]> Git Repo - J-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'tpmdd-next-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko...
[J-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_print.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_vblank.h>
45
46 #include "vc4_drv.h"
47 #include "vc4_hdmi.h"
48 #include "vc4_regs.h"
49
50 #define HVS_FIFO_LATENCY_PIX    6
51
52 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
53 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
54
55 static const struct debugfs_reg32 crtc_regs[] = {
56         VC4_REG32(PV_CONTROL),
57         VC4_REG32(PV_V_CONTROL),
58         VC4_REG32(PV_VSYNCD_EVEN),
59         VC4_REG32(PV_HORZA),
60         VC4_REG32(PV_HORZB),
61         VC4_REG32(PV_VERTA),
62         VC4_REG32(PV_VERTB),
63         VC4_REG32(PV_VERTA_EVEN),
64         VC4_REG32(PV_VERTB_EVEN),
65         VC4_REG32(PV_INTEN),
66         VC4_REG32(PV_INTSTAT),
67         VC4_REG32(PV_STAT),
68         VC4_REG32(PV_HACT_ACT),
69 };
70
71 static unsigned int
72 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
73 {
74         struct vc4_hvs *hvs = vc4->hvs;
75         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
76         /* Top/base are supposed to be 4-pixel aligned, but the
77          * Raspberry Pi firmware fills the low bits (which are
78          * presumably ignored).
79          */
80         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
81         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
82
83         return top - base + 4;
84 }
85
86 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
87                                           bool in_vblank_irq,
88                                           int *vpos, int *hpos,
89                                           ktime_t *stime, ktime_t *etime,
90                                           const struct drm_display_mode *mode)
91 {
92         struct drm_device *dev = crtc->dev;
93         struct vc4_dev *vc4 = to_vc4_dev(dev);
94         struct vc4_hvs *hvs = vc4->hvs;
95         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
96         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
97         unsigned int cob_size;
98         u32 val;
99         int fifo_lines;
100         int vblank_lines;
101         bool ret = false;
102
103         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
104
105         /* Get optional system timestamp before query. */
106         if (stime)
107                 *stime = ktime_get();
108
109         /*
110          * Read vertical scanline which is currently composed for our
111          * pixelvalve by the HVS, and also the scaler status.
112          */
113         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
114
115         /* Get optional system timestamp after query. */
116         if (etime)
117                 *etime = ktime_get();
118
119         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
120
121         /* Vertical position of hvs composed scanline. */
122         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
123         *hpos = 0;
124
125         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
126                 *vpos /= 2;
127
128                 /* Use hpos to correct for field offset in interlaced mode. */
129                 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
130                         *hpos += mode->crtc_htotal / 2;
131         }
132
133         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
134         /* This is the offset we need for translating hvs -> pv scanout pos. */
135         fifo_lines = cob_size / mode->crtc_hdisplay;
136
137         if (fifo_lines > 0)
138                 ret = true;
139
140         /* HVS more than fifo_lines into frame for compositing? */
141         if (*vpos > fifo_lines) {
142                 /*
143                  * We are in active scanout and can get some meaningful results
144                  * from HVS. The actual PV scanout can not trail behind more
145                  * than fifo_lines as that is the fifo's capacity. Assume that
146                  * in active scanout the HVS and PV work in lockstep wrt. HVS
147                  * refilling the fifo and PV consuming from the fifo, ie.
148                  * whenever the PV consumes and frees up a scanline in the
149                  * fifo, the HVS will immediately refill it, therefore
150                  * incrementing vpos. Therefore we choose HVS read position -
151                  * fifo size in scanlines as a estimate of the real scanout
152                  * position of the PV.
153                  */
154                 *vpos -= fifo_lines + 1;
155
156                 return ret;
157         }
158
159         /*
160          * Less: This happens when we are in vblank and the HVS, after getting
161          * the VSTART restart signal from the PV, just started refilling its
162          * fifo with new lines from the top-most lines of the new framebuffers.
163          * The PV does not scan out in vblank, so does not remove lines from
164          * the fifo, so the fifo will be full quickly and the HVS has to pause.
165          * We can't get meaningful readings wrt. scanline position of the PV
166          * and need to make things up in a approximative but consistent way.
167          */
168         vblank_lines = mode->vtotal - mode->vdisplay;
169
170         if (in_vblank_irq) {
171                 /*
172                  * Assume the irq handler got called close to first
173                  * line of vblank, so PV has about a full vblank
174                  * scanlines to go, and as a base timestamp use the
175                  * one taken at entry into vblank irq handler, so it
176                  * is not affected by random delays due to lock
177                  * contention on event_lock or vblank_time lock in
178                  * the core.
179                  */
180                 *vpos = -vblank_lines;
181
182                 if (stime)
183                         *stime = vc4_crtc->t_vblank;
184                 if (etime)
185                         *etime = vc4_crtc->t_vblank;
186
187                 /*
188                  * If the HVS fifo is not yet full then we know for certain
189                  * we are at the very beginning of vblank, as the hvs just
190                  * started refilling, and the stime and etime timestamps
191                  * truly correspond to start of vblank.
