]> Git Repo - J-linux.git/blob - fs/dlm/lowcomms.c
HID: hid-sensor-custom: Fix big on-stack allocation in hid_sensor_custom_get_known()
[J-linux.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "memory.h"
62 #include "config.h"
63
64 #define NEEDED_RMEM (4*1024*1024)
65
66 struct connection {
67         struct socket *sock;    /* NULL if not connected */
68         uint32_t nodeid;        /* So we know who we are in the list */
69         /* this semaphore is used to allow parallel recv/send in read
70          * lock mode. When we release a sock we need to held the write lock.
71          *
72          * However this is locking code and not nice. When we remove the
73          * othercon handling we can look into other mechanism to synchronize
74          * io handling to call sock_release() at the right time.
75          */
76         struct rw_semaphore sock_lock;
77         unsigned long flags;
78 #define CF_APP_LIMITED 0
79 #define CF_RECV_PENDING 1
80 #define CF_SEND_PENDING 2
81 #define CF_RECV_INTR 3
82 #define CF_IO_STOP 4
83 #define CF_IS_OTHERCON 5
84         struct list_head writequeue;  /* List of outgoing writequeue_entries */
85         spinlock_t writequeue_lock;
86         int retries;
87         struct hlist_node list;
88         /* due some connect()/accept() races we currently have this cross over
89          * connection attempt second connection for one node.
90          *
91          * There is a solution to avoid the race by introducing a connect
92          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
93          * connect. Otherside can connect but will only be considered that
94          * the other side wants to have a reconnect.
95          *
96          * However changing to this behaviour will break backwards compatible.
97          * In a DLM protocol major version upgrade we should remove this!
98          */
99         struct connection *othercon;
100         struct work_struct rwork; /* receive worker */
101         struct work_struct swork; /* send worker */
102         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
103         int rx_leftover;
104         int mark;
105         int addr_count;
106         int curr_addr_index;
107         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
108         spinlock_t addrs_lock;
109         struct rcu_head rcu;
110 };
111 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
112
113 struct listen_connection {
114         struct socket *sock;
115         struct work_struct rwork;
116 };
117
118 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
119 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
120
121 /* An entry waiting to be sent */
122 struct writequeue_entry {
123         struct list_head list;
124         struct page *page;
125         int offset;
126         int len;
127         int end;
128         int users;
129         bool dirty;
130         struct connection *con;
131         struct list_head msgs;
132         struct kref ref;
133 };
134
135 struct dlm_msg {
136         struct writequeue_entry *entry;
137         struct dlm_msg *orig_msg;
138         bool retransmit;
139         void *ppc;
140         int len;
141         int idx; /* new()/commit() idx exchange */
142
143         struct list_head list;
144         struct kref ref;
145 };
146
147 struct processqueue_entry {
148         unsigned char *buf;
149         int nodeid;
150         int buflen;
151
152         struct list_head list;
153 };
154
155 struct dlm_proto_ops {
156         bool try_new_addr;
157         const char *name;
158         int proto;
159
160         int (*connect)(struct connection *con, struct socket *sock,
161                        struct sockaddr *addr, int addr_len);
162         void (*sockopts)(struct socket *sock);
163         int (*bind)(struct socket *sock);
164         int (*listen_validate)(void);
165         void (*listen_sockopts)(struct socket *sock);
166         int (*listen_bind)(struct socket *sock);
167 };
168
169 static struct listen_sock_callbacks {
170         void (*sk_error_report)(struct sock *);
171         void (*sk_data_ready)(struct sock *);
172         void (*sk_state_change)(struct sock *);
173         void (*sk_write_space)(struct sock *);
174 } listen_sock;
175
176 static struct listen_connection listen_con;
177 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
178 static int dlm_local_count;
179
180 /* Work queues */
181 static struct workqueue_struct *io_workqueue;
182 static struct workqueue_struct *process_workqueue;
183
184 static struct hlist_head connection_hash[CONN_HASH_SIZE];
185 static DEFINE_SPINLOCK(connections_lock);
186 DEFINE_STATIC_SRCU(connections_srcu);
187
188 static const struct dlm_proto_ops *dlm_proto_ops;
189
190 #define DLM_IO_SUCCESS 0
191 #define DLM_IO_END 1
192 #define DLM_IO_EOF 2
193 #define DLM_IO_RESCHED 3
194
195 static void process_recv_sockets(struct work_struct *work);
196 static void process_send_sockets(struct work_struct *work);
197 static void process_dlm_messages(struct work_struct *work);
198
199 static DECLARE_WORK(process_work, process_dlm_messages);
200 static DEFINE_SPINLOCK(processqueue_lock);
201 static bool process_dlm_messages_pending;
202 static LIST_HEAD(processqueue);
203
204 bool dlm_lowcomms_is_running(void)
205 {
206         return !!listen_con.sock;
207 }
208
209 static void lowcomms_queue_swork(struct connection *con)
210 {
211         assert_spin_locked(&con->writequeue_lock);
212
213         if (!test_bit(CF_IO_STOP, &con->flags) &&
214             !test_bit(CF_APP_LIMITED, &con->flags) &&
215             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
216                 queue_work(io_workqueue, &con->swork);
217 }
218
219 static void lowcomms_queue_rwork(struct connection *con)
220 {
221 #ifdef CONFIG_LOCKDEP
222         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
223 #endif
224
225         if (!test_bit(CF_IO_STOP, &con->flags) &&
226             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
227                 queue_work(io_workqueue, &con->rwork);
228 }
229
230 static void writequeue_entry_ctor(void *data)
231 {
232         struct writequeue_entry *entry = data;
233
234         INIT_LIST_HEAD(&entry->msgs);
235 }
236
237 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
238 {
239         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
240                                  0, 0, writequeue_entry_ctor);
241 }
242
243 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
244 {
245         return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
246 }
247
248 /* need to held writequeue_lock */
249 static struct writequeue_entry *con_next_wq(struct connection *con)
250 {
251         struct writequeue_entry *e;
252
253         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
254                                      list);
255         /* if len is zero nothing is to send, if there are users filling
256          * buffers we wait until the users are done so we can send more.
257          */
258         if (!e || e->users || e->len == 0)
259                 return NULL;
260
261         return e;
262 }
263
264 static struct connection *__find_con(int nodeid, int r)
265 {
266         struct connection *con;
267
268         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
269                 if (con->nodeid == nodeid)
270                         return con;
271         }
272
273         return NULL;
274 }
275
276 static void dlm_con_init(struct connection *con, int nodeid)
277 {
278         con->nodeid = nodeid;
279         init_rwsem(&con->sock_lock);
280         INIT_LIST_HEAD(&con->writequeue);
281         spin_lock_init(&con->writequeue_lock);
282         INIT_WORK(&con->swork, process_send_sockets);
283         INIT_WORK(&con->rwork, process_recv_sockets);
284         spin_lock_init(&con->addrs_lock);
285 }
286
287 /*
288  * If 'allocation' is zero then we don't attempt to create a new
289  * connection structure for this node.
