal case, do always want
1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1346 * that do not have writing enabled, when used by access_process_vm.
1348 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1350 if (likely(vma->vm_flags & VM_WRITE))
1351 pte = pte_mkwrite(pte, vma);
1355 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1356 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 struct page *page, unsigned int nr, unsigned long addr);
1359 vm_fault_t finish_fault(struct vm_fault *vmf);
1363 * Multiple processes may "see" the same page. E.g. for untouched
1364 * mappings of /dev/null, all processes see the same page full of
1365 * zeroes, and text pages of executables and shared libraries have
1366 * only one copy in memory, at most, normally.
1368 * For the non-reserved pages, page_count(page) denotes a reference count.
1369 * page_count() == 0 means the page is free. page->lru is then used for
1370 * freelist management in the buddy allocator.
1371 * page_count() > 0 means the page has been allocated.
1373 * Pages are allocated by the slab allocator in order to provide memory
1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376 * unless a particular usage is carefully commented. (the responsibility of
1377 * freeing the kmalloc memory is the caller's, of course).
1379 * A page may be used by anyone else who does a __get_free_page().
1380 * In this case, page_count still tracks the references, and should only
1381 * be used through the normal accessor functions. The top bits of page->flags
1382 * and page->virtual store page management information, but all other fields
1383 * are unused and could be used privately, carefully. The management of this
1384 * page is the responsibility of the one who allocated it, and those who have
1385 * subsequently been given references to it.
1387 * The other pages (we may call them "pagecache pages") are completely
1388 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389 * The following discussion applies only to them.
1391 * A pagecache page contains an opaque `private' member, which belongs to the
1392 * page's address_space. Usually, this is the address of a circular list of
1393 * the page's disk buffers. PG_private must be set to tell the VM to call
1394 * into the filesystem to release these pages.
1396 * A page may belong to an inode's memory mapping. In this case, page->mapping
1397 * is the pointer to the inode, and page->index is the file offset of the page,
1398 * in units of PAGE_SIZE.
1400 * If pagecache pages are not associated with an inode, they are said to be
1401 * anonymous pages. These may become associated with the swapcache, and in that
1402 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1404 * In either case (swapcache or inode backed), the pagecache itself holds one
1405 * reference to the page. Setting PG_private should also increment the
1406 * refcount. The each user mapping also has a reference to the page.
1408 * The pagecache pages are stored in a per-mapping radix tree, which is
1409 * rooted at mapping->i_pages, and indexed by offset.
1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1413 * All pagecache pages may be subject to I/O:
1414 * - inode pages may need to be read from disk,
1415 * - inode pages which have been modified and are MAP_SHARED may need
1416 * to be written back to the inode on disk,
1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418 * modified may need to be swapped out to swap space and (later) to be read
1422 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1423 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1425 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1426 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1428 if (!static_branch_unlikely(&devmap_managed_key))
1430 if (!folio_is_zone_device(folio))
1432 return __put_devmap_managed_folio_refs(folio, refs);
1434 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1435 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1439 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1441 /* 127: arbitrary random number, small enough to assemble well */
1442 #define folio_ref_zero_or_close_to_overflow(folio) \
1443 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1446 * folio_get - Increment the reference count on a folio.
1447 * @folio: The folio.
1449 * Context: May be called in any context, as long as you know that
1450 * you have a refcount on the folio. If you do not already have one,
1451 * folio_try_get() may be the right interface for you to use.
1453 static inline void folio_get(struct folio *folio)
1455 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1456 folio_ref_inc(folio);
1459 static inline void get_page(struct page *page)
1461 folio_get(page_folio(page));
1464 static inline __must_check bool try_get_page(struct page *page)
1466 page = compound_head(page);
1467 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1474 * folio_put - Decrement the reference count on a folio.
1475 * @folio: The folio.
1477 * If the folio's reference count reaches zero, the memory will be
1478 * released back to the page allocator and may be used by another
1479 * allocation immediately. Do not access the memory or the struct folio
1480 * after calling folio_put() unless you can be sure that it wasn't the
1483 * Context: May be called in process or interrupt context, but not in NMI
1484 * context. May be called while holding a spinlock.
1486 static inline void folio_put(struct folio *folio)
1488 if (folio_put_testzero(folio))
1493 * folio_put_refs - Reduce the reference count on a folio.
1494 * @folio: The folio.
1495 * @refs: The amount to subtract from the folio's reference count.
1497 * If the folio's reference count reaches zero, the memory will be
1498 * released back to the page allocator and may be used by another
1499 * allocation immediately. Do not access the memory or the struct folio
1500 * after calling folio_put_refs() unless you can be sure that these weren't
1501 * the last references.
1503 * Context: May be called in process or interrupt context, but not in NMI
1504 * context. May be called while holding a spinlock.
1506 static inline void folio_put_refs(struct folio *folio, int refs)
1508 if (folio_ref_sub_and_test(folio, refs))
1512 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1515 * union release_pages_arg - an array of pages or folios
1517 * release_pages() releases a simple array of multiple pages, and
1518 * accepts various different forms of said page array: either
1519 * a regular old boring array of pages, an array of folios, or
1520 * an array of encoded page pointers.
1522 * The transparent union syntax for this kind of "any of these
1523 * argument types" is all kinds of ugly, so look away.
1526 struct page **pages;
1527 struct folio **folios;
1528 struct encoded_page **encoded_pages;
1529 } release_pages_arg __attribute__ ((__transparent_union__));
1531 void release_pages(release_pages_arg, int nr);
1534 * folios_put - Decrement the reference count on an array of folios.
1535 * @folios: The folios.
1537 * Like folio_put(), but for a batch of folios. This is more efficient
1538 * than writing the loop yourself as it will optimise the locks which need
1539 * to be taken if the folios are freed. The folios batch is returned
1540 * empty and ready to be reused for another batch; there is no need to
1543 * Context: May be called in process or interrupt context, but not in NMI
1544 * context. May be called while holding a spinlock.
1546 static inline void folios_put(struct folio_batch *folios)
1548 folios_put_refs(folios, NULL);
1551 static inline void put_page(struct page *page)
1553 struct folio *folio = page_folio(page);
1556 * For some devmap managed pages we need to catch refcount transition
1559 if (put_devmap_managed_folio_refs(folio, 1))
1565 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1566 * the page's refcount so that two separate items are tracked: the original page
1567 * reference count, and also a new count of how many pin_user_pages() calls were
1568 * made against the page. ("gup-pinned" is another term for the latter).
1570 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1571 * distinct from normal pages. As such, the unpin_user_page() call (and its
1572 * variants) must be used in order to release gup-pinned pages.
1576 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1577 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1578 * simpler, due to the fact that adding an even power of two to the page
1579 * refcount has the effect of using only the upper N bits, for the code that
1580 * counts up using the bias value. This means that the lower bits are left for
1581 * the exclusive use of the original code that increments and decrements by one
1582 * (or at least, by much smaller values than the bias value).
1584 * Of course, once the lower bits overflow into the upper bits (and this is
1585 * OK, because subtraction recovers the original values), then visual inspection
1586 * no longer suffices to directly view the separate counts. However, for normal
1587 * applications that don't have huge page reference counts, this won't be an
1590 * Locking: the lockless algorithm described in folio_try_get_rcu()
1591 * provides safe operation for get_user_pages(), folio_mkclean() and
1592 * other calls that race to set up page table entries.
1594 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1596 void unpin_user_page(struct page *page);
1597 void unpin_folio(struct folio *folio);
1598 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 void unpin_user_pages(struct page **pages, unsigned long npages);
1603 void unpin_user_folio(struct folio *folio, unsigned long npages);
1604 void unpin_folios(struct folio **folios, unsigned long nfolios);
1606 static inline bool is_cow_mapping(vm_flags_t flags)
1608 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1612 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1615 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1616 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1617 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1618 * underlying memory if ptrace is active, so this is only possible if
1619 * ptrace does not apply. Note that there is no mprotect() to upgrade
1620 * write permissions later.