192                  *
193                  * Unfortunately there's no way to report this to upper levels
194                  * and make it more useful.
195                  */
196         } else {
197                 /*
198                  * No clue where we are inside vblank. Return a vpos of zero,
199                  * which will cause calling code to just return the etime
200                  * timestamp uncorrected. At least this is no worse than the
201                  * standard fallback.
202                  */
203                 *vpos = 0;
204         }
205
206         return ret;
207 }
208
209 void vc4_crtc_destroy(struct drm_crtc *crtc)
210 {
211         drm_crtc_cleanup(crtc);
212 }
213
214 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
215 {
216         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
217         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
218         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
219         u32 fifo_len_bytes = pv_data->fifo_depth;
220
221         /*
222          * Pixels are pulled from the HVS if the number of bytes is
223          * lower than the FIFO full level.
224          *
225          * The latency of the pixel fetch mechanism is 6 pixels, so we
226          * need to convert those 6 pixels in bytes, depending on the
227          * format, and then subtract that from the length of the FIFO
228          * to make sure we never end up in a situation where the FIFO
229          * is full.
230          */
231         switch (format) {
232         case PV_CONTROL_FORMAT_DSIV_16:
233         case PV_CONTROL_FORMAT_DSIC_16:
234                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
235         case PV_CONTROL_FORMAT_DSIV_18:
236                 return fifo_len_bytes - 14;
237         case PV_CONTROL_FORMAT_24:
238         case PV_CONTROL_FORMAT_DSIV_24:
239         default:
240                 /*
241                  * For some reason, the pixelvalve4 doesn't work with
242                  * the usual formula and will only work with 32.
243                  */
244                 if (crtc_data->hvs_output == 5)
245                         return 32;
246
247                 /*
248                  * It looks like in some situations, we will overflow
249                  * the PixelValve FIFO (with the bit 10 of PV stat being
250                  * set) and stall the HVS / PV, eventually resulting in
251                  * a page flip timeout.
252                  *
253                  * Displaying the video overlay during a playback with
254                  * Kodi on an RPi3 seems to be a great solution with a
255                  * failure rate around 50%.
256                  *
257                  * Removing 1 from the FIFO full level however
258                  * seems to completely remove that issue.
259                  */
260                 if (!vc4->is_vc5)
261                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
262
263                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
264         }
265 }
266
267 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
268                                              u32 format)
269 {
270         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
271         u32 ret = 0;
272
273         ret |= VC4_SET_FIELD((level >> 6),
274                              PV5_CONTROL_FIFO_LEVEL_HIGH);
275
276         return ret | VC4_SET_FIELD(level & 0x3f,
277                                    PV_CONTROL_FIFO_LEVEL);
278 }
279
280 /*
281  * Returns the encoder attached to the CRTC.
282  *
283  * VC4 can only scan out to one encoder at a time, while the DRM core
284  * allows drivers to push pixels to more than one encoder from the
285  * same CRTC.
286  */
287 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
288                                          struct drm_crtc_state *state)
289 {
290         struct drm_encoder *encoder;
291
292         WARN_ON(hweight32(state->encoder_mask) > 1);
293
294         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
295                 return encoder;
296
297         return NULL;
298 }
299
300 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
301 {
302         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
303
304         /* The PV needs to be disabled before it can be flushed */
305         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
306         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
307 }
308
309 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
310                                struct drm_atomic_state *state)
311 {
312         struct drm_device *dev = crtc->dev;
313         struct vc4_dev *vc4 = to_vc4_dev(dev);
314         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
315         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
316         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
317         struct drm_crtc_state *crtc_state = crtc->state;
318         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
319         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
320         bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
321                        vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
322         u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
323         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
324                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
325         bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
326         u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
327         u8 ppc = pv_data->pixels_per_clock;
328         bool debug_dump_regs = false;
329
330         if (debug_dump_regs) {
331                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
332                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
333                          drm_crtc_index(crtc));
334                 drm_print_regset32(&p, &vc4_crtc->regset);
335         }
336
337         vc4_crtc_pixelvalve_reset(crtc);
338
339         CRTC_WRITE(PV_HORZA,
340                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
341                                  PV_HORZA_HBP) |
342                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
343                                  PV_HORZA_HSYNC));
344
345         CRTC_WRITE(PV_HORZB,
346                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
347                                  PV_HORZB_HFP) |
348                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
349                                  PV_HORZB_HACTIVE));
350
351         CRTC_WRITE(PV_VERTA,
352                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
353                                  interlace,
354                                  PV_VERTA_VBP) |
355                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
356                                  PV_VERTA_VSYNC));
357         CRTC_WRITE(PV_VERTB,
358                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
359                                  PV_VERTB_VFP) |
360                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
361
362         if (interlace) {
363                 CRTC_WRITE(PV_VERTA_EVEN,
364                            VC4_SET_FIELD(mode->crtc_vtotal -
365                                          mode->crtc_vsync_end,
366                                          PV_VERTA_VBP) |
367                            VC4_SET_FIELD(mode->crtc_vsync_end -
368                                          mode->crtc_vsync_start,
369                                          PV_VERTA_VSYNC));
370                 CRTC_WRITE(PV_VERTB_EVEN,
371                            VC4_SET_FIELD(mode->crtc_vsync_start -
372                                          mode->crtc_vdisplay,
373                                          PV_VERTB_VFP) |
374                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
375
376                 /* We set up first field even mode for HDMI.  VEC's
377                  * NTSC mode would want first field odd instead, once
378                  * we support it (to do so, set ODD_FIRST and put the
379                  * delay in VSYNCD_EVEN instead).
