1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
38 #include <linux/dca.h>
40 #include <linux/i2c.h>
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
226 .remove = igb_remove,
228 .driver.pm = &igb_pm_ops,
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 struct igb_reg_info {
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
256 /* Interrupt Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
281 /* List Terminator */
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
292 switch (reginfo->ofs) {
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
365 if (!netif_msg_hw(adapter))
368 /* Print netdevice Info */
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
408 /* Transmit Descriptor Formats
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
437 else if (i == tx_ring->next_to_clean)
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
460 /* Print RX Rings Summary */
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
471 if (!netif_msg_rx_status(adapter))
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
476 /* Advanced Receive Descriptor (Read) Format
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
485 * Advanced Receive Descriptor (Write-Back) Format
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513 if (i == rx_ring->next_to_use)
515 else if (i == rx_ring->next_to_clean)
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
532 (u64)buffer_info->dma,
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
556 * Returns the I2C data bit value
558 static int igb_get_i2c_data(void *data)
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
564 return !!(i2cctl & E1000_I2C_DATA_IN);
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
572 * Sets the I2C data bit
574 static void igb_set_i2c_data(void *data, int state)
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
587 wr32(E1000_I2CPARAMS, i2cctl);
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
596 * Sets the I2C clock line to state
598 static void igb_set_i2c_clk(void *data, int state)
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
610 wr32(E1000_I2CPARAMS, i2cctl);
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
618 * Gets the I2C clock state
620 static int igb_get_i2c_clk(void *data)
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
626 return !!(i2cctl & E1000_I2C_CLK_IN);
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
642 * used by hardware layer to print debugging information
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
651 * igb_init_module - Driver Registration Routine
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
656 static int __init igb_init_module(void)
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
663 #ifdef CONFIG_IGB_DCA
664 dca_register_notify(&dca_notifier);
666 ret = pci_register_driver(&igb_driver);
670 module_init(igb_init_module);
673 * igb_exit_module - Driver Exit Cleanup Routine
675 * igb_exit_module is called just before the driver is removed
678 static void __exit igb_exit_module(void)
680 #ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(&dca_notifier);
683 pci_unregister_driver(&igb_driver);
686 module_exit(igb_exit_module);
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 u32 rbase_offset = adapter->vfs_allocated_count;
701 switch (adapter->hw.mac.type) {
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 if (E1000_REMOVED(hw_addr))
738 value = readl(&hw_addr[reg]);
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
744 netdev_err(netdev, "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
767 u32 ivar = array_rd32(E1000_IVAR0, index);
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775 array_wr32(E1000_IVAR0, index, ivar);
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
792 switch (hw->mac.type) {
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
864 static void igb_configure_msix(struct igb_adapter *adapter)
868 struct e1000_hw *hw = &adapter->hw;
870 adapter->eims_enable_mask = 0;
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
883 wr32(E1000_CTRL_EXT, tmp);
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
908 wr32(E1000_IVAR_MISC, tmp);
911 /* do nothing, since nothing else supports MSI-X */
913 } /* switch (hw->mac.type) */
915 adapter->eims_enable_mask |= adapter->eims_other;
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 static int igb_request_msix(struct igb_adapter *adapter)
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
964 sprintf(q_vector->name, "%s-unused", netdev->name);
966 err = request_irq(adapter->msix_entries[vector].vector,
967 igb_msix_ring, 0, q_vector->name,
973 igb_configure_msix(adapter);
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
994 * This function frees the memory allocated to the q_vector.
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1000 adapter->q_vector[v_idx] = NULL;
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1006 kfree_rcu(q_vector, rcu);
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1033 netif_napi_del(&q_vector->napi);
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1039 int v_idx = adapter->num_q_vectors;
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(adapter->pdev);
1047 igb_reset_q_vector(adapter, v_idx);
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1060 int v_idx = adapter->num_q_vectors;
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1107 adapter->num_tx_queues = adapter->rss_queues;
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1119 /* add 1 vector for link status interrupts */
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1124 err = pci_enable_msix_range(adapter->pdev,
1125 adapter->msix_entries,
1131 igb_reset_interrupt_capability(adapter);
1133 /* If we can't do MSI-X, try MSI */
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(adapter->pdev);
1144 kfree(adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1197 ring_count = txr_count + rxr_count;
1198 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(q_vector)) {
1205 struct igb_q_vector *new_q_vector;
1207 new_q_vector = kzalloc(size, GFP_KERNEL);
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = new_q_vector;
1212 memset(q_vector, 0, size);
1217 /* initialize NAPI */
1218 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1220 /* tie q_vector and adapter together */
1221 adapter->q_vector[v_idx] = q_vector;
1222 q_vector->adapter = adapter;
1224 /* initialize work limits */
1225 q_vector->tx.work_limit = adapter->tx_work_limit;
1227 /* initialize ITR configuration */
1228 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 q_vector->itr_val = IGB_START_ITR;
1231 /* initialize pointer to rings */
1232 ring = q_vector->ring;
1236 /* rx or rx/tx vector */
1237 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 q_vector->itr_val = adapter->rx_itr_setting;
1240 /* tx only vector */
1241 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 q_vector->itr_val = adapter->tx_itr_setting;
1246 /* assign generic ring traits */
1247 ring->dev = &adapter->pdev->dev;
1248 ring->netdev = adapter->netdev;
1250 /* configure backlink on ring */
1251 ring->q_vector = q_vector;
1253 /* update q_vector Tx values */
1254 igb_add_ring(ring, &q_vector->tx);
1256 /* For 82575, context index must be unique per ring. */
1257 if (adapter->hw.mac.type == e1000_82575)
1258 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260 /* apply Tx specific ring traits */
1261 ring->count = adapter->tx_ring_count;
1262 ring->queue_index = txr_idx;
1264 ring->cbs_enable = false;
1265 ring->idleslope = 0;
1266 ring->sendslope = 0;
1270 u64_stats_init(&ring->tx_syncp);
1271 u64_stats_init(&ring->tx_syncp2);
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1276 /* push pointer to next ring */
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, &q_vector->rx);
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295 /* On i350, i354, i210, and i211, loopback VLAN packets
1296 * have the tag byte-swapped.
1298 if (adapter->hw.mac.type >= e1000_i350)
1299 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 /* apply Rx specific ring traits */
1302 ring->count = adapter->rx_ring_count;
1303 ring->queue_index = rxr_idx;
1305 u64_stats_init(&ring->rx_syncp);
1307 /* assign ring to adapter */
1308 adapter->rx_ring[rxr_idx] = ring;
1316 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317 * @adapter: board private structure to initialize
1319 * We allocate one q_vector per queue interrupt. If allocation fails we
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 int q_vectors = adapter->num_q_vectors;
1325 int rxr_remaining = adapter->num_rx_queues;
1326 int txr_remaining = adapter->num_tx_queues;
1327 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1330 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 for (; rxr_remaining; v_idx++) {
1332 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1338 /* update counts and index */
1344 for (; v_idx < q_vectors; v_idx++) {
1345 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 tqpv, txr_idx, rqpv, rxr_idx);
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1369 igb_free_q_vector(adapter, v_idx);
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
1379 * This function initializes the interrupts and allocates all of the queues.
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 struct pci_dev *pdev = adapter->pdev;
1386 igb_set_interrupt_capability(adapter, msix);
1388 err = igb_alloc_q_vectors(adapter);
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1394 igb_cache_ring_register(adapter);
1398 err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
1410 static int igb_request_irq(struct igb_adapter *adapter)
1412 struct net_device *netdev = adapter->netdev;
1413 struct pci_dev *pdev = adapter->pdev;
1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 err = igb_request_msix(adapter);
1420 /* fall back to MSI */
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
1424 igb_clear_interrupt_scheme(adapter);
1425 err = igb_init_interrupt_scheme(adapter, false);
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
1431 igb_configure(adapter);
1434 igb_assign_vector(adapter->q_vector[0], 0);
1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 netdev->name, adapter);
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 netdev->name, adapter);
1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1458 static void igb_free_irq(struct igb_adapter *adapter)
1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465 for (i = 0; i < adapter->num_q_vectors; i++)
1466 free_irq(adapter->msix_entries[vector++].vector,
1467 adapter->q_vector[i]);
1469 free_irq(adapter->pdev->irq, adapter);
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1479 struct e1000_hw *hw = &adapter->hw;
1481 /* we need to be careful when disabling interrupts. The VFs are also
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 u32 regval = rd32(E1000_EIAM);
1488 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 regval = rd32(E1000_EIAC);
1491 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1495 wr32(E1000_IMC, ~0);
1497 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1500 for (i = 0; i < adapter->num_q_vectors; i++)
1501 synchronize_irq(adapter->msix_entries[i].vector);
1503 synchronize_irq(adapter->pdev->irq);
1508 * igb_irq_enable - Enable default interrupt generation settings
1509 * @adapter: board private structure
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1513 struct e1000_hw *hw = &adapter->hw;
1515 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 u32 regval = rd32(E1000_EIAC);
1519 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 regval = rd32(E1000_EIAM);
1521 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 if (adapter->vfs_allocated_count) {
1524 wr32(E1000_MBVFIMR, 0xFF);
1525 ims |= E1000_IMS_VMMB;
1527 wr32(E1000_IMS, ims);
1529 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 wr32(E1000_IAM, IMS_ENABLE_MASK |
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 struct e1000_hw *hw = &adapter->hw;
1539 u16 pf_id = adapter->vfs_allocated_count;
1540 u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 u16 old_vid = adapter->mng_vlan_id;
1543 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 /* add VID to filter table */
1545 igb_vfta_set(hw, vid, pf_id, true, true);
1546 adapter->mng_vlan_id = vid;
1548 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1551 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 !test_bit(old_vid, adapter->active_vlans)) {
1554 /* remove VID from filter table */
1555 igb_vfta_set(hw, vid, pf_id, false, true);
1560 * igb_release_hw_control - release control of the h/w to f/w
1561 * @adapter: address of board private structure
1563 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564 * For ASF and Pass Through versions of f/w this means that the
1565 * driver is no longer loaded.
