1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_atomic_uapi.h>
41 #include <drm/drm_fb_dma_helper.h>
42 #include <drm/drm_framebuffer.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
52 #define HVS_FIFO_LATENCY_PIX 6
54 #define CRTC_WRITE(offset, val) \
56 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
57 writel(val, vc4_crtc->regs + (offset)); \
60 #define CRTC_READ(offset) \
62 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
63 readl(vc4_crtc->regs + (offset)); \
66 static const struct debugfs_reg32 crtc_regs[] = {
67 VC4_REG32(PV_CONTROL),
68 VC4_REG32(PV_V_CONTROL),
69 VC4_REG32(PV_VSYNCD_EVEN),
74 VC4_REG32(PV_VERTA_EVEN),
75 VC4_REG32(PV_VERTB_EVEN),
77 VC4_REG32(PV_INTSTAT),
79 VC4_REG32(PV_HACT_ACT),
83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
85 struct vc4_hvs *hvs = vc4->hvs;
86 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87 /* Top/base are supposed to be 4-pixel aligned, but the
88 * Raspberry Pi firmware fills the low bits (which are
89 * presumably ignored).
91 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
94 return top - base + 4;
97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
100 ktime_t *stime, ktime_t *etime,
101 const struct drm_display_mode *mode)
103 struct drm_device *dev = crtc->dev;
104 struct vc4_dev *vc4 = to_vc4_dev(dev);
105 struct vc4_hvs *hvs = vc4->hvs;
106 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108 unsigned int channel = vc4_crtc_state->assigned_channel;
109 unsigned int cob_size;
115 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
117 /* Get optional system timestamp before query. */
119 *stime = ktime_get();
122 * Read vertical scanline which is currently composed for our
123 * pixelvalve by the HVS, and also the scaler status.
125 val = HVS_READ(SCALER_DISPSTATX(channel));
127 /* Get optional system timestamp after query. */
129 *etime = ktime_get();
131 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
133 /* Vertical position of hvs composed scanline. */
134 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
137 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
140 /* Use hpos to correct for field offset in interlaced mode. */
141 if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
142 *hpos += mode->crtc_htotal / 2;
145 cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
146 /* This is the offset we need for translating hvs -> pv scanout pos. */
147 fifo_lines = cob_size / mode->crtc_hdisplay;
152 /* HVS more than fifo_lines into frame for compositing? */
153 if (*vpos > fifo_lines) {
155 * We are in active scanout and can get some meaningful results
156 * from HVS. The actual PV scanout can not trail behind more
157 * than fifo_lines as that is the fifo's capacity. Assume that
158 * in active scanout the HVS and PV work in lockstep wrt. HVS
159 * refilling the fifo and PV consuming from the fifo, ie.
160 * whenever the PV consumes and frees up a scanline in the
161 * fifo, the HVS will immediately refill it, therefore
162 * incrementing vpos. Therefore we choose HVS read position -
163 * fifo size in scanlines as a estimate of the real scanout
164 * position of the PV.
166 *vpos -= fifo_lines + 1;
172 * Less: This happens when we are in vblank and the HVS, after getting
173 * the VSTART restart signal from the PV, just started refilling its
174 * fifo with new lines from the top-most lines of the new framebuffers.
175 * The PV does not scan out in vblank, so does not remove lines from
176 * the fifo, so the fifo will be full quickly and the HVS has to pause.
177 * We can't get meaningful readings wrt. scanline position of the PV
178 * and need to make things up in a approximative but consistent way.
180 vblank_lines = mode->vtotal - mode->vdisplay;
184 * Assume the irq handler got called close to first
185 * line of vblank, so PV has about a full vblank
186 * scanlines to go, and as a base timestamp use the
187 * one taken at entry into vblank irq handler, so it
188 * is not affected by random delays due to lock
189 * contention on event_lock or vblank_time lock in
192 *vpos = -vblank_lines;
195 *stime = vc4_crtc->t_vblank;
197 *etime = vc4_crtc->t_vblank;
200 * If the HVS fifo is not yet full then we know for certain
201 * we are at the very beginning of vblank, as the hvs just
202 * started refilling, and the stime and etime timestamps
203 * truly correspond to start of vblank.
