]> Git Repo - J-linux.git/blob - fs/dlm/lowcomms.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
68
69 struct connection {
70         struct socket *sock;    /* NULL if not connected */
71         uint32_t nodeid;        /* So we know who we are in the list */
72         /* this semaphore is used to allow parallel recv/send in read
73          * lock mode. When we release a sock we need to held the write lock.
74          *
75          * However this is locking code and not nice. When we remove the
76          * othercon handling we can look into other mechanism to synchronize
77          * io handling to call sock_release() at the right time.
78          */
79         struct rw_semaphore sock_lock;
80         unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87         struct list_head writequeue;  /* List of outgoing writequeue_entries */
88         spinlock_t writequeue_lock;
89         int retries;
90         struct hlist_node list;
91         /* due some connect()/accept() races we currently have this cross over
92          * connection attempt second connection for one node.
93          *
94          * There is a solution to avoid the race by introducing a connect
95          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96          * connect. Otherside can connect but will only be considered that
97          * the other side wants to have a reconnect.
98          *
99          * However changing to this behaviour will break backwards compatible.
100          * In a DLM protocol major version upgrade we should remove this!
101          */
102         struct connection *othercon;
103         struct work_struct rwork; /* receive worker */
104         struct work_struct swork; /* send worker */
105         wait_queue_head_t shutdown_wait;
106         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107         int rx_leftover;
108         int mark;
109         int addr_count;
110         int curr_addr_index;
111         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112         spinlock_t addrs_lock;
113         struct rcu_head rcu;
114 };
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117 struct listen_connection {
118         struct socket *sock;
119         struct work_struct rwork;
120 };
121
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127         struct list_head list;
128         struct page *page;
129         int offset;
130         int len;
131         int end;
132         int users;
133         bool dirty;
134         struct connection *con;
135         struct list_head msgs;
136         struct kref ref;
137 };
138
139 struct dlm_msg {
140         struct writequeue_entry *entry;
141         struct dlm_msg *orig_msg;
142         bool retransmit;
143         void *ppc;
144         int len;
145         int idx; /* new()/commit() idx exchange */
146
147         struct list_head list;
148         struct kref ref;
149 };
150
151 struct processqueue_entry {
152         unsigned char *buf;
153         int nodeid;
154         int buflen;
155
156         struct list_head list;
157 };
158
159 struct dlm_proto_ops {
160         bool try_new_addr;
161         const char *name;
162         int proto;
163
164         void (*sockopts)(struct socket *sock);
165         int (*bind)(struct socket *sock);
166         int (*listen_validate)(void);
167         void (*listen_sockopts)(struct socket *sock);
168         int (*listen_bind)(struct socket *sock);
169 };
170
171 static struct listen_sock_callbacks {
172         void (*sk_error_report)(struct sock *);
173         void (*sk_data_ready)(struct sock *);
174         void (*sk_state_change)(struct sock *);
175         void (*sk_write_space)(struct sock *);
176 } listen_sock;
177
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
181
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
185
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
189
190 static const struct dlm_proto_ops *dlm_proto_ops;
191
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 #define DLM_IO_FLUSH 4
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206 static atomic_t processqueue_count;
207 static LIST_HEAD(processqueue);
208
209 bool dlm_lowcomms_is_running(void)
210 {
211         return !!listen_con.sock;
212 }
213
214 static void lowcomms_queue_swork(struct connection *con)
215 {
216         assert_spin_locked(&con->writequeue_lock);
217
218         if (!test_bit(CF_IO_STOP, &con->flags) &&
219             !test_bit(CF_APP_LIMITED, &con->flags) &&
220             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221                 queue_work(io_workqueue, &con->swork);
222 }
223
224 static void lowcomms_queue_rwork(struct connection *con)
225 {
226 #ifdef CONFIG_LOCKDEP
227         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228 #endif
229
230         if (!test_bit(CF_IO_STOP, &con->flags) &&
231             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232                 queue_work(io_workqueue, &con->rwork);
233 }
234
235 static void writequeue_entry_ctor(void *data)
236 {
237         struct writequeue_entry *entry = data;
238
239         INIT_LIST_HEAD(&entry->msgs);
240 }
241
242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
243 {
244         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245                                  0, 0, writequeue_entry_ctor);
246 }
247
248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
249 {
250         return KMEM_CACHE(dlm_msg, 0);
251 }
252
253 /* need to held writequeue_lock */
254 static struct writequeue_entry *con_next_wq(struct connection *con)
255 {
256         struct writequeue_entry *e;
257
258         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259                                      list);
260         /* if len is zero nothing is to send, if there are users filling
261          * buffers we wait until the users are done so we can send more.
262          */
263         if (!e || e->users || e->len == 0)
264                 return NULL;
265
266         return e;
267 }
268
269 static struct connection *__find_con(int nodeid, int r)
270 {
271         struct connection *con;
272
273         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274                 if (con->nodeid == nodeid)
275                         return con;
276         }
277
278         return NULL;
279 }
280
281 static void dlm_con_init(struct connection *con, int nodeid)
282 {
283         con->nodeid = nodeid;
284         init_rwsem(&con->sock_lock);
285         INIT_LIST_HEAD(&con->writequeue);
286         spin_lock_init(&con->writequeue_lock);
287         INIT_WORK(&con->swork, process_send_sockets);
288         INIT_WORK(&con->rwork, process_recv_sockets);
289         spin_lock_init(&con->addrs_lock);
290         init_waitqueue_head(&con->shutdown_wait);
291 }
292
293 /*
294  * If 'allocation' is zero then we don't attempt to create a new
295  * connection structure for this node.
296  */
297 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
298 {
299         struct connection *con, *tmp;
300         int r;
301
302         r = nodeid_hash(nodeid);
303         con = __find_con(nodeid, r);
304         if (con || !alloc)
305                 return con;
306
307         con = kzalloc(sizeof(*con), alloc);
308         if (!con)
309                 return NULL;
310
311         dlm_con_init(con, nodeid);
312
313         spin_lock(&connections_lock);
314         /* Because multiple workqueues/threads calls this function it can
315          * race on multiple cpu's. Instead of locking hot path __find_con()
316          * we just check in rare cases of recently added nodes again
317          * under protection of connections_lock. If this is the case we
318          * abort our connection creation and return the existing connection.