290  */
291 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
292 {
293         struct connection *con, *tmp;
294         int r;
295
296         r = nodeid_hash(nodeid);
297         con = __find_con(nodeid, r);
298         if (con || !alloc)
299                 return con;
300
301         con = kzalloc(sizeof(*con), alloc);
302         if (!con)
303                 return NULL;
304
305         dlm_con_init(con, nodeid);
306
307         spin_lock(&connections_lock);
308         /* Because multiple workqueues/threads calls this function it can
309          * race on multiple cpu's. Instead of locking hot path __find_con()
310          * we just check in rare cases of recently added nodes again
311          * under protection of connections_lock. If this is the case we
312          * abort our connection creation and return the existing connection.
313          */
314         tmp = __find_con(nodeid, r);
315         if (tmp) {
316                 spin_unlock(&connections_lock);
317                 kfree(con);
318                 return tmp;
319         }
320
321         hlist_add_head_rcu(&con->list, &connection_hash[r]);
322         spin_unlock(&connections_lock);
323
324         return con;
325 }
326
327 static int addr_compare(const struct sockaddr_storage *x,
328                         const struct sockaddr_storage *y)
329 {
330         switch (x->ss_family) {
331         case AF_INET: {
332                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
333                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
334                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
335                         return 0;
336                 if (sinx->sin_port != siny->sin_port)
337                         return 0;
338                 break;
339         }
340         case AF_INET6: {
341                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
342                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
343                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
344                         return 0;
345                 if (sinx->sin6_port != siny->sin6_port)
346                         return 0;
347                 break;
348         }
349         default:
350                 return 0;
351         }
352         return 1;
353 }
354
355 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
356                           struct sockaddr *sa_out, bool try_new_addr,
357                           unsigned int *mark)
358 {
359         struct sockaddr_storage sas;
360         struct connection *con;
361         int idx;
362
363         if (!dlm_local_count)
364                 return -1;
365
366         idx = srcu_read_lock(&connections_srcu);
367         con = nodeid2con(nodeid, 0);
368         if (!con) {
369                 srcu_read_unlock(&connections_srcu, idx);
370                 return -ENOENT;
371         }
372
373         spin_lock(&con->addrs_lock);
374         if (!con->addr_count) {
375                 spin_unlock(&con->addrs_lock);
376                 srcu_read_unlock(&connections_srcu, idx);
377                 return -ENOENT;
378         }
379
380         memcpy(&sas, &con->addr[con->curr_addr_index],
381                sizeof(struct sockaddr_storage));
382
383         if (try_new_addr) {
384                 con->curr_addr_index++;
385                 if (con->curr_addr_index == con->addr_count)
386                         con->curr_addr_index = 0;
387         }
388
389         *mark = con->mark;
390         spin_unlock(&con->addrs_lock);
391
392         if (sas_out)
393                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
394
395         if (!sa_out) {
396                 srcu_read_unlock(&connections_srcu, idx);
397                 return 0;
398         }
399
400         if (dlm_local_addr[0].ss_family == AF_INET) {
401                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
402                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
403                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
404         } else {
405                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
406                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
407                 ret6->sin6_addr = in6->sin6_addr;
408         }
409
410         srcu_read_unlock(&connections_srcu, idx);
411         return 0;
412 }
413
414 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
415                           unsigned int *mark)
416 {
417         struct connection *con;
418         int i, idx, addr_i;
419
420         idx = srcu_read_lock(&connections_srcu);
421         for (i = 0; i < CONN_HASH_SIZE; i++) {
422                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
423                         WARN_ON_ONCE(!con->addr_count);
424
425                         spin_lock(&con->addrs_lock);
426                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
427                                 if (addr_compare(&con->addr[addr_i], addr)) {
428                                         *nodeid = con->nodeid;
429                                         *mark = con->mark;
430                                         spin_unlock(&con->addrs_lock);
431                                         srcu_read_unlock(&connections_srcu, idx);
432                                         return 0;
433                                 }
434                         }
435                         spin_unlock(&con->addrs_lock);
436                 }
437         }
438         srcu_read_unlock(&connections_srcu, idx);
439
440         return -ENOENT;
441 }
442
443 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
444                                       const struct sockaddr_storage *addr)
445 {
446         int i;
447
448         for (i = 0; i < con->addr_count; i++) {
449                 if (addr_compare(&con->addr[i], addr))
450                         return true;
451         }
452
453         return false;
454 }
455
456 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
457 {
458         struct connection *con;
459         bool ret, idx;
460
461         idx = srcu_read_lock(&connections_srcu);
462         con = nodeid2con(nodeid, GFP_NOFS);
463         if (!con) {
464                 srcu_read_unlock(&connections_srcu, idx);
465                 return -ENOMEM;
466         }
467
468         spin_lock(&con->addrs_lock);
469         if (!con->addr_count) {
470                 memcpy(&con->addr[0], addr, sizeof(*addr));
471                 con->addr_count = 1;
472                 con->mark = dlm_config.ci_mark;
473                 spin_unlock(&con->addrs_lock);
474                 srcu_read_unlock(&connections_srcu, idx);
475                 return 0;
476         }
477
478         ret = dlm_lowcomms_con_has_addr(con, addr);
479         if (ret) {
480                 spin_unlock(&con->addrs_lock);
481                 srcu_read_unlock(&connections_srcu, idx);
482                 return -EEXIST;
483         }
484
485         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
486                 spin_unlock(&con->addrs_lock);
487                 srcu_read_unlock(&connections_srcu, idx);
488                 return -ENOSPC;
489         }
490
491         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
492         srcu_read_unlock(&connections_srcu, idx);
493         spin_unlock(&con->addrs_lock);
494         return 0;
495 }
496
497 /* Data available on socket or listen socket received a connect */
498 static void lowcomms_data_ready(struct sock *sk)
499 {
500         struct connection *con = sock2con(sk);
501
502         set_bit(CF_RECV_INTR, &con->flags);
503         lowcomms_queue_rwork(con);
504 }
505
506 static void lowcomms_write_space(struct sock *sk)
507 {
508         struct connection *con = sock2con(sk);
509
510         clear_bit(SOCK_NOSPACE, &con->sock->flags);
511
512         spin_lock_bh(&con->writequeue_lock);
513         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
514                 con->sock->sk->sk_write_pending--;
515                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
516         }
517
518         lowcomms_queue_swork(con);
519         spin_unlock_bh(&con->writequeue_lock);
520 }
521
522 static void lowcomms_state_change(struct sock *sk)
523 {
524         /* SCTP layer is not calling sk_data_ready when the connection
525          * is done, so we catch the signal through here.