205 * Unfortunately there's no way to report this to upper levels
206 * and make it more useful.
210 * No clue where we are inside vblank. Return a vpos of zero,
211 * which will cause calling code to just return the etime
212 * timestamp uncorrected. At least this is no worse than the
221 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
223 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
224 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
225 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
226 u32 fifo_len_bytes = pv_data->fifo_depth;
229 * Pixels are pulled from the HVS if the number of bytes is
230 * lower than the FIFO full level.
232 * The latency of the pixel fetch mechanism is 6 pixels, so we
233 * need to convert those 6 pixels in bytes, depending on the
234 * format, and then subtract that from the length of the FIFO
235 * to make sure we never end up in a situation where the FIFO
239 case PV_CONTROL_FORMAT_DSIV_16:
240 case PV_CONTROL_FORMAT_DSIC_16:
241 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
242 case PV_CONTROL_FORMAT_DSIV_18:
243 return fifo_len_bytes - 14;
244 case PV_CONTROL_FORMAT_24:
245 case PV_CONTROL_FORMAT_DSIV_24:
248 * For some reason, the pixelvalve4 doesn't work with
249 * the usual formula and will only work with 32.
251 if (crtc_data->hvs_output == 5)
255 * It looks like in some situations, we will overflow
256 * the PixelValve FIFO (with the bit 10 of PV stat being
257 * set) and stall the HVS / PV, eventually resulting in
258 * a page flip timeout.
260 * Displaying the video overlay during a playback with
261 * Kodi on an RPi3 seems to be a great solution with a
262 * failure rate around 50%.
264 * Removing 1 from the FIFO full level however
265 * seems to completely remove that issue.
267 if (vc4->gen == VC4_GEN_4)
268 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
270 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
274 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
277 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
280 ret |= VC4_SET_FIELD((level >> 6),
281 PV5_CONTROL_FIFO_LEVEL_HIGH);
283 return ret | VC4_SET_FIELD(level & 0x3f,
284 PV_CONTROL_FIFO_LEVEL);
288 * Returns the encoder attached to the CRTC.
290 * VC4 can only scan out to one encoder at a time, while the DRM core
291 * allows drivers to push pixels to more than one encoder from the
294 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
295 struct drm_crtc_state *state)
297 struct drm_encoder *encoder;
299 WARN_ON(hweight32(state->encoder_mask) > 1);
301 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
309 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310 struct drm_device *dev = crtc->dev;
313 if (!drm_dev_enter(dev, &idx))
316 /* The PV needs to be disabled before it can be flushed */
317 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
318 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
323 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
324 struct drm_atomic_state *state)
326 struct drm_device *dev = crtc->dev;
327 struct vc4_dev *vc4 = to_vc4_dev(dev);
328 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
329 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
330 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
331 struct drm_crtc_state *crtc_state = crtc->state;
332 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
333 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
334 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
335 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
336 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
337 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
338 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
339 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
340 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
341 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
342 u8 ppc = pv_data->pixels_per_clock;
344 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
345 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
346 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
348 bool debug_dump_regs = false;
351 if (!drm_dev_enter(dev, &idx))
354 if (debug_dump_regs) {
355 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
356 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
357 drm_crtc_index(crtc));
358 drm_print_regset32(&p, &vc4_crtc->regset);
361 vc4_crtc_pixelvalve_reset(crtc);
364 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
366 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
370 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
372 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
376 bool odd_field_first = false;
377 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
378 u16 vert_bp_even = vert_bp;
379 u16 vert_fp_even = vert_fp;
382 /* VEC (composite output) */
384 if (mode->htotal == 858) {
385 /* 525-line mode (NTSC or PAL-M) */
386 odd_field_first = true;
395 CRTC_WRITE(PV_VERTA_EVEN,
396 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
397 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
398 CRTC_WRITE(PV_VERTB_EVEN,
399 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
400 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
402 /* We set up first field even mode for HDMI and VEC's PAL.
403 * For NTSC, we need first field odd.