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 struct e1000_hw *hw = &adapter->hw;
1572 /* Let firmware take over control of h/w */
1573 ctrl_ext = rd32(E1000_CTRL_EXT);
1574 wr32(E1000_CTRL_EXT,
1575 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1579 * igb_get_hw_control - get control of the h/w from f/w
1580 * @adapter: address of board private structure
1582 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583 * For ASF and Pass Through versions of f/w this means that
1584 * the driver is loaded.
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 struct e1000_hw *hw = &adapter->hw;
1591 /* Let firmware know the driver has taken over */
1592 ctrl_ext = rd32(E1000_CTRL_EXT);
1593 wr32(E1000_CTRL_EXT,
1594 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599 struct net_device *netdev = adapter->netdev;
1600 struct e1000_hw *hw = &adapter->hw;
1602 WARN_ON(hw->mac.type != e1000_i210);
1605 adapter->flags |= IGB_FLAG_FQTSS;
1607 adapter->flags &= ~IGB_FLAG_FQTSS;
1609 if (netif_running(netdev))
1610 schedule_work(&adapter->reset_task);
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 enum tx_queue_prio prio)
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 4);
1626 val = rd32(E1000_I210_TXDCTL(queue));
1628 if (prio == TX_QUEUE_PRIO_HIGH)
1629 val |= E1000_TXDCTL_PRIORITY;
1631 val &= ~E1000_TXDCTL_PRIORITY;
1633 wr32(E1000_I210_TXDCTL(queue), val);
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1640 WARN_ON(hw->mac.type != e1000_i210);
1641 WARN_ON(queue < 0 || queue > 1);
1643 val = rd32(E1000_I210_TQAVCC(queue));
1645 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 val |= E1000_TQAVCC_QUEUEMODE;
1648 val &= ~E1000_TQAVCC_QUEUEMODE;
1650 wr32(E1000_I210_TQAVCC(queue), val);
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1657 for (i = 0; i < adapter->num_tx_queues; i++) {
1658 if (adapter->tx_ring[i]->cbs_enable)
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1669 for (i = 0; i < adapter->num_tx_queues; i++) {
1670 if (adapter->tx_ring[i]->launchtime_enable)
1678 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1682 * Configure CBS and Launchtime for a given hardware queue.
1683 * Parameters are retrieved from the correct Tx ring, so
1684 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1685 * for setting those correctly prior to this function being called.
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 struct igb_ring *ring;
1692 u32 tqavcc, tqavctrl;
1695 WARN_ON(hw->mac.type != e1000_i210);
1696 WARN_ON(queue < 0 || queue > 1);
1697 ring = adapter->tx_ring[queue];
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1740 * For 100 Mbps link speed:
1742 * value = BW * 0x7735 * 0.2 (E1)
1744 * For 1000Mbps link speed:
1746 * value = BW * 0x7735 * 2 (E2)
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1761 * ----------------- (E4)
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1866 struct igb_ring *ring;
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1881 struct igb_ring *ring;
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1886 ring = adapter->tx_ring[queue];
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1916 if (is_fqtss_enabled(adapter)) {
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 wr32(E1000_TXPBS, val);
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, i);
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1989 static void igb_configure(struct igb_adapter *adapter)
1991 struct net_device *netdev = adapter->netdev;
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1998 igb_restore_vlan(adapter);
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2008 igb_rx_fifo_flush_82575(&adapter->hw);
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2024 void igb_power_up_link(struct igb_adapter *adapter)
2026 igb_reset_phy(&adapter->hw);
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(&adapter->hw);
2031 igb_power_up_serdes_link_82575(&adapter->hw);
2033 igb_setup_link(&adapter->hw);
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(&adapter->hw);
2045 igb_shutdown_serdes_link_82575(&adapter->hw);
2049 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2061 /* need to live swap if current media is copper and we have fiber/serdes
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to fiber/serdes\n");
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(adapter->netdev,
2102 "MAS: changing media to copper\n");
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2108 /* shouldn't get here during regular operation */
2109 netdev_err(adapter->netdev,
2110 "AMS: Invalid media type found, returning\n");
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2120 int igb_up(struct igb_adapter *adapter)
2122 struct e1000_hw *hw = &adapter->hw;
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2128 clear_bit(__IGB_DOWN, &adapter->state);
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(&(adapter->q_vector[i]->napi));
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2136 igb_assign_vector(adapter->q_vector[0], 0);
2138 /* Clear any pending interrupts. */
2141 igb_irq_enable(adapter);
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2151 netif_tx_start_all_queues(adapter->netdev);
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(&adapter->watchdog_task);
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2164 void igb_down(struct igb_adapter *adapter)
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2174 set_bit(__IGB_DOWN, &adapter->state);
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2181 igb_nfc_filter_exit(adapter);
2183 netif_carrier_off(netdev);
2184 netif_tx_stop_all_queues(netdev);
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2192 usleep_range(10000, 11000);
2194 igb_irq_disable(adapter);
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(&adapter->q_vector[i]->napi);
2201 napi_disable(&adapter->q_vector[i]->napi);
2205 del_timer_sync(&adapter->watchdog_timer);
2206 del_timer_sync(&adapter->phy_info_timer);
2208 /* record the stats before reset*/
2209 spin_lock(&adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(&adapter->stats64_lock);
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2216 if (!pci_channel_offline(adapter->pdev))
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2233 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 usleep_range(1000, 2000);
2237 clear_bit(__IGB_RESETTING, &adapter->state);
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2242 * @adapter: adapter struct
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2246 struct e1000_hw *hw = &adapter->hw;
2247 u32 connsw = rd32(E1000_CONNSW);
2249 /* configure for SerDes media detect */
2250 if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 (!(connsw & E1000_CONNSW_SERDESD))) {
2252 connsw |= E1000_CONNSW_ENRGSRC;
2253 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 wr32(E1000_CONNSW, connsw);
2259 void igb_reset(struct igb_adapter *adapter)
2261 struct pci_dev *pdev = adapter->pdev;
2262 struct e1000_hw *hw = &adapter->hw;
2263 struct e1000_mac_info *mac = &hw->mac;
2264 struct e1000_fc_info *fc = &hw->fc;
2267 /* Repartition Pba for greater than 9k mtu
2268 * To take effect CTRL.RST is required.
2270 switch (mac->type) {
2274 pba = rd32(E1000_RXPBS);
2275 pba = igb_rxpbs_adjust_82580(pba);
2278 pba = rd32(E1000_RXPBS);
2279 pba &= E1000_RXPBS_SIZE_MASK_82576;
2285 pba = E1000_PBA_34K;
2289 if (mac->type == e1000_82575) {
2290 u32 min_rx_space, min_tx_space, needed_tx_space;
2292 /* write Rx PBA so that hardware can report correct Tx PBA */
2293 wr32(E1000_PBA, pba);
2295 /* To maintain wire speed transmits, the Tx FIFO should be
2296 * large enough to accommodate two full transmit packets,
2297 * rounded up to the next 1KB and expressed in KB. Likewise,
2298 * the Rx FIFO should be large enough to accommodate at least
2299 * one full receive packet and is similarly rounded up and
2302 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304 /* The Tx FIFO also stores 16 bytes of information about the Tx
2305 * but don't include Ethernet FCS because hardware appends it.
2306 * We only need to round down to the nearest 512 byte block
2307 * count since the value we care about is 2 frames, not 1.
2309 min_tx_space = adapter->max_frame_size;
2310 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313 /* upper 16 bits has Tx packet buffer allocation size in KB */
2314 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316 /* If current Tx allocation is less than the min Tx FIFO size,
2317 * and the min Tx FIFO size is less than the current Rx FIFO
2318 * allocation, take space away from current Rx allocation.
2320 if (needed_tx_space < pba) {
2321 pba -= needed_tx_space;
2323 /* if short on Rx space, Rx wins and must trump Tx
2326 if (pba < min_rx_space)
2330 /* adjust PBA for jumbo frames */
2331 wr32(E1000_PBA, pba);
2334 /* flow control settings
2335 * The high water mark must be low enough to fit one full frame
2336 * after transmitting the pause frame. As such we must have enough
2337 * space to allow for us to complete our current transmit and then
2338 * receive the frame that is in progress from the link partner.
2340 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2345 fc->low_water = fc->high_water - 16;
2346 fc->pause_time = 0xFFFF;
2348 fc->current_mode = fc->requested_mode;
2350 /* disable receive for all VFs and wait one second */
2351 if (adapter->vfs_allocated_count) {
2354 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357 /* ping all the active vfs to let them know we are going down */
2358 igb_ping_all_vfs(adapter);
2360 /* disable transmits and receives */
2361 wr32(E1000_VFRE, 0);
2362 wr32(E1000_VFTE, 0);
2365 /* Allow time for pending master requests to run */
2366 hw->mac.ops.reset_hw(hw);
2369 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 /* need to resetup here after media swap */
2371 adapter->ei.get_invariants(hw);
2372 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2375 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 igb_enable_mas(adapter);
2378 if (hw->mac.ops.init_hw(hw))
2379 dev_err(&pdev->dev, "Hardware Error\n");
2381 /* RAR registers were cleared during init_hw, clear mac table */
2382 igb_flush_mac_table(adapter);
2383 __dev_uc_unsync(adapter->netdev, NULL);
2385 /* Recover default RAR entry */
2386 igb_set_default_mac_filter(adapter);
2388 /* Flow control settings reset on hardware reset, so guarantee flow
2389 * control is off when forcing speed.