526          */
527         if (sk->sk_shutdown == RCV_SHUTDOWN)
528                 lowcomms_data_ready(sk);
529 }
530
531 static void lowcomms_listen_data_ready(struct sock *sk)
532 {
533         queue_work(io_workqueue, &listen_con.rwork);
534 }
535
536 int dlm_lowcomms_connect_node(int nodeid)
537 {
538         struct connection *con;
539         int idx;
540
541         if (nodeid == dlm_our_nodeid())
542                 return 0;
543
544         idx = srcu_read_lock(&connections_srcu);
545         con = nodeid2con(nodeid, 0);
546         if (WARN_ON_ONCE(!con)) {
547                 srcu_read_unlock(&connections_srcu, idx);
548                 return -ENOENT;
549         }
550
551         down_read(&con->sock_lock);
552         if (!con->sock) {
553                 spin_lock_bh(&con->writequeue_lock);
554                 lowcomms_queue_swork(con);
555                 spin_unlock_bh(&con->writequeue_lock);
556         }
557         up_read(&con->sock_lock);
558         srcu_read_unlock(&connections_srcu, idx);
559
560         cond_resched();
561         return 0;
562 }
563
564 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
565 {
566         struct connection *con;
567         int idx;
568
569         idx = srcu_read_lock(&connections_srcu);
570         con = nodeid2con(nodeid, 0);
571         if (!con) {
572                 srcu_read_unlock(&connections_srcu, idx);
573                 return -ENOENT;
574         }
575
576         spin_lock(&con->addrs_lock);
577         con->mark = mark;
578         spin_unlock(&con->addrs_lock);
579         srcu_read_unlock(&connections_srcu, idx);
580         return 0;
581 }
582
583 static void lowcomms_error_report(struct sock *sk)
584 {
585         struct connection *con = sock2con(sk);
586         struct inet_sock *inet;
587
588         inet = inet_sk(sk);
589         switch (sk->sk_family) {
590         case AF_INET:
591                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
592                                    "sending to node %d at %pI4, dport %d, "
593                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
594                                    con->nodeid, &inet->inet_daddr,
595                                    ntohs(inet->inet_dport), sk->sk_err,
596                                    sk->sk_err_soft);
597                 break;
598 #if IS_ENABLED(CONFIG_IPV6)
599         case AF_INET6:
600                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
601                                    "sending to node %d at %pI6c, "
602                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
603                                    con->nodeid, &sk->sk_v6_daddr,
604                                    ntohs(inet->inet_dport), sk->sk_err,
605                                    sk->sk_err_soft);
606                 break;
607 #endif
608         default:
609                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
610                                    "invalid socket family %d set, "
611                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
612                                    sk->sk_family, sk->sk_err, sk->sk_err_soft);
613                 break;
614         }
615
616         dlm_midcomms_unack_msg_resend(con->nodeid);
617
618         listen_sock.sk_error_report(sk);
619 }
620
621 static void restore_callbacks(struct sock *sk)
622 {
623 #ifdef CONFIG_LOCKDEP
624         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
625 #endif
626
627         sk->sk_user_data = NULL;
628         sk->sk_data_ready = listen_sock.sk_data_ready;
629         sk->sk_state_change = listen_sock.sk_state_change;
630         sk->sk_write_space = listen_sock.sk_write_space;
631         sk->sk_error_report = listen_sock.sk_error_report;
632 }
633
634 /* Make a socket active */
635 static void add_sock(struct socket *sock, struct connection *con)
636 {
637         struct sock *sk = sock->sk;
638
639         lock_sock(sk);
640         con->sock = sock;
641
642         sk->sk_user_data = con;
643         sk->sk_data_ready = lowcomms_data_ready;
644         sk->sk_write_space = lowcomms_write_space;
645         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
646                 sk->sk_state_change = lowcomms_state_change;
647         sk->sk_allocation = GFP_NOFS;
648         sk->sk_error_report = lowcomms_error_report;
649         release_sock(sk);
650 }
651
652 /* Add the port number to an IPv6 or 4 sockaddr and return the address
653    length */
654 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
655                           int *addr_len)
656 {
657         saddr->ss_family =  dlm_local_addr[0].ss_family;
658         if (saddr->ss_family == AF_INET) {
659                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
660                 in4_addr->sin_port = cpu_to_be16(port);
661                 *addr_len = sizeof(struct sockaddr_in);
662                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
663         } else {
664                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
665                 in6_addr->sin6_port = cpu_to_be16(port);
666                 *addr_len = sizeof(struct sockaddr_in6);
667         }
668         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
669 }
670
671 static void dlm_page_release(struct kref *kref)
672 {
673         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
674                                                   ref);
675
676         __free_page(e->page);
677         dlm_free_writequeue(e);
678 }
679
680 static void dlm_msg_release(struct kref *kref)
681 {
682         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
683
684         kref_put(&msg->entry->ref, dlm_page_release);
685         dlm_free_msg(msg);
686 }
687
688 static void free_entry(struct writequeue_entry *e)
689 {
690         struct dlm_msg *msg, *tmp;
691
692         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
693                 if (msg->orig_msg) {
694                         msg->orig_msg->retransmit = false;
695                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
696                 }
697
698                 list_del(&msg->list);
699                 kref_put(&msg->ref, dlm_msg_release);
700         }
701
702         list_del(&e->list);
703         kref_put(&e->ref, dlm_page_release);
704 }
705
706 static void dlm_close_sock(struct socket **sock)
707 {
708         lock_sock((*sock)->sk);
709         restore_callbacks((*sock)->sk);
710         release_sock((*sock)->sk);
711
712         sock_release(*sock);
713         *sock = NULL;
714 }
715
716 static void allow_connection_io(struct connection *con)
717 {
718         if (con->othercon)
719                 clear_bit(CF_IO_STOP, &con->othercon->flags);
720         clear_bit(CF_IO_STOP, &con->flags);
721 }
722
723 static void stop_connection_io(struct connection *con)
724 {
725         if (con->othercon)
726                 stop_connection_io(con->othercon);
727
728         down_write(&con->sock_lock);
729         if (con->sock) {
730                 lock_sock(con->sock->sk);
731                 restore_callbacks(con->sock->sk);
732
733                 spin_lock_bh(&con->writequeue_lock);
734                 set_bit(CF_IO_STOP, &con->flags);
735                 spin_unlock_bh(&con->writequeue_lock);
736                 release_sock(con->sock->sk);
737         } else {
738                 spin_lock_bh(&con->writequeue_lock);
739                 set_bit(CF_IO_STOP, &con->flags);
740                 spin_unlock_bh(&con->writequeue_lock);
741         }
742         up_write(&con->sock_lock);
743
744         cancel_work_sync(&con->swork);
745         cancel_work_sync(&con->rwork);
746 }
747
748 /* Close a remote connection and tidy up */
749 static void close_connection(struct connection *con, bool and_other)
750 {
751         struct writequeue_entry *e;
752
753         if (con->othercon && and_other)
754                 close_connection(con->othercon, false);
755
756         down_write(&con->sock_lock);
757         if (!con->sock) {
758                 up_write(&con->sock_lock);
759                 return;
760         }
761
762         dlm_close_sock(&con->sock);
763
764         /* if we send a writequeue entry only a half way, we drop the
765          * whole entry because reconnection and that we not start of the
766          * middle of a msg which will confuse the other end.
767          *
768          * we can always drop messages because retransmits, but what we
769          * cannot allow is to transmit half messages which may be processed
770          * at the other side.
771          *
772          * our policy is to start on a clean state when disconnects, we don't
773          * know what's send/received on transport layer in this case.