380                  */
381                 CRTC_WRITE(PV_V_CONTROL,
382                            PV_VCONTROL_CONTINUOUS |
383                            (is_dsi ? PV_VCONTROL_DSI : 0) |
384                            PV_VCONTROL_INTERLACE |
385                            VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
386                                          PV_VCONTROL_ODD_DELAY));
387                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
388         } else {
389                 CRTC_WRITE(PV_V_CONTROL,
390                            PV_VCONTROL_CONTINUOUS |
391                            (is_dsi ? PV_VCONTROL_DSI : 0));
392         }
393
394         if (is_dsi)
395                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
396
397         if (vc4->is_vc5)
398                 CRTC_WRITE(PV_MUX_CFG,
399                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
400                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
401
402         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
403                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
404                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
405                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
406                    PV_CONTROL_CLR_AT_START |
407                    PV_CONTROL_TRIGGER_UNDERFLOW |
408                    PV_CONTROL_WAIT_HSTART |
409                    VC4_SET_FIELD(vc4_encoder->clock_select,
410                                  PV_CONTROL_CLK_SELECT));
411
412         if (debug_dump_regs) {
413                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
414                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
415                          drm_crtc_index(crtc));
416                 drm_print_regset32(&p, &vc4_crtc->regset);
417         }
418 }
419
420 static void require_hvs_enabled(struct drm_device *dev)
421 {
422         struct vc4_dev *vc4 = to_vc4_dev(dev);
423         struct vc4_hvs *hvs = vc4->hvs;
424
425         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
426                      SCALER_DISPCTRL_ENABLE);
427 }
428
429 static int vc4_crtc_disable(struct drm_crtc *crtc,
430                             struct drm_encoder *encoder,
431                             struct drm_atomic_state *state,
432                             unsigned int channel)
433 {
434         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
435         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
436         struct drm_device *dev = crtc->dev;
437         struct vc4_dev *vc4 = to_vc4_dev(dev);
438         int ret;
439
440         CRTC_WRITE(PV_V_CONTROL,
441                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
442         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
443         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
444
445         /*
446          * This delay is needed to avoid to get a pixel stuck in an
447          * unflushable FIFO between the pixelvalve and the HDMI
448          * controllers on the BCM2711.
449          *
450          * Timing is fairly sensitive here, so mdelay is the safest
451          * approach.
452          *
453          * If it was to be reworked, the stuck pixel happens on a
454          * BCM2711 when changing mode with a good probability, so a
455          * script that changes mode on a regular basis should trigger
456          * the bug after less than 10 attempts. It manifests itself with
457          * every pixels being shifted by one to the right, and thus the
458          * last pixel of a line actually being displayed as the first
459          * pixel on the next line.
460          */
461         mdelay(20);
462
463         if (vc4_encoder && vc4_encoder->post_crtc_disable)
464                 vc4_encoder->post_crtc_disable(encoder, state);
465
466         vc4_crtc_pixelvalve_reset(crtc);
467         vc4_hvs_stop_channel(vc4->hvs, channel);
468
469         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
470                 vc4_encoder->post_crtc_powerdown(encoder, state);
471
472         return 0;
473 }
474
475 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
476                                                         enum vc4_encoder_type type)
477 {
478         struct drm_encoder *encoder;
479
480         drm_for_each_encoder(encoder, crtc->dev) {
481                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
482
483                 if (vc4_encoder->type == type)
484                         return encoder;
485         }
486
487         return NULL;
488 }
489
490 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
491 {
492         struct drm_device *drm = crtc->dev;
493         struct vc4_dev *vc4 = to_vc4_dev(drm);
494         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495         enum vc4_encoder_type encoder_type;
496         const struct vc4_pv_data *pv_data;
497         struct drm_encoder *encoder;
498         struct vc4_hdmi *vc4_hdmi;
499         unsigned encoder_sel;
500         int channel;
501         int ret;
502
503         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
504                                       "brcm,bcm2711-pixelvalve2") ||
505               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
506                                       "brcm,bcm2711-pixelvalve4")))
507                 return 0;
508
509         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
510                 return 0;
511
512         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
513                 return 0;
514
515         channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
516         if (channel < 0)
517                 return 0;
518
519         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
520         if (WARN_ON(encoder_sel != 0))
521                 return 0;
522
523         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
524         encoder_type = pv_data->encoder_types[encoder_sel];
525         encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
526         if (WARN_ON(!encoder))
527                 return 0;
528
529         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
530         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
531         if (ret)
532                 return ret;
533
534         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
535         if (ret)
536                 return ret;
537
538         /*
539          * post_crtc_powerdown will have called pm_runtime_put, so we
540          * don't need it here otherwise we'll get the reference counting
541          * wrong.