405 CRTC_WRITE(PV_V_CONTROL,
406 PV_VCONTROL_CONTINUOUS |
407 (is_dsi ? PV_VCONTROL_DSI : 0) |
408 PV_VCONTROL_INTERLACE |
410 ? PV_VCONTROL_ODD_FIRST
411 : VC4_SET_FIELD(field_delay,
412 PV_VCONTROL_ODD_DELAY)));
413 CRTC_WRITE(PV_VSYNCD_EVEN,
414 (odd_field_first ? field_delay : 0));
416 CRTC_WRITE(PV_V_CONTROL,
417 PV_VCONTROL_CONTINUOUS |
418 (is_dsi ? PV_VCONTROL_DSI : 0));
419 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
423 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
424 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
426 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
427 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
430 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
432 if (vc4->gen == VC4_GEN_5)
433 CRTC_WRITE(PV_MUX_CFG,
434 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
435 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
437 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
438 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
439 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
440 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
441 PV_CONTROL_CLR_AT_START |
442 PV_CONTROL_TRIGGER_UNDERFLOW |
443 PV_CONTROL_WAIT_HSTART |
444 VC4_SET_FIELD(vc4_encoder->clock_select,
445 PV_CONTROL_CLK_SELECT));
447 if (debug_dump_regs) {
448 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
449 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
450 drm_crtc_index(crtc));
451 drm_print_regset32(&p, &vc4_crtc->regset);
457 static void require_hvs_enabled(struct drm_device *dev)
459 struct vc4_dev *vc4 = to_vc4_dev(dev);
460 struct vc4_hvs *hvs = vc4->hvs;
462 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
463 SCALER_DISPCTRL_ENABLE);
466 static int vc4_crtc_disable(struct drm_crtc *crtc,
467 struct drm_encoder *encoder,
468 struct drm_atomic_state *state,
469 unsigned int channel)
471 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
472 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
473 struct drm_device *dev = crtc->dev;
474 struct vc4_dev *vc4 = to_vc4_dev(dev);
477 if (!drm_dev_enter(dev, &idx))
480 CRTC_WRITE(PV_V_CONTROL,
481 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
482 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
483 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
486 * This delay is needed to avoid to get a pixel stuck in an
487 * unflushable FIFO between the pixelvalve and the HDMI
488 * controllers on the BCM2711.
490 * Timing is fairly sensitive here, so mdelay is the safest
493 * If it was to be reworked, the stuck pixel happens on a
494 * BCM2711 when changing mode with a good probability, so a
495 * script that changes mode on a regular basis should trigger
496 * the bug after less than 10 attempts. It manifests itself with
497 * every pixels being shifted by one to the right, and thus the
498 * last pixel of a line actually being displayed as the first
499 * pixel on the next line.
503 if (vc4_encoder && vc4_encoder->post_crtc_disable)
504 vc4_encoder->post_crtc_disable(encoder, state);
506 vc4_crtc_pixelvalve_reset(crtc);
507 vc4_hvs_stop_channel(vc4->hvs, channel);
509 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
510 vc4_encoder->post_crtc_powerdown(encoder, state);
517 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
519 struct drm_device *drm = crtc->dev;
520 struct vc4_dev *vc4 = to_vc4_dev(drm);
521 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522 enum vc4_encoder_type encoder_type;
523 const struct vc4_pv_data *pv_data;
524 struct drm_encoder *encoder;
525 struct vc4_hdmi *vc4_hdmi;
526 unsigned encoder_sel;
530 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
531 "brcm,bcm2711-pixelvalve2") ||
532 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
533 "brcm,bcm2711-pixelvalve4")))
536 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
539 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
542 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
546 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
547 if (WARN_ON(encoder_sel != 0))
550 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
551 encoder_type = pv_data->encoder_types[encoder_sel];
552 encoder = vc4_find_encoder_by_type(drm, encoder_type);
553 if (WARN_ON(!encoder))
556 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
557 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
561 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
566 * post_crtc_powerdown will have called pm_runtime_put, so we
567 * don't need it here otherwise we'll get the reference counting
574 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
576 struct drm_device *dev = crtc->dev;
579 if (!crtc->state || !crtc->state->event)
582 spin_lock_irqsave(&dev->event_lock, flags);
583 drm_crtc_send_vblank_event(crtc, crtc->state->event);
584 crtc->state->event = NULL;
585 spin_unlock_irqrestore(&dev->event_lock, flags);
588 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
589 struct drm_atomic_state *state)
591 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
593 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
594 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
595 struct drm_device *dev = crtc->dev;
597 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
598 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
600 require_hvs_enabled(dev);
602 /* Disable vblank irq handling before crtc is disabled. */
603 drm_crtc_vblank_off(crtc);
605 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
608 * Make sure we issue a vblank event after disabling the CRTC if
609 * someone was waiting it.