774          */
775         spin_lock_bh(&con->writequeue_lock);
776         if (!list_empty(&con->writequeue)) {
777                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
778                                      list);
779                 if (e->dirty)
780                         free_entry(e);
781         }
782         spin_unlock_bh(&con->writequeue_lock);
783
784         con->rx_leftover = 0;
785         con->retries = 0;
786         clear_bit(CF_APP_LIMITED, &con->flags);
787         clear_bit(CF_RECV_PENDING, &con->flags);
788         clear_bit(CF_SEND_PENDING, &con->flags);
789         up_write(&con->sock_lock);
790 }
791
792 static struct processqueue_entry *new_processqueue_entry(int nodeid,
793                                                          int buflen)
794 {
795         struct processqueue_entry *pentry;
796
797         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
798         if (!pentry)
799                 return NULL;
800
801         pentry->buf = kmalloc(buflen, GFP_NOFS);
802         if (!pentry->buf) {
803                 kfree(pentry);
804                 return NULL;
805         }
806
807         pentry->nodeid = nodeid;
808         return pentry;
809 }
810
811 static void free_processqueue_entry(struct processqueue_entry *pentry)
812 {
813         kfree(pentry->buf);
814         kfree(pentry);
815 }
816
817 struct dlm_processed_nodes {
818         int nodeid;
819
820         struct list_head list;
821 };
822
823 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
824 {
825         struct dlm_processed_nodes *n;
826
827         list_for_each_entry(n, processed_nodes, list) {
828                 /* we already remembered this node */
829                 if (n->nodeid == nodeid)
830                         return;
831         }
832
833         /* if it's fails in worst case we simple don't send an ack back.
834          * We try it next time.
835          */
836         n = kmalloc(sizeof(*n), GFP_NOFS);
837         if (!n)
838                 return;
839
840         n->nodeid = nodeid;
841         list_add(&n->list, processed_nodes);
842 }
843
844 static void process_dlm_messages(struct work_struct *work)
845 {
846         struct dlm_processed_nodes *n, *n_tmp;
847         struct processqueue_entry *pentry;
848         LIST_HEAD(processed_nodes);
849
850         spin_lock(&processqueue_lock);
851         pentry = list_first_entry_or_null(&processqueue,
852                                           struct processqueue_entry, list);
853         if (WARN_ON_ONCE(!pentry)) {
854                 spin_unlock(&processqueue_lock);
855                 return;
856         }
857
858         list_del(&pentry->list);
859         spin_unlock(&processqueue_lock);
860
861         for (;;) {
862                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
863                                             pentry->buflen);
864                 add_processed_node(pentry->nodeid, &processed_nodes);
865                 free_processqueue_entry(pentry);
866
867                 spin_lock(&processqueue_lock);
868                 pentry = list_first_entry_or_null(&processqueue,
869                                                   struct processqueue_entry, list);
870                 if (!pentry) {
871                         process_dlm_messages_pending = false;
872                         spin_unlock(&processqueue_lock);
873                         break;
874                 }
875
876                 list_del(&pentry->list);
877                 spin_unlock(&processqueue_lock);
878         }
879
880         /* send ack back after we processed couple of messages */
881         list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
882                 list_del(&n->list);
883                 dlm_midcomms_receive_done(n->nodeid);
884                 kfree(n);
885         }
886 }
887
888 /* Data received from remote end */
889 static int receive_from_sock(struct connection *con, int buflen)
890 {
891         struct processqueue_entry *pentry;
892         int ret, buflen_real;
893         struct msghdr msg;
894         struct kvec iov;
895
896         pentry = new_processqueue_entry(con->nodeid, buflen);
897         if (!pentry)
898                 return DLM_IO_RESCHED;
899
900         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
901
902         /* calculate new buffer parameter regarding last receive and
903          * possible leftover bytes
904          */
905         iov.iov_base = pentry->buf + con->rx_leftover;
906         iov.iov_len = buflen - con->rx_leftover;
907
908         memset(&msg, 0, sizeof(msg));
909         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
910         clear_bit(CF_RECV_INTR, &con->flags);
911 again:
912         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
913                              msg.msg_flags);
914         trace_dlm_recv(con->nodeid, ret);
915         if (ret == -EAGAIN) {
916                 lock_sock(con->sock->sk);
917                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
918                         release_sock(con->sock->sk);
919                         goto again;
920                 }
921
922                 clear_bit(CF_RECV_PENDING, &con->flags);
923                 release_sock(con->sock->sk);
924                 free_processqueue_entry(pentry);
925                 return DLM_IO_END;
926         } else if (ret == 0) {
927                 /* close will clear CF_RECV_PENDING */
928                 free_processqueue_entry(pentry);
929                 return DLM_IO_EOF;
930         } else if (ret < 0) {
931                 free_processqueue_entry(pentry);
932                 return ret;
933         }
934
935         /* new buflen according readed bytes and leftover from last receive */
936         buflen_real = ret + con->rx_leftover;
937         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
938                                            buflen_real);
939         if (ret < 0) {
940                 free_processqueue_entry(pentry);
941                 return ret;
942         }
943
944         pentry->buflen = ret;
945
946         /* calculate leftover bytes from process and put it into begin of
947          * the receive buffer, so next receive we have the full message
948          * at the start address of the receive buffer.
949          */
950         con->rx_leftover = buflen_real - ret;
951         memmove(con->rx_leftover_buf, pentry->buf + ret,
952                 con->rx_leftover);
953
954         spin_lock(&processqueue_lock);
955         list_add_tail(&pentry->list, &processqueue);
956         if (!process_dlm_messages_pending) {
957                 process_dlm_messages_pending = true;
958                 queue_work(process_workqueue, &process_work);
959         }
960         spin_unlock(&processqueue_lock);
961
962         return DLM_IO_SUCCESS;
963 }
964
965 /* Listening socket is busy, accept a connection */
966 static int accept_from_sock(void)
967 {
968         struct sockaddr_storage peeraddr;
969         int len, idx, result, nodeid;
970         struct connection *newcon;
971         struct socket *newsock;
972         unsigned int mark;
973
974         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
975         if (result == -EAGAIN)
976                 return DLM_IO_END;
977         else if (result < 0)
978                 goto accept_err;
979
980         /* Get the connected socket's peer */
981         memset(&peeraddr, 0, sizeof(peeraddr));
982         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
983         if (len < 0) {
984                 result = -ECONNABORTED;
985                 goto accept_err;
986         }
987
988         /* Get the new node's NODEID */
989         make_sockaddr(&peeraddr, 0, &len);
990         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
991                 switch (peeraddr.ss_family) {
992                 case AF_INET: {
993                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
994
995                         log_print("connect from non cluster IPv4 node %pI4",
996                                   &sin->sin_addr);
997                         break;
998                 }
999 #if IS_ENABLED(CONFIG_IPV6)
1000                 case AF_INET6: {
1001                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1002
1003                         log_print("connect from non cluster IPv6 node %pI6c",
1004                                   &sin6->sin6_addr);
1005                         break;
1006                 }
1007 #endif
1008                 default:
1009                         log_print("invalid family from non cluster node");
1010                         break;
1011                 }
1012
1013                 sock_release(newsock);
1014                 return -1;
1015         }
1016
1017         log_print("got connection from %d", nodeid);
1018
1019         /*  Check to see if we already have a connection to this node. This
1020          *  could happen if the two nodes initiate a connection at roughly
1021          *  the same time and the connections cross on the wire.