542          */
543
544         return 0;
545 }
546
547 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
548                                     struct drm_atomic_state *state)
549 {
550         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
551                                                                          crtc);
552         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
553         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
554         struct drm_device *dev = crtc->dev;
555
556         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
557                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
558
559         require_hvs_enabled(dev);
560
561         /* Disable vblank irq handling before crtc is disabled. */
562         drm_crtc_vblank_off(crtc);
563
564         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
565
566         /*
567          * Make sure we issue a vblank event after disabling the CRTC if
568          * someone was waiting it.
569          */
570         if (crtc->state->event) {
571                 unsigned long flags;
572
573                 spin_lock_irqsave(&dev->event_lock, flags);
574                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
575                 crtc->state->event = NULL;
576                 spin_unlock_irqrestore(&dev->event_lock, flags);
577         }
578 }
579
580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
581                                    struct drm_atomic_state *state)
582 {
583         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
584                                                                          crtc);
585         struct drm_device *dev = crtc->dev;
586         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
587         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
588         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
589
590         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
591                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
592
593         require_hvs_enabled(dev);
594
595         /* Enable vblank irq handling before crtc is started otherwise
596          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
597          */
598         drm_crtc_vblank_on(crtc);
599
600         vc4_hvs_atomic_enable(crtc, state);
601
602         if (vc4_encoder->pre_crtc_configure)
603                 vc4_encoder->pre_crtc_configure(encoder, state);
604
605         vc4_crtc_config_pv(crtc, encoder, state);
606
607         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
608
609         if (vc4_encoder->pre_crtc_enable)
610                 vc4_encoder->pre_crtc_enable(encoder, state);
611
612         /* When feeding the transposer block the pixelvalve is unneeded and
613          * should not be enabled.
614          */
615         CRTC_WRITE(PV_V_CONTROL,
616                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
617
618         if (vc4_encoder->post_crtc_enable)
619                 vc4_encoder->post_crtc_enable(encoder, state);
620 }
621
622 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
623                                                 const struct drm_display_mode *mode)
624 {
625         /* Do not allow doublescan modes from user space */
626         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
627                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
628                               crtc->base.id);
629                 return MODE_NO_DBLESCAN;
630         }
631
632         return MODE_OK;
633 }
634
635 void vc4_crtc_get_margins(struct drm_crtc_state *state,
636                           unsigned int *left, unsigned int *right,
637                           unsigned int *top, unsigned int *bottom)
638 {
639         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
640         struct drm_connector_state *conn_state;
641         struct drm_connector *conn;
642         int i;
643
644         *left = vc4_state->margins.left;
645         *right = vc4_state->margins.right;
646         *top = vc4_state->margins.top;
647         *bottom = vc4_state->margins.bottom;
648
649         /* We have to interate over all new connector states because
650          * vc4_crtc_get_margins() might be called before
651          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
652          * might be outdated.
653          */
654         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
655                 if (conn_state->crtc != state->crtc)
656                         continue;
657
658                 *left = conn_state->tv.margins.left;
659                 *right = conn_state->tv.margins.right;
660                 *top = conn_state->tv.margins.top;
661                 *bottom = conn_state->tv.margins.bottom;
662                 break;
663         }
664 }
665
666 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
667                                  struct drm_atomic_state *state)
668 {
669         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
670                                                                           crtc);
671         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
672         struct drm_connector *conn;
673         struct drm_connector_state *conn_state;
674         struct drm_encoder *encoder;
675         int ret, i;
676
677         ret = vc4_hvs_atomic_check(crtc, state);
678         if (ret)
679                 return ret;
680
681         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
682         if (encoder) {
683                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
684                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
685
686                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
687                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
688                                                   mode->clock * 9 / 10) * 1000;
689                 } else {
690                         vc4_state->hvs_load = mode->clock * 1000;
691                 }
692         }
693
694         for_each_new_connector_in_state(state, conn, conn_state,
695                                         i) {
696                 if (conn_state->crtc != crtc)
697                         continue;
698
699                 vc4_state->margins.left = conn_state->tv.margins.left;
700                 vc4_state->margins.right = conn_state->tv.margins.right;
701                 vc4_state->margins.top = conn_state->tv.margins.top;
702                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
703                 break;
704         }
705
706         return 0;
707 }
708
709 static int vc4_enable_vblank(struct drm_crtc *crtc)
710 {
711         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
712
713         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
714
715         return 0;
716 }
717
718 static void vc4_disable_vblank(struct drm_crtc *crtc)
719 {
720         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
721
722         CRTC_WRITE(PV_INTEN, 0);
723 }
724
725 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
726 {
727         struct drm_crtc *crtc = &vc4_crtc->base;
728         struct drm_device *dev = crtc->dev;
729         struct vc4_dev *vc4 = to_vc4_dev(dev);
730         struct vc4_hvs *hvs = vc4->hvs;
731         u32 chan = vc4_crtc->current_hvs_channel;
732         unsigned long flags;
733
734         spin_lock_irqsave(&dev->event_lock, flags);
735         spin_lock(&vc4_crtc->irq_lock);
736         if (vc4_crtc->event &&
737             (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
738              vc4_crtc->feeds_txp)) {
739                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
740                 vc4_crtc->event = NULL;
741                 drm_crtc_vblank_put(crtc);
742
743                 /* Wait for the page flip to unmask the underrun to ensure that
744                  * the display list was updated by the hardware. Before that
745                  * happens, the HVS will be using the previous display list with
746                  * the CRTC and encoder already reconfigured, leading to
747                  * underruns. This can be seen when reconfiguring the CRTC.