611 vc4_crtc_send_vblank(crtc);
614 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
615 struct drm_atomic_state *state)
617 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
619 struct drm_device *dev = crtc->dev;
620 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
621 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
622 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
625 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
626 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
628 if (!drm_dev_enter(dev, &idx))
631 require_hvs_enabled(dev);
633 /* Enable vblank irq handling before crtc is started otherwise
634 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
636 drm_crtc_vblank_on(crtc);
638 vc4_hvs_atomic_enable(crtc, state);
640 if (vc4_encoder->pre_crtc_configure)
641 vc4_encoder->pre_crtc_configure(encoder, state);
643 vc4_crtc_config_pv(crtc, encoder, state);
645 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
647 if (vc4_encoder->pre_crtc_enable)
648 vc4_encoder->pre_crtc_enable(encoder, state);
650 /* When feeding the transposer block the pixelvalve is unneeded and
651 * should not be enabled.
653 CRTC_WRITE(PV_V_CONTROL,
654 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
656 if (vc4_encoder->post_crtc_enable)
657 vc4_encoder->post_crtc_enable(encoder, state);
662 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
663 const struct drm_display_mode *mode)
665 /* Do not allow doublescan modes from user space */
666 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
667 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
669 return MODE_NO_DBLESCAN;
675 void vc4_crtc_get_margins(struct drm_crtc_state *state,
676 unsigned int *left, unsigned int *right,
677 unsigned int *top, unsigned int *bottom)
679 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
680 struct drm_connector_state *conn_state;
681 struct drm_connector *conn;
684 *left = vc4_state->margins.left;
685 *right = vc4_state->margins.right;
686 *top = vc4_state->margins.top;
687 *bottom = vc4_state->margins.bottom;
689 /* We have to interate over all new connector states because
690 * vc4_crtc_get_margins() might be called before
691 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
694 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
695 if (conn_state->crtc != state->crtc)
698 *left = conn_state->tv.margins.left;
699 *right = conn_state->tv.margins.right;
700 *top = conn_state->tv.margins.top;
701 *bottom = conn_state->tv.margins.bottom;
706 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
707 struct drm_atomic_state *state)
709 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
711 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
712 struct drm_connector *conn;
713 struct drm_connector_state *conn_state;
714 struct drm_encoder *encoder;
717 ret = vc4_hvs_atomic_check(crtc, state);
721 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
723 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
724 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
726 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
727 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
728 mode->clock * 9 / 10) * 1000;
730 vc4_state->hvs_load = mode->clock * 1000;
734 for_each_new_connector_in_state(state, conn, conn_state,
736 if (conn_state->crtc != crtc)
739 if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
740 sizeof(vc4_state->margins))) {
741 memcpy(&vc4_state->margins, &conn_state->tv.margins,
742 sizeof(vc4_state->margins));
745 * Need to force the dlist entries for all planes to be
746 * updated so that the dest rectangles are changed.