1622 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1626 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1627 #define SECTION_IN_PAGE_FLAGS
1631 * The identification function is mainly used by the buddy allocator for
1632 * determining if two pages could be buddies. We are not really identifying
1633 * the zone since we could be using the section number id if we do not have
1634 * node id available in page flags.
1635 * We only guarantee that it will return the same value for two combinable
1638 static inline int page_zone_id(struct page *page)
1640 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1643 #ifdef NODE_NOT_IN_PAGE_FLAGS
1644 int page_to_nid(const struct page *page);
1646 static inline int page_to_nid(const struct page *page)
1648 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1652 static inline int folio_nid(const struct folio *folio)
1654 return page_to_nid(&folio->page);
1657 #ifdef CONFIG_NUMA_BALANCING
1658 /* page access time bits needs to hold at least 4 seconds */
1659 #define PAGE_ACCESS_TIME_MIN_BITS 12
1660 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1661 #define PAGE_ACCESS_TIME_BUCKETS \
1662 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1664 #define PAGE_ACCESS_TIME_BUCKETS 0
1667 #define PAGE_ACCESS_TIME_MASK \
1668 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1670 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1672 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1675 static inline int cpupid_to_pid(int cpupid)
1677 return cpupid & LAST__PID_MASK;
1680 static inline int cpupid_to_cpu(int cpupid)
1682 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1685 static inline int cpupid_to_nid(int cpupid)
1687 return cpu_to_node(cpupid_to_cpu(cpupid));
1690 static inline bool cpupid_pid_unset(int cpupid)
1692 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1695 static inline bool cpupid_cpu_unset(int cpupid)
1697 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1700 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1702 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1705 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1706 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1707 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1709 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1712 static inline int folio_last_cpupid(struct folio *folio)
1714 return folio->_last_cpupid;
1716 static inline void page_cpupid_reset_last(struct page *page)
1718 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1721 static inline int folio_last_cpupid(struct folio *folio)
1723 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1726 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1728 static inline void page_cpupid_reset_last(struct page *page)
1730 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1732 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1734 static inline int folio_xchg_access_time(struct folio *folio, int time)
1738 last_time = folio_xchg_last_cpupid(folio,
1739 time >> PAGE_ACCESS_TIME_BUCKETS);
1740 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1743 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1745 unsigned int pid_bit;
1747 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1748 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1749 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1753 bool folio_use_access_time(struct folio *folio);
1754 #else /* !CONFIG_NUMA_BALANCING */
1755 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1757 return folio_nid(folio); /* XXX */
1760 static inline int folio_xchg_access_time(struct folio *folio, int time)
1765 static inline int folio_last_cpupid(struct folio *folio)
1767 return folio_nid(folio); /* XXX */
1770 static inline int cpupid_to_nid(int cpupid)
1775 static inline int cpupid_to_pid(int cpupid)
1780 static inline int cpupid_to_cpu(int cpupid)
1785 static inline int cpu_pid_to_cpupid(int nid, int pid)
1790 static inline bool cpupid_pid_unset(int cpupid)
1795 static inline void page_cpupid_reset_last(struct page *page)
1799 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1804 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1807 static inline bool folio_use_access_time(struct folio *folio)
1811 #endif /* CONFIG_NUMA_BALANCING */
1813 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1816 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1817 * setting tags for all pages to native kernel tag value 0xff, as the default
1818 * value 0x00 maps to 0xff.
1821 static inline u8 page_kasan_tag(const struct page *page)
1823 u8 tag = KASAN_TAG_KERNEL;
1825 if (kasan_enabled()) {
1826 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1833 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1835 unsigned long old_flags, flags;
1837 if (!kasan_enabled())
1841 old_flags = READ_ONCE(page->flags);
1844 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1845 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1846 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1849 static inline void page_kasan_tag_reset(struct page *page)
1851 if (kasan_enabled())
1852 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1855 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1857 static inline u8 page_kasan_tag(const struct page *page)
1862 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1863 static inline void page_kasan_tag_reset(struct page *page) { }
1865 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867 static inline struct zone *page_zone(const struct page *page)
1869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1872 static inline pg_data_t *page_pgdat(const struct page *page)
1874 return NODE_DATA(page_to_nid(page));
1877 static inline struct zone *folio_zone(const struct folio *folio)
1879 return page_zone(&folio->page);
1882 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1884 return page_pgdat(&folio->page);
1887 #ifdef SECTION_IN_PAGE_FLAGS
1888 static inline void set_page_section(struct page *page, unsigned long section)
1890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1894 static inline unsigned long page_to_section(const struct page *page)
1896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1901 * folio_pfn - Return the Page Frame Number of a folio.
1902 * @folio: The folio.
1904 * A folio may contain multiple pages. The pages have consecutive
1905 * Page Frame Numbers.
1907 * Return: The Page Frame Number of the first page in the folio.
1909 static inline unsigned long folio_pfn(const struct folio *folio)
1911 return page_to_pfn(&folio->page);
1914 static inline struct folio *pfn_folio(unsigned long pfn)
1916 return page_folio(pfn_to_page(pfn));
1920 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1921 * @folio: The folio.
1923 * This function checks if a folio has been pinned via a call to
1924 * a function in the pin_user_pages() family.
1926 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1927 * because it means "definitely not pinned for DMA", but true means "probably
1928 * pinned for DMA, but possibly a false positive due to having at least
1929 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1931 * False positives are OK, because: a) it's unlikely for a folio to
1932 * get that many refcounts, and b) all the callers of this routine are
1933 * expected to be able to deal gracefully with a false positive.
1935 * For large folios, the result will be exactly correct. That's because
1936 * we have more tracking data available: the _pincount field is used
1937 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1939 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1941 * Return: True, if it is likely that the folio has been "dma-pinned".
1942 * False, if the folio is definitely not dma-pinned.
1944 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1946 if (folio_test_large(folio))
1947 return atomic_read(&folio->_pincount) > 0;
1950 * folio_ref_count() is signed. If that refcount overflows, then
1951 * folio_ref_count() returns a negative value, and callers will avoid
1952 * further incrementing the refcount.
1954 * Here, for that overflow case, use the sign bit to count a little
1955 * bit higher via unsigned math, and thus still get an accurate result.
1957 return ((unsigned int)folio_ref_count(folio)) >=
1958 GUP_PIN_COUNTING_BIAS;
1962 * This should most likely only be called during fork() to see whether we
1963 * should break the cow immediately for an anon page on the src mm.
1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1967 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1968 struct folio *folio)
1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1975 return folio_maybe_dma_pinned(folio);
1979 * is_zero_page - Query if a page is a zero page
1980 * @page: The page to query
1982 * This returns true if @page is one of the permanent zero pages.
1984 static inline bool is_zero_page(const struct page *page)
1986 return is_zero_pfn(page_to_pfn(page));
1990 * is_zero_folio - Query if a folio is a zero page
1991 * @folio: The folio to query
1993 * This returns true if @folio is one of the permanent zero pages.
1995 static inline bool is_zero_folio(const struct folio *folio)
1997 return is_zero_page(&folio->page);
2000 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2001 #ifdef CONFIG_MIGRATION
2002 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2005 int mt = folio_migratetype(folio);
2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2010 /* The zero page can be "pinned" but gets special handling. */
2011 if (is_zero_folio(folio))
2014 /* Coherent device memory must always allow eviction. */
2015 if (folio_is_device_coherent(folio))
2018 /* Otherwise, non-movable zone folios can be pinned. */
2019 return !folio_is_zone_movable(folio);
2023 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2029 static inline void set_page_zone(struct page *page, enum zone_type zone)
2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2035 static inline void set_page_node(struct page *page, unsigned long node)
2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2041 static inline void set_page_links(struct page *page, enum zone_type zone,
2042 unsigned long node, unsigned long pfn)
2044 set_page_zone(page, zone);
2045 set_page_node(page, node);
2046 #ifdef SECTION_IN_PAGE_FLAGS
2047 set_page_section(page, pfn_to_section_nr(pfn));
2052 * folio_nr_pages - The number of pages in the folio.