2391 if (!hw->mac.autoneg)
2392 igb_force_mac_fc(hw);
2394 igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 /* Re-initialize the thermal sensor on i350 devices. */
2397 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 /* If present, re-initialize the external thermal sensor
2403 mac->ops.init_thermal_sensor_thresh(hw);
2407 /* Re-establish EEE setting */
2408 if (hw->phy.media_type == e1000_media_type_copper) {
2409 switch (mac->type) {
2413 igb_set_eee_i350(hw, true, true);
2416 igb_set_eee_i354(hw, true, true);
2422 if (!netif_running(adapter->netdev))
2423 igb_power_down_link(adapter);
2425 igb_update_mng_vlan(adapter);
2427 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2430 /* Re-enable PTP, where applicable. */
2431 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 igb_ptp_reset(adapter);
2434 igb_get_phy_info(hw);
2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 netdev_features_t features)
2440 /* Since there is no support for separate Rx/Tx vlan accel
2441 * enable/disable make sure Tx flag is always in same state as Rx.
2443 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 features |= NETIF_F_HW_VLAN_CTAG_TX;
2446 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2451 static int igb_set_features(struct net_device *netdev,
2452 netdev_features_t features)
2454 netdev_features_t changed = netdev->features ^ features;
2455 struct igb_adapter *adapter = netdev_priv(netdev);
2457 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 igb_vlan_mode(netdev, features);
2460 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2463 if (!(features & NETIF_F_NTUPLE)) {
2464 struct hlist_node *node2;
2465 struct igb_nfc_filter *rule;
2467 spin_lock(&adapter->nfc_lock);
2468 hlist_for_each_entry_safe(rule, node2,
2469 &adapter->nfc_filter_list, nfc_node) {
2470 igb_erase_filter(adapter, rule);
2471 hlist_del(&rule->nfc_node);
2474 spin_unlock(&adapter->nfc_lock);
2475 adapter->nfc_filter_count = 0;
2478 netdev->features = features;
2480 if (netif_running(netdev))
2481 igb_reinit_locked(adapter);
2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 struct net_device *dev,
2490 const unsigned char *addr, u16 vid,
2492 struct netlink_ext_ack *extack)
2494 /* guarantee we can provide a unique filter for the unicast address */
2495 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496 struct igb_adapter *adapter = netdev_priv(dev);
2497 int vfn = adapter->vfs_allocated_count;
2499 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2503 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2506 #define IGB_MAX_MAC_HDR_LEN 127
2507 #define IGB_MAX_NETWORK_HDR_LEN 511
2509 static netdev_features_t
2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511 netdev_features_t features)
2513 unsigned int network_hdr_len, mac_hdr_len;
2515 /* Make certain the headers can be described by a context descriptor */
2516 mac_hdr_len = skb_network_header(skb) - skb->data;
2517 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518 return features & ~(NETIF_F_HW_CSUM |
2520 NETIF_F_GSO_UDP_L4 |
2521 NETIF_F_HW_VLAN_CTAG_TX |
2525 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2527 return features & ~(NETIF_F_HW_CSUM |
2529 NETIF_F_GSO_UDP_L4 |
2533 /* We can only support IPV4 TSO in tunnels if we can mangle the
2534 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2536 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 features &= ~NETIF_F_TSO;
2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2544 if (!is_fqtss_enabled(adapter)) {
2545 enable_fqtss(adapter, true);
2549 igb_config_tx_modes(adapter, queue);
2551 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 enable_fqtss(adapter, false);
2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 struct tc_cbs_qopt_offload *qopt)
2558 struct e1000_hw *hw = &adapter->hw;
2561 /* CBS offloading is only supported by i210 controller. */
2562 if (hw->mac.type != e1000_i210)
2565 /* CBS offloading is only supported by queue 0 and queue 1. */
2566 if (qopt->queue < 0 || qopt->queue > 1)
2569 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 qopt->idleslope, qopt->sendslope,
2571 qopt->hicredit, qopt->locredit);
2575 igb_offload_apply(adapter, qopt->queue);
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 struct flow_cls_offload *f,
2586 struct igb_nfc_filter *input)
2588 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2589 struct flow_dissector *dissector = rule->match.dissector;
2590 struct netlink_ext_ack *extack = f->common.extack;
2592 if (dissector->used_keys &
2593 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2594 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2595 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2596 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2597 NL_SET_ERR_MSG_MOD(extack,
2598 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2602 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 struct flow_match_eth_addrs match;
2605 flow_rule_match_eth_addrs(rule, &match);
2606 if (!is_zero_ether_addr(match.mask->dst)) {
2607 if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2612 input->filter.match_flags |=
2613 IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2617 if (!is_zero_ether_addr(match.mask->src)) {
2618 if (!is_broadcast_ether_addr(match.mask->src)) {
2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2623 input->filter.match_flags |=
2624 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 ether_addr_copy(input->filter.src_addr, match.key->src);
2629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 struct flow_match_basic match;
2632 flow_rule_match_basic(rule, &match);
2633 if (match.mask->n_proto) {
2634 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2639 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 input->filter.etype = match.key->n_proto;
2644 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 struct flow_match_vlan match;
2647 flow_rule_match_vlan(rule, &match);
2648 if (match.mask->vlan_priority) {
2649 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2654 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 input->filter.vlan_tci =
2656 (__force __be16)match.key->vlan_priority;
2660 input->action = traffic_class;
2661 input->cookie = f->cookie;
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 struct flow_cls_offload *cls_flower)
2669 struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 struct igb_nfc_filter *filter, *f;
2673 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2675 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687 spin_lock(&adapter->nfc_lock);
2689 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2692 NL_SET_ERR_MSG_MOD(extack,
2693 "This filter is already set in ethtool");
2698 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 NL_SET_ERR_MSG_MOD(extack,
2702 "This filter is already set in cls_flower");
2707 err = igb_add_filter(adapter, filter);
2709 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2715 spin_unlock(&adapter->nfc_lock);
2720 spin_unlock(&adapter->nfc_lock);
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 struct flow_cls_offload *cls_flower)
2731 struct igb_nfc_filter *filter;
2734 spin_lock(&adapter->nfc_lock);
2736 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 if (filter->cookie == cls_flower->cookie)
2745 err = igb_erase_filter(adapter, filter);
2749 hlist_del(&filter->nfc_node);
2753 spin_unlock(&adapter->nfc_lock);
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 struct flow_cls_offload *cls_flower)
2761 switch (cls_flower->command) {
2762 case FLOW_CLS_REPLACE:
2763 return igb_configure_clsflower(adapter, cls_flower);
2764 case FLOW_CLS_DESTROY:
2765 return igb_delete_clsflower(adapter, cls_flower);
2766 case FLOW_CLS_STATS:
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2776 struct igb_adapter *adapter = cb_priv;
2778 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782 case TC_SETUP_CLSFLOWER:
2783 return igb_setup_tc_cls_flower(adapter, type_data);
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 struct tc_etf_qopt_offload *qopt)
2793 struct e1000_hw *hw = &adapter->hw;
2796 /* Launchtime offloading is only supported by i210 controller. */
2797 if (hw->mac.type != e1000_i210)
2800 /* Launchtime offloading is only supported by queues 0 and 1. */
2801 if (qopt->queue < 0 || qopt->queue > 1)
2804 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808 igb_offload_apply(adapter, qopt->queue);
2813 static LIST_HEAD(igb_block_cb_list);
2815 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2818 struct igb_adapter *adapter = netdev_priv(dev);
2821 case TC_SETUP_QDISC_CBS:
2822 return igb_offload_cbs(adapter, type_data);
2823 case TC_SETUP_BLOCK:
2824 return flow_block_cb_setup_simple(type_data,
2826 igb_setup_tc_block_cb,
2827 adapter, adapter, true);
2829 case TC_SETUP_QDISC_ETF:
2830 return igb_offload_txtime(adapter, type_data);
2837 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2839 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2840 struct igb_adapter *adapter = netdev_priv(dev);
2841 struct bpf_prog *prog = bpf->prog, *old_prog;
2842 bool running = netif_running(dev);
2845 /* verify igb ring attributes are sufficient for XDP */
2846 for (i = 0; i < adapter->num_rx_queues; i++) {
2847 struct igb_ring *ring = adapter->rx_ring[i];
2849 if (frame_size > igb_rx_bufsz(ring)) {
2850 NL_SET_ERR_MSG_MOD(bpf->extack,
2851 "The RX buffer size is too small for the frame size");
2852 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2853 igb_rx_bufsz(ring), frame_size);
2858 old_prog = xchg(&adapter->xdp_prog, prog);
2859 need_reset = (!!prog != !!old_prog);
2861 /* device is up and bpf is added/removed, must setup the RX queues */
2862 if (need_reset && running) {
2865 for (i = 0; i < adapter->num_rx_queues; i++)
2866 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2871 bpf_prog_put(old_prog);
2873 /* bpf is just replaced, RXQ and MTU are already setup */
2883 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2885 switch (xdp->command) {
2886 case XDP_SETUP_PROG:
2887 return igb_xdp_setup(dev, xdp);
2893 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2895 /* Force memory writes to complete before letting h/w know there
2896 * are new descriptors to fetch.