748 crtc_state->zpos_changed = true;
756 static int vc4_enable_vblank(struct drm_crtc *crtc)
758 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
759 struct drm_device *dev = crtc->dev;
762 if (!drm_dev_enter(dev, &idx))
765 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
772 static void vc4_disable_vblank(struct drm_crtc *crtc)
774 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775 struct drm_device *dev = crtc->dev;
778 if (!drm_dev_enter(dev, &idx))
781 CRTC_WRITE(PV_INTEN, 0);
786 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
788 struct drm_crtc *crtc = &vc4_crtc->base;
789 struct drm_device *dev = crtc->dev;
790 struct vc4_dev *vc4 = to_vc4_dev(dev);
791 struct vc4_hvs *hvs = vc4->hvs;
792 u32 chan = vc4_crtc->current_hvs_channel;
795 spin_lock_irqsave(&dev->event_lock, flags);
796 spin_lock(&vc4_crtc->irq_lock);
797 if (vc4_crtc->event &&
798 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
799 vc4_crtc->feeds_txp)) {
800 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
801 vc4_crtc->event = NULL;
802 drm_crtc_vblank_put(crtc);
804 /* Wait for the page flip to unmask the underrun to ensure that
805 * the display list was updated by the hardware. Before that
806 * happens, the HVS will be using the previous display list with
807 * the CRTC and encoder already reconfigured, leading to
808 * underruns. This can be seen when reconfiguring the CRTC.
810 vc4_hvs_unmask_underrun(hvs, chan);
812 spin_unlock(&vc4_crtc->irq_lock);
813 spin_unlock_irqrestore(&dev->event_lock, flags);
816 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
818 crtc->t_vblank = ktime_get();
819 drm_crtc_handle_vblank(&crtc->base);
820 vc4_crtc_handle_page_flip(crtc);
823 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
825 struct vc4_crtc *vc4_crtc = data;
826 u32 stat = CRTC_READ(PV_INTSTAT);
827 irqreturn_t ret = IRQ_NONE;
829 if (stat & PV_INT_VFP_START) {
830 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
831 vc4_crtc_handle_vblank(vc4_crtc);
838 struct vc4_async_flip_state {
839 struct drm_crtc *crtc;
840 struct drm_framebuffer *fb;
841 struct drm_framebuffer *old_fb;
842 struct drm_pending_vblank_event *event;
845 struct dma_fence_cb fence;
846 struct vc4_seqno_cb seqno;
850 /* Called when the V3D execution for the BO being flipped to is done, so that
851 * we can actually update the plane's address to point to it.
854 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
856 struct drm_crtc *crtc = flip_state->crtc;
857 struct drm_device *dev = crtc->dev;
858 struct drm_plane *plane = crtc->primary;
860 vc4_plane_async_set_fb(plane, flip_state->fb);
861 if (flip_state->event) {
864 spin_lock_irqsave(&dev->event_lock, flags);
865 drm_crtc_send_vblank_event(crtc, flip_state->event);
866 spin_unlock_irqrestore(&dev->event_lock, flags);
869 drm_crtc_vblank_put(crtc);
870 drm_framebuffer_put(flip_state->fb);
872 if (flip_state->old_fb)
873 drm_framebuffer_put(flip_state->old_fb);
878 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
880 struct vc4_async_flip_state *flip_state =
881 container_of(cb, struct vc4_async_flip_state, cb.seqno);
882 struct vc4_bo *bo = NULL;
884 if (flip_state->old_fb) {
885 struct drm_gem_dma_object *dma_bo =
886 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
887 bo = to_vc4_bo(&dma_bo->base);
890 vc4_async_page_flip_complete(flip_state);
893 * Decrement the BO usecnt in order to keep the inc/dec
894 * calls balanced when the planes are updated through
895 * the async update path.
897 * FIXME: we should move to generic async-page-flip when
898 * it's available, so that we can get rid of this
899 * hand-made cleanup_fb() logic.