748                  */
749                 vc4_hvs_unmask_underrun(hvs, chan);
750         }
751         spin_unlock(&vc4_crtc->irq_lock);
752         spin_unlock_irqrestore(&dev->event_lock, flags);
753 }
754
755 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
756 {
757         crtc->t_vblank = ktime_get();
758         drm_crtc_handle_vblank(&crtc->base);
759         vc4_crtc_handle_page_flip(crtc);
760 }
761
762 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
763 {
764         struct vc4_crtc *vc4_crtc = data;
765         u32 stat = CRTC_READ(PV_INTSTAT);
766         irqreturn_t ret = IRQ_NONE;
767
768         if (stat & PV_INT_VFP_START) {
769                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
770                 vc4_crtc_handle_vblank(vc4_crtc);
771                 ret = IRQ_HANDLED;
772         }
773
774         return ret;
775 }
776
777 struct vc4_async_flip_state {
778         struct drm_crtc *crtc;
779         struct drm_framebuffer *fb;
780         struct drm_framebuffer *old_fb;
781         struct drm_pending_vblank_event *event;
782
783         union {
784                 struct dma_fence_cb fence;
785                 struct vc4_seqno_cb seqno;
786         } cb;
787 };
788
789 /* Called when the V3D execution for the BO being flipped to is done, so that
790  * we can actually update the plane's address to point to it.
791  */
792 static void
793 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
794 {
795         struct drm_crtc *crtc = flip_state->crtc;
796         struct drm_device *dev = crtc->dev;
797         struct drm_plane *plane = crtc->primary;
798
799         vc4_plane_async_set_fb(plane, flip_state->fb);
800         if (flip_state->event) {
801                 unsigned long flags;
802
803                 spin_lock_irqsave(&dev->event_lock, flags);
804                 drm_crtc_send_vblank_event(crtc, flip_state->event);
805                 spin_unlock_irqrestore(&dev->event_lock, flags);
806         }
807
808         drm_crtc_vblank_put(crtc);
809         drm_framebuffer_put(flip_state->fb);
810
811         if (flip_state->old_fb)
812                 drm_framebuffer_put(flip_state->old_fb);
813
814         kfree(flip_state);
815 }
816
817 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
818 {
819         struct vc4_async_flip_state *flip_state =
820                 container_of(cb, struct vc4_async_flip_state, cb.seqno);
821         struct vc4_bo *bo = NULL;
822
823         if (flip_state->old_fb) {
824                 struct drm_gem_cma_object *cma_bo =
825                         drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
826                 bo = to_vc4_bo(&cma_bo->base);
827         }
828
829         vc4_async_page_flip_complete(flip_state);
830
831         /*
832          * Decrement the BO usecnt in order to keep the inc/dec
833          * calls balanced when the planes are updated through
834          * the async update path.
835          *
836          * FIXME: we should move to generic async-page-flip when
837          * it's available, so that we can get rid of this
838          * hand-made cleanup_fb() logic.
839          */
840         if (bo)
841                 vc4_bo_dec_usecnt(bo);
842 }
843
844 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
845                                                struct dma_fence_cb *cb)
846 {
847         struct vc4_async_flip_state *flip_state =
848                 container_of(cb, struct vc4_async_flip_state, cb.fence);
849
850         vc4_async_page_flip_complete(flip_state);
851         dma_fence_put(fence);
852 }
853
854 static int vc4_async_set_fence_cb(struct drm_device *dev,
855                                   struct vc4_async_flip_state *flip_state)
856 {
857         struct drm_framebuffer *fb = flip_state->fb;
858         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
859         struct vc4_dev *vc4 = to_vc4_dev(dev);
860         struct dma_fence *fence;
861         int ret;
862
863         if (!vc4->is_vc5) {
864                 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
865
866                 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
867                                           vc4_async_page_flip_seqno_complete);
868         }
869
870         ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
871         if (ret)
872                 return ret;
873
874         /* If there's no fence, complete the page flip immediately */
875         if (!fence) {
876                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
877                 return 0;
878         }
879
880         /* If the fence has already been completed, complete the page flip */
881         if (dma_fence_add_callback(fence, &flip_state->cb.fence,
882                                    vc4_async_page_flip_fence_complete))
883                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
884
885         return 0;
886 }
887
888 static int
889 vc4_async_page_flip_common(struct drm_crtc *crtc,
890                            struct drm_framebuffer *fb,
891                            struct drm_pending_vblank_event *event,
892                            uint32_t flags)
893 {
894         struct drm_device *dev = crtc->dev;
895         struct drm_plane *plane = crtc->primary;
896         struct vc4_async_flip_state *flip_state;
897
898         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
899         if (!flip_state)
900                 return -ENOMEM;
901
902         drm_framebuffer_get(fb);
903         flip_state->fb = fb;
904         flip_state->crtc = crtc;
905         flip_state->event = event;
906
907         /* Save the current FB before it's replaced by the new one in
908          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
909          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
910          * it consistent.