319          */
320         tmp = __find_con(nodeid, r);
321         if (tmp) {
322                 spin_unlock(&connections_lock);
323                 kfree(con);
324                 return tmp;
325         }
326
327         hlist_add_head_rcu(&con->list, &connection_hash[r]);
328         spin_unlock(&connections_lock);
329
330         return con;
331 }
332
333 static int addr_compare(const struct sockaddr_storage *x,
334                         const struct sockaddr_storage *y)
335 {
336         switch (x->ss_family) {
337         case AF_INET: {
338                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
340                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341                         return 0;
342                 if (sinx->sin_port != siny->sin_port)
343                         return 0;
344                 break;
345         }
346         case AF_INET6: {
347                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350                         return 0;
351                 if (sinx->sin6_port != siny->sin6_port)
352                         return 0;
353                 break;
354         }
355         default:
356                 return 0;
357         }
358         return 1;
359 }
360
361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362                           struct sockaddr *sa_out, bool try_new_addr,
363                           unsigned int *mark)
364 {
365         struct sockaddr_storage sas;
366         struct connection *con;
367         int idx;
368
369         if (!dlm_local_count)
370                 return -1;
371
372         idx = srcu_read_lock(&connections_srcu);
373         con = nodeid2con(nodeid, 0);
374         if (!con) {
375                 srcu_read_unlock(&connections_srcu, idx);
376                 return -ENOENT;
377         }
378
379         spin_lock(&con->addrs_lock);
380         if (!con->addr_count) {
381                 spin_unlock(&con->addrs_lock);
382                 srcu_read_unlock(&connections_srcu, idx);
383                 return -ENOENT;
384         }
385
386         memcpy(&sas, &con->addr[con->curr_addr_index],
387                sizeof(struct sockaddr_storage));
388
389         if (try_new_addr) {
390                 con->curr_addr_index++;
391                 if (con->curr_addr_index == con->addr_count)
392                         con->curr_addr_index = 0;
393         }
394
395         *mark = con->mark;
396         spin_unlock(&con->addrs_lock);
397
398         if (sas_out)
399                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
400
401         if (!sa_out) {
402                 srcu_read_unlock(&connections_srcu, idx);
403                 return 0;
404         }
405
406         if (dlm_local_addr[0].ss_family == AF_INET) {
407                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
408                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410         } else {
411                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
412                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413                 ret6->sin6_addr = in6->sin6_addr;
414         }
415
416         srcu_read_unlock(&connections_srcu, idx);
417         return 0;
418 }
419
420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421                           unsigned int *mark)
422 {
423         struct connection *con;
424         int i, idx, addr_i;
425
426         idx = srcu_read_lock(&connections_srcu);
427         for (i = 0; i < CONN_HASH_SIZE; i++) {
428                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429                         WARN_ON_ONCE(!con->addr_count);
430
431                         spin_lock(&con->addrs_lock);
432                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433                                 if (addr_compare(&con->addr[addr_i], addr)) {
434                                         *nodeid = con->nodeid;
435                                         *mark = con->mark;
436                                         spin_unlock(&con->addrs_lock);
437                                         srcu_read_unlock(&connections_srcu, idx);
438                                         return 0;
439                                 }
440                         }
441                         spin_unlock(&con->addrs_lock);
442                 }
443         }
444         srcu_read_unlock(&connections_srcu, idx);
445
446         return -ENOENT;
447 }
448
449 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450                                       const struct sockaddr_storage *addr)
451 {
452         int i;
453
454         for (i = 0; i < con->addr_count; i++) {
455                 if (addr_compare(&con->addr[i], addr))
456                         return true;
457         }
458
459         return false;
460 }
461
462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
463 {
464         struct connection *con;
465         bool ret, idx;
466
467         idx = srcu_read_lock(&connections_srcu);
468         con = nodeid2con(nodeid, GFP_NOFS);
469         if (!con) {
470                 srcu_read_unlock(&connections_srcu, idx);
471                 return -ENOMEM;
472         }
473
474         spin_lock(&con->addrs_lock);
475         if (!con->addr_count) {
476                 memcpy(&con->addr[0], addr, sizeof(*addr));
477                 con->addr_count = 1;
478                 con->mark = dlm_config.ci_mark;
479                 spin_unlock(&con->addrs_lock);
480                 srcu_read_unlock(&connections_srcu, idx);
481                 return 0;
482         }
483
484         ret = dlm_lowcomms_con_has_addr(con, addr);
485         if (ret) {
486                 spin_unlock(&con->addrs_lock);
487                 srcu_read_unlock(&connections_srcu, idx);
488                 return -EEXIST;
489         }
490
491         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
492                 spin_unlock(&con->addrs_lock);
493                 srcu_read_unlock(&connections_srcu, idx);
494                 return -ENOSPC;
495         }
496
497         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
498         srcu_read_unlock(&connections_srcu, idx);
499         spin_unlock(&con->addrs_lock);
500         return 0;
501 }
502
503 /* Data available on socket or listen socket received a connect */
504 static void lowcomms_data_ready(struct sock *sk)
505 {
506         struct connection *con = sock2con(sk);
507
508         trace_sk_data_ready(sk);
509
510         set_bit(CF_RECV_INTR, &con->flags);
511         lowcomms_queue_rwork(con);
512 }
513
514 static void lowcomms_write_space(struct sock *sk)
515 {
516         struct connection *con = sock2con(sk);
517
518         clear_bit(SOCK_NOSPACE, &con->sock->flags);
519
520         spin_lock_bh(&con->writequeue_lock);
521         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
522                 con->sock->sk->sk_write_pending--;
523                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
524         }
525
526         lowcomms_queue_swork(con);
527         spin_unlock_bh(&con->writequeue_lock);
528 }
529
530 static void lowcomms_state_change(struct sock *sk)
531 {
532         /* SCTP layer is not calling sk_data_ready when the connection
533          * is done, so we catch the signal through here.