2899 writel(ring->next_to_use, ring->tail);
2902 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2904 unsigned int r_idx = smp_processor_id();
2906 if (r_idx >= adapter->num_tx_queues)
2907 r_idx = r_idx % adapter->num_tx_queues;
2909 return adapter->tx_ring[r_idx];
2912 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2914 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2915 int cpu = smp_processor_id();
2916 struct igb_ring *tx_ring;
2917 struct netdev_queue *nq;
2920 if (unlikely(!xdpf))
2921 return IGB_XDP_CONSUMED;
2923 /* During program transitions its possible adapter->xdp_prog is assigned
2924 * but ring has not been configured yet. In this case simply abort xmit.
2926 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2927 if (unlikely(!tx_ring))
2928 return IGB_XDP_CONSUMED;
2930 nq = txring_txq(tx_ring);
2931 __netif_tx_lock(nq, cpu);
2932 /* Avoid transmit queue timeout since we share it with the slow path */
2933 txq_trans_cond_update(nq);
2934 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2935 __netif_tx_unlock(nq);
2940 static int igb_xdp_xmit(struct net_device *dev, int n,
2941 struct xdp_frame **frames, u32 flags)
2943 struct igb_adapter *adapter = netdev_priv(dev);
2944 int cpu = smp_processor_id();
2945 struct igb_ring *tx_ring;
2946 struct netdev_queue *nq;
2950 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2953 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2956 /* During program transitions its possible adapter->xdp_prog is assigned
2957 * but ring has not been configured yet. In this case simply abort xmit.
2959 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2960 if (unlikely(!tx_ring))
2963 nq = txring_txq(tx_ring);
2964 __netif_tx_lock(nq, cpu);
2966 /* Avoid transmit queue timeout since we share it with the slow path */
2967 txq_trans_cond_update(nq);
2969 for (i = 0; i < n; i++) {
2970 struct xdp_frame *xdpf = frames[i];
2973 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2974 if (err != IGB_XDP_TX)
2979 __netif_tx_unlock(nq);
2981 if (unlikely(flags & XDP_XMIT_FLUSH))
2982 igb_xdp_ring_update_tail(tx_ring);
2987 static const struct net_device_ops igb_netdev_ops = {
2988 .ndo_open = igb_open,
2989 .ndo_stop = igb_close,
2990 .ndo_start_xmit = igb_xmit_frame,
2991 .ndo_get_stats64 = igb_get_stats64,
2992 .ndo_set_rx_mode = igb_set_rx_mode,
2993 .ndo_set_mac_address = igb_set_mac,
2994 .ndo_change_mtu = igb_change_mtu,
2995 .ndo_eth_ioctl = igb_ioctl,
2996 .ndo_tx_timeout = igb_tx_timeout,
2997 .ndo_validate_addr = eth_validate_addr,
2998 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2999 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3000 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3001 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3002 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3003 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3004 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3005 .ndo_get_vf_config = igb_ndo_get_vf_config,
3006 .ndo_fix_features = igb_fix_features,
3007 .ndo_set_features = igb_set_features,
3008 .ndo_fdb_add = igb_ndo_fdb_add,
3009 .ndo_features_check = igb_features_check,
3010 .ndo_setup_tc = igb_setup_tc,
3012 .ndo_xdp_xmit = igb_xdp_xmit,
3016 * igb_set_fw_version - Configure version string for ethtool
3017 * @adapter: adapter struct
3019 void igb_set_fw_version(struct igb_adapter *adapter)
3021 struct e1000_hw *hw = &adapter->hw;
3022 struct e1000_fw_version fw;
3024 igb_get_fw_version(hw, &fw);
3026 switch (hw->mac.type) {
3029 if (!(igb_get_flash_presence_i210(hw))) {
3030 snprintf(adapter->fw_version,
3031 sizeof(adapter->fw_version),
3033 fw.invm_major, fw.invm_minor,
3039 /* if option is rom valid, display its version too */
3041 snprintf(adapter->fw_version,
3042 sizeof(adapter->fw_version),
3043 "%d.%d, 0x%08x, %d.%d.%d",
3044 fw.eep_major, fw.eep_minor, fw.etrack_id,
3045 fw.or_major, fw.or_build, fw.or_patch);
3047 } else if (fw.etrack_id != 0X0000) {
3048 snprintf(adapter->fw_version,
3049 sizeof(adapter->fw_version),
3051 fw.eep_major, fw.eep_minor, fw.etrack_id);
3053 snprintf(adapter->fw_version,
3054 sizeof(adapter->fw_version),
3056 fw.eep_major, fw.eep_minor, fw.eep_build);
3063 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3065 * @adapter: adapter struct
3067 static void igb_init_mas(struct igb_adapter *adapter)
3069 struct e1000_hw *hw = &adapter->hw;
3072 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3073 switch (hw->bus.func) {
3075 if (eeprom_data & IGB_MAS_ENABLE_0) {
3076 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3077 netdev_info(adapter->netdev,
3078 "MAS: Enabling Media Autosense for port %d\n",
3083 if (eeprom_data & IGB_MAS_ENABLE_1) {
3084 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3085 netdev_info(adapter->netdev,
3086 "MAS: Enabling Media Autosense for port %d\n",
3091 if (eeprom_data & IGB_MAS_ENABLE_2) {
3092 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3093 netdev_info(adapter->netdev,
3094 "MAS: Enabling Media Autosense for port %d\n",
3099 if (eeprom_data & IGB_MAS_ENABLE_3) {
3100 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 netdev_info(adapter->netdev,
3102 "MAS: Enabling Media Autosense for port %d\n",
3107 /* Shouldn't get here */
3108 netdev_err(adapter->netdev,
3109 "MAS: Invalid port configuration, returning\n");
3115 * igb_init_i2c - Init I2C interface
3116 * @adapter: pointer to adapter structure
3118 static s32 igb_init_i2c(struct igb_adapter *adapter)
3120 struct e1000_hw *hw = &adapter->hw;
3124 /* I2C interface supported on i350 devices */
3125 if (adapter->hw.mac.type != e1000_i350)
3128 i2cctl = rd32(E1000_I2CPARAMS);
3129 i2cctl |= E1000_I2CBB_EN
3130 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3131 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3132 wr32(E1000_I2CPARAMS, i2cctl);
3135 /* Initialize the i2c bus which is controlled by the registers.
3136 * This bus will use the i2c_algo_bit structure that implements
3137 * the protocol through toggling of the 4 bits in the register.
3139 adapter->i2c_adap.owner = THIS_MODULE;
3140 adapter->i2c_algo = igb_i2c_algo;
3141 adapter->i2c_algo.data = adapter;
3142 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3143 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3144 strscpy(adapter->i2c_adap.name, "igb BB",
3145 sizeof(adapter->i2c_adap.name));
3146 status = i2c_bit_add_bus(&adapter->i2c_adap);
3151 * igb_probe - Device Initialization Routine
3152 * @pdev: PCI device information struct
3153 * @ent: entry in igb_pci_tbl
3155 * Returns 0 on success, negative on failure
3157 * igb_probe initializes an adapter identified by a pci_dev structure.
3158 * The OS initialization, configuring of the adapter private structure,
3159 * and a hardware reset occur.
3161 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3163 struct net_device *netdev;
3164 struct igb_adapter *adapter;
3165 struct e1000_hw *hw;
3166 u16 eeprom_data = 0;
3168 static int global_quad_port_a; /* global quad port a indication */
3169 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3170 u8 part_str[E1000_PBANUM_LENGTH];
3173 /* Catch broken hardware that put the wrong VF device ID in
3174 * the PCIe SR-IOV capability.