911          * FIXME: we should move to generic async-page-flip when it's
912          * available, so that we can get rid of this hand-made cleanup_fb()
913          * logic.
914          */
915         flip_state->old_fb = plane->state->fb;
916         if (flip_state->old_fb)
917                 drm_framebuffer_get(flip_state->old_fb);
918
919         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
920
921         /* Immediately update the plane's legacy fb pointer, so that later
922          * modeset prep sees the state that will be present when the semaphore
923          * is released.
924          */
925         drm_atomic_set_fb_for_plane(plane->state, fb);
926
927         vc4_async_set_fence_cb(dev, flip_state);
928
929         /* Driver takes ownership of state on successful async commit. */
930         return 0;
931 }
932
933 /* Implements async (non-vblank-synced) page flips.
934  *
935  * The page flip ioctl needs to return immediately, so we grab the
936  * modeset semaphore on the pipe, and queue the address update for
937  * when V3D is done with the BO being flipped to.
938  */
939 static int vc4_async_page_flip(struct drm_crtc *crtc,
940                                struct drm_framebuffer *fb,
941                                struct drm_pending_vblank_event *event,
942                                uint32_t flags)
943 {
944         struct drm_device *dev = crtc->dev;
945         struct vc4_dev *vc4 = to_vc4_dev(dev);
946         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
947         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
948         int ret;
949
950         if (WARN_ON_ONCE(vc4->is_vc5))
951                 return -ENODEV;
952
953         /*
954          * Increment the BO usecnt here, so that we never end up with an
955          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
956          * plane is later updated through the non-async path.
957          *
958          * FIXME: we should move to generic async-page-flip when
959          * it's available, so that we can get rid of this
960          * hand-made prepare_fb() logic.
961          */
962         ret = vc4_bo_inc_usecnt(bo);
963         if (ret)
964                 return ret;
965
966         ret = vc4_async_page_flip_common(crtc, fb, event, flags);
967         if (ret) {
968                 vc4_bo_dec_usecnt(bo);
969                 return ret;
970         }
971
972         return 0;
973 }
974
975 static int vc5_async_page_flip(struct drm_crtc *crtc,
976                                struct drm_framebuffer *fb,
977                                struct drm_pending_vblank_event *event,
978                                uint32_t flags)
979 {
980         return vc4_async_page_flip_common(crtc, fb, event, flags);
981 }
982
983 int vc4_page_flip(struct drm_crtc *crtc,
984                   struct drm_framebuffer *fb,
985                   struct drm_pending_vblank_event *event,
986                   uint32_t flags,
987                   struct drm_modeset_acquire_ctx *ctx)
988 {
989         if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
990                 struct drm_device *dev = crtc->dev;
991                 struct vc4_dev *vc4 = to_vc4_dev(dev);
992
993                 if (vc4->is_vc5)
994                         return vc5_async_page_flip(crtc, fb, event, flags);
995                 else
996                         return vc4_async_page_flip(crtc, fb, event, flags);
997         } else {
998                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
999         }
1000 }
1001
1002 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1003 {
1004         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1005
1006         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1007         if (!vc4_state)
1008                 return NULL;
1009
1010         old_vc4_state = to_vc4_crtc_state(crtc->state);
1011         vc4_state->margins = old_vc4_state->margins;
1012         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1013
1014         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1015         return &vc4_state->base;
1016 }
1017
1018 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1019                             struct drm_crtc_state *state)
1020 {
1021         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1022         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1023
1024         if (drm_mm_node_allocated(&vc4_state->mm)) {
1025                 unsigned long flags;
1026
1027                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1028                 drm_mm_remove_node(&vc4_state->mm);
1029                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1030
1031         }
1032
1033         drm_atomic_helper_crtc_destroy_state(crtc, state);
1034 }
1035
1036 void vc4_crtc_reset(struct drm_crtc *crtc)
1037 {
1038         struct vc4_crtc_state *vc4_crtc_state;
1039
1040         if (crtc->state)
1041                 vc4_crtc_destroy_state(crtc, crtc->state);
1042
1043         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1044         if (!vc4_crtc_state) {
1045                 crtc->state = NULL;
1046                 return;
1047         }
1048
1049         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1050         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1051 }
1052
1053 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1054         .set_config = drm_atomic_helper_set_config,
1055         .destroy = vc4_crtc_destroy,
1056         .page_flip = vc4_page_flip,
1057         .set_property = NULL,
1058         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1059         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1060         .reset = vc4_crtc_reset,
1061         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1062         .atomic_destroy_state = vc4_crtc_destroy_state,
1063         .enable_vblank = vc4_enable_vblank,
1064         .disable_vblank = vc4_disable_vblank,
1065         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1066 };
1067
1068 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1069         .mode_valid = vc4_crtc_mode_valid,
1070         .atomic_check = vc4_crtc_atomic_check,
1071         .atomic_begin = vc4_hvs_atomic_begin,
1072         .atomic_flush = vc4_hvs_atomic_flush,