534          */
535         if (sk->sk_shutdown == RCV_SHUTDOWN)
536                 lowcomms_data_ready(sk);
537 }
538
539 static void lowcomms_listen_data_ready(struct sock *sk)
540 {
541         trace_sk_data_ready(sk);
542
543         queue_work(io_workqueue, &listen_con.rwork);
544 }
545
546 int dlm_lowcomms_connect_node(int nodeid)
547 {
548         struct connection *con;
549         int idx;
550
551         idx = srcu_read_lock(&connections_srcu);
552         con = nodeid2con(nodeid, 0);
553         if (WARN_ON_ONCE(!con)) {
554                 srcu_read_unlock(&connections_srcu, idx);
555                 return -ENOENT;
556         }
557
558         down_read(&con->sock_lock);
559         if (!con->sock) {
560                 spin_lock_bh(&con->writequeue_lock);
561                 lowcomms_queue_swork(con);
562                 spin_unlock_bh(&con->writequeue_lock);
563         }
564         up_read(&con->sock_lock);
565         srcu_read_unlock(&connections_srcu, idx);
566
567         cond_resched();
568         return 0;
569 }
570
571 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
572 {
573         struct connection *con;
574         int idx;
575
576         idx = srcu_read_lock(&connections_srcu);
577         con = nodeid2con(nodeid, 0);
578         if (!con) {
579                 srcu_read_unlock(&connections_srcu, idx);
580                 return -ENOENT;
581         }
582
583         spin_lock(&con->addrs_lock);
584         con->mark = mark;
585         spin_unlock(&con->addrs_lock);
586         srcu_read_unlock(&connections_srcu, idx);
587         return 0;
588 }
589
590 static void lowcomms_error_report(struct sock *sk)
591 {
592         struct connection *con = sock2con(sk);
593         struct inet_sock *inet;
594
595         inet = inet_sk(sk);
596         switch (sk->sk_family) {
597         case AF_INET:
598                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
599                                    "sending to node %d at %pI4, dport %d, "
600                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
601                                    con->nodeid, &inet->inet_daddr,
602                                    ntohs(inet->inet_dport), sk->sk_err,
603                                    READ_ONCE(sk->sk_err_soft));
604                 break;
605 #if IS_ENABLED(CONFIG_IPV6)
606         case AF_INET6:
607                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
608                                    "sending to node %d at %pI6c, "
609                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
610                                    con->nodeid, &sk->sk_v6_daddr,
611                                    ntohs(inet->inet_dport), sk->sk_err,
612                                    READ_ONCE(sk->sk_err_soft));
613                 break;
614 #endif
615         default:
616                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
617                                    "invalid socket family %d set, "
618                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
619                                    sk->sk_family, sk->sk_err,
620                                    READ_ONCE(sk->sk_err_soft));
621                 break;
622         }
623
624         dlm_midcomms_unack_msg_resend(con->nodeid);
625
626         listen_sock.sk_error_report(sk);
627 }
628
629 static void restore_callbacks(struct sock *sk)
630 {
631 #ifdef CONFIG_LOCKDEP
632         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
633 #endif
634
635         sk->sk_user_data = NULL;
636         sk->sk_data_ready = listen_sock.sk_data_ready;
637         sk->sk_state_change = listen_sock.sk_state_change;
638         sk->sk_write_space = listen_sock.sk_write_space;
639         sk->sk_error_report = listen_sock.sk_error_report;
640 }
641
642 /* Make a socket active */
643 static void add_sock(struct socket *sock, struct connection *con)
644 {
645         struct sock *sk = sock->sk;
646
647         lock_sock(sk);
648         con->sock = sock;
649
650         sk->sk_user_data = con;
651         sk->sk_data_ready = lowcomms_data_ready;
652         sk->sk_write_space = lowcomms_write_space;
653         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
654                 sk->sk_state_change = lowcomms_state_change;
655         sk->sk_allocation = GFP_NOFS;
656         sk->sk_use_task_frag = false;
657         sk->sk_error_report = lowcomms_error_report;
658         release_sock(sk);
659 }
660
661 /* Add the port number to an IPv6 or 4 sockaddr and return the address
662    length */
663 static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port,
664                           int *addr_len)
665 {
666         saddr->ss_family =  dlm_local_addr[0].ss_family;
667         if (saddr->ss_family == AF_INET) {
668                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
669                 in4_addr->sin_port = port;
670                 *addr_len = sizeof(struct sockaddr_in);
671                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
672         } else {
673                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
674                 in6_addr->sin6_port = port;
675                 *addr_len = sizeof(struct sockaddr_in6);
676         }
677         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
678 }
679
680 static void dlm_page_release(struct kref *kref)
681 {
682         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
683                                                   ref);
684
685         __free_page(e->page);
686         dlm_free_writequeue(e);
687 }
688
689 static void dlm_msg_release(struct kref *kref)
690 {
691         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
692
693         kref_put(&msg->entry->ref, dlm_page_release);
694         dlm_free_msg(msg);
695 }
696
697 static void free_entry(struct writequeue_entry *e)
698 {
699         struct dlm_msg *msg, *tmp;
700
701         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
702                 if (msg->orig_msg) {
703                         msg->orig_msg->retransmit = false;
704                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
705                 }
706
707                 list_del(&msg->list);
708                 kref_put(&msg->ref, dlm_msg_release);
709         }
710
711         list_del(&e->list);
712         kref_put(&e->ref, dlm_page_release);
713 }
714
715 static void dlm_close_sock(struct socket **sock)
716 {
717         lock_sock((*sock)->sk);
718         restore_callbacks((*sock)->sk);
719         release_sock((*sock)->sk);
720
721         sock_release(*sock);
722         *sock = NULL;
723 }
724
725 static void allow_connection_io(struct connection *con)
726 {
727         if (con->othercon)
728                 clear_bit(CF_IO_STOP, &con->othercon->flags);
729         clear_bit(CF_IO_STOP, &con->flags);
730 }
731
732 static void stop_connection_io(struct connection *con)
733 {
734         if (con->othercon)
735                 stop_connection_io(con->othercon);
736
737         spin_lock_bh(&con->writequeue_lock);
738         set_bit(CF_IO_STOP, &con->flags);
739         spin_unlock_bh(&con->writequeue_lock);
740
741         down_write(&con->sock_lock);
742         if (con->sock) {
743                 lock_sock(con->sock->sk);
744                 restore_callbacks(con->sock->sk);
745                 release_sock(con->sock->sk);
746         }
747         up_write(&con->sock_lock);
748
749         cancel_work_sync(&con->swork);
750         cancel_work_sync(&con->rwork);
751 }
752
753 /* Close a remote connection and tidy up */
754 static void close_connection(struct connection *con, bool and_other)
755 {
756         struct writequeue_entry *e;
757
758         if (con->othercon && and_other)
759                 close_connection(con->othercon, false);
760
761         down_write(&con->sock_lock);
762         if (!con->sock) {
763                 up_write(&con->sock_lock);
764                 return;
765         }
766
767         dlm_close_sock(&con->sock);
768
769         /* if we send a writequeue entry only a half way, we drop the
770          * whole entry because reconnection and that we not start of the
771          * middle of a msg which will confuse the other end.
772          *
773          * we can always drop messages because retransmits, but what we
774          * cannot allow is to transmit half messages which may be processed
775          * at the other side.
776          *
777          * our policy is to start on a clean state when disconnects, we don't
778          * know what's send/received on transport layer in this case.