1022          *  In this case we store the incoming one in "othercon"
1023          */
1024         idx = srcu_read_lock(&connections_srcu);
1025         newcon = nodeid2con(nodeid, 0);
1026         if (WARN_ON_ONCE(!newcon)) {
1027                 srcu_read_unlock(&connections_srcu, idx);
1028                 result = -ENOENT;
1029                 goto accept_err;
1030         }
1031
1032         sock_set_mark(newsock->sk, mark);
1033
1034         down_write(&newcon->sock_lock);
1035         if (newcon->sock) {
1036                 struct connection *othercon = newcon->othercon;
1037
1038                 if (!othercon) {
1039                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1040                         if (!othercon) {
1041                                 log_print("failed to allocate incoming socket");
1042                                 up_write(&newcon->sock_lock);
1043                                 srcu_read_unlock(&connections_srcu, idx);
1044                                 result = -ENOMEM;
1045                                 goto accept_err;
1046                         }
1047
1048                         dlm_con_init(othercon, nodeid);
1049                         lockdep_set_subclass(&othercon->sock_lock, 1);
1050                         newcon->othercon = othercon;
1051                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1052                 } else {
1053                         /* close other sock con if we have something new */
1054                         close_connection(othercon, false);
1055                 }
1056
1057                 down_write(&othercon->sock_lock);
1058                 add_sock(newsock, othercon);
1059
1060                 /* check if we receved something while adding */
1061                 lock_sock(othercon->sock->sk);
1062                 lowcomms_queue_rwork(othercon);
1063                 release_sock(othercon->sock->sk);
1064                 up_write(&othercon->sock_lock);
1065         }
1066         else {
1067                 /* accept copies the sk after we've saved the callbacks, so we
1068                    don't want to save them a second time or comm errors will
1069                    result in calling sk_error_report recursively. */
1070                 add_sock(newsock, newcon);
1071
1072                 /* check if we receved something while adding */
1073                 lock_sock(newcon->sock->sk);
1074                 lowcomms_queue_rwork(newcon);
1075                 release_sock(newcon->sock->sk);
1076         }
1077         up_write(&newcon->sock_lock);
1078         srcu_read_unlock(&connections_srcu, idx);
1079
1080         return DLM_IO_SUCCESS;
1081
1082 accept_err:
1083         if (newsock)
1084                 sock_release(newsock);
1085
1086         return result;
1087 }
1088
1089 /*
1090  * writequeue_entry_complete - try to delete and free write queue entry
1091  * @e: write queue entry to try to delete
1092  * @completed: bytes completed
1093  *
1094  * writequeue_lock must be held.
1095  */
1096 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1097 {
1098         e->offset += completed;
1099         e->len -= completed;
1100         /* signal that page was half way transmitted */
1101         e->dirty = true;
1102
1103         if (e->len == 0 && e->users == 0)
1104                 free_entry(e);
1105 }
1106
1107 /*
1108  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1109  */
1110 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1111 {
1112         struct sockaddr_storage localaddr;
1113         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1114         int i, addr_len, result = 0;
1115
1116         for (i = 0; i < dlm_local_count; i++) {
1117                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1118                 make_sockaddr(&localaddr, port, &addr_len);
1119
1120                 if (!i)
1121                         result = kernel_bind(sock, addr, addr_len);
1122                 else
1123                         result = sock_bind_add(sock->sk, addr, addr_len);
1124
1125                 if (result < 0) {
1126                         log_print("Can't bind to %d addr number %d, %d.\n",
1127                                   port, i + 1, result);
1128                         break;
1129                 }
1130         }
1131         return result;
1132 }
1133
1134 /* Get local addresses */
1135 static void init_local(void)
1136 {
1137         struct sockaddr_storage sas;
1138         int i;
1139
1140         dlm_local_count = 0;
1141         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1142                 if (dlm_our_addr(&sas, i))
1143                         break;
1144
1145                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1146         }
1147 }
1148
1149 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1150 {
1151         struct writequeue_entry *entry;
1152
1153         entry = dlm_allocate_writequeue();
1154         if (!entry)
1155                 return NULL;
1156
1157         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1158         if (!entry->page) {
1159                 dlm_free_writequeue(entry);
1160                 return NULL;
1161         }
1162
1163         entry->offset = 0;
1164         entry->len = 0;
1165         entry->end = 0;
1166         entry->dirty = false;
1167         entry->con = con;
1168         entry->users = 1;
1169         kref_init(&entry->ref);
1170         return entry;
1171 }
1172
1173 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1174                                              char **ppc, void (*cb)(void *data),
1175                                              void *data)
1176 {
1177         struct writequeue_entry *e;
1178
1179         spin_lock_bh(&con->writequeue_lock);
1180         if (!list_empty(&con->writequeue)) {
1181                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1182                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1183                         kref_get(&e->ref);
1184
1185                         *ppc = page_address(e->page) + e->end;
1186                         if (cb)
1187                                 cb(data);
1188
1189                         e->end += len;
1190                         e->users++;
1191                         goto out;
1192                 }
1193         }
1194
1195         e = new_writequeue_entry(con);
1196         if (!e)
1197                 goto out;
1198
1199         kref_get(&e->ref);
1200         *ppc = page_address(e->page);
1201         e->end += len;
1202         if (cb)
1203                 cb(data);
1204
1205         list_add_tail(&e->list, &con->writequeue);
1206
1207 out:
1208         spin_unlock_bh(&con->writequeue_lock);
1209         return e;
1210 };
1211
1212 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1213                                                 gfp_t allocation, char **ppc,
1214                                                 void (*cb)(void *data),
1215                                                 void *data)
1216 {
1217         struct writequeue_entry *e;
1218         struct dlm_msg *msg;
1219
1220         msg = dlm_allocate_msg(allocation);
1221         if (!msg)
1222                 return NULL;
1223
1224         kref_init(&msg->ref);
1225
1226         e = new_wq_entry(con, len, ppc, cb, data);
1227         if (!e) {
1228                 dlm_free_msg(msg);
1229                 return NULL;
1230         }
1231
1232         msg->retransmit = false;
1233         msg->orig_msg = NULL;
1234         msg->ppc = *ppc;
1235         msg->len = len;
1236         msg->entry = e;
1237
1238         return msg;
1239 }
1240
1241 /* avoid false positive for nodes_srcu, unlock happens in
1242  * dlm_lowcomms_commit_msg which is a must call if success
1243  */
1244 #ifndef __CHECKER__
1245 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1246                                      char **ppc, void (*cb)(void *data),
1247                                      void *data)
1248 {
1249         struct connection *con;
1250         struct dlm_msg *msg;
1251         int idx;
1252
1253         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1254             len < sizeof(struct dlm_header)) {
1255                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1256                 log_print("failed to allocate a buffer of size %d", len);
1257                 WARN_ON_ONCE(1);
1258                 return NULL;
1259         }
1260
1261         idx = srcu_read_lock(&connections_srcu);
1262         con = nodeid2con(nodeid, 0);
1263         if (WARN_ON_ONCE(!con)) {
1264                 srcu_read_unlock(&connections_srcu, idx);
1265                 return NULL;
1266         }
1267
1268         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1269         if (!msg) {
1270                 srcu_read_unlock(&connections_srcu, idx);
1271                 return NULL;
1272         }
1273
1274         /* for dlm_lowcomms_commit_msg() */
1275         kref_get(&msg->ref);
1276         /* we assume if successful commit must called */