1073         .atomic_enable = vc4_crtc_atomic_enable,
1074         .atomic_disable = vc4_crtc_atomic_disable,
1075         .get_scanout_position = vc4_crtc_get_scanout_position,
1076 };
1077
1078 static const struct vc4_pv_data bcm2835_pv0_data = {
1079         .base = {
1080                 .hvs_available_channels = BIT(0),
1081                 .hvs_output = 0,
1082         },
1083         .debugfs_name = "crtc0_regs",
1084         .fifo_depth = 64,
1085         .pixels_per_clock = 1,
1086         .encoder_types = {
1087                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1088                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1089         },
1090 };
1091
1092 static const struct vc4_pv_data bcm2835_pv1_data = {
1093         .base = {
1094                 .hvs_available_channels = BIT(2),
1095                 .hvs_output = 2,
1096         },
1097         .debugfs_name = "crtc1_regs",
1098         .fifo_depth = 64,
1099         .pixels_per_clock = 1,
1100         .encoder_types = {
1101                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1102                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1103         },
1104 };
1105
1106 static const struct vc4_pv_data bcm2835_pv2_data = {
1107         .base = {
1108                 .hvs_available_channels = BIT(1),
1109                 .hvs_output = 1,
1110         },
1111         .debugfs_name = "crtc2_regs",
1112         .fifo_depth = 64,
1113         .pixels_per_clock = 1,
1114         .encoder_types = {
1115                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1116                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1117         },
1118 };
1119
1120 static const struct vc4_pv_data bcm2711_pv0_data = {
1121         .base = {
1122                 .hvs_available_channels = BIT(0),
1123                 .hvs_output = 0,
1124         },
1125         .debugfs_name = "crtc0_regs",
1126         .fifo_depth = 64,
1127         .pixels_per_clock = 1,
1128         .encoder_types = {
1129                 [0] = VC4_ENCODER_TYPE_DSI0,
1130                 [1] = VC4_ENCODER_TYPE_DPI,
1131         },
1132 };
1133
1134 static const struct vc4_pv_data bcm2711_pv1_data = {
1135         .base = {
1136                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1137                 .hvs_output = 3,
1138         },
1139         .debugfs_name = "crtc1_regs",
1140         .fifo_depth = 64,
1141         .pixels_per_clock = 1,
1142         .encoder_types = {
1143                 [0] = VC4_ENCODER_TYPE_DSI1,
1144                 [1] = VC4_ENCODER_TYPE_SMI,
1145         },
1146 };
1147
1148 static const struct vc4_pv_data bcm2711_pv2_data = {
1149         .base = {
1150                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1151                 .hvs_output = 4,
1152         },
1153         .debugfs_name = "crtc2_regs",
1154         .fifo_depth = 256,
1155         .pixels_per_clock = 2,
1156         .encoder_types = {
1157                 [0] = VC4_ENCODER_TYPE_HDMI0,
1158         },
1159 };
1160
1161 static const struct vc4_pv_data bcm2711_pv3_data = {
1162         .base = {
1163                 .hvs_available_channels = BIT(1),
1164                 .hvs_output = 1,
1165         },
1166         .debugfs_name = "crtc3_regs",
1167         .fifo_depth = 64,
1168         .pixels_per_clock = 1,
1169         .encoder_types = {
1170                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1171         },
1172 };
1173
1174 static const struct vc4_pv_data bcm2711_pv4_data = {
1175         .base = {
1176                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1177                 .hvs_output = 5,
1178         },
1179         .debugfs_name = "crtc4_regs",
1180         .fifo_depth = 64,
1181         .pixels_per_clock = 2,
1182         .encoder_types = {
1183                 [0] = VC4_ENCODER_TYPE_HDMI1,
1184         },
1185 };
1186
1187 static const struct of_device_id vc4_crtc_dt_match[] = {
1188         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1189         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1190         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1191         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1192         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1193         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1194         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1195         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1196         {}
1197 };
1198
1199 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1200                                         struct drm_crtc *crtc)
1201 {
1202         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1203         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1204         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1205         struct drm_encoder *encoder;
1206
1207         drm_for_each_encoder(encoder, drm) {
1208                 struct vc4_encoder *vc4_encoder;
1209                 int i;
1210
1211                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1212                         continue;
1213
1214                 vc4_encoder = to_vc4_encoder(encoder);
1215                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1216                         if (vc4_encoder->type == encoder_types[i]) {
1217                                 vc4_encoder->clock_select = i;
1218                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1219                                 break;
1220                         }
1221                 }
1222         }
1223 }
1224
1225 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1226                   const struct drm_crtc_funcs *crtc_funcs,
1227                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1228 {
1229         struct vc4_dev *vc4 = to_vc4_dev(drm);
1230         struct drm_crtc *crtc = &vc4_crtc->base;
1231         struct drm_plane *primary_plane;
1232         unsigned int i;
1233
1234         /* For now, we create just the primary and the legacy cursor
1235          * planes.  We should be able to stack more planes on easily,
1236          * but to do that we would need to compute the bandwidth
1237          * requirement of the plane configuration, and reject ones
1238          * that will take too much.