2053 * @folio: The folio.
2055 * Return: A positive power of two.
2057 static inline long folio_nr_pages(const struct folio *folio)
2059 if (!folio_test_large(folio))
2062 return folio->_folio_nr_pages;
2064 return 1L << (folio->_flags_1 & 0xff);
2068 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2069 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2070 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2072 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2076 * compound_nr() returns the number of pages in this potentially compound
2077 * page. compound_nr() can be called on a tail page, and is defined to
2078 * return 1 in that case.
2080 static inline unsigned long compound_nr(struct page *page)
2082 struct folio *folio = (struct folio *)page;
2084 if (!test_bit(PG_head, &folio->flags))
2087 return folio->_folio_nr_pages;
2089 return 1L << (folio->_flags_1 & 0xff);
2094 * thp_nr_pages - The number of regular pages in this huge page.
2095 * @page: The head page of a huge page.
2097 static inline int thp_nr_pages(struct page *page)
2099 return folio_nr_pages((struct folio *)page);
2103 * folio_next - Move to the next physical folio.
2104 * @folio: The folio we're currently operating on.
2106 * If you have physically contiguous memory which may span more than
2107 * one folio (eg a &struct bio_vec), use this function to move from one
2108 * folio to the next. Do not use it if the memory is only virtually
2109 * contiguous as the folios are almost certainly not adjacent to each
2110 * other. This is the folio equivalent to writing ``page++``.
2112 * Context: We assume that the folios are refcounted and/or locked at a
2113 * higher level and do not adjust the reference counts.
2114 * Return: The next struct folio.
2116 static inline struct folio *folio_next(struct folio *folio)
2118 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2122 * folio_shift - The size of the memory described by this folio.
2123 * @folio: The folio.
2125 * A folio represents a number of bytes which is a power-of-two in size.
2126 * This function tells you which power-of-two the folio is. See also
2127 * folio_size() and folio_order().
2129 * Context: The caller should have a reference on the folio to prevent
2130 * it from being split. It is not necessary for the folio to be locked.
2131 * Return: The base-2 logarithm of the size of this folio.
2133 static inline unsigned int folio_shift(const struct folio *folio)
2135 return PAGE_SHIFT + folio_order(folio);
2139 * folio_size - The number of bytes in a folio.
2140 * @folio: The folio.
2142 * Context: The caller should have a reference on the folio to prevent
2143 * it from being split. It is not necessary for the folio to be locked.
2144 * Return: The number of bytes in this folio.
2146 static inline size_t folio_size(const struct folio *folio)
2148 return PAGE_SIZE << folio_order(folio);
2152 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2153 * tables of more than one MM
2154 * @folio: The folio.
2156 * This function checks if the folio is currently mapped into more than one
2157 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2158 * ("mapped exclusively").
2160 * For KSM folios, this function also returns "mapped shared" when a folio is
2161 * mapped multiple times into the same MM, because the individual page mappings
2164 * As precise information is not easily available for all folios, this function
2165 * estimates the number of MMs ("sharers") that are currently mapping a folio
2166 * using the number of times the first page of the folio is currently mapped
2169 * For small anonymous folios and anonymous hugetlb folios, the return
2170 * value will be exactly correct: non-KSM folios can only be mapped at most once
2171 * into an MM, and they cannot be partially mapped. KSM folios are
2172 * considered shared even if mapped multiple times into the same MM.
2174 * For other folios, the result can be fuzzy:
2175 * #. For partially-mappable large folios (THP), the return value can wrongly
2176 * indicate "mapped exclusively" (false negative) when the folio is
2177 * only partially mapped into at least one MM.
2178 * #. For pagecache folios (including hugetlb), the return value can wrongly
2179 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2180 * cover the same file range.
2182 * Further, this function only considers current page table mappings that
2183 * are tracked using the folio mapcount(s).
2185 * This function does not consider:
2186 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2187 * pagecache, temporary unmapping for migration).
2188 * #. If the folio is mapped differently (VM_PFNMAP).
2189 * #. If hugetlb page table sharing applies. Callers might want to check
2190 * hugetlb_pmd_shared().
2192 * Return: Whether the folio is estimated to be mapped into more than one MM.
2194 static inline bool folio_likely_mapped_shared(struct folio *folio)
2196 int mapcount = folio_mapcount(folio);
2198 /* Only partially-mappable folios require more care. */
2199 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2200 return mapcount > 1;
2202 /* A single mapping implies "mapped exclusively". */
2206 /* If any page is mapped more than once we treat it "mapped shared". */
2207 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2210 /* Let's guess based on the first subpage. */
2211 return atomic_read(&folio->_mapcount) > 0;
2214 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2215 static inline int arch_make_folio_accessible(struct folio *folio)
2222 * Some inline functions in vmstat.h depend on page_zone()
2224 #include <linux/vmstat.h>
2226 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2227 #define HASHED_PAGE_VIRTUAL
2230 #if defined(WANT_PAGE_VIRTUAL)
2231 static inline void *page_address(const struct page *page)
2233 return page->virtual;
2235 static inline void set_page_address(struct page *page, void *address)
2237 page->virtual = address;
2239 #define page_address_init() do { } while(0)
2242 #if defined(HASHED_PAGE_VIRTUAL)
2243 void *page_address(const struct page *page);
2244 void set_page_address(struct page *page, void *virtual);
2245 void page_address_init(void);
2248 static __always_inline void *lowmem_page_address(const struct page *page)
2250 return page_to_virt(page);
2253 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2254 #define page_address(page) lowmem_page_address(page)
2255 #define set_page_address(page, address) do { } while(0)
2256 #define page_address_init() do { } while(0)
2259 static inline void *folio_address(const struct folio *folio)
2261 return page_address(&folio->page);
2265 * Return true only if the page has been allocated with
2266 * ALLOC_NO_WATERMARKS and the low watermark was not
2267 * met implying that the system is under some pressure.
2269 static inline bool page_is_pfmemalloc(const struct page *page)
2272 * lru.next has bit 1 set if the page is allocated from the
2273 * pfmemalloc reserves. Callers may simply overwrite it if
2274 * they do not need to preserve that information.
2276 return (uintptr_t)page->lru.next & BIT(1);
2280 * Return true only if the folio has been allocated with
2281 * ALLOC_NO_WATERMARKS and the low watermark was not
2282 * met implying that the system is under some pressure.
2284 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2287 * lru.next has bit 1 set if the page is allocated from the
2288 * pfmemalloc reserves. Callers may simply overwrite it if
2289 * they do not need to preserve that information.
2291 return (uintptr_t)folio->lru.next & BIT(1);
2295 * Only to be called by the page allocator on a freshly allocated
2298 static inline void set_page_pfmemalloc(struct page *page)
2300 page->lru.next = (void *)BIT(1);
2303 static inline void clear_page_pfmemalloc(struct page *page)
2305 page->lru.next = NULL;
2309 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2311 extern void pagefault_out_of_memory(void);
2313 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2314 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2315 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2318 * Parameter block passed down to zap_pte_range in exceptional cases.
2320 struct zap_details {
2321 struct folio *single_folio; /* Locked folio to be unmapped */
2322 bool even_cows; /* Zap COWed private pages too? */
2323 zap_flags_t zap_flags; /* Extra flags for zapping */
2327 * Whether to drop the pte markers, for example, the uffd-wp information for
2328 * file-backed memory. This should only be specified when we will completely
2329 * drop the page in the mm, either by truncation or unmapping of the vma. By
2330 * default, the flag is not set.