902 vc4_bo_dec_usecnt(bo);
905 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
906 struct dma_fence_cb *cb)
908 struct vc4_async_flip_state *flip_state =
909 container_of(cb, struct vc4_async_flip_state, cb.fence);
911 vc4_async_page_flip_complete(flip_state);
912 dma_fence_put(fence);
915 static int vc4_async_set_fence_cb(struct drm_device *dev,
916 struct vc4_async_flip_state *flip_state)
918 struct drm_framebuffer *fb = flip_state->fb;
919 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
920 struct vc4_dev *vc4 = to_vc4_dev(dev);
921 struct dma_fence *fence;
924 if (vc4->gen == VC4_GEN_4) {
925 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
927 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
928 vc4_async_page_flip_seqno_complete);
931 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
935 /* If there's no fence, complete the page flip immediately */
937 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
941 /* If the fence has already been completed, complete the page flip */
942 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
943 vc4_async_page_flip_fence_complete))
944 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
950 vc4_async_page_flip_common(struct drm_crtc *crtc,
951 struct drm_framebuffer *fb,
952 struct drm_pending_vblank_event *event,
955 struct drm_device *dev = crtc->dev;
956 struct drm_plane *plane = crtc->primary;
957 struct vc4_async_flip_state *flip_state;
959 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
963 drm_framebuffer_get(fb);
965 flip_state->crtc = crtc;
966 flip_state->event = event;
968 /* Save the current FB before it's replaced by the new one in
969 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
970 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
972 * FIXME: we should move to generic async-page-flip when it's
973 * available, so that we can get rid of this hand-made cleanup_fb()
976 flip_state->old_fb = plane->state->fb;
977 if (flip_state->old_fb)
978 drm_framebuffer_get(flip_state->old_fb);
980 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
982 /* Immediately update the plane's legacy fb pointer, so that later
983 * modeset prep sees the state that will be present when the semaphore
986 drm_atomic_set_fb_for_plane(plane->state, fb);
988 vc4_async_set_fence_cb(dev, flip_state);
990 /* Driver takes ownership of state on successful async commit. */
994 /* Implements async (non-vblank-synced) page flips.
996 * The page flip ioctl needs to return immediately, so we grab the
997 * modeset semaphore on the pipe, and queue the address update for
998 * when V3D is done with the BO being flipped to.
1000 static int vc4_async_page_flip(struct drm_crtc *crtc,
1001 struct drm_framebuffer *fb,
1002 struct drm_pending_vblank_event *event,
1005 struct drm_device *dev = crtc->dev;
1006 struct vc4_dev *vc4 = to_vc4_dev(dev);
1007 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1008 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1011 if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1015 * Increment the BO usecnt here, so that we never end up with an
1016 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1017 * plane is later updated through the non-async path.
1019 * FIXME: we should move to generic async-page-flip when
1020 * it's available, so that we can get rid of this
1021 * hand-made prepare_fb() logic.
1023 ret = vc4_bo_inc_usecnt(bo);
1027 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1029 vc4_bo_dec_usecnt(bo);
1036 static int vc5_async_page_flip(struct drm_crtc *crtc,
1037 struct drm_framebuffer *fb,
1038 struct drm_pending_vblank_event *event,
1041 return vc4_async_page_flip_common(crtc, fb, event, flags);
1044 int vc4_page_flip(struct drm_crtc *crtc,
1045 struct drm_framebuffer *fb,
1046 struct drm_pending_vblank_event *event,
1048 struct drm_modeset_acquire_ctx *ctx)
1050 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1051 struct drm_device *dev = crtc->dev;
1052 struct vc4_dev *vc4 = to_vc4_dev(dev);
1054 if (vc4->gen > VC4_GEN_4)
1055 return vc5_async_page_flip(crtc, fb, event, flags);
1057 return vc4_async_page_flip(crtc, fb, event, flags);
1059 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1063 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1065 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1067 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1071 old_vc4_state = to_vc4_crtc_state(crtc->state);
1072 vc4_state->margins = old_vc4_state->margins;
1073 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1075 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1076 return &vc4_state->base;
1079 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1080 struct drm_crtc_state *state)
1082 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1083 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1085 if (drm_mm_node_allocated(&vc4_state->mm)) {
1086 unsigned long flags;
1088 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1089 drm_mm_remove_node(&vc4_state->mm);
1090 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1094 drm_atomic_helper_crtc_destroy_state(crtc, state);
1097 void vc4_crtc_reset(struct drm_crtc *crtc)
1099 struct vc4_crtc_state *vc4_crtc_state;