1239          */
1240         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1241         if (IS_ERR(primary_plane)) {
1242                 dev_err(drm->dev, "failed to construct primary plane\n");
1243                 return PTR_ERR(primary_plane);
1244         }
1245
1246         spin_lock_init(&vc4_crtc->irq_lock);
1247         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1248                                   crtc_funcs, NULL);
1249         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1250
1251         if (!vc4->is_vc5) {
1252                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1253
1254                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1255
1256                 /* We support CTM, but only for one CRTC at a time. It's therefore
1257                  * implemented as private driver state in vc4_kms, not here.
1258                  */
1259                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1260         }
1261
1262         for (i = 0; i < crtc->gamma_size; i++) {
1263                 vc4_crtc->lut_r[i] = i;
1264                 vc4_crtc->lut_g[i] = i;
1265                 vc4_crtc->lut_b[i] = i;
1266         }
1267
1268         return 0;
1269 }
1270
1271 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1272 {
1273         struct platform_device *pdev = to_platform_device(dev);
1274         struct drm_device *drm = dev_get_drvdata(master);
1275         const struct vc4_pv_data *pv_data;
1276         struct vc4_crtc *vc4_crtc;
1277         struct drm_crtc *crtc;
1278         struct drm_plane *destroy_plane, *temp;
1279         int ret;
1280
1281         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1282         if (!vc4_crtc)
1283                 return -ENOMEM;
1284         crtc = &vc4_crtc->base;
1285
1286         pv_data = of_device_get_match_data(dev);
1287         if (!pv_data)
1288                 return -ENODEV;
1289         vc4_crtc->data = &pv_data->base;
1290         vc4_crtc->pdev = pdev;
1291
1292         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1293         if (IS_ERR(vc4_crtc->regs))
1294                 return PTR_ERR(vc4_crtc->regs);
1295
1296         vc4_crtc->regset.base = vc4_crtc->regs;
1297         vc4_crtc->regset.regs = crtc_regs;
1298         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1299
1300         ret = vc4_crtc_init(drm, vc4_crtc,
1301                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1302         if (ret)
1303                 return ret;
1304         vc4_set_crtc_possible_masks(drm, crtc);
1305
1306         CRTC_WRITE(PV_INTEN, 0);
1307         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1308         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1309                                vc4_crtc_irq_handler,
1310                                IRQF_SHARED,
1311                                "vc4 crtc", vc4_crtc);
1312         if (ret)
1313                 goto err_destroy_planes;
1314
1315         platform_set_drvdata(pdev, vc4_crtc);
1316
1317         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1318                                  &vc4_crtc->regset);
1319
1320         return 0;
1321
1322 err_destroy_planes:
1323         list_for_each_entry_safe(destroy_plane, temp,
1324                                  &drm->mode_config.plane_list, head) {
1325                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1326                     destroy_plane->funcs->destroy(destroy_plane);
1327         }
1328
1329         return ret;
1330 }
1331
1332 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1333                             void *data)
1334 {
1335         struct platform_device *pdev = to_platform_device(dev);
1336         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1337
1338         vc4_crtc_destroy(&vc4_crtc->base);
1339
1340         CRTC_WRITE(PV_INTEN, 0);
1341
1342         platform_set_drvdata(pdev, NULL);
1343 }
1344
1345 static const struct component_ops vc4_crtc_ops = {
1346         .bind   = vc4_crtc_bind,
1347         .unbind = vc4_crtc_unbind,
1348 };
1349
1350 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1351 {
1352         return component_add(&pdev->dev, &vc4_crtc_ops);
1353 }
1354
1355 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1356 {
1357         component_del(&pdev->dev, &vc4_crtc_ops);
1358         return 0;
1359 }
1360
1361 struct platform_driver vc4_crtc_driver = {
1362         .probe = vc4_crtc_dev_probe,
1363         .remove = vc4_crtc_dev_remove,
1364         .driver = {
1365                 .name = "vc4_crtc",
1366                 .of_match_table = vc4_crtc_dt_match,
1367         },
1368 };
This page took 0.111457 seconds and 4 git commands to generate.