3176 if (pdev->is_virtfn) {
3177 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3178 pci_name(pdev), pdev->vendor, pdev->device);
3182 err = pci_enable_device_mem(pdev);
3186 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3189 "No usable DMA configuration, aborting\n");
3193 err = pci_request_mem_regions(pdev, igb_driver_name);
3197 pci_enable_pcie_error_reporting(pdev);
3199 pci_set_master(pdev);
3200 pci_save_state(pdev);
3203 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3206 goto err_alloc_etherdev;
3208 SET_NETDEV_DEV(netdev, &pdev->dev);
3210 pci_set_drvdata(pdev, netdev);
3211 adapter = netdev_priv(netdev);
3212 adapter->netdev = netdev;
3213 adapter->pdev = pdev;
3216 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3219 adapter->io_addr = pci_iomap(pdev, 0, 0);
3220 if (!adapter->io_addr)
3222 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3223 hw->hw_addr = adapter->io_addr;
3225 netdev->netdev_ops = &igb_netdev_ops;
3226 igb_set_ethtool_ops(netdev);
3227 netdev->watchdog_timeo = 5 * HZ;
3229 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3231 netdev->mem_start = pci_resource_start(pdev, 0);
3232 netdev->mem_end = pci_resource_end(pdev, 0);
3234 /* PCI config space info */
3235 hw->vendor_id = pdev->vendor;
3236 hw->device_id = pdev->device;
3237 hw->revision_id = pdev->revision;
3238 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3239 hw->subsystem_device_id = pdev->subsystem_device;
3241 /* Copy the default MAC, PHY and NVM function pointers */
3242 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3243 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3244 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3245 /* Initialize skew-specific constants */
3246 err = ei->get_invariants(hw);
3250 /* setup the private structure */
3251 err = igb_sw_init(adapter);
3255 igb_get_bus_info_pcie(hw);
3257 hw->phy.autoneg_wait_to_complete = false;
3259 /* Copper options */
3260 if (hw->phy.media_type == e1000_media_type_copper) {
3261 hw->phy.mdix = AUTO_ALL_MODES;
3262 hw->phy.disable_polarity_correction = false;
3263 hw->phy.ms_type = e1000_ms_hw_default;
3266 if (igb_check_reset_block(hw))
3267 dev_info(&pdev->dev,
3268 "PHY reset is blocked due to SOL/IDER session.\n");
3270 /* features is initialized to 0 in allocation, it might have bits
3271 * set by igb_sw_init so we should use an or instead of an
3274 netdev->features |= NETIF_F_SG |
3281 if (hw->mac.type >= e1000_82576)
3282 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3284 if (hw->mac.type >= e1000_i350)
3285 netdev->features |= NETIF_F_HW_TC;
3287 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3288 NETIF_F_GSO_GRE_CSUM | \
3289 NETIF_F_GSO_IPXIP4 | \
3290 NETIF_F_GSO_IPXIP6 | \
3291 NETIF_F_GSO_UDP_TUNNEL | \
3292 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3294 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3295 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3297 /* copy netdev features into list of user selectable features */
3298 netdev->hw_features |= netdev->features |
3299 NETIF_F_HW_VLAN_CTAG_RX |
3300 NETIF_F_HW_VLAN_CTAG_TX |
3303 if (hw->mac.type >= e1000_i350)
3304 netdev->hw_features |= NETIF_F_NTUPLE;
3306 netdev->features |= NETIF_F_HIGHDMA;
3308 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3309 netdev->mpls_features |= NETIF_F_HW_CSUM;
3310 netdev->hw_enc_features |= netdev->vlan_features;
3312 /* set this bit last since it cannot be part of vlan_features */
3313 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3314 NETIF_F_HW_VLAN_CTAG_RX |
3315 NETIF_F_HW_VLAN_CTAG_TX;
3317 netdev->priv_flags |= IFF_SUPP_NOFCS;
3319 netdev->priv_flags |= IFF_UNICAST_FLT;
3321 /* MTU range: 68 - 9216 */
3322 netdev->min_mtu = ETH_MIN_MTU;
3323 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3325 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3327 /* before reading the NVM, reset the controller to put the device in a
3328 * known good starting state
3330 hw->mac.ops.reset_hw(hw);
3332 /* make sure the NVM is good , i211/i210 parts can have special NVM
3333 * that doesn't contain a checksum
3335 switch (hw->mac.type) {
3338 if (igb_get_flash_presence_i210(hw)) {
3339 if (hw->nvm.ops.validate(hw) < 0) {
3341 "The NVM Checksum Is Not Valid\n");
3348 if (hw->nvm.ops.validate(hw) < 0) {
3349 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3356 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3357 /* copy the MAC address out of the NVM */
3358 if (hw->mac.ops.read_mac_addr(hw))
3359 dev_err(&pdev->dev, "NVM Read Error\n");
3362 eth_hw_addr_set(netdev, hw->mac.addr);
3364 if (!is_valid_ether_addr(netdev->dev_addr)) {
3365 dev_err(&pdev->dev, "Invalid MAC Address\n");
3370 igb_set_default_mac_filter(adapter);
3372 /* get firmware version for ethtool -i */
3373 igb_set_fw_version(adapter);
3375 /* configure RXPBSIZE and TXPBSIZE */
3376 if (hw->mac.type == e1000_i210) {
3377 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3378 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3381 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3382 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3384 INIT_WORK(&adapter->reset_task, igb_reset_task);
3385 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3387 /* Initialize link properties that are user-changeable */
3388 adapter->fc_autoneg = true;
3389 hw->mac.autoneg = true;
3390 hw->phy.autoneg_advertised = 0x2f;
3392 hw->fc.requested_mode = e1000_fc_default;
3393 hw->fc.current_mode = e1000_fc_default;
3395 igb_validate_mdi_setting(hw);
3397 /* By default, support wake on port A */
3398 if (hw->bus.func == 0)
3399 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3401 /* Check the NVM for wake support on non-port A ports */
3402 if (hw->mac.type >= e1000_82580)
3403 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3404 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3406 else if (hw->bus.func == 1)
3407 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3409 if (eeprom_data & IGB_EEPROM_APME)
3410 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3412 /* now that we have the eeprom settings, apply the special cases where
3413 * the eeprom may be wrong or the board simply won't support wake on
3414 * lan on a particular port
3416 switch (pdev->device) {
3417 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3418 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3420 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3421 case E1000_DEV_ID_82576_FIBER:
3422 case E1000_DEV_ID_82576_SERDES:
3423 /* Wake events only supported on port A for dual fiber
3424 * regardless of eeprom setting
3426 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3427 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3429 case E1000_DEV_ID_82576_QUAD_COPPER:
3430 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3431 /* if quad port adapter, disable WoL on all but port A */
3432 if (global_quad_port_a != 0)
3433 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3435 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3436 /* Reset for multiple quad port adapters */
3437 if (++global_quad_port_a == 4)
3438 global_quad_port_a = 0;
3441 /* If the device can't wake, don't set software support */
3442 if (!device_can_wakeup(&adapter->pdev->dev))
3443 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 /* initialize the wol settings based on the eeprom settings */
3447 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3448 adapter->wol |= E1000_WUFC_MAG;
3450 /* Some vendors want WoL disabled by default, but still supported */
3451 if ((hw->mac.type == e1000_i350) &&
3452 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3453 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3457 /* Some vendors want the ability to Use the EEPROM setting as
3458 * enable/disable only, and not for capability
3460 if (((hw->mac.type == e1000_i350) ||
3461 (hw->mac.type == e1000_i354)) &&
3462 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3463 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3466 if (hw->mac.type == e1000_i350) {
3467 if (((pdev->subsystem_device == 0x5001) ||
3468 (pdev->subsystem_device == 0x5002)) &&
3469 (hw->bus.func == 0)) {
3470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473 if (pdev->subsystem_device == 0x1F52)
3474 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477 device_set_wakeup_enable(&adapter->pdev->dev,
3478 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3480 /* reset the hardware with the new settings */
3483 /* Init the I2C interface */
3484 err = igb_init_i2c(adapter);
3486 dev_err(&pdev->dev, "failed to init i2c interface\n");
3490 /* let the f/w know that the h/w is now under the control of the
3493 igb_get_hw_control(adapter);
3495 strcpy(netdev->name, "eth%d");
3496 err = register_netdev(netdev);
3500 /* carrier off reporting is important to ethtool even BEFORE open */
3501 netif_carrier_off(netdev);
3503 #ifdef CONFIG_IGB_DCA
3504 if (dca_add_requester(&pdev->dev) == 0) {
3505 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3506 dev_info(&pdev->dev, "DCA enabled\n");
3507 igb_setup_dca(adapter);
3511 #ifdef CONFIG_IGB_HWMON
3512 /* Initialize the thermal sensor on i350 devices. */
3513 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3516 /* Read the NVM to determine if this i350 device supports an
3517 * external thermal sensor.
3519 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3520 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3521 adapter->ets = true;
3523 adapter->ets = false;
3524 if (igb_sysfs_init(adapter))
3526 "failed to allocate sysfs resources\n");
3528 adapter->ets = false;
3531 /* Check if Media Autosense is enabled */
3533 if (hw->dev_spec._82575.mas_capable)
3534 igb_init_mas(adapter);
3536 /* do hw tstamp init after resetting */
3537 igb_ptp_init(adapter);
3539 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3540 /* print bus type/speed/width info, not applicable to i354 */
3541 if (hw->mac.type != e1000_i354) {
3542 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3544 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3545 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3547 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3549 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3551 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3552 "Width x1" : "unknown"), netdev->dev_addr);
3555 if ((hw->mac.type == e1000_82576 &&
3556 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3557 (hw->mac.type >= e1000_i210 ||
3558 igb_get_flash_presence_i210(hw))) {
3559 ret_val = igb_read_part_string(hw, part_str,
3560 E1000_PBANUM_LENGTH);
3562 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3566 strcpy(part_str, "Unknown");
3567 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3568 dev_info(&pdev->dev,
3569 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3570 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3571 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3572 adapter->num_rx_queues, adapter->num_tx_queues);
3573 if (hw->phy.media_type == e1000_media_type_copper) {
3574 switch (hw->mac.type) {
3578 /* Enable EEE for internal copper PHY devices */
3579 err = igb_set_eee_i350(hw, true, true);
3581 (!hw->dev_spec._82575.eee_disable)) {
3582 adapter->eee_advert =
3583 MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 adapter->flags |= IGB_FLAG_EEE;
3588 if ((rd32(E1000_CTRL_EXT) &
3589 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3590 err = igb_set_eee_i354(hw, true, true);
3592 (!hw->dev_spec._82575.eee_disable)) {
3593 adapter->eee_advert =
3594 MDIO_EEE_100TX | MDIO_EEE_1000T;
3595 adapter->flags |= IGB_FLAG_EEE;
3604 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3606 pm_runtime_put_noidle(&pdev->dev);
3610 igb_release_hw_control(adapter);
3611 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3613 if (!igb_check_reset_block(hw))
3616 if (hw->flash_address)
3617 iounmap(hw->flash_address);
3619 kfree(adapter->mac_table);
3620 kfree(adapter->shadow_vfta);
3621 igb_clear_interrupt_scheme(adapter);
3622 #ifdef CONFIG_PCI_IOV
3623 igb_disable_sriov(pdev);
3625 pci_iounmap(pdev, adapter->io_addr);
3627 free_netdev(netdev);
3629 pci_disable_pcie_error_reporting(pdev);
3630 pci_release_mem_regions(pdev);
3633 pci_disable_device(pdev);
3637 #ifdef CONFIG_PCI_IOV
3638 static int igb_disable_sriov(struct pci_dev *pdev)
3640 struct net_device *netdev = pci_get_drvdata(pdev);
3641 struct igb_adapter *adapter = netdev_priv(netdev);
3642 struct e1000_hw *hw = &adapter->hw;
3643 unsigned long flags;
3645 /* reclaim resources allocated to VFs */
3646 if (adapter->vf_data) {
3647 /* disable iov and allow time for transactions to clear */
3648 if (pci_vfs_assigned(pdev)) {
3649 dev_warn(&pdev->dev,
3650 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3653 pci_disable_sriov(pdev);
3656 spin_lock_irqsave(&adapter->vfs_lock, flags);
3657 kfree(adapter->vf_mac_list);
3658 adapter->vf_mac_list = NULL;
3659 kfree(adapter->vf_data);
3660 adapter->vf_data = NULL;
3661 adapter->vfs_allocated_count = 0;
3662 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3663 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3666 dev_info(&pdev->dev, "IOV Disabled\n");
3668 /* Re-enable DMA Coalescing flag since IOV is turned off */
3669 adapter->flags |= IGB_FLAG_DMAC;
3675 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3677 struct net_device *netdev = pci_get_drvdata(pdev);
3678 struct igb_adapter *adapter = netdev_priv(netdev);
3679 int old_vfs = pci_num_vf(pdev);
3680 struct vf_mac_filter *mac_list;
3682 int num_vf_mac_filters, i;
3684 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3692 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3694 adapter->vfs_allocated_count = old_vfs;
3696 adapter->vfs_allocated_count = num_vfs;
3698 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3699 sizeof(struct vf_data_storage), GFP_KERNEL);
3701 /* if allocation failed then we do not support SR-IOV */
3702 if (!adapter->vf_data) {
3703 adapter->vfs_allocated_count = 0;
3708 /* Due to the limited number of RAR entries calculate potential
3709 * number of MAC filters available for the VFs. Reserve entries
3710 * for PF default MAC, PF MAC filters and at least one RAR entry
3711 * for each VF for VF MAC.