779          */
780         spin_lock_bh(&con->writequeue_lock);
781         if (!list_empty(&con->writequeue)) {
782                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
783                                      list);
784                 if (e->dirty)
785                         free_entry(e);
786         }
787         spin_unlock_bh(&con->writequeue_lock);
788
789         con->rx_leftover = 0;
790         con->retries = 0;
791         clear_bit(CF_APP_LIMITED, &con->flags);
792         clear_bit(CF_RECV_PENDING, &con->flags);
793         clear_bit(CF_SEND_PENDING, &con->flags);
794         up_write(&con->sock_lock);
795 }
796
797 static void shutdown_connection(struct connection *con, bool and_other)
798 {
799         int ret;
800
801         if (con->othercon && and_other)
802                 shutdown_connection(con->othercon, false);
803
804         flush_workqueue(io_workqueue);
805         down_read(&con->sock_lock);
806         /* nothing to shutdown */
807         if (!con->sock) {
808                 up_read(&con->sock_lock);
809                 return;
810         }
811
812         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
813         up_read(&con->sock_lock);
814         if (ret) {
815                 log_print("Connection %p failed to shutdown: %d will force close",
816                           con, ret);
817                 goto force_close;
818         } else {
819                 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
820                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
821                 if (ret == 0) {
822                         log_print("Connection %p shutdown timed out, will force close",
823                                   con);
824                         goto force_close;
825                 }
826         }
827
828         return;
829
830 force_close:
831         close_connection(con, false);
832 }
833
834 static struct processqueue_entry *new_processqueue_entry(int nodeid,
835                                                          int buflen)
836 {
837         struct processqueue_entry *pentry;
838
839         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
840         if (!pentry)
841                 return NULL;
842
843         pentry->buf = kmalloc(buflen, GFP_NOFS);
844         if (!pentry->buf) {
845                 kfree(pentry);
846                 return NULL;
847         }
848
849         pentry->nodeid = nodeid;
850         return pentry;
851 }
852
853 static void free_processqueue_entry(struct processqueue_entry *pentry)
854 {
855         kfree(pentry->buf);
856         kfree(pentry);
857 }
858
859 static void process_dlm_messages(struct work_struct *work)
860 {
861         struct processqueue_entry *pentry;
862
863         spin_lock_bh(&processqueue_lock);
864         pentry = list_first_entry_or_null(&processqueue,
865                                           struct processqueue_entry, list);
866         if (WARN_ON_ONCE(!pentry)) {
867                 process_dlm_messages_pending = false;
868                 spin_unlock_bh(&processqueue_lock);
869                 return;
870         }
871
872         list_del(&pentry->list);
873         if (atomic_dec_and_test(&processqueue_count))
874                 wake_up(&processqueue_wq);
875         spin_unlock_bh(&processqueue_lock);
876
877         for (;;) {
878                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
879                                             pentry->buflen);
880                 free_processqueue_entry(pentry);
881
882                 spin_lock_bh(&processqueue_lock);
883                 pentry = list_first_entry_or_null(&processqueue,
884                                                   struct processqueue_entry, list);
885                 if (!pentry) {
886                         process_dlm_messages_pending = false;
887                         spin_unlock_bh(&processqueue_lock);
888                         break;
889                 }
890
891                 list_del(&pentry->list);
892                 if (atomic_dec_and_test(&processqueue_count))
893                         wake_up(&processqueue_wq);
894                 spin_unlock_bh(&processqueue_lock);
895         }
896 }
897
898 /* Data received from remote end */
899 static int receive_from_sock(struct connection *con, int buflen)
900 {
901         struct processqueue_entry *pentry;
902         int ret, buflen_real;
903         struct msghdr msg;
904         struct kvec iov;
905
906         pentry = new_processqueue_entry(con->nodeid, buflen);
907         if (!pentry)
908                 return DLM_IO_RESCHED;
909
910         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
911
912         /* calculate new buffer parameter regarding last receive and
913          * possible leftover bytes
914          */
915         iov.iov_base = pentry->buf + con->rx_leftover;
916         iov.iov_len = buflen - con->rx_leftover;
917
918         memset(&msg, 0, sizeof(msg));
919         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
920         clear_bit(CF_RECV_INTR, &con->flags);
921 again:
922         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
923                              msg.msg_flags);
924         trace_dlm_recv(con->nodeid, ret);
925         if (ret == -EAGAIN) {
926                 lock_sock(con->sock->sk);
927                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
928                         release_sock(con->sock->sk);
929                         goto again;
930                 }
931
932                 clear_bit(CF_RECV_PENDING, &con->flags);
933                 release_sock(con->sock->sk);
934                 free_processqueue_entry(pentry);
935                 return DLM_IO_END;
936         } else if (ret == 0) {
937                 /* close will clear CF_RECV_PENDING */
938                 free_processqueue_entry(pentry);
939                 return DLM_IO_EOF;
940         } else if (ret < 0) {
941                 free_processqueue_entry(pentry);
942                 return ret;
943         }
944
945         /* new buflen according readed bytes and leftover from last receive */
946         buflen_real = ret + con->rx_leftover;
947         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
948                                            buflen_real);
949         if (ret < 0) {
950                 free_processqueue_entry(pentry);
951                 return ret;
952         }
953
954         pentry->buflen = ret;
955
956         /* calculate leftover bytes from process and put it into begin of
957          * the receive buffer, so next receive we have the full message
958          * at the start address of the receive buffer.
959          */
960         con->rx_leftover = buflen_real - ret;
961         memmove(con->rx_leftover_buf, pentry->buf + ret,
962                 con->rx_leftover);
963
964         spin_lock_bh(&processqueue_lock);
965         ret = atomic_inc_return(&processqueue_count);
966         list_add_tail(&pentry->list, &processqueue);
967         if (!process_dlm_messages_pending) {
968                 process_dlm_messages_pending = true;
969                 queue_work(process_workqueue, &process_work);
970         }
971         spin_unlock_bh(&processqueue_lock);
972
973         if (ret > DLM_MAX_PROCESS_BUFFERS)
974                 return DLM_IO_FLUSH;
975
976         return DLM_IO_SUCCESS;
977 }
978
979 /* Listening socket is busy, accept a connection */
980 static int accept_from_sock(void)
981 {
982         struct sockaddr_storage peeraddr;
983         int len, idx, result, nodeid;
984         struct connection *newcon;
985         struct socket *newsock;
986         unsigned int mark;
987
988         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
989         if (result == -EAGAIN)
990                 return DLM_IO_END;
991         else if (result < 0)
992                 goto accept_err;
993
994         /* Get the connected socket's peer */
995         memset(&peeraddr, 0, sizeof(peeraddr));
996         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
997         if (len < 0) {
998                 result = -ECONNABORTED;
999                 goto accept_err;
1000         }
1001
1002         /* Get the new node's NODEID */
1003         make_sockaddr(&peeraddr, 0, &len);
1004         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1005                 switch (peeraddr.ss_family) {
1006                 case AF_INET: {
1007                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1008
1009                         log_print("connect from non cluster IPv4 node %pI4",
1010                                   &sin->sin_addr);
1011                         break;
1012                 }
1013 #if IS_ENABLED(CONFIG_IPV6)
1014                 case AF_INET6: {
1015                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1016
1017                         log_print("connect from non cluster IPv6 node %pI6c",
1018                                   &sin6->sin6_addr);
1019                         break;
1020                 }
1021 #endif
1022                 default:
1023                         log_print("invalid family from non cluster node");
1024                         break;
1025                 }
1026
1027                 sock_release(newsock);
1028                 return -1;
1029         }
1030
1031         log_print("got connection from %d", nodeid);
1032
1033         /*  Check to see if we already have a connection to this node. This
1034          *  could happen if the two nodes initiate a connection at roughly
1035          *  the same time and the connections cross on the wire.