1102 vc4_crtc_destroy_state(crtc, crtc->state);
1104 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1105 if (!vc4_crtc_state) {
1110 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1111 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1114 int vc4_crtc_late_register(struct drm_crtc *crtc)
1116 struct drm_device *drm = crtc->dev;
1117 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1118 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1120 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1126 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1127 .set_config = drm_atomic_helper_set_config,
1128 .page_flip = vc4_page_flip,
1129 .set_property = NULL,
1130 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1131 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1132 .reset = vc4_crtc_reset,
1133 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1134 .atomic_destroy_state = vc4_crtc_destroy_state,
1135 .enable_vblank = vc4_enable_vblank,
1136 .disable_vblank = vc4_disable_vblank,
1137 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1138 .late_register = vc4_crtc_late_register,
1141 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1142 .mode_valid = vc4_crtc_mode_valid,
1143 .atomic_check = vc4_crtc_atomic_check,
1144 .atomic_begin = vc4_hvs_atomic_begin,
1145 .atomic_flush = vc4_hvs_atomic_flush,
1146 .atomic_enable = vc4_crtc_atomic_enable,
1147 .atomic_disable = vc4_crtc_atomic_disable,
1148 .get_scanout_position = vc4_crtc_get_scanout_position,
1151 const struct vc4_pv_data bcm2835_pv0_data = {
1153 .name = "pixelvalve-0",
1154 .debugfs_name = "crtc0_regs",
1155 .hvs_available_channels = BIT(0),
1159 .pixels_per_clock = 1,
1161 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1162 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1166 const struct vc4_pv_data bcm2835_pv1_data = {
1168 .name = "pixelvalve-1",
1169 .debugfs_name = "crtc1_regs",
1170 .hvs_available_channels = BIT(2),
1174 .pixels_per_clock = 1,
1176 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1177 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1181 const struct vc4_pv_data bcm2835_pv2_data = {
1183 .name = "pixelvalve-2",
1184 .debugfs_name = "crtc2_regs",
1185 .hvs_available_channels = BIT(1),
1189 .pixels_per_clock = 1,
1191 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1192 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1196 const struct vc4_pv_data bcm2711_pv0_data = {
1198 .name = "pixelvalve-0",
1199 .debugfs_name = "crtc0_regs",
1200 .hvs_available_channels = BIT(0),
1204 .pixels_per_clock = 1,
1206 [0] = VC4_ENCODER_TYPE_DSI0,
1207 [1] = VC4_ENCODER_TYPE_DPI,
1211 const struct vc4_pv_data bcm2711_pv1_data = {
1213 .name = "pixelvalve-1",
1214 .debugfs_name = "crtc1_regs",
1215 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1219 .pixels_per_clock = 1,
1221 [0] = VC4_ENCODER_TYPE_DSI1,
1222 [1] = VC4_ENCODER_TYPE_SMI,
1226 const struct vc4_pv_data bcm2711_pv2_data = {
1228 .name = "pixelvalve-2",
1229 .debugfs_name = "crtc2_regs",
1230 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1234 .pixels_per_clock = 2,
1236 [0] = VC4_ENCODER_TYPE_HDMI0,
1240 const struct vc4_pv_data bcm2711_pv3_data = {
1242 .name = "pixelvalve-3",
1243 .debugfs_name = "crtc3_regs",
1244 .hvs_available_channels = BIT(1),
1248 .pixels_per_clock = 1,
1250 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1254 const struct vc4_pv_data bcm2711_pv4_data = {
1256 .name = "pixelvalve-4",
1257 .debugfs_name = "crtc4_regs",
1258 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1262 .pixels_per_clock = 2,
1264 [0] = VC4_ENCODER_TYPE_HDMI1,
1268 static const struct of_device_id vc4_crtc_dt_match[] = {
1269 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1270 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1271 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1272 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1273 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1274 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1275 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1276 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1280 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1281 struct drm_crtc *crtc)
1283 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1284 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1285 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1286 struct drm_encoder *encoder;
1288 drm_for_each_encoder(encoder, drm) {
1289 struct vc4_encoder *vc4_encoder;
1292 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1295 vc4_encoder = to_vc4_encoder(encoder);
1296 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1297 if (vc4_encoder->type == encoder_types[i]) {
1298 vc4_encoder->clock_select = i;
1299 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1307 * __vc4_crtc_init - Initializes a CRTC
1309 * @pdev: CRTC Platform Device
1310 * @vc4_crtc: CRTC Object to Initialize
1311 * @data: Configuration data associated with this CRTC
1312 * @primary_plane: Primary plane for CRTC
1313 * @crtc_funcs: Callbacks for the new CRTC
1314 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1315 * @feeds_txp: Is this CRTC connected to the TXP?