1277         msg->idx = idx;
1278         return msg;
1279 }
1280 #endif
1281
1282 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1283 {
1284         struct writequeue_entry *e = msg->entry;
1285         struct connection *con = e->con;
1286         int users;
1287
1288         spin_lock_bh(&con->writequeue_lock);
1289         kref_get(&msg->ref);
1290         list_add(&msg->list, &e->msgs);
1291
1292         users = --e->users;
1293         if (users)
1294                 goto out;
1295
1296         e->len = DLM_WQ_LENGTH_BYTES(e);
1297
1298         lowcomms_queue_swork(con);
1299
1300 out:
1301         spin_unlock_bh(&con->writequeue_lock);
1302         return;
1303 }
1304
1305 /* avoid false positive for nodes_srcu, lock was happen in
1306  * dlm_lowcomms_new_msg
1307  */
1308 #ifndef __CHECKER__
1309 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1310 {
1311         _dlm_lowcomms_commit_msg(msg);
1312         srcu_read_unlock(&connections_srcu, msg->idx);
1313         /* because dlm_lowcomms_new_msg() */
1314         kref_put(&msg->ref, dlm_msg_release);
1315 }
1316 #endif
1317
1318 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1319 {
1320         kref_put(&msg->ref, dlm_msg_release);
1321 }
1322
1323 /* does not held connections_srcu, usage lowcomms_error_report only */
1324 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1325 {
1326         struct dlm_msg *msg_resend;
1327         char *ppc;
1328
1329         if (msg->retransmit)
1330                 return 1;
1331
1332         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1333                                               GFP_ATOMIC, &ppc, NULL, NULL);
1334         if (!msg_resend)
1335                 return -ENOMEM;
1336
1337         msg->retransmit = true;
1338         kref_get(&msg->ref);
1339         msg_resend->orig_msg = msg;
1340
1341         memcpy(ppc, msg->ppc, msg->len);
1342         _dlm_lowcomms_commit_msg(msg_resend);
1343         dlm_lowcomms_put_msg(msg_resend);
1344
1345         return 0;
1346 }
1347
1348 /* Send a message */
1349 static int send_to_sock(struct connection *con)
1350 {
1351         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1352         struct writequeue_entry *e;
1353         int len, offset, ret;
1354
1355         spin_lock_bh(&con->writequeue_lock);
1356         e = con_next_wq(con);
1357         if (!e) {
1358                 clear_bit(CF_SEND_PENDING, &con->flags);
1359                 spin_unlock_bh(&con->writequeue_lock);
1360                 return DLM_IO_END;
1361         }
1362
1363         len = e->len;
1364         offset = e->offset;
1365         WARN_ON_ONCE(len == 0 && e->users == 0);
1366         spin_unlock_bh(&con->writequeue_lock);
1367
1368         ret = kernel_sendpage(con->sock, e->page, offset, len,
1369                               msg_flags);
1370         trace_dlm_send(con->nodeid, ret);
1371         if (ret == -EAGAIN || ret == 0) {
1372                 lock_sock(con->sock->sk);
1373                 spin_lock_bh(&con->writequeue_lock);
1374                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1375                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1376                         /* Notify TCP that we're limited by the
1377                          * application window size.
1378                          */
1379                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1380                         con->sock->sk->sk_write_pending++;
1381
1382                         clear_bit(CF_SEND_PENDING, &con->flags);
1383                         spin_unlock_bh(&con->writequeue_lock);
1384                         release_sock(con->sock->sk);
1385
1386                         /* wait for write_space() event */
1387                         return DLM_IO_END;
1388                 }
1389                 spin_unlock_bh(&con->writequeue_lock);
1390                 release_sock(con->sock->sk);
1391
1392                 return DLM_IO_RESCHED;
1393         } else if (ret < 0) {
1394                 return ret;
1395         }
1396
1397         spin_lock_bh(&con->writequeue_lock);
1398         writequeue_entry_complete(e, ret);
1399         spin_unlock_bh(&con->writequeue_lock);
1400
1401         return DLM_IO_SUCCESS;
1402 }
1403
1404 static void clean_one_writequeue(struct connection *con)
1405 {
1406         struct writequeue_entry *e, *safe;
1407
1408         spin_lock_bh(&con->writequeue_lock);
1409         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1410                 free_entry(e);
1411         }
1412         spin_unlock_bh(&con->writequeue_lock);
1413 }
1414
1415 static void connection_release(struct rcu_head *rcu)
1416 {
1417         struct connection *con = container_of(rcu, struct connection, rcu);
1418
1419         WARN_ON_ONCE(!list_empty(&con->writequeue));
1420         WARN_ON_ONCE(con->sock);
1421         kfree(con);
1422 }
1423
1424 /* Called from recovery when it knows that a node has
1425    left the cluster */
1426 int dlm_lowcomms_close(int nodeid)
1427 {
1428         struct connection *con;
1429         int idx;
1430
1431         log_print("closing connection to node %d", nodeid);
1432
1433         idx = srcu_read_lock(&connections_srcu);
1434         con = nodeid2con(nodeid, 0);
1435         if (WARN_ON_ONCE(!con)) {
1436                 srcu_read_unlock(&connections_srcu, idx);
1437                 return -ENOENT;
1438         }
1439
1440         stop_connection_io(con);
1441         log_print("io handling for node: %d stopped", nodeid);
1442         close_connection(con, true);
1443
1444         spin_lock(&connections_lock);
1445         hlist_del_rcu(&con->list);
1446         spin_unlock(&connections_lock);
1447
1448         clean_one_writequeue(con);
1449         call_srcu(&connections_srcu, &con->rcu, connection_release);
1450         if (con->othercon) {
1451                 clean_one_writequeue(con->othercon);
1452                 if (con->othercon)
1453                         call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1454         }
1455         srcu_read_unlock(&connections_srcu, idx);
1456
1457         /* for debugging we print when we are done to compare with other
1458          * messages in between. This function need to be correctly synchronized
1459          * with io handling
1460          */
1461         log_print("closing connection to node %d done", nodeid);
1462
1463         return 0;
1464 }
1465
1466 /* Receive worker function */
1467 static void process_recv_sockets(struct work_struct *work)
1468 {
1469         struct connection *con = container_of(work, struct connection, rwork);
1470         int ret, buflen;
1471
1472         down_read(&con->sock_lock);
1473         if (!con->sock) {
1474                 up_read(&con->sock_lock);
1475                 return;
1476         }
1477
1478         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1479         do {
1480                 ret = receive_from_sock(con, buflen);
1481         } while (ret == DLM_IO_SUCCESS);
1482         up_read(&con->sock_lock);
1483
1484         switch (ret) {
1485         case DLM_IO_END:
1486                 /* CF_RECV_PENDING cleared */
1487                 break;
1488         case DLM_IO_EOF:
1489                 close_connection(con, false);
1490                 /* CF_RECV_PENDING cleared */
1491                 break;
1492         case DLM_IO_RESCHED:
1493                 cond_resched();
1494                 queue_work(io_workqueue, &con->rwork);
1495                 /* CF_RECV_PENDING not cleared */
1496                 break;
1497         default:
1498                 if (ret < 0) {
1499                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1500                                 close_connection(con, false);
1501                         } else {
1502                                 spin_lock_bh(&con->writequeue_lock);
1503                                 lowcomms_queue_swork(con);
1504                                 spin_unlock_bh(&con->writequeue_lock);
1505                         }
1506
1507                         /* CF_RECV_PENDING cleared for othercon
1508                          * we trigger send queue if not already done
1509                          * and process_send_sockets will handle it
1510                          */
1511                         break;
1512                 }
1513
1514                 WARN_ON_ONCE(1);
1515                 break;
1516         }
1517 }
1518
1519 static void process_listen_recv_socket(struct work_struct *work)
1520 {
1521         int ret;
1522
1523         if (WARN_ON_ONCE(!listen_con.sock))
1524                 return;
1525
1526         do {
1527                 ret = accept_from_sock();
1528         } while (ret == DLM_IO_SUCCESS);
1529
1530         if (ret < 0)
1531                 log_print("critical error accepting connection: %d", ret);
1532 }
1533
1534 static int dlm_connect(struct connection *con)
1535 {
1536         struct sockaddr_storage addr;
1537         int result, addr_len;
1538         struct socket *sock;
1539         unsigned int mark;
1540
1541         memset(&addr, 0, sizeof(addr));