2332 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2333 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2334 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2336 #ifdef CONFIG_SCHED_MM_CID
2337 void sched_mm_cid_before_execve(struct task_struct *t);
2338 void sched_mm_cid_after_execve(struct task_struct *t);
2339 void sched_mm_cid_fork(struct task_struct *t);
2340 void sched_mm_cid_exit_signals(struct task_struct *t);
2341 static inline int task_mm_cid(struct task_struct *t)
2346 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2347 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2348 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2349 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2350 static inline int task_mm_cid(struct task_struct *t)
2353 * Use the processor id as a fall-back when the mm cid feature is
2354 * disabled. This provides functional per-cpu data structure accesses
2355 * in user-space, althrough it won't provide the memory usage benefits.
2357 return raw_smp_processor_id();
2362 extern bool can_do_mlock(void);
2364 static inline bool can_do_mlock(void) { return false; }
2366 extern int user_shm_lock(size_t, struct ucounts *);
2367 extern void user_shm_unlock(size_t, struct ucounts *);
2369 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2371 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2373 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2374 unsigned long addr, pmd_t pmd);
2375 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2378 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2379 unsigned long size);
2380 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2381 unsigned long size, struct zap_details *details);
2382 static inline void zap_vma_pages(struct vm_area_struct *vma)
2384 zap_page_range_single(vma, vma->vm_start,
2385 vma->vm_end - vma->vm_start, NULL);
2387 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2388 struct vm_area_struct *start_vma, unsigned long start,
2389 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2391 struct mmu_notifier_range;
2393 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2394 unsigned long end, unsigned long floor, unsigned long ceiling);
2396 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2397 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2398 void *buf, int len, int write);
2400 struct follow_pfnmap_args {
2403 * @vma: Pointer to @vm_area_struct struct
2404 * @address: the virtual address to walk
2406 struct vm_area_struct *vma;
2407 unsigned long address;
2411 * The caller shouldn't touch any of these.
2418 * @pfn: the PFN of the address
2419 * @pgprot: the pgprot_t of the mapping
2420 * @writable: whether the mapping is writable
2421 * @special: whether the mapping is a special mapping (real PFN maps)
2428 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2429 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2431 extern void truncate_pagecache(struct inode *inode, loff_t new);
2432 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2433 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2434 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2435 int generic_error_remove_folio(struct address_space *mapping,
2436 struct folio *folio);
2438 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2439 unsigned long address, struct pt_regs *regs);
2442 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2443 unsigned long address, unsigned int flags,
2444 struct pt_regs *regs);
2445 extern int fixup_user_fault(struct mm_struct *mm,
2446 unsigned long address, unsigned int fault_flags,
2448 void unmap_mapping_pages(struct address_space *mapping,
2449 pgoff_t start, pgoff_t nr, bool even_cows);
2450 void unmap_mapping_range(struct address_space *mapping,
2451 loff_t const holebegin, loff_t const holelen, int even_cows);
2453 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2454 unsigned long address, unsigned int flags,
2455 struct pt_regs *regs)
2457 /* should never happen if there's no MMU */
2459 return VM_FAULT_SIGBUS;
2461 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2462 unsigned int fault_flags, bool *unlocked)
2464 /* should never happen if there's no MMU */
2468 static inline void unmap_mapping_pages(struct address_space *mapping,
2469 pgoff_t start, pgoff_t nr, bool even_cows) { }
2470 static inline void unmap_mapping_range(struct address_space *mapping,
2471 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2474 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2475 loff_t const holebegin, loff_t const holelen)
2477 unmap_mapping_range(mapping, holebegin, holelen, 0);
2480 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2481 unsigned long addr);
2483 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2484 void *buf, int len, unsigned int gup_flags);
2485 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2486 void *buf, int len, unsigned int gup_flags);
2488 long get_user_pages_remote(struct mm_struct *mm,
2489 unsigned long start, unsigned long nr_pages,
2490 unsigned int gup_flags, struct page **pages,
2492 long pin_user_pages_remote(struct mm_struct *mm,
2493 unsigned long start, unsigned long nr_pages,
2494 unsigned int gup_flags, struct page **pages,
2498 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2500 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2503 struct vm_area_struct **vmap)
2506 struct vm_area_struct *vma;
2509 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2510 return ERR_PTR(-EINVAL);
2512 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2515 return ERR_PTR(got);
2517 vma = vma_lookup(mm, addr);
2518 if (WARN_ON_ONCE(!vma)) {
2520 return ERR_PTR(-EINVAL);
2527 long get_user_pages(unsigned long start, unsigned long nr_pages,
2528 unsigned int gup_flags, struct page **pages);
2529 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2530 unsigned int gup_flags, struct page **pages);
2531 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2532 struct page **pages, unsigned int gup_flags);
2533 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2534 struct page **pages, unsigned int gup_flags);
2535 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2536 struct folio **folios, unsigned int max_folios,
2538 int folio_add_pins(struct folio *folio, unsigned int pins);
2540 int get_user_pages_fast(unsigned long start, int nr_pages,
2541 unsigned int gup_flags, struct page **pages);
2542 int pin_user_pages_fast(unsigned long start, int nr_pages,
2543 unsigned int gup_flags, struct page **pages);
2544 void folio_add_pin(struct folio *folio);
2546 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2547 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2548 struct task_struct *task, bool bypass_rlim);
2551 struct page *get_dump_page(unsigned long addr);
2553 bool folio_mark_dirty(struct folio *folio);
2554 bool folio_mark_dirty_lock(struct folio *folio);
2555 bool set_page_dirty(struct page *page);
2556 int set_page_dirty_lock(struct page *page);
2558 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2561 * Flags used by change_protection(). For now we make it a bitmap so
2562 * that we can pass in multiple flags just like parameters. However
2563 * for now all the callers are only use one of the flags at the same
2567 * Whether we should manually check if we can map individual PTEs writable,
2568 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2569 * PTEs automatically in a writable mapping.
2571 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2572 /* Whether this protection change is for NUMA hints */
2573 #define MM_CP_PROT_NUMA (1UL << 1)
2574 /* Whether this change is for write protecting */
2575 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2576 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2577 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2578 MM_CP_UFFD_WP_RESOLVE)
2580 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2582 extern long change_protection(struct mmu_gather *tlb,
2583 struct vm_area_struct *vma, unsigned long start,
2584 unsigned long end, unsigned long cp_flags);
2585 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2586 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2587 unsigned long start, unsigned long end, unsigned long newflags);
2590 * doesn't attempt to fault and will return short.
2592 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2593 unsigned int gup_flags, struct page **pages);
2595 static inline bool get_user_page_fast_only(unsigned long addr,
2596 unsigned int gup_flags, struct page **pagep)
2598 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2601 * per-process(per-mm_struct) statistics.