3713 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3714 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3715 adapter->vfs_allocated_count);
3717 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3718 sizeof(struct vf_mac_filter),
3721 mac_list = adapter->vf_mac_list;
3722 INIT_LIST_HEAD(&adapter->vf_macs.l);
3724 if (adapter->vf_mac_list) {
3725 /* Initialize list of VF MAC filters */
3726 for (i = 0; i < num_vf_mac_filters; i++) {
3728 mac_list->free = true;
3729 list_add(&mac_list->l, &adapter->vf_macs.l);
3733 /* If we could not allocate memory for the VF MAC filters
3734 * we can continue without this feature but warn user.
3737 "Unable to allocate memory for VF MAC filter list\n");
3740 /* only call pci_enable_sriov() if no VFs are allocated already */
3742 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3746 dev_info(&pdev->dev, "%d VFs allocated\n",
3747 adapter->vfs_allocated_count);
3748 for (i = 0; i < adapter->vfs_allocated_count; i++)
3749 igb_vf_configure(adapter, i);
3751 /* DMA Coalescing is not supported in IOV mode. */
3752 adapter->flags &= ~IGB_FLAG_DMAC;
3756 kfree(adapter->vf_mac_list);
3757 adapter->vf_mac_list = NULL;
3758 kfree(adapter->vf_data);
3759 adapter->vf_data = NULL;
3760 adapter->vfs_allocated_count = 0;
3767 * igb_remove_i2c - Cleanup I2C interface
3768 * @adapter: pointer to adapter structure
3770 static void igb_remove_i2c(struct igb_adapter *adapter)
3772 /* free the adapter bus structure */
3773 i2c_del_adapter(&adapter->i2c_adap);
3777 * igb_remove - Device Removal Routine
3778 * @pdev: PCI device information struct
3780 * igb_remove is called by the PCI subsystem to alert the driver
3781 * that it should release a PCI device. The could be caused by a
3782 * Hot-Plug event, or because the driver is going to be removed from
3785 static void igb_remove(struct pci_dev *pdev)
3787 struct net_device *netdev = pci_get_drvdata(pdev);
3788 struct igb_adapter *adapter = netdev_priv(netdev);
3789 struct e1000_hw *hw = &adapter->hw;
3791 pm_runtime_get_noresume(&pdev->dev);
3792 #ifdef CONFIG_IGB_HWMON
3793 igb_sysfs_exit(adapter);
3795 igb_remove_i2c(adapter);
3796 igb_ptp_stop(adapter);
3797 /* The watchdog timer may be rescheduled, so explicitly
3798 * disable watchdog from being rescheduled.
3800 set_bit(__IGB_DOWN, &adapter->state);
3801 del_timer_sync(&adapter->watchdog_timer);
3802 del_timer_sync(&adapter->phy_info_timer);
3804 cancel_work_sync(&adapter->reset_task);
3805 cancel_work_sync(&adapter->watchdog_task);
3807 #ifdef CONFIG_IGB_DCA
3808 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3809 dev_info(&pdev->dev, "DCA disabled\n");
3810 dca_remove_requester(&pdev->dev);
3811 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3812 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3816 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3817 * would have already happened in close and is redundant.
3819 igb_release_hw_control(adapter);
3821 #ifdef CONFIG_PCI_IOV
3823 igb_disable_sriov(pdev);
3827 unregister_netdev(netdev);
3829 igb_clear_interrupt_scheme(adapter);
3831 pci_iounmap(pdev, adapter->io_addr);
3832 if (hw->flash_address)
3833 iounmap(hw->flash_address);
3834 pci_release_mem_regions(pdev);
3836 kfree(adapter->mac_table);
3837 kfree(adapter->shadow_vfta);
3838 free_netdev(netdev);
3840 pci_disable_pcie_error_reporting(pdev);
3842 pci_disable_device(pdev);
3846 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847 * @adapter: board private structure to initialize
3849 * This function initializes the vf specific data storage and then attempts to
3850 * allocate the VFs. The reason for ordering it this way is because it is much
3851 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3852 * the memory for the VFs.
3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3856 #ifdef CONFIG_PCI_IOV
3857 struct pci_dev *pdev = adapter->pdev;
3858 struct e1000_hw *hw = &adapter->hw;
3860 /* Virtualization features not supported on i210 family. */
3861 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3864 /* Of the below we really only want the effect of getting
3865 * IGB_FLAG_HAS_MSIX set (if available), without which
3866 * igb_enable_sriov() has no effect.
3868 igb_set_interrupt_capability(adapter, true);
3869 igb_reset_interrupt_capability(adapter);
3871 pci_sriov_set_totalvfs(pdev, 7);
3872 igb_enable_sriov(pdev, max_vfs);
3874 #endif /* CONFIG_PCI_IOV */
3877 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3879 struct e1000_hw *hw = &adapter->hw;
3880 unsigned int max_rss_queues;
3882 /* Determine the maximum number of RSS queues supported. */
3883 switch (hw->mac.type) {
3885 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3889 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3892 /* I350 cannot do RSS and SR-IOV at the same time */
3893 if (!!adapter->vfs_allocated_count) {
3899 if (!!adapter->vfs_allocated_count) {
3907 max_rss_queues = IGB_MAX_RX_QUEUES;
3911 return max_rss_queues;
3914 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3918 max_rss_queues = igb_get_max_rss_queues(adapter);
3919 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3921 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3924 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3925 const u32 max_rss_queues)
3927 struct e1000_hw *hw = &adapter->hw;
3929 /* Determine if we need to pair queues. */
3930 switch (hw->mac.type) {
3933 /* Device supports enough interrupts without queue pairing. */
3941 /* If rss_queues > half of max_rss_queues, pair the queues in
3942 * order to conserve interrupts due to limited supply.
3944 if (adapter->rss_queues > (max_rss_queues / 2))
3945 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3947 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3953 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3954 * @adapter: board private structure to initialize
3956 * igb_sw_init initializes the Adapter private data structure.
3957 * Fields are initialized based on PCI device information and
3958 * OS network device settings (MTU size).