1036          *  In this case we store the incoming one in "othercon"
1037          */
1038         idx = srcu_read_lock(&connections_srcu);
1039         newcon = nodeid2con(nodeid, 0);
1040         if (WARN_ON_ONCE(!newcon)) {
1041                 srcu_read_unlock(&connections_srcu, idx);
1042                 result = -ENOENT;
1043                 goto accept_err;
1044         }
1045
1046         sock_set_mark(newsock->sk, mark);
1047
1048         down_write(&newcon->sock_lock);
1049         if (newcon->sock) {
1050                 struct connection *othercon = newcon->othercon;
1051
1052                 if (!othercon) {
1053                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1054                         if (!othercon) {
1055                                 log_print("failed to allocate incoming socket");
1056                                 up_write(&newcon->sock_lock);
1057                                 srcu_read_unlock(&connections_srcu, idx);
1058                                 result = -ENOMEM;
1059                                 goto accept_err;
1060                         }
1061
1062                         dlm_con_init(othercon, nodeid);
1063                         lockdep_set_subclass(&othercon->sock_lock, 1);
1064                         newcon->othercon = othercon;
1065                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1066                 } else {
1067                         /* close other sock con if we have something new */
1068                         close_connection(othercon, false);
1069                 }
1070
1071                 down_write(&othercon->sock_lock);
1072                 add_sock(newsock, othercon);
1073
1074                 /* check if we receved something while adding */
1075                 lock_sock(othercon->sock->sk);
1076                 lowcomms_queue_rwork(othercon);
1077                 release_sock(othercon->sock->sk);
1078                 up_write(&othercon->sock_lock);
1079         }
1080         else {
1081                 /* accept copies the sk after we've saved the callbacks, so we
1082                    don't want to save them a second time or comm errors will
1083                    result in calling sk_error_report recursively. */
1084                 add_sock(newsock, newcon);
1085
1086                 /* check if we receved something while adding */
1087                 lock_sock(newcon->sock->sk);
1088                 lowcomms_queue_rwork(newcon);
1089                 release_sock(newcon->sock->sk);
1090         }
1091         up_write(&newcon->sock_lock);
1092         srcu_read_unlock(&connections_srcu, idx);
1093
1094         return DLM_IO_SUCCESS;
1095
1096 accept_err:
1097         if (newsock)
1098                 sock_release(newsock);
1099
1100         return result;
1101 }
1102
1103 /*
1104  * writequeue_entry_complete - try to delete and free write queue entry
1105  * @e: write queue entry to try to delete
1106  * @completed: bytes completed
1107  *
1108  * writequeue_lock must be held.
1109  */
1110 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1111 {
1112         e->offset += completed;
1113         e->len -= completed;
1114         /* signal that page was half way transmitted */
1115         e->dirty = true;
1116
1117         if (e->len == 0 && e->users == 0)
1118                 free_entry(e);
1119 }
1120
1121 /*
1122  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1123  */
1124 static int sctp_bind_addrs(struct socket *sock, __be16 port)
1125 {
1126         struct sockaddr_storage localaddr;
1127         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1128         int i, addr_len, result = 0;
1129
1130         for (i = 0; i < dlm_local_count; i++) {
1131                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1132                 make_sockaddr(&localaddr, port, &addr_len);
1133
1134                 if (!i)
1135                         result = kernel_bind(sock, addr, addr_len);
1136                 else
1137                         result = sock_bind_add(sock->sk, addr, addr_len);
1138
1139                 if (result < 0) {
1140                         log_print("Can't bind to %d addr number %d, %d.\n",
1141                                   port, i + 1, result);
1142                         break;
1143                 }
1144         }
1145         return result;
1146 }
1147
1148 /* Get local addresses */
1149 static void init_local(void)
1150 {
1151         struct sockaddr_storage sas;
1152         int i;
1153
1154         dlm_local_count = 0;
1155         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1156                 if (dlm_our_addr(&sas, i))
1157                         break;
1158
1159                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1160         }
1161 }
1162
1163 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1164 {
1165         struct writequeue_entry *entry;
1166
1167         entry = dlm_allocate_writequeue();
1168         if (!entry)
1169                 return NULL;
1170
1171         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1172         if (!entry->page) {
1173                 dlm_free_writequeue(entry);
1174                 return NULL;
1175         }
1176
1177         entry->offset = 0;
1178         entry->len = 0;
1179         entry->end = 0;
1180         entry->dirty = false;
1181         entry->con = con;
1182         entry->users = 1;
1183         kref_init(&entry->ref);
1184         return entry;
1185 }
1186
1187 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1188                                              char **ppc, void (*cb)(void *data),
1189                                              void *data)
1190 {
1191         struct writequeue_entry *e;
1192
1193         spin_lock_bh(&con->writequeue_lock);
1194         if (!list_empty(&con->writequeue)) {
1195                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1196                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1197                         kref_get(&e->ref);
1198
1199                         *ppc = page_address(e->page) + e->end;
1200                         if (cb)
1201                                 cb(data);
1202
1203                         e->end += len;
1204                         e->users++;
1205                         goto out;
1206                 }
1207         }
1208
1209         e = new_writequeue_entry(con);
1210         if (!e)
1211                 goto out;
1212
1213         kref_get(&e->ref);
1214         *ppc = page_address(e->page);
1215         e->end += len;
1216         if (cb)
1217                 cb(data);
1218
1219         list_add_tail(&e->list, &con->writequeue);
1220
1221 out:
1222         spin_unlock_bh(&con->writequeue_lock);
1223         return e;
1224 };
1225
1226 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1227                                                 char **ppc, void (*cb)(void *data),
1228                                                 void *data)
1229 {
1230         struct writequeue_entry *e;
1231         struct dlm_msg *msg;
1232
1233         msg = dlm_allocate_msg();
1234         if (!msg)
1235                 return NULL;
1236
1237         kref_init(&msg->ref);
1238
1239         e = new_wq_entry(con, len, ppc, cb, data);
1240         if (!e) {
1241                 dlm_free_msg(msg);
1242                 return NULL;
1243         }
1244
1245         msg->retransmit = false;
1246         msg->orig_msg = NULL;
1247         msg->ppc = *ppc;
1248         msg->len = len;
1249         msg->entry = e;
1250
1251         return msg;
1252 }
1253
1254 /* avoid false positive for nodes_srcu, unlock happens in
1255  * dlm_lowcomms_commit_msg which is a must call if success
1256  */
1257 #ifndef __CHECKER__
1258 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1259                                      void (*cb)(void *data), void *data)
1260 {
1261         struct connection *con;
1262         struct dlm_msg *msg;
1263         int idx;
1264
1265         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1266             len < sizeof(struct dlm_header)) {
1267                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1268                 log_print("failed to allocate a buffer of size %d", len);
1269                 WARN_ON_ONCE(1);
1270                 return NULL;
1271         }
1272
1273         idx = srcu_read_lock(&connections_srcu);