2603 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2605 return percpu_counter_read_positive(&mm->rss_stat[member]);
2608 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2610 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2612 percpu_counter_add(&mm->rss_stat[member], value);
2614 mm_trace_rss_stat(mm, member);
2617 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2619 percpu_counter_inc(&mm->rss_stat[member]);
2621 mm_trace_rss_stat(mm, member);
2624 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2626 percpu_counter_dec(&mm->rss_stat[member]);
2628 mm_trace_rss_stat(mm, member);
2631 /* Optimized variant when folio is already known not to be anon */
2632 static inline int mm_counter_file(struct folio *folio)
2634 if (folio_test_swapbacked(folio))
2635 return MM_SHMEMPAGES;
2636 return MM_FILEPAGES;
2639 static inline int mm_counter(struct folio *folio)
2641 if (folio_test_anon(folio))
2642 return MM_ANONPAGES;
2643 return mm_counter_file(folio);
2646 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2648 return get_mm_counter(mm, MM_FILEPAGES) +
2649 get_mm_counter(mm, MM_ANONPAGES) +
2650 get_mm_counter(mm, MM_SHMEMPAGES);
2653 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2655 return max(mm->hiwater_rss, get_mm_rss(mm));
2658 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2660 return max(mm->hiwater_vm, mm->total_vm);
2663 static inline void update_hiwater_rss(struct mm_struct *mm)
2665 unsigned long _rss = get_mm_rss(mm);
2667 if ((mm)->hiwater_rss < _rss)
2668 (mm)->hiwater_rss = _rss;
2671 static inline void update_hiwater_vm(struct mm_struct *mm)
2673 if (mm->hiwater_vm < mm->total_vm)
2674 mm->hiwater_vm = mm->total_vm;
2677 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2679 mm->hiwater_rss = get_mm_rss(mm);
2682 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2683 struct mm_struct *mm)
2685 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2687 if (*maxrss < hiwater_rss)
2688 *maxrss = hiwater_rss;
2691 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2692 static inline int pte_special(pte_t pte)
2697 static inline pte_t pte_mkspecial(pte_t pte)
2703 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2704 static inline bool pmd_special(pmd_t pmd)
2709 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2713 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2715 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2716 static inline bool pud_special(pud_t pud)
2721 static inline pud_t pud_mkspecial(pud_t pud)
2725 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2727 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2728 static inline int pte_devmap(pte_t pte)
2734 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2740 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2744 #ifdef __PAGETABLE_P4D_FOLDED
2745 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2746 unsigned long address)
2751 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2754 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2755 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2756 unsigned long address)
2760 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2761 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2764 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2766 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2768 if (mm_pud_folded(mm))
2770 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2773 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2775 if (mm_pud_folded(mm))
2777 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2781 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2782 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2783 unsigned long address)
2788 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2789 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2792 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2794 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2796 if (mm_pmd_folded(mm))
2798 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2801 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2803 if (mm_pmd_folded(mm))
2805 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2810 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2812 atomic_long_set(&mm->pgtables_bytes, 0);
2815 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2817 return atomic_long_read(&mm->pgtables_bytes);
2820 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2822 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2827 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2831 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2832 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2837 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2838 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2841 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2842 int __pte_alloc_kernel(pmd_t *pmd);
2844 #if defined(CONFIG_MMU)
2846 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2847 unsigned long address)
2849 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2850 NULL : p4d_offset(pgd, address);
2853 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2854 unsigned long address)
2856 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2857 NULL : pud_offset(p4d, address);
2860 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2862 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2863 NULL: pmd_offset(pud, address);
2865 #endif /* CONFIG_MMU */
2867 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2869 return page_ptdesc(virt_to_page(x));
2872 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2874 return page_to_virt(ptdesc_page(pt));
2877 static inline void *ptdesc_address(const struct ptdesc *pt)
2879 return folio_address(ptdesc_folio(pt));
2882 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2884 return folio_test_reserved(ptdesc_folio(pt));
2888 * pagetable_alloc - Allocate pagetables
2890 * @order: desired pagetable order
2892 * pagetable_alloc allocates memory for page tables as well as a page table
2893 * descriptor to describe that memory.
2895 * Return: The ptdesc describing the allocated page tables.
2897 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2899 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2901 return page_ptdesc(page);
2903 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2906 * pagetable_free - Free pagetables
2907 * @pt: The page table descriptor
2909 * pagetable_free frees the memory of all page tables described by a page
2910 * table descriptor and the memory for the descriptor itself.
2912 static inline void pagetable_free(struct ptdesc *pt)
2914 struct page *page = ptdesc_page(pt);
2916 __free_pages(page, compound_order(page));
2919 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2920 #if ALLOC_SPLIT_PTLOCKS
2921 void __init ptlock_cache_init(void);
2922 bool ptlock_alloc(struct ptdesc *ptdesc);
2923 void ptlock_free(struct ptdesc *ptdesc);
2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2929 #else /* ALLOC_SPLIT_PTLOCKS */
2930 static inline void ptlock_cache_init(void)
2934 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2939 static inline void ptlock_free(struct ptdesc *ptdesc)
2943 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2945 return &ptdesc->ptl;
2947 #endif /* ALLOC_SPLIT_PTLOCKS */
2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2951 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2954 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2956 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2957 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2958 return ptlock_ptr(virt_to_ptdesc(pte));
2961 static inline bool ptlock_init(struct ptdesc *ptdesc)
2964 * prep_new_page() initialize page->private (and therefore page->ptl)
2965 * with 0. Make sure nobody took it in use in between.
2967 * It can happen if arch try to use slab for page table allocation:
2968 * slab code uses page->slab_cache, which share storage with page->ptl.
2970 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2971 if (!ptlock_alloc(ptdesc))
2973 spin_lock_init(ptlock_ptr(ptdesc));
2977 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2979 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2981 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2983 return &mm->page_table_lock;
2985 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2987 return &mm->page_table_lock;
2989 static inline void ptlock_cache_init(void) {}
2990 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2991 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2992 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2994 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2996 struct folio *folio = ptdesc_folio(ptdesc);
2998 if (!ptlock_init(ptdesc))
3000 __folio_set_pgtable(folio);
3001 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3005 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3007 struct folio *folio = ptdesc_folio(ptdesc);
3009 ptlock_free(ptdesc);
3010 __folio_clear_pgtable(folio);
3011 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3014 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3015 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3020 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3023 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3025 return __pte_offset_map(pmd, addr, NULL);
3028 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3029 unsigned long addr, spinlock_t **ptlp);
3030 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3031 unsigned long addr, spinlock_t **ptlp)
3035 __cond_lock(RCU, __cond_lock(*ptlp,
3036 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3040 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3041 unsigned long addr, spinlock_t **ptlp);
3042 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3043 unsigned long addr, pmd_t *pmdvalp,
3046 #define pte_unmap_unlock(pte, ptl) do { \
3051 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3053 #define pte_alloc_map(mm, pmd, address) \
3054 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3056 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3057 (pte_alloc(mm, pmd) ? \
3058 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3060 #define pte_alloc_kernel(pmd, address) \
3061 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3062 NULL: pte_offset_kernel(pmd, address))
3064 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3066 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3068 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3069 return virt_to_page((void *)((unsigned long) pmd & mask));
3072 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3074 return page_ptdesc(pmd_pgtable_page(pmd));
3077 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3079 return ptlock_ptr(pmd_ptdesc(pmd));
3082 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3085 ptdesc->pmd_huge_pte = NULL;
3087 return ptlock_init(ptdesc);
3090 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3093 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3095 ptlock_free(ptdesc);
3098 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3102 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3104 return &mm->page_table_lock;
3107 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3108 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3110 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3114 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3116 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3121 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3123 struct folio *folio = ptdesc_folio(ptdesc);
3125 if (!pmd_ptlock_init(ptdesc))
3127 __folio_set_pgtable(folio);
3128 ptdesc_pmd_pts_init(ptdesc);
3129 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3133 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3135 struct folio *folio = ptdesc_folio(ptdesc);
3137 pmd_ptlock_free(ptdesc);
3138 __folio_clear_pgtable(folio);
3139 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3143 * No scalability reason to split PUD locks yet, but follow the same pattern
3144 * as the PMD locks to make it easier if we decide to. The VM should not be
3145 * considered ready to switch to split PUD locks yet; there may be places
3146 * which need to be converted from page_table_lock.