3960 static int igb_sw_init(struct igb_adapter *adapter)
3962 struct e1000_hw *hw = &adapter->hw;
3963 struct net_device *netdev = adapter->netdev;
3964 struct pci_dev *pdev = adapter->pdev;
3966 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3968 /* set default ring sizes */
3969 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3970 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3972 /* set default ITR values */
3973 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3974 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3976 /* set default work limits */
3977 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3979 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3980 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3982 spin_lock_init(&adapter->nfc_lock);
3983 spin_lock_init(&adapter->stats64_lock);
3985 /* init spinlock to avoid concurrency of VF resources */
3986 spin_lock_init(&adapter->vfs_lock);
3987 #ifdef CONFIG_PCI_IOV
3988 switch (hw->mac.type) {
3992 dev_warn(&pdev->dev,
3993 "Maximum of 7 VFs per PF, using max\n");
3994 max_vfs = adapter->vfs_allocated_count = 7;
3996 adapter->vfs_allocated_count = max_vfs;
3997 if (adapter->vfs_allocated_count)
3998 dev_warn(&pdev->dev,
3999 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4004 #endif /* CONFIG_PCI_IOV */
4006 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4007 adapter->flags |= IGB_FLAG_HAS_MSIX;
4009 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4010 sizeof(struct igb_mac_addr),
4012 if (!adapter->mac_table)
4015 igb_probe_vfs(adapter);
4017 igb_init_queue_configuration(adapter);
4019 /* Setup and initialize a copy of the hw vlan table array */
4020 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4022 if (!adapter->shadow_vfta)
4025 /* This call may decrease the number of queues */
4026 if (igb_init_interrupt_scheme(adapter, true)) {
4027 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4031 /* Explicitly disable IRQ since the NIC can be in any state. */
4032 igb_irq_disable(adapter);
4034 if (hw->mac.type >= e1000_i350)
4035 adapter->flags &= ~IGB_FLAG_DMAC;
4037 set_bit(__IGB_DOWN, &adapter->state);
4042 * __igb_open - Called when a network interface is made active
4043 * @netdev: network interface device structure
4044 * @resuming: indicates whether we are in a resume call
4046 * Returns 0 on success, negative value on failure
4048 * The open entry point is called when a network interface is made
4049 * active by the system (IFF_UP). At this point all resources needed
4050 * for transmit and receive operations are allocated, the interrupt
4051 * handler is registered with the OS, the watchdog timer is started,
4052 * and the stack is notified that the interface is ready.
4054 static int __igb_open(struct net_device *netdev, bool resuming)
4056 struct igb_adapter *adapter = netdev_priv(netdev);
4057 struct e1000_hw *hw = &adapter->hw;
4058 struct pci_dev *pdev = adapter->pdev;
4062 /* disallow open during test */
4063 if (test_bit(__IGB_TESTING, &adapter->state)) {
4069 pm_runtime_get_sync(&pdev->dev);
4071 netif_carrier_off(netdev);
4073 /* allocate transmit descriptors */
4074 err = igb_setup_all_tx_resources(adapter);
4078 /* allocate receive descriptors */
4079 err = igb_setup_all_rx_resources(adapter);
4083 igb_power_up_link(adapter);
4085 /* before we allocate an interrupt, we must be ready to handle it.
4086 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4087 * as soon as we call pci_request_irq, so we have to setup our
4088 * clean_rx handler before we do so.
4090 igb_configure(adapter);
4092 err = igb_request_irq(adapter);
4096 /* Notify the stack of the actual queue counts. */
4097 err = netif_set_real_num_tx_queues(adapter->netdev,
4098 adapter->num_tx_queues);
4100 goto err_set_queues;
4102 err = netif_set_real_num_rx_queues(adapter->netdev,
4103 adapter->num_rx_queues);
4105 goto err_set_queues;
4107 /* From here on the code is the same as igb_up() */
4108 clear_bit(__IGB_DOWN, &adapter->state);
4110 for (i = 0; i < adapter->num_q_vectors; i++)
4111 napi_enable(&(adapter->q_vector[i]->napi));
4113 /* Clear any pending interrupts. */
4117 igb_irq_enable(adapter);
4119 /* notify VFs that reset has been completed */
4120 if (adapter->vfs_allocated_count) {
4121 u32 reg_data = rd32(E1000_CTRL_EXT);
4123 reg_data |= E1000_CTRL_EXT_PFRSTD;
4124 wr32(E1000_CTRL_EXT, reg_data);
4127 netif_tx_start_all_queues(netdev);
4130 pm_runtime_put(&pdev->dev);
4132 /* start the watchdog. */
4133 hw->mac.get_link_status = 1;
4134 schedule_work(&adapter->watchdog_task);
4139 igb_free_irq(adapter);
4141 igb_release_hw_control(adapter);
4142 igb_power_down_link(adapter);
4143 igb_free_all_rx_resources(adapter);
4145 igb_free_all_tx_resources(adapter);
4149 pm_runtime_put(&pdev->dev);
4154 int igb_open(struct net_device *netdev)
4156 return __igb_open(netdev, false);
4160 * __igb_close - Disables a network interface
4161 * @netdev: network interface device structure
4162 * @suspending: indicates we are in a suspend call
4164 * Returns 0, this is not allowed to fail
4166 * The close entry point is called when an interface is de-activated
4167 * by the OS. The hardware is still under the driver's control, but
4168 * needs to be disabled. A global MAC reset is issued to stop the
4169 * hardware, and all transmit and receive resources are freed.
4171 static int __igb_close(struct net_device *netdev, bool suspending)
4173 struct igb_adapter *adapter = netdev_priv(netdev);
4174 struct pci_dev *pdev = adapter->pdev;
4176 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4179 pm_runtime_get_sync(&pdev->dev);
4182 igb_free_irq(adapter);
4184 igb_free_all_tx_resources(adapter);
4185 igb_free_all_rx_resources(adapter);
4188 pm_runtime_put_sync(&pdev->dev);
4192 int igb_close(struct net_device *netdev)
4194 if (netif_device_present(netdev) || netdev->dismantle)
4195 return __igb_close(netdev, false);
4200 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4201 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4203 * Return 0 on success, negative on failure
4205 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4207 struct device *dev = tx_ring->dev;
4210 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4212 tx_ring->tx_buffer_info = vmalloc(size);
4213 if (!tx_ring->tx_buffer_info)
4216 /* round up to nearest 4K */
4217 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4218 tx_ring->size = ALIGN(tx_ring->size, 4096);
4220 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4221 &tx_ring->dma, GFP_KERNEL);
4225 tx_ring->next_to_use = 0;
4226 tx_ring->next_to_clean = 0;
4231 vfree(tx_ring->tx_buffer_info);
4232 tx_ring->tx_buffer_info = NULL;
4233 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4238 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4239 * (Descriptors) for all queues
4240 * @adapter: board private structure
4242 * Return 0 on success, negative on failure
4244 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4246 struct pci_dev *pdev = adapter->pdev;
4249 for (i = 0; i < adapter->num_tx_queues; i++) {
4250 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4253 "Allocation for Tx Queue %u failed\n", i);
4254 for (i--; i >= 0; i--)
4255 igb_free_tx_resources(adapter->tx_ring[i]);
4264 * igb_setup_tctl - configure the transmit control registers
4265 * @adapter: Board private structure
4267 void igb_setup_tctl(struct igb_adapter *adapter)
4269 struct e1000_hw *hw = &adapter->hw;
4272 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4273 wr32(E1000_TXDCTL(0), 0);
4275 /* Program the Transmit Control Register */
4276 tctl = rd32(E1000_TCTL);
4277 tctl &= ~E1000_TCTL_CT;
4278 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4279 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4281 igb_config_collision_dist(hw);
4283 /* Enable transmits */
4284 tctl |= E1000_TCTL_EN;
4286 wr32(E1000_TCTL, tctl);
4290 * igb_configure_tx_ring - Configure transmit ring after Reset
4291 * @adapter: board private structure
4292 * @ring: tx ring to configure
4294 * Configure a transmit ring after a reset.
4296 void igb_configure_tx_ring(struct igb_adapter *adapter,
4297 struct igb_ring *ring)
4299 struct e1000_hw *hw = &adapter->hw;
4301 u64 tdba = ring->dma;
4302 int reg_idx = ring->reg_idx;
4304 wr32(E1000_TDLEN(reg_idx),
4305 ring->count * sizeof(union e1000_adv_tx_desc));
4306 wr32(E1000_TDBAL(reg_idx),
4307 tdba & 0x00000000ffffffffULL);
4308 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4310 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4311 wr32(E1000_TDH(reg_idx), 0);
4312 writel(0, ring->tail);
4314 txdctl |= IGB_TX_PTHRESH;
4315 txdctl |= IGB_TX_HTHRESH << 8;
4316 txdctl |= IGB_TX_WTHRESH << 16;
4318 /* reinitialize tx_buffer_info */
4319 memset(ring->tx_buffer_info, 0,
4320 sizeof(struct igb_tx_buffer) * ring->count);
4322 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4323 wr32(E1000_TXDCTL(reg_idx), txdctl);
4327 * igb_configure_tx - Configure transmit Unit after Reset
4328 * @adapter: board private structure
4330 * Configure the Tx unit of the MAC after a reset.