1274         con = nodeid2con(nodeid, 0);
1275         if (WARN_ON_ONCE(!con)) {
1276                 srcu_read_unlock(&connections_srcu, idx);
1277                 return NULL;
1278         }
1279
1280         msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1281         if (!msg) {
1282                 srcu_read_unlock(&connections_srcu, idx);
1283                 return NULL;
1284         }
1285
1286         /* for dlm_lowcomms_commit_msg() */
1287         kref_get(&msg->ref);
1288         /* we assume if successful commit must called */
1289         msg->idx = idx;
1290         return msg;
1291 }
1292 #endif
1293
1294 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1295 {
1296         struct writequeue_entry *e = msg->entry;
1297         struct connection *con = e->con;
1298         int users;
1299
1300         spin_lock_bh(&con->writequeue_lock);
1301         kref_get(&msg->ref);
1302         list_add(&msg->list, &e->msgs);
1303
1304         users = --e->users;
1305         if (users)
1306                 goto out;
1307
1308         e->len = DLM_WQ_LENGTH_BYTES(e);
1309
1310         lowcomms_queue_swork(con);
1311
1312 out:
1313         spin_unlock_bh(&con->writequeue_lock);
1314         return;
1315 }
1316
1317 /* avoid false positive for nodes_srcu, lock was happen in
1318  * dlm_lowcomms_new_msg
1319  */
1320 #ifndef __CHECKER__
1321 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1322 {
1323         _dlm_lowcomms_commit_msg(msg);
1324         srcu_read_unlock(&connections_srcu, msg->idx);
1325         /* because dlm_lowcomms_new_msg() */
1326         kref_put(&msg->ref, dlm_msg_release);
1327 }
1328 #endif
1329
1330 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1331 {
1332         kref_put(&msg->ref, dlm_msg_release);
1333 }
1334
1335 /* does not held connections_srcu, usage lowcomms_error_report only */
1336 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1337 {
1338         struct dlm_msg *msg_resend;
1339         char *ppc;
1340
1341         if (msg->retransmit)
1342                 return 1;
1343
1344         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1345                                               NULL, NULL);
1346         if (!msg_resend)
1347                 return -ENOMEM;
1348
1349         msg->retransmit = true;
1350         kref_get(&msg->ref);
1351         msg_resend->orig_msg = msg;
1352
1353         memcpy(ppc, msg->ppc, msg->len);
1354         _dlm_lowcomms_commit_msg(msg_resend);
1355         dlm_lowcomms_put_msg(msg_resend);
1356
1357         return 0;
1358 }
1359
1360 /* Send a message */
1361 static int send_to_sock(struct connection *con)
1362 {
1363         struct writequeue_entry *e;
1364         struct bio_vec bvec;
1365         struct msghdr msg = {
1366                 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1367         };
1368         int len, offset, ret;
1369
1370         spin_lock_bh(&con->writequeue_lock);
1371         e = con_next_wq(con);
1372         if (!e) {
1373                 clear_bit(CF_SEND_PENDING, &con->flags);
1374                 spin_unlock_bh(&con->writequeue_lock);
1375                 return DLM_IO_END;
1376         }
1377
1378         len = e->len;
1379         offset = e->offset;
1380         WARN_ON_ONCE(len == 0 && e->users == 0);
1381         spin_unlock_bh(&con->writequeue_lock);
1382
1383         bvec_set_page(&bvec, e->page, len, offset);
1384         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1385         ret = sock_sendmsg(con->sock, &msg);
1386         trace_dlm_send(con->nodeid, ret);
1387         if (ret == -EAGAIN || ret == 0) {
1388                 lock_sock(con->sock->sk);
1389                 spin_lock_bh(&con->writequeue_lock);
1390                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1391                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1392                         /* Notify TCP that we're limited by the
1393                          * application window size.
1394                          */
1395                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1396                         con->sock->sk->sk_write_pending++;
1397
1398                         clear_bit(CF_SEND_PENDING, &con->flags);
1399                         spin_unlock_bh(&con->writequeue_lock);
1400                         release_sock(con->sock->sk);
1401
1402                         /* wait for write_space() event */
1403                         return DLM_IO_END;
1404                 }
1405                 spin_unlock_bh(&con->writequeue_lock);
1406                 release_sock(con->sock->sk);
1407
1408                 return DLM_IO_RESCHED;
1409         } else if (ret < 0) {
1410                 return ret;
1411         }
1412
1413         spin_lock_bh(&con->writequeue_lock);
1414         writequeue_entry_complete(e, ret);
1415         spin_unlock_bh(&con->writequeue_lock);
1416
1417         return DLM_IO_SUCCESS;
1418 }
1419
1420 static void clean_one_writequeue(struct connection *con)
1421 {
1422         struct writequeue_entry *e, *safe;
1423
1424         spin_lock_bh(&con->writequeue_lock);
1425         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1426                 free_entry(e);
1427         }
1428         spin_unlock_bh(&con->writequeue_lock);
1429 }
1430
1431 static void connection_release(struct rcu_head *rcu)
1432 {
1433         struct connection *con = container_of(rcu, struct connection, rcu);
1434
1435         WARN_ON_ONCE(!list_empty(&con->writequeue));
1436         WARN_ON_ONCE(con->sock);
1437         kfree(con);
1438 }
1439
1440 /* Called from recovery when it knows that a node has
1441    left the cluster */
1442 int dlm_lowcomms_close(int nodeid)
1443 {
1444         struct connection *con;
1445         int idx;
1446
1447         log_print("closing connection to node %d", nodeid);
1448
1449         idx = srcu_read_lock(&connections_srcu);
1450         con = nodeid2con(nodeid, 0);
1451         if (WARN_ON_ONCE(!con)) {
1452                 srcu_read_unlock(&connections_srcu, idx);
1453                 return -ENOENT;
1454         }
1455
1456         stop_connection_io(con);
1457         log_print("io handling for node: %d stopped", nodeid);
1458         close_connection(con, true);
1459
1460         spin_lock(&connections_lock);
1461         hlist_del_rcu(&con->list);
1462         spin_unlock(&connections_lock);
1463
1464         clean_one_writequeue(con);
1465         call_srcu(&connections_srcu, &con->rcu, connection_release);
1466         if (con->othercon) {
1467                 clean_one_writequeue(con->othercon);
1468                 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1469         }
1470         srcu_read_unlock(&connections_srcu, idx);
1471
1472         /* for debugging we print when we are done to compare with other
1473          * messages in between. This function need to be correctly synchronized
1474          * with io handling
1475          */
1476         log_print("closing connection to node %d done", nodeid);
1477
1478         return 0;
1479 }
1480
1481 /* Receive worker function */
1482 static void process_recv_sockets(struct work_struct *work)
1483 {
1484         struct connection *con = container_of(work, struct connection, rwork);
1485         int ret, buflen;
1486
1487         down_read(&con->sock_lock);
1488         if (!con->sock) {
1489                 up_read(&con->sock_lock);
1490                 return;
1491         }
1492
1493         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1494         do {
1495                 ret = receive_from_sock(con, buflen);
1496         } while (ret == DLM_IO_SUCCESS);
1497         up_read(&con->sock_lock);
1498
1499         switch (ret) {
1500         case DLM_IO_END:
1501                 /* CF_RECV_PENDING cleared */
1502                 break;
1503         case DLM_IO_EOF:
1504                 close_connection(con, false);
1505                 wake_up(&con->shutdown_wait);
1506                 /* CF_RECV_PENDING cleared */
1507                 break;
1508         case DLM_IO_FLUSH:
1509                 /* we can't flush the process_workqueue here because a
1510                  * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1511                  * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1512                  * we have a waitqueue to wait until all messages are
1513                  * processed.