1542         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1543                                 dlm_proto_ops->try_new_addr, &mark);
1544         if (result < 0) {
1545                 log_print("no address for nodeid %d", con->nodeid);
1546                 return result;
1547         }
1548
1549         /* Create a socket to communicate with */
1550         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1551                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1552         if (result < 0)
1553                 return result;
1554
1555         sock_set_mark(sock->sk, mark);
1556         dlm_proto_ops->sockopts(sock);
1557
1558         result = dlm_proto_ops->bind(sock);
1559         if (result < 0) {
1560                 sock_release(sock);
1561                 return result;
1562         }
1563
1564         add_sock(sock, con);
1565
1566         log_print_ratelimited("connecting to %d", con->nodeid);
1567         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1568         result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1569                                         addr_len);
1570         switch (result) {
1571         case -EINPROGRESS:
1572                 /* not an error */
1573                 fallthrough;
1574         case 0:
1575                 break;
1576         default:
1577                 if (result < 0)
1578                         dlm_close_sock(&con->sock);
1579
1580                 break;
1581         }
1582
1583         return result;
1584 }
1585
1586 /* Send worker function */
1587 static void process_send_sockets(struct work_struct *work)
1588 {
1589         struct connection *con = container_of(work, struct connection, swork);
1590         int ret;
1591
1592         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1593
1594         down_read(&con->sock_lock);
1595         if (!con->sock) {
1596                 up_read(&con->sock_lock);
1597                 down_write(&con->sock_lock);
1598                 if (!con->sock) {
1599                         ret = dlm_connect(con);
1600                         switch (ret) {
1601                         case 0:
1602                                 break;
1603                         case -EINPROGRESS:
1604                                 /* avoid spamming resched on connection
1605                                  * we might can switch to a state_change
1606                                  * event based mechanism if established
1607                                  */
1608                                 msleep(100);
1609                                 break;
1610                         default:
1611                                 /* CF_SEND_PENDING not cleared */
1612                                 up_write(&con->sock_lock);
1613                                 log_print("connect to node %d try %d error %d",
1614                                           con->nodeid, con->retries++, ret);
1615                                 msleep(1000);
1616                                 /* For now we try forever to reconnect. In
1617                                  * future we should send a event to cluster
1618                                  * manager to fence itself after certain amount
1619                                  * of retries.
1620                                  */
1621                                 queue_work(io_workqueue, &con->swork);
1622                                 return;
1623                         }
1624                 }
1625                 downgrade_write(&con->sock_lock);
1626         }
1627
1628         do {
1629                 ret = send_to_sock(con);
1630         } while (ret == DLM_IO_SUCCESS);
1631         up_read(&con->sock_lock);
1632
1633         switch (ret) {
1634         case DLM_IO_END:
1635                 /* CF_SEND_PENDING cleared */
1636                 break;
1637         case DLM_IO_RESCHED:
1638                 /* CF_SEND_PENDING not cleared */
1639                 cond_resched();
1640                 queue_work(io_workqueue, &con->swork);
1641                 break;
1642         default:
1643                 if (ret < 0) {
1644                         close_connection(con, false);
1645
1646                         /* CF_SEND_PENDING cleared */
1647                         spin_lock_bh(&con->writequeue_lock);
1648                         lowcomms_queue_swork(con);
1649                         spin_unlock_bh(&con->writequeue_lock);
1650                         break;
1651                 }
1652
1653                 WARN_ON_ONCE(1);
1654                 break;
1655         }
1656 }
1657
1658 static void work_stop(void)
1659 {
1660         if (io_workqueue) {
1661                 destroy_workqueue(io_workqueue);
1662                 io_workqueue = NULL;
1663         }
1664
1665         if (process_workqueue) {
1666                 destroy_workqueue(process_workqueue);
1667                 process_workqueue = NULL;
1668         }
1669 }
1670
1671 static int work_start(void)
1672 {
1673         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1674                                        0);
1675         if (!io_workqueue) {
1676                 log_print("can't start dlm_io");
1677                 return -ENOMEM;
1678         }
1679
1680         /* ordered dlm message process queue,
1681          * should be converted to a tasklet
1682          */
1683         process_workqueue = alloc_ordered_workqueue("dlm_process",
1684                                                     WQ_HIGHPRI | WQ_MEM_RECLAIM);
1685         if (!process_workqueue) {
1686                 log_print("can't start dlm_process");
1687                 destroy_workqueue(io_workqueue);
1688                 io_workqueue = NULL;
1689                 return -ENOMEM;
1690         }
1691
1692         return 0;
1693 }
1694
1695 void dlm_lowcomms_shutdown(void)
1696 {
1697         /* stop lowcomms_listen_data_ready calls */
1698         lock_sock(listen_con.sock->sk);
1699         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1700         release_sock(listen_con.sock->sk);
1701
1702         cancel_work_sync(&listen_con.rwork);
1703         dlm_close_sock(&listen_con.sock);
1704
1705         flush_workqueue(process_workqueue);
1706 }
1707
1708 void dlm_lowcomms_shutdown_node(int nodeid, bool force)
1709 {
1710         struct connection *con;
1711         int idx;
1712
1713         idx = srcu_read_lock(&connections_srcu);
1714         con = nodeid2con(nodeid, 0);
1715         if (WARN_ON_ONCE(!con)) {
1716                 srcu_read_unlock(&connections_srcu, idx);
1717                 return;
1718         }
1719
1720         flush_work(&con->swork);
1721         stop_connection_io(con);
1722         WARN_ON_ONCE(!force && !list_empty(&con->writequeue));
1723         close_connection(con, true);
1724         clean_one_writequeue(con);
1725         if (con->othercon)
1726                 clean_one_writequeue(con->othercon);
1727         allow_connection_io(con);
1728         srcu_read_unlock(&connections_srcu, idx);
1729 }
1730
1731 void dlm_lowcomms_stop(void)
1732 {
1733         work_stop();
1734         dlm_proto_ops = NULL;
1735 }
1736
1737 static int dlm_listen_for_all(void)
1738 {
1739         struct socket *sock;
1740         int result;
1741
1742         log_print("Using %s for communications",
1743                   dlm_proto_ops->name);
1744
1745         result = dlm_proto_ops->listen_validate();
1746         if (result < 0)
1747                 return result;
1748
1749         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1750                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1751         if (result < 0) {
1752                 log_print("Can't create comms socket: %d", result);
1753                 return result;
1754         }
1755
1756         sock_set_mark(sock->sk, dlm_config.ci_mark);
1757         dlm_proto_ops->listen_sockopts(sock);
1758
1759         result = dlm_proto_ops->listen_bind(sock);
1760         if (result < 0)
1761                 goto out;
1762
1763         lock_sock(sock->sk);
1764         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1765         listen_sock.sk_write_space = sock->sk->sk_write_space;
1766         listen_sock.sk_error_report = sock->sk->sk_error_report;
1767         listen_sock.sk_state_change = sock->sk->sk_state_change;
1768
1769         listen_con.sock = sock;
1770
1771         sock->sk->sk_allocation = GFP_NOFS;
1772         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1773         release_sock(sock->sk);
1774
1775         result = sock->ops->listen(sock, 5);
1776         if (result < 0) {
1777                 dlm_close_sock(&listen_con.sock);
1778                 return result;
1779         }
1780
1781         return 0;
1782
1783 out:
1784         sock_release(sock);
1785         return result;
1786 }
1787
1788 static int dlm_tcp_bind(struct socket *sock)
1789 {
1790         struct sockaddr_storage src_addr;
1791         int result, addr_len;
1792
1793         /* Bind to our cluster-known address connecting to avoid
1794          * routing problems.