3148 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3150 return &mm->page_table_lock;
3153 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3155 spinlock_t *ptl = pud_lockptr(mm, pud);
3161 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3163 struct folio *folio = ptdesc_folio(ptdesc);
3165 __folio_set_pgtable(folio);
3166 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3169 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3171 struct folio *folio = ptdesc_folio(ptdesc);
3173 __folio_clear_pgtable(folio);
3174 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3177 extern void __init pagecache_init(void);
3178 extern void free_initmem(void);
3181 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3182 * into the buddy system. The freed pages will be poisoned with pattern
3183 * "poison" if it's within range [0, UCHAR_MAX].
3184 * Return pages freed into the buddy system.
3186 extern unsigned long free_reserved_area(void *start, void *end,
3187 int poison, const char *s);
3189 extern void adjust_managed_page_count(struct page *page, long count);
3191 extern void reserve_bootmem_region(phys_addr_t start,
3192 phys_addr_t end, int nid);
3194 /* Free the reserved page into the buddy system, so it gets managed. */
3195 void free_reserved_page(struct page *page);
3196 #define free_highmem_page(page) free_reserved_page(page)
3198 static inline void mark_page_reserved(struct page *page)
3200 SetPageReserved(page);
3201 adjust_managed_page_count(page, -1);
3204 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3206 free_reserved_page(ptdesc_page(pt));
3210 * Default method to free all the __init memory into the buddy system.
3211 * The freed pages will be poisoned with pattern "poison" if it's within
3212 * range [0, UCHAR_MAX].
3213 * Return pages freed into the buddy system.
3215 static inline unsigned long free_initmem_default(int poison)
3217 extern char __init_begin[], __init_end[];
3219 return free_reserved_area(&__init_begin, &__init_end,
3220 poison, "unused kernel image (initmem)");
3223 static inline unsigned long get_num_physpages(void)
3226 unsigned long phys_pages = 0;
3228 for_each_online_node(nid)
3229 phys_pages += node_present_pages(nid);
3235 * Using memblock node mappings, an architecture may initialise its
3236 * zones, allocate the backing mem_map and account for memory holes in an
3237 * architecture independent manner.
3239 * An architecture is expected to register range of page frames backed by
3240 * physical memory with memblock_add[_node]() before calling
3241 * free_area_init() passing in the PFN each zone ends at. At a basic
3242 * usage, an architecture is expected to do something like
3244 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3246 * for_each_valid_physical_page_range()
3247 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3248 * free_area_init(max_zone_pfns);
3250 void free_area_init(unsigned long *max_zone_pfn);
3251 unsigned long node_map_pfn_alignment(void);
3252 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3253 unsigned long end_pfn);
3254 extern void get_pfn_range_for_nid(unsigned int nid,
3255 unsigned long *start_pfn, unsigned long *end_pfn);
3258 static inline int early_pfn_to_nid(unsigned long pfn)
3263 /* please see mm/page_alloc.c */
3264 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3267 extern void mem_init(void);
3268 extern void __init mmap_init(void);
3270 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3271 static inline void show_mem(void)
3273 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3275 extern long si_mem_available(void);
3276 extern void si_meminfo(struct sysinfo * val);
3277 extern void si_meminfo_node(struct sysinfo *val, int nid);
3279 extern __printf(3, 4)
3280 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3282 extern void setup_per_cpu_pageset(void);
3285 extern atomic_long_t mmap_pages_allocated;
3286 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3288 /* interval_tree.c */
3289 void vma_interval_tree_insert(struct vm_area_struct *node,
3290 struct rb_root_cached *root);
3291 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3292 struct vm_area_struct *prev,
3293 struct rb_root_cached *root);
3294 void vma_interval_tree_remove(struct vm_area_struct *node,
3295 struct rb_root_cached *root);
3296 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3297 unsigned long start, unsigned long last);
3298 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3299 unsigned long start, unsigned long last);
3301 #define vma_interval_tree_foreach(vma, root, start, last) \
3302 for (vma = vma_interval_tree_iter_first(root, start, last); \
3303 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3305 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3306 struct rb_root_cached *root);
3307 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3308 struct rb_root_cached *root);
3309 struct anon_vma_chain *
3310 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3311 unsigned long start, unsigned long last);
3312 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3313 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3314 #ifdef CONFIG_DEBUG_VM_RB
3315 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3318 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3319 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3320 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3323 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3324 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3325 extern void exit_mmap(struct mm_struct *);
3326 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3328 static inline int check_data_rlimit(unsigned long rlim,
3330 unsigned long start,
3331 unsigned long end_data,
3332 unsigned long start_data)
3334 if (rlim < RLIM_INFINITY) {
3335 if (((new - start) + (end_data - start_data)) > rlim)
3342 extern int mm_take_all_locks(struct mm_struct *mm);
3343 extern void mm_drop_all_locks(struct mm_struct *mm);
3345 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3346 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3347 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3348 extern struct file *get_task_exe_file(struct task_struct *task);
3350 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3351 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3353 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3354 const struct vm_special_mapping *sm);
3355 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3356 unsigned long addr, unsigned long len,
3357 unsigned long flags,
3358 const struct vm_special_mapping *spec);
3360 unsigned long randomize_stack_top(unsigned long stack_top);
3361 unsigned long randomize_page(unsigned long start, unsigned long range);
3364 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3365 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3367 static inline unsigned long
3368 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3369 unsigned long pgoff, unsigned long flags)
3371 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3374 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3375 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3376 struct list_head *uf);
3377 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3378 unsigned long len, unsigned long prot, unsigned long flags,
3379 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3380 struct list_head *uf);
3381 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3382 unsigned long start, size_t len, struct list_head *uf,
3384 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3385 struct mm_struct *mm, unsigned long start,
3386 unsigned long end, struct list_head *uf, bool unlock);
3387 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3388 struct list_head *uf);
3389 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3392 extern int __mm_populate(unsigned long addr, unsigned long len,
3394 static inline void mm_populate(unsigned long addr, unsigned long len)
3397 (void) __mm_populate(addr, len, 1);
3400 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3403 /* This takes the mm semaphore itself */
3404 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3405 extern int vm_munmap(unsigned long, size_t);
3406 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3407 unsigned long, unsigned long,
3408 unsigned long, unsigned long);
3410 struct vm_unmapped_area_info {
3411 #define VM_UNMAPPED_AREA_TOPDOWN 1
3412 unsigned long flags;
3413 unsigned long length;
3414 unsigned long low_limit;
3415 unsigned long high_limit;
3416 unsigned long align_mask;
3417 unsigned long align_offset;
3418 unsigned long start_gap;
3421 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3424 extern void truncate_inode_pages(struct address_space *, loff_t);
3425 extern void truncate_inode_pages_range(struct address_space *,
3426 loff_t lstart, loff_t lend);
3427 extern void truncate_inode_pages_final(struct address_space *);
3429 /* generic vm_area_ops exported for stackable file systems */
3430 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3431 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3432 pgoff_t start_pgoff, pgoff_t end_pgoff);
3433 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3435 extern unsigned long stack_guard_gap;
3436 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3437 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3438 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3440 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3441 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3443 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3444 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3445 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3446 struct vm_area_struct **pprev);
3449 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3450 * NULL if none. Assume start_addr < end_addr.
3452 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3453 unsigned long start_addr, unsigned long end_addr);
3456 * vma_lookup() - Find a VMA at a specific address
3457 * @mm: The process address space.
3458 * @addr: The user address.
3460 * Return: The vm_area_struct at the given address, %NULL otherwise.