1514                  *
1515                  * This handling is only necessary to backoff the sender and
1516                  * not queue all messages from the socket layer into DLM
1517                  * processqueue. When DLM is capable to parse multiple messages
1518                  * on an e.g. per socket basis this handling can might be
1519                  * removed. Especially in a message burst we are too slow to
1520                  * process messages and the queue will fill up memory.
1521                  */
1522                 wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1523                 fallthrough;
1524         case DLM_IO_RESCHED:
1525                 cond_resched();
1526                 queue_work(io_workqueue, &con->rwork);
1527                 /* CF_RECV_PENDING not cleared */
1528                 break;
1529         default:
1530                 if (ret < 0) {
1531                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1532                                 close_connection(con, false);
1533                         } else {
1534                                 spin_lock_bh(&con->writequeue_lock);
1535                                 lowcomms_queue_swork(con);
1536                                 spin_unlock_bh(&con->writequeue_lock);
1537                         }
1538
1539                         /* CF_RECV_PENDING cleared for othercon
1540                          * we trigger send queue if not already done
1541                          * and process_send_sockets will handle it
1542                          */
1543                         break;
1544                 }
1545
1546                 WARN_ON_ONCE(1);
1547                 break;
1548         }
1549 }
1550
1551 static void process_listen_recv_socket(struct work_struct *work)
1552 {
1553         int ret;
1554
1555         if (WARN_ON_ONCE(!listen_con.sock))
1556                 return;
1557
1558         do {
1559                 ret = accept_from_sock();
1560         } while (ret == DLM_IO_SUCCESS);
1561
1562         if (ret < 0)
1563                 log_print("critical error accepting connection: %d", ret);
1564 }
1565
1566 static int dlm_connect(struct connection *con)
1567 {
1568         struct sockaddr_storage addr;
1569         int result, addr_len;
1570         struct socket *sock;
1571         unsigned int mark;
1572
1573         memset(&addr, 0, sizeof(addr));
1574         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1575                                 dlm_proto_ops->try_new_addr, &mark);
1576         if (result < 0) {
1577                 log_print("no address for nodeid %d", con->nodeid);
1578                 return result;
1579         }
1580
1581         /* Create a socket to communicate with */
1582         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1583                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1584         if (result < 0)
1585                 return result;
1586
1587         sock_set_mark(sock->sk, mark);
1588         dlm_proto_ops->sockopts(sock);
1589
1590         result = dlm_proto_ops->bind(sock);
1591         if (result < 0) {
1592                 sock_release(sock);
1593                 return result;
1594         }
1595
1596         add_sock(sock, con);
1597
1598         log_print_ratelimited("connecting to %d", con->nodeid);
1599         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1600         result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1601         switch (result) {
1602         case -EINPROGRESS:
1603                 /* not an error */
1604                 fallthrough;
1605         case 0:
1606                 break;
1607         default:
1608                 if (result < 0)
1609                         dlm_close_sock(&con->sock);
1610
1611                 break;
1612         }
1613
1614         return result;
1615 }
1616
1617 /* Send worker function */
1618 static void process_send_sockets(struct work_struct *work)
1619 {
1620         struct connection *con = container_of(work, struct connection, swork);
1621         int ret;
1622
1623         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1624
1625         down_read(&con->sock_lock);
1626         if (!con->sock) {
1627                 up_read(&con->sock_lock);
1628                 down_write(&con->sock_lock);
1629                 if (!con->sock) {
1630                         ret = dlm_connect(con);
1631                         switch (ret) {
1632                         case 0:
1633                                 break;
1634                         default:
1635                                 /* CF_SEND_PENDING not cleared */
1636                                 up_write(&con->sock_lock);
1637                                 log_print("connect to node %d try %d error %d",
1638                                           con->nodeid, con->retries++, ret);
1639                                 msleep(1000);
1640                                 /* For now we try forever to reconnect. In
1641                                  * future we should send a event to cluster
1642                                  * manager to fence itself after certain amount
1643                                  * of retries.
1644                                  */
1645                                 queue_work(io_workqueue, &con->swork);
1646                                 return;
1647                         }
1648                 }
1649                 downgrade_write(&con->sock_lock);
1650         }
1651
1652         do {
1653                 ret = send_to_sock(con);
1654         } while (ret == DLM_IO_SUCCESS);
1655         up_read(&con->sock_lock);
1656
1657         switch (ret) {
1658         case DLM_IO_END:
1659                 /* CF_SEND_PENDING cleared */
1660                 break;
1661         case DLM_IO_RESCHED:
1662                 /* CF_SEND_PENDING not cleared */
1663                 cond_resched();
1664                 queue_work(io_workqueue, &con->swork);
1665                 break;
1666         default:
1667                 if (ret < 0) {
1668                         close_connection(con, false);
1669
1670                         /* CF_SEND_PENDING cleared */
1671                         spin_lock_bh(&con->writequeue_lock);
1672                         lowcomms_queue_swork(con);
1673                         spin_unlock_bh(&con->writequeue_lock);
1674                         break;
1675                 }
1676
1677                 WARN_ON_ONCE(1);
1678                 break;
1679         }
1680 }
1681
1682 static void work_stop(void)
1683 {
1684         if (io_workqueue) {
1685                 destroy_workqueue(io_workqueue);
1686                 io_workqueue = NULL;
1687         }
1688
1689         if (process_workqueue) {
1690                 destroy_workqueue(process_workqueue);
1691                 process_workqueue = NULL;
1692         }
1693 }
1694
1695 static int work_start(void)
1696 {
1697         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1698                                        WQ_UNBOUND, 0);
1699         if (!io_workqueue) {
1700                 log_print("can't start dlm_io");
1701                 return -ENOMEM;
1702         }
1703
1704         process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1705         if (!process_workqueue) {
1706                 log_print("can't start dlm_process");
1707                 destroy_workqueue(io_workqueue);
1708                 io_workqueue = NULL;
1709                 return -ENOMEM;
1710         }
1711
1712         return 0;
1713 }
1714
1715 void dlm_lowcomms_shutdown(void)
1716 {
1717         struct connection *con;
1718         int i, idx;
1719
1720         /* stop lowcomms_listen_data_ready calls */
1721         lock_sock(listen_con.sock->sk);
1722         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1723         release_sock(listen_con.sock->sk);
1724
1725         cancel_work_sync(&listen_con.rwork);
1726         dlm_close_sock(&listen_con.sock);
1727
1728         idx = srcu_read_lock(&connections_srcu);
1729         for (i = 0; i < CONN_HASH_SIZE; i++) {
1730                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1731                         shutdown_connection(con, true);
1732                         stop_connection_io(con);
1733                         flush_workqueue(process_workqueue);
1734                         close_connection(con, true);
1735
1736                         clean_one_writequeue(con);
1737                         if (con->othercon)
1738                                 clean_one_writequeue(con->othercon);
1739                         allow_connection_io(con);
1740                 }
1741         }
1742         srcu_read_unlock(&connections_srcu, idx);
1743 }
1744
1745 void dlm_lowcomms_stop(void)
1746 {
1747         work_stop();
1748         dlm_proto_ops = NULL;
1749 }
1750
1751 static int dlm_listen_for_all(void)
1752 {
1753         struct socket *sock;
1754         int result;
1755
1756         log_print("Using %s for communications",
1757                   dlm_proto_ops->name);
1758
1759         result = dlm_proto_ops->listen_validate();
1760         if (result < 0)
1761                 return result;
1762
1763         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1764                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1765         if (result < 0) {
1766                 log_print("Can't create comms socket: %d", result);
1767                 return result;
1768         }
1769
1770         sock_set_mark(sock->sk, dlm_config.ci_mark);
1771         dlm_proto_ops->listen_sockopts(sock);
1772
1773         result = dlm_proto_ops->listen_bind(sock);
1774         if (result < 0)
1775                 goto out;
1776
1777         lock_sock(sock->sk);
1778         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1779         listen_sock.sk_write_space = sock->sk->sk_write_space;
1780         listen_sock.sk_error_report = sock->sk->sk_error_report;
1781         listen_sock.sk_state_change = sock->sk->sk_state_change;
1782
1783         listen_con.sock = sock;
1784
1785         sock->sk->sk_allocation = GFP_NOFS;
1786         sock->sk->sk_use_task_frag = false;
1787         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1788         release_sock(sock->sk);
1789
1790         result = sock->ops->listen(sock, 128);
1791         if (result < 0) {
1792                 dlm_close_sock(&listen_con.sock);
1793                 return result;
1794         }
1795
1796         return 0;
1797
1798 out:
1799         sock_release(sock);
1800         return result;
1801 }
1802
1803 static int dlm_tcp_bind(struct socket *sock)
1804 {
1805         struct sockaddr_storage src_addr;
1806         int result, addr_len;
1807
1808         /* Bind to our cluster-known address connecting to avoid
1809          * routing problems.