1317 * Initializes our private CRTC structure. This function is mostly
1318 * relevant for KUnit testing, all other users should use
1319 * vc4_crtc_init() instead.
1322 * 0 on success, a negative error code on failure.
1324 int __vc4_crtc_init(struct drm_device *drm,
1325 struct platform_device *pdev,
1326 struct vc4_crtc *vc4_crtc,
1327 const struct vc4_crtc_data *data,
1328 struct drm_plane *primary_plane,
1329 const struct drm_crtc_funcs *crtc_funcs,
1330 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1333 struct vc4_dev *vc4 = to_vc4_dev(drm);
1334 struct drm_crtc *crtc = &vc4_crtc->base;
1338 vc4_crtc->data = data;
1339 vc4_crtc->pdev = pdev;
1340 vc4_crtc->feeds_txp = feeds_txp;
1341 spin_lock_init(&vc4_crtc->irq_lock);
1342 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1343 crtc_funcs, data->name);
1347 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1349 if (vc4->gen == VC4_GEN_4) {
1350 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1351 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1353 /* We support CTM, but only for one CRTC at a time. It's therefore
1354 * implemented as private driver state in vc4_kms, not here.
1356 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1359 for (i = 0; i < crtc->gamma_size; i++) {
1360 vc4_crtc->lut_r[i] = i;
1361 vc4_crtc->lut_g[i] = i;
1362 vc4_crtc->lut_b[i] = i;
1368 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1369 struct vc4_crtc *vc4_crtc,
1370 const struct vc4_crtc_data *data,
1371 const struct drm_crtc_funcs *crtc_funcs,
1372 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1375 struct drm_plane *primary_plane;
1377 /* For now, we create just the primary and the legacy cursor
1378 * planes. We should be able to stack more planes on easily,
1379 * but to do that we would need to compute the bandwidth
1380 * requirement of the plane configuration, and reject ones
1381 * that will take too much.
1383 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1384 if (IS_ERR(primary_plane)) {
1385 dev_err(drm->dev, "failed to construct primary plane\n");
1386 return PTR_ERR(primary_plane);
1389 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1390 crtc_funcs, crtc_helper_funcs, feeds_txp);
1393 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1395 struct platform_device *pdev = to_platform_device(dev);
1396 struct drm_device *drm = dev_get_drvdata(master);
1397 const struct vc4_pv_data *pv_data;
1398 struct vc4_crtc *vc4_crtc;
1399 struct drm_crtc *crtc;
1402 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1405 crtc = &vc4_crtc->base;
1407 pv_data = of_device_get_match_data(dev);
1411 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1412 if (IS_ERR(vc4_crtc->regs))
1413 return PTR_ERR(vc4_crtc->regs);
1415 vc4_crtc->regset.base = vc4_crtc->regs;
1416 vc4_crtc->regset.regs = crtc_regs;
1417 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1419 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1420 &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1424 vc4_set_crtc_possible_masks(drm, crtc);
1426 CRTC_WRITE(PV_INTEN, 0);
1427 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1428 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1429 vc4_crtc_irq_handler,
1431 "vc4 crtc", vc4_crtc);
1435 platform_set_drvdata(pdev, vc4_crtc);
1440 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1443 struct platform_device *pdev = to_platform_device(dev);
1444 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1446 CRTC_WRITE(PV_INTEN, 0);
1448 platform_set_drvdata(pdev, NULL);
1451 static const struct component_ops vc4_crtc_ops = {
1452 .bind = vc4_crtc_bind,
1453 .unbind = vc4_crtc_unbind,
1456 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1458 return component_add(&pdev->dev, &vc4_crtc_ops);
1461 static void vc4_crtc_dev_remove(struct platform_device *pdev)
1463 component_del(&pdev->dev, &vc4_crtc_ops);
1466 struct platform_driver vc4_crtc_driver = {
1467 .probe = vc4_crtc_dev_probe,
1468 .remove = vc4_crtc_dev_remove,
1471 .of_match_table = vc4_crtc_dt_match,