3463 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3465 return mtree_load(&mm->mm_mt, addr);
3468 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3470 if (vma->vm_flags & VM_GROWSDOWN)
3471 return stack_guard_gap;
3473 /* See reasoning around the VM_SHADOW_STACK definition */
3474 if (vma->vm_flags & VM_SHADOW_STACK)
3480 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3482 unsigned long gap = stack_guard_start_gap(vma);
3483 unsigned long vm_start = vma->vm_start;
3486 if (vm_start > vma->vm_start)
3491 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3493 unsigned long vm_end = vma->vm_end;
3495 if (vma->vm_flags & VM_GROWSUP) {
3496 vm_end += stack_guard_gap;
3497 if (vm_end < vma->vm_end)
3498 vm_end = -PAGE_SIZE;
3503 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3505 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3508 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3509 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3510 unsigned long vm_start, unsigned long vm_end)
3512 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3514 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3520 static inline bool range_in_vma(struct vm_area_struct *vma,
3521 unsigned long start, unsigned long end)
3523 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3527 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3528 void vma_set_page_prot(struct vm_area_struct *vma);
3530 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3534 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3536 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3540 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3542 #ifdef CONFIG_NUMA_BALANCING
3543 unsigned long change_prot_numa(struct vm_area_struct *vma,
3544 unsigned long start, unsigned long end);
3547 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3548 unsigned long addr);
3549 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3550 unsigned long pfn, unsigned long size, pgprot_t);
3551 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3552 unsigned long pfn, unsigned long size, pgprot_t prot);
3553 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3554 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3555 struct page **pages, unsigned long *num);
3556 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3558 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3560 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3562 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3563 unsigned long pfn, pgprot_t pgprot);
3564 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3566 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3567 unsigned long addr, pfn_t pfn);
3568 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3570 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3571 unsigned long addr, struct page *page)
3573 int err = vm_insert_page(vma, addr, page);
3576 return VM_FAULT_OOM;
3577 if (err < 0 && err != -EBUSY)
3578 return VM_FAULT_SIGBUS;
3580 return VM_FAULT_NOPAGE;
3583 #ifndef io_remap_pfn_range
3584 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3585 unsigned long addr, unsigned long pfn,
3586 unsigned long size, pgprot_t prot)
3588 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3592 static inline vm_fault_t vmf_error(int err)
3595 return VM_FAULT_OOM;
3596 else if (err == -EHWPOISON)
3597 return VM_FAULT_HWPOISON;
3598 return VM_FAULT_SIGBUS;
3602 * Convert errno to return value for ->page_mkwrite() calls.
3604 * This should eventually be merged with vmf_error() above, but will need a
3605 * careful audit of all vmf_error() callers.
3607 static inline vm_fault_t vmf_fs_error(int err)
3610 return VM_FAULT_LOCKED;
3611 if (err == -EFAULT || err == -EAGAIN)
3612 return VM_FAULT_NOPAGE;
3614 return VM_FAULT_OOM;
3615 /* -ENOSPC, -EDQUOT, -EIO ... */
3616 return VM_FAULT_SIGBUS;
3619 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3621 if (vm_fault & VM_FAULT_OOM)
3623 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3624 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3625 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3631 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3632 * a (NUMA hinting) fault is required.
3634 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3638 * If callers don't want to honor NUMA hinting faults, no need to
3639 * determine if we would actually have to trigger a NUMA hinting fault.
3641 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3645 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3647 * Requiring a fault here even for inaccessible VMAs would mean that
3648 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3649 * refuses to process NUMA hinting faults in inaccessible VMAs.
3651 return !vma_is_accessible(vma);
3654 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3655 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3656 unsigned long size, pte_fn_t fn, void *data);
3657 extern int apply_to_existing_page_range(struct mm_struct *mm,
3658 unsigned long address, unsigned long size,
3659 pte_fn_t fn, void *data);
3661 #ifdef CONFIG_PAGE_POISONING
3662 extern void __kernel_poison_pages(struct page *page, int numpages);
3663 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3664 extern bool _page_poisoning_enabled_early;
3665 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3666 static inline bool page_poisoning_enabled(void)
3668 return _page_poisoning_enabled_early;
3671 * For use in fast paths after init_mem_debugging() has run, or when a
3672 * false negative result is not harmful when called too early.
3674 static inline bool page_poisoning_enabled_static(void)
3676 return static_branch_unlikely(&_page_poisoning_enabled);
3678 static inline void kernel_poison_pages(struct page *page, int numpages)
3680 if (page_poisoning_enabled_static())
3681 __kernel_poison_pages(page, numpages);
3683 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3685 if (page_poisoning_enabled_static())
3686 __kernel_unpoison_pages(page, numpages);
3689 static inline bool page_poisoning_enabled(void) { return false; }
3690 static inline bool page_poisoning_enabled_static(void) { return false; }
3691 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3692 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3693 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3696 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3697 static inline bool want_init_on_alloc(gfp_t flags)
3699 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3702 return flags & __GFP_ZERO;
3705 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3706 static inline bool want_init_on_free(void)
3708 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3712 extern bool _debug_pagealloc_enabled_early;
3713 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3715 static inline bool debug_pagealloc_enabled(void)
3717 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3718 _debug_pagealloc_enabled_early;
3722 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3723 * or when a false negative result is not harmful when called too early.
3725 static inline bool debug_pagealloc_enabled_static(void)
3727 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3730 return static_branch_unlikely(&_debug_pagealloc_enabled);
3734 * To support DEBUG_PAGEALLOC architecture must ensure that
3735 * __kernel_map_pages() never fails
3737 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3738 #ifdef CONFIG_DEBUG_PAGEALLOC
3739 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3741 if (debug_pagealloc_enabled_static())
3742 __kernel_map_pages(page, numpages, 1);
3745 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3747 if (debug_pagealloc_enabled_static())
3748 __kernel_map_pages(page, numpages, 0);
3751 extern unsigned int _debug_guardpage_minorder;
3752 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3754 static inline unsigned int debug_guardpage_minorder(void)
3756 return _debug_guardpage_minorder;
3759 static inline bool debug_guardpage_enabled(void)
3761 return static_branch_unlikely(&_debug_guardpage_enabled);
3764 static inline bool page_is_guard(struct page *page)
3766 if (!debug_guardpage_enabled())
3769 return PageGuard(page);
3772 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3773 static inline bool set_page_guard(struct zone *zone, struct page *page,
3776 if (!debug_guardpage_enabled())
3778 return __set_page_guard(zone, page, order);
3781 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3782 static inline void clear_page_guard(struct zone *zone, struct page *page,
3785 if (!debug_guardpage_enabled())
3787 __clear_page_guard(zone, page, order);
3790 #else /* CONFIG_DEBUG_PAGEALLOC */
3791 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3792 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3793 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3794 static inline bool debug_guardpage_enabled(void) { return false; }
3795 static inline bool page_is_guard(struct page *page) { return false; }
3796 static inline bool set_page_guard(struct zone *zone, struct page *page,
3797 unsigned int order) { return false; }
3798 static inline void clear_page_guard(struct zone *zone, struct page *page,
3799 unsigned int order) {}
3800 #endif /* CONFIG_DEBUG_PAGEALLOC */
3802 #ifdef __HAVE_ARCH_GATE_AREA
3803 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3804 extern int in_gate_area_no_mm(unsigned long addr);
3805 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3807 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3811 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3812 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3816 #endif /* __HAVE_ARCH_GATE_AREA */
3818 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3820 #ifdef CONFIG_SYSCTL
3821 extern int sysctl_drop_caches;
3822 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3826 void drop_slab(void);
3829 #define randomize_va_space 0
3831 extern int randomize_va_space;
3834 const char * arch_vma_name(struct vm_area_struct *vma);
3836 void print_vma_addr(char *prefix, unsigned long rip);