1810          */
1811         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1812         make_sockaddr(&src_addr, 0, &addr_len);
1813
1814         result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1815                              addr_len);
1816         if (result < 0) {
1817                 /* This *may* not indicate a critical error */
1818                 log_print("could not bind for connect: %d", result);
1819         }
1820
1821         return 0;
1822 }
1823
1824 static int dlm_tcp_listen_validate(void)
1825 {
1826         /* We don't support multi-homed hosts */
1827         if (dlm_local_count > 1) {
1828                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1829                 return -EINVAL;
1830         }
1831
1832         return 0;
1833 }
1834
1835 static void dlm_tcp_sockopts(struct socket *sock)
1836 {
1837         /* Turn off Nagle's algorithm */
1838         tcp_sock_set_nodelay(sock->sk);
1839 }
1840
1841 static void dlm_tcp_listen_sockopts(struct socket *sock)
1842 {
1843         dlm_tcp_sockopts(sock);
1844         sock_set_reuseaddr(sock->sk);
1845 }
1846
1847 static int dlm_tcp_listen_bind(struct socket *sock)
1848 {
1849         int addr_len;
1850
1851         /* Bind to our port */
1852         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1853         return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1854                            addr_len);
1855 }
1856
1857 static const struct dlm_proto_ops dlm_tcp_ops = {
1858         .name = "TCP",
1859         .proto = IPPROTO_TCP,
1860         .sockopts = dlm_tcp_sockopts,
1861         .bind = dlm_tcp_bind,
1862         .listen_validate = dlm_tcp_listen_validate,
1863         .listen_sockopts = dlm_tcp_listen_sockopts,
1864         .listen_bind = dlm_tcp_listen_bind,
1865 };
1866
1867 static int dlm_sctp_bind(struct socket *sock)
1868 {
1869         return sctp_bind_addrs(sock, 0);
1870 }
1871
1872 static int dlm_sctp_listen_validate(void)
1873 {
1874         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1875                 log_print("SCTP is not enabled by this kernel");
1876                 return -EOPNOTSUPP;
1877         }
1878
1879         request_module("sctp");
1880         return 0;
1881 }
1882
1883 static int dlm_sctp_bind_listen(struct socket *sock)
1884 {
1885         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1886 }
1887
1888 static void dlm_sctp_sockopts(struct socket *sock)
1889 {
1890         /* Turn off Nagle's algorithm */
1891         sctp_sock_set_nodelay(sock->sk);
1892         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1893 }
1894
1895 static const struct dlm_proto_ops dlm_sctp_ops = {
1896         .name = "SCTP",
1897         .proto = IPPROTO_SCTP,
1898         .try_new_addr = true,
1899         .sockopts = dlm_sctp_sockopts,
1900         .bind = dlm_sctp_bind,
1901         .listen_validate = dlm_sctp_listen_validate,
1902         .listen_sockopts = dlm_sctp_sockopts,
1903         .listen_bind = dlm_sctp_bind_listen,
1904 };
1905
1906 int dlm_lowcomms_start(void)
1907 {
1908         int error;
1909
1910         init_local();
1911         if (!dlm_local_count) {
1912                 error = -ENOTCONN;
1913                 log_print("no local IP address has been set");
1914                 goto fail;
1915         }
1916
1917         error = work_start();
1918         if (error)
1919                 goto fail;
1920
1921         /* Start listening */
1922         switch (dlm_config.ci_protocol) {
1923         case DLM_PROTO_TCP:
1924                 dlm_proto_ops = &dlm_tcp_ops;
1925                 break;
1926         case DLM_PROTO_SCTP:
1927                 dlm_proto_ops = &dlm_sctp_ops;
1928                 break;
1929         default:
1930                 log_print("Invalid protocol identifier %d set",
1931                           dlm_config.ci_protocol);
1932                 error = -EINVAL;
1933                 goto fail_proto_ops;
1934         }
1935
1936         error = dlm_listen_for_all();
1937         if (error)
1938                 goto fail_listen;
1939
1940         return 0;
1941
1942 fail_listen:
1943         dlm_proto_ops = NULL;
1944 fail_proto_ops:
1945         work_stop();
1946 fail:
1947         return error;
1948 }
1949
1950 void dlm_lowcomms_init(void)
1951 {
1952         int i;
1953
1954         for (i = 0; i < CONN_HASH_SIZE; i++)
1955                 INIT_HLIST_HEAD(&connection_hash[i]);
1956
1957         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1958 }
1959
1960 void dlm_lowcomms_exit(void)
1961 {
1962         struct connection *con;
1963         int i, idx;
1964
1965         idx = srcu_read_lock(&connections_srcu);
1966         for (i = 0; i < CONN_HASH_SIZE; i++) {
1967                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1968                         spin_lock(&connections_lock);
1969                         hlist_del_rcu(&con->list);
1970                         spin_unlock(&connections_lock);
1971
1972                         if (con->othercon)
1973                                 call_srcu(&connections_srcu, &con->othercon->rcu,
1974                                           connection_release);
1975                         call_srcu(&connections_srcu, &con->rcu, connection_release);
1976                 }
1977         }
1978         srcu_read_unlock(&connections_srcu, idx);
1979 }
This page took 0.136901 seconds and 4 git commands to generate.