1795          */
1796         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1797         make_sockaddr(&src_addr, 0, &addr_len);
1798
1799         result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1800                                  addr_len);
1801         if (result < 0) {
1802                 /* This *may* not indicate a critical error */
1803                 log_print("could not bind for connect: %d", result);
1804         }
1805
1806         return 0;
1807 }
1808
1809 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1810                            struct sockaddr *addr, int addr_len)
1811 {
1812         return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1813 }
1814
1815 static int dlm_tcp_listen_validate(void)
1816 {
1817         /* We don't support multi-homed hosts */
1818         if (dlm_local_count > 1) {
1819                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1820                 return -EINVAL;
1821         }
1822
1823         return 0;
1824 }
1825
1826 static void dlm_tcp_sockopts(struct socket *sock)
1827 {
1828         /* Turn off Nagle's algorithm */
1829         tcp_sock_set_nodelay(sock->sk);
1830 }
1831
1832 static void dlm_tcp_listen_sockopts(struct socket *sock)
1833 {
1834         dlm_tcp_sockopts(sock);
1835         sock_set_reuseaddr(sock->sk);
1836 }
1837
1838 static int dlm_tcp_listen_bind(struct socket *sock)
1839 {
1840         int addr_len;
1841
1842         /* Bind to our port */
1843         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1844         return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1845                                addr_len);
1846 }
1847
1848 static const struct dlm_proto_ops dlm_tcp_ops = {
1849         .name = "TCP",
1850         .proto = IPPROTO_TCP,
1851         .connect = dlm_tcp_connect,
1852         .sockopts = dlm_tcp_sockopts,
1853         .bind = dlm_tcp_bind,
1854         .listen_validate = dlm_tcp_listen_validate,
1855         .listen_sockopts = dlm_tcp_listen_sockopts,
1856         .listen_bind = dlm_tcp_listen_bind,
1857 };
1858
1859 static int dlm_sctp_bind(struct socket *sock)
1860 {
1861         return sctp_bind_addrs(sock, 0);
1862 }
1863
1864 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1865                             struct sockaddr *addr, int addr_len)
1866 {
1867         int ret;
1868
1869         /*
1870          * Make sock->ops->connect() function return in specified time,
1871          * since O_NONBLOCK argument in connect() function does not work here,
1872          * then, we should restore the default value of this attribute.
1873          */
1874         sock_set_sndtimeo(sock->sk, 5);
1875         ret = sock->ops->connect(sock, addr, addr_len, 0);
1876         sock_set_sndtimeo(sock->sk, 0);
1877         return ret;
1878 }
1879
1880 static int dlm_sctp_listen_validate(void)
1881 {
1882         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1883                 log_print("SCTP is not enabled by this kernel");
1884                 return -EOPNOTSUPP;
1885         }
1886
1887         request_module("sctp");
1888         return 0;
1889 }
1890
1891 static int dlm_sctp_bind_listen(struct socket *sock)
1892 {
1893         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1894 }
1895
1896 static void dlm_sctp_sockopts(struct socket *sock)
1897 {
1898         /* Turn off Nagle's algorithm */
1899         sctp_sock_set_nodelay(sock->sk);
1900         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1901 }
1902
1903 static const struct dlm_proto_ops dlm_sctp_ops = {
1904         .name = "SCTP",
1905         .proto = IPPROTO_SCTP,
1906         .try_new_addr = true,
1907         .connect = dlm_sctp_connect,
1908         .sockopts = dlm_sctp_sockopts,
1909         .bind = dlm_sctp_bind,
1910         .listen_validate = dlm_sctp_listen_validate,
1911         .listen_sockopts = dlm_sctp_sockopts,
1912         .listen_bind = dlm_sctp_bind_listen,
1913 };
1914
1915 int dlm_lowcomms_start(void)
1916 {
1917         int error;
1918
1919         init_local();
1920         if (!dlm_local_count) {
1921                 error = -ENOTCONN;
1922                 log_print("no local IP address has been set");
1923                 goto fail;
1924         }
1925
1926         error = work_start();
1927         if (error)
1928                 goto fail;
1929
1930         /* Start listening */
1931         switch (dlm_config.ci_protocol) {
1932         case DLM_PROTO_TCP:
1933                 dlm_proto_ops = &dlm_tcp_ops;
1934                 break;
1935         case DLM_PROTO_SCTP:
1936                 dlm_proto_ops = &dlm_sctp_ops;
1937                 break;
1938         default:
1939                 log_print("Invalid protocol identifier %d set",
1940                           dlm_config.ci_protocol);
1941                 error = -EINVAL;
1942                 goto fail_proto_ops;
1943         }
1944
1945         error = dlm_listen_for_all();
1946         if (error)
1947                 goto fail_listen;
1948
1949         return 0;
1950
1951 fail_listen:
1952         dlm_proto_ops = NULL;
1953 fail_proto_ops:
1954         work_stop();
1955 fail:
1956         return error;
1957 }
1958
1959 void dlm_lowcomms_init(void)
1960 {
1961         int i;
1962
1963         for (i = 0; i < CONN_HASH_SIZE; i++)
1964                 INIT_HLIST_HEAD(&connection_hash[i]);
1965
1966         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1967 }
1968
1969 void dlm_lowcomms_exit(void)
1970 {
1971         struct connection *con;
1972         int i, idx;
1973
1974         idx = srcu_read_lock(&connections_srcu);
1975         for (i = 0; i < CONN_HASH_SIZE; i++) {
1976                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1977                         spin_lock(&connections_lock);
1978                         hlist_del_rcu(&con->list);
1979                         spin_unlock(&connections_lock);
1980
1981                         if (con->othercon)
1982                                 call_srcu(&connections_srcu, &con->othercon->rcu,
1983                                           connection_release);
1984                         call_srcu(&connections_srcu, &con->rcu, connection_release);
1985                 }
1986         }
1987         srcu_read_unlock(&connections_srcu, idx);
1988 }
This page took 0.146841 seconds and 4 git commands to generate.