3838 static inline void print_vma_addr(char *prefix, unsigned long rip)
3843 void *sparse_buffer_alloc(unsigned long size);
3844 struct page * __populate_section_memmap(unsigned long pfn,
3845 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3846 struct dev_pagemap *pgmap);
3847 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3848 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3849 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3850 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3851 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3852 struct vmem_altmap *altmap, struct page *reuse);
3853 void *vmemmap_alloc_block(unsigned long size, int node);
3855 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3856 struct vmem_altmap *altmap);
3857 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3858 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3859 unsigned long addr, unsigned long next);
3860 int vmemmap_check_pmd(pmd_t *pmd, int node,
3861 unsigned long addr, unsigned long next);
3862 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3863 int node, struct vmem_altmap *altmap);
3864 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3865 int node, struct vmem_altmap *altmap);
3866 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3867 struct vmem_altmap *altmap);
3868 void vmemmap_populate_print_last(void);
3869 #ifdef CONFIG_MEMORY_HOTPLUG
3870 void vmemmap_free(unsigned long start, unsigned long end,
3871 struct vmem_altmap *altmap);
3874 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3875 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3877 /* number of pfns from base where pfn_to_page() is valid */
3879 return altmap->reserve + altmap->free;
3883 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 unsigned long nr_pfns)
3886 altmap->alloc -= nr_pfns;
3889 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3894 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3895 unsigned long nr_pfns)
3900 #define VMEMMAP_RESERVE_NR 2
3901 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3902 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3903 struct dev_pagemap *pgmap)
3905 unsigned long nr_pages;
3906 unsigned long nr_vmemmap_pages;
3908 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3911 nr_pages = pgmap_vmemmap_nr(pgmap);
3912 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3914 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3915 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3917 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3920 * If we don't have an architecture override, use the generic rule
3922 #ifndef vmemmap_can_optimize
3923 #define vmemmap_can_optimize __vmemmap_can_optimize
3927 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3928 struct dev_pagemap *pgmap)
3934 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3935 unsigned long nr_pages);
3938 MF_COUNT_INCREASED = 1 << 0,
3939 MF_ACTION_REQUIRED = 1 << 1,
3940 MF_MUST_KILL = 1 << 2,
3941 MF_SOFT_OFFLINE = 1 << 3,
3942 MF_UNPOISON = 1 << 4,
3943 MF_SW_SIMULATED = 1 << 5,
3944 MF_NO_RETRY = 1 << 6,
3945 MF_MEM_PRE_REMOVE = 1 << 7,
3947 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3948 unsigned long count, int mf_flags);
3949 extern int memory_failure(unsigned long pfn, int flags);
3950 extern void memory_failure_queue_kick(int cpu);
3951 extern int unpoison_memory(unsigned long pfn);
3952 extern atomic_long_t num_poisoned_pages __read_mostly;
3953 extern int soft_offline_page(unsigned long pfn, int flags);
3954 #ifdef CONFIG_MEMORY_FAILURE
3956 * Sysfs entries for memory failure handling statistics.
3958 extern const struct attribute_group memory_failure_attr_group;
3959 extern void memory_failure_queue(unsigned long pfn, int flags);
3960 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3961 bool *migratable_cleared);
3962 void num_poisoned_pages_inc(unsigned long pfn);
3963 void num_poisoned_pages_sub(unsigned long pfn, long i);
3965 static inline void memory_failure_queue(unsigned long pfn, int flags)
3969 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3970 bool *migratable_cleared)
3975 static inline void num_poisoned_pages_inc(unsigned long pfn)
3979 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3984 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3985 extern void memblk_nr_poison_inc(unsigned long pfn);
3986 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3988 static inline void memblk_nr_poison_inc(unsigned long pfn)
3992 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3997 #ifndef arch_memory_failure
3998 static inline int arch_memory_failure(unsigned long pfn, int flags)
4004 #ifndef arch_is_platform_page
4005 static inline bool arch_is_platform_page(u64 paddr)
4012 * Error handlers for various types of pages.
4015 MF_IGNORED, /* Error: cannot be handled */
4016 MF_FAILED, /* Error: handling failed */
4017 MF_DELAYED, /* Will be handled later */
4018 MF_RECOVERED, /* Successfully recovered */
4021 enum mf_action_page_type {
4023 MF_MSG_KERNEL_HIGH_ORDER,
4024 MF_MSG_DIFFERENT_COMPOUND,
4027 MF_MSG_GET_HWPOISON,
4028 MF_MSG_UNMAP_FAILED,
4029 MF_MSG_DIRTY_SWAPCACHE,
4030 MF_MSG_CLEAN_SWAPCACHE,
4031 MF_MSG_DIRTY_MLOCKED_LRU,
4032 MF_MSG_CLEAN_MLOCKED_LRU,
4033 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4034 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4037 MF_MSG_TRUNCATED_LRU,
4041 MF_MSG_ALREADY_POISONED,
4045 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4046 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4047 int copy_user_large_folio(struct folio *dst, struct folio *src,
4048 unsigned long addr_hint,
4049 struct vm_area_struct *vma);
4050 long copy_folio_from_user(struct folio *dst_folio,
4051 const void __user *usr_src,
4052 bool allow_pagefault);
4055 * vma_is_special_huge - Are transhuge page-table entries considered special?
4056 * @vma: Pointer to the struct vm_area_struct to consider
4058 * Whether transhuge page-table entries are considered "special" following
4059 * the definition in vm_normal_page().
4061 * Return: true if transhuge page-table entries should be considered special,
4064 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4066 return vma_is_dax(vma) || (vma->vm_file &&
4067 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4072 #if MAX_NUMNODES > 1
4073 void __init setup_nr_node_ids(void);
4075 static inline void setup_nr_node_ids(void) {}
4078 extern int memcmp_pages(struct page *page1, struct page *page2);
4080 static inline int pages_identical(struct page *page1, struct page *page2)
4082 return !memcmp_pages(page1, page2);
4085 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4086 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4087 pgoff_t first_index, pgoff_t nr,
4088 pgoff_t bitmap_pgoff,
4089 unsigned long *bitmap,
4093 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4094 pgoff_t first_index, pgoff_t nr);
4097 extern int sysctl_nr_trim_pages;
4099 #ifdef CONFIG_PRINTK
4100 void mem_dump_obj(void *object);
4102 static inline void mem_dump_obj(void *object) {}
4105 static inline bool is_write_sealed(int seals)
4107 return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE);
4111 * is_readonly_sealed - Checks whether write-sealed but mapped read-only,
4112 * in which case writes should be disallowing moving
4114 * @seals: the seals to check
4115 * @vm_flags: the VMA flags to check
4117 * Returns whether readonly sealed, in which case writess should be disallowed
4120 static inline bool is_readonly_sealed(int seals, vm_flags_t vm_flags)
4123 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4124 * MAP_SHARED and read-only, take care to not allow mprotect to
4125 * revert protections on such mappings. Do this only for shared
4126 * mappings. For private mappings, don't need to mask
4127 * VM_MAYWRITE as we still want them to be COW-writable.
4129 if (is_write_sealed(seals) &&
4130 ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_SHARED))
4137 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4139 * @seals: the seals to check
4140 * @vma: the vma to operate on
4142 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4143 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4145 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4147 if (!is_write_sealed(seals))
4151 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4152 * write seals are active.
4154 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4160 #ifdef CONFIG_ANON_VMA_NAME
4161 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4162 unsigned long len_in,
4163 struct anon_vma_name *anon_name);
4166 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4167 unsigned long len_in, struct anon_vma_name *anon_name) {
4172 #ifdef CONFIG_UNACCEPTED_MEMORY
4174 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4175 void accept_memory(phys_addr_t start, unsigned long size);
4179 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4185 static inline void accept_memory(phys_addr_t start, unsigned long size)
4191 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4193 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4196 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4197 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4199 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4202 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4204 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4206 /* noop on 32 bit */
4212 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4215 static inline bool user_alloc_needs_zeroing(void)
4218 * for user folios, arch with cache aliasing requires cache flush and
4219 * arc changes folio->flags to make icache coherent with dcache, so
4220 * always return false to make caller use
4221 * clear_user_page()/clear_user_highpage().
4223 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4224 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4228 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4229 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4230 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4232 #endif /* _LINUX_MM_H */