4332 static void igb_configure_tx(struct igb_adapter *adapter)
4334 struct e1000_hw *hw = &adapter->hw;
4337 /* disable the queues */
4338 for (i = 0; i < adapter->num_tx_queues; i++)
4339 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4342 usleep_range(10000, 20000);
4344 for (i = 0; i < adapter->num_tx_queues; i++)
4345 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4349 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4350 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4352 * Returns 0 on success, negative on failure
4354 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4356 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4357 struct device *dev = rx_ring->dev;
4360 /* XDP RX-queue info */
4361 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4362 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4363 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 rx_ring->queue_index, 0);
4366 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4367 rx_ring->queue_index);
4371 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4373 rx_ring->rx_buffer_info = vmalloc(size);
4374 if (!rx_ring->rx_buffer_info)
4377 /* Round up to nearest 4K */
4378 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4379 rx_ring->size = ALIGN(rx_ring->size, 4096);
4381 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4382 &rx_ring->dma, GFP_KERNEL);
4386 rx_ring->next_to_alloc = 0;
4387 rx_ring->next_to_clean = 0;
4388 rx_ring->next_to_use = 0;
4390 rx_ring->xdp_prog = adapter->xdp_prog;
4395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4396 vfree(rx_ring->rx_buffer_info);
4397 rx_ring->rx_buffer_info = NULL;
4398 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4403 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4404 * (Descriptors) for all queues
4405 * @adapter: board private structure
4407 * Return 0 on success, negative on failure
4409 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4411 struct pci_dev *pdev = adapter->pdev;
4414 for (i = 0; i < adapter->num_rx_queues; i++) {
4415 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4418 "Allocation for Rx Queue %u failed\n", i);
4419 for (i--; i >= 0; i--)
4420 igb_free_rx_resources(adapter->rx_ring[i]);
4429 * igb_setup_mrqc - configure the multiple receive queue control registers
4430 * @adapter: Board private structure
4432 static void igb_setup_mrqc(struct igb_adapter *adapter)
4434 struct e1000_hw *hw = &adapter->hw;
4436 u32 j, num_rx_queues;
4439 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4440 for (j = 0; j < 10; j++)
4441 wr32(E1000_RSSRK(j), rss_key[j]);
4443 num_rx_queues = adapter->rss_queues;
4445 switch (hw->mac.type) {
4447 /* 82576 supports 2 RSS queues for SR-IOV */
4448 if (adapter->vfs_allocated_count)
4455 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4456 for (j = 0; j < IGB_RETA_SIZE; j++)
4457 adapter->rss_indir_tbl[j] =
4458 (j * num_rx_queues) / IGB_RETA_SIZE;
4459 adapter->rss_indir_tbl_init = num_rx_queues;
4461 igb_write_rss_indir_tbl(adapter);
4463 /* Disable raw packet checksumming so that RSS hash is placed in
4464 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4465 * offloads as they are enabled by default
4467 rxcsum = rd32(E1000_RXCSUM);
4468 rxcsum |= E1000_RXCSUM_PCSD;
4470 if (adapter->hw.mac.type >= e1000_82576)
4471 /* Enable Receive Checksum Offload for SCTP */
4472 rxcsum |= E1000_RXCSUM_CRCOFL;
4474 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4475 wr32(E1000_RXCSUM, rxcsum);
4477 /* Generate RSS hash based on packet types, TCP/UDP
4478 * port numbers and/or IPv4/v6 src and dst addresses
4480 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4481 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4482 E1000_MRQC_RSS_FIELD_IPV6 |
4483 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4484 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4486 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4487 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4488 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4489 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4491 /* If VMDq is enabled then we set the appropriate mode for that, else
4492 * we default to RSS so that an RSS hash is calculated per packet even
4493 * if we are only using one queue
4495 if (adapter->vfs_allocated_count) {
4496 if (hw->mac.type > e1000_82575) {
4497 /* Set the default pool for the PF's first queue */
4498 u32 vtctl = rd32(E1000_VT_CTL);
4500 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4501 E1000_VT_CTL_DISABLE_DEF_POOL);
4502 vtctl |= adapter->vfs_allocated_count <<
4503 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4504 wr32(E1000_VT_CTL, vtctl);
4506 if (adapter->rss_queues > 1)
4507 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4509 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4511 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4513 igb_vmm_control(adapter);
4515 wr32(E1000_MRQC, mrqc);
4519 * igb_setup_rctl - configure the receive control registers
4520 * @adapter: Board private structure
4522 void igb_setup_rctl(struct igb_adapter *adapter)
4524 struct e1000_hw *hw = &adapter->hw;
4527 rctl = rd32(E1000_RCTL);
4529 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4530 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4532 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4533 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4535 /* enable stripping of CRC. It's unlikely this will break BMC
4536 * redirection as it did with e1000. Newer features require
4537 * that the HW strips the CRC.
4539 rctl |= E1000_RCTL_SECRC;
4541 /* disable store bad packets and clear size bits. */
4542 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4544 /* enable LPE to allow for reception of jumbo frames */
4545 rctl |= E1000_RCTL_LPE;
4547 /* disable queue 0 to prevent tail write w/o re-config */
4548 wr32(E1000_RXDCTL(0), 0);
4550 /* Attention!!! For SR-IOV PF driver operations you must enable
4551 * queue drop for all VF and PF queues to prevent head of line blocking
4552 * if an un-trusted VF does not provide descriptors to hardware.
4554 if (adapter->vfs_allocated_count) {
4555 /* set all queue drop enable bits */
4556 wr32(E1000_QDE, ALL_QUEUES);
4559 /* This is useful for sniffing bad packets. */
4560 if (adapter->netdev->features & NETIF_F_RXALL) {
4561 /* UPE and MPE will be handled by normal PROMISC logic
4562 * in e1000e_set_rx_mode
4564 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4565 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4566 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4568 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4569 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4570 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4571 * and that breaks VLANs.
4575 wr32(E1000_RCTL, rctl);
4578 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4581 struct e1000_hw *hw = &adapter->hw;
4584 if (size > MAX_JUMBO_FRAME_SIZE)
4585 size = MAX_JUMBO_FRAME_SIZE;
4587 vmolr = rd32(E1000_VMOLR(vfn));
4588 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4589 vmolr |= size | E1000_VMOLR_LPE;
4590 wr32(E1000_VMOLR(vfn), vmolr);
4595 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4596 int vfn, bool enable)
4598 struct e1000_hw *hw = &adapter->hw;
4601 if (hw->mac.type < e1000_82576)
4604 if (hw->mac.type == e1000_i350)
4605 reg = E1000_DVMOLR(vfn);
4607 reg = E1000_VMOLR(vfn);
4611 val |= E1000_VMOLR_STRVLAN;
4613 val &= ~(E1000_VMOLR_STRVLAN);
4617 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4620 struct e1000_hw *hw = &adapter->hw;
4623 /* This register exists only on 82576 and newer so if we are older then
4624 * we should exit and do nothing
4626 if (hw->mac.type < e1000_82576)
4629 vmolr = rd32(E1000_VMOLR(vfn));
4631 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4633 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4635 /* clear all bits that might not be set */
4636 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4638 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4639 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4640 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4643 if (vfn <= adapter->vfs_allocated_count)
4644 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4646 wr32(E1000_VMOLR(vfn), vmolr);
4650 * igb_setup_srrctl - configure the split and replication receive control
4652 * @adapter: Board private structure
4653 * @ring: receive ring to be configured
4655 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4657 struct e1000_hw *hw = &adapter->hw;
4658 int reg_idx = ring->reg_idx;
4661 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4662 if (ring_uses_large_buffer(ring))
4663 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4665 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4666 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4667 if (hw->mac.type >= e1000_82580)
4668 srrctl |= E1000_SRRCTL_TIMESTAMP;
4669 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4670 * queues and rx flow control is disabled
4672 if (adapter->vfs_allocated_count ||
4673 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4674 adapter->num_rx_queues > 1))
4675 srrctl |= E1000_SRRCTL_DROP_EN;
4677 wr32(E1000_SRRCTL(reg_idx), srrctl);
4681 * igb_configure_rx_ring - Configure a receive ring after Reset
4682 * @adapter: board private structure
4683 * @ring: receive ring to be configured
4685 * Configure the Rx unit of the MAC after a reset.
4687 void igb_configure_rx_ring(struct igb_adapter *adapter,
4688 struct igb_ring *ring)
4690 struct e1000_hw *hw = &adapter->hw;
4691 union e1000_adv_rx_desc *rx_desc;
4692 u64 rdba = ring->dma;
4693 int reg_idx = ring->reg_idx;
4696 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4697 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4698 MEM_TYPE_PAGE_SHARED, NULL));
4700 /* disable the queue */
4701 wr32(E1000_RXDCTL(reg_idx), 0);
4703 /* Set DMA base address registers */
4704 wr32(E1000_RDBAL(reg_idx),
4705 rdba & 0x00000000ffffffffULL);
4706 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4707 wr32(E1000_RDLEN(reg_idx),
4708 ring->count * sizeof(union e1000_adv_rx_desc));
4710 /* initialize head and tail */
4711 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4712 wr32(E1000_RDH(reg_idx), 0);
4713 writel(0, ring->tail);
4715 /* set descriptor configuration */
4716 igb_setup_srrctl(adapter, ring);
4718 /* set filtering for VMDQ pools */
4719 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4721 rxdctl |= IGB_RX_PTHRESH;
4722 rxdctl |= IGB_RX_HTHRESH << 8;
4723 rxdctl |= IGB_RX_WTHRESH << 16;
4725 /* initialize rx_buffer_info */
4726 memset(ring->rx_buffer_info, 0,
4727 sizeof(struct igb_rx_buffer) * ring->count);
4729 /* initialize Rx descriptor 0 */
4730 rx_desc = IGB_RX_DESC(ring, 0);
4731 rx_desc->wb.upper.length = 0;
4733 /* enable receive descriptor fetching */
4734 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4735 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4738 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4739 struct igb_ring *rx_ring)
4741 /* set build_skb and buffer size flags */
4742 clear_ring_build_skb_enabled(rx_ring);
4743 clear_ring_uses_large_buffer(rx_ring);
4745 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4748 set_ring_build_skb_enabled(rx_ring);
4750 #if (PAGE_SIZE < 8192)
4751 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4754 set_ring_uses_large_buffer(rx_ring);
4759 * igb_configure_rx - Configure receive Unit after Reset
4760 * @adapter: board private structure
4762 * Configure the Rx unit of the MAC after a reset.
4764 static void igb_configure_rx(struct igb_adapter *adapter)
4768 /* set the correct pool for the PF default MAC address in entry 0 */
4769 igb_set_default_mac_filter(adapter);
4771 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4772 * the Base and Length of the Rx Descriptor Ring
4774 for (i = 0; i < adapter->num_rx_queues; i++) {
4775 struct igb_ring *rx_ring = adapter->rx_ring[i];
4777 igb_set_rx_buffer_len(adapter, rx_ring);
4778 igb_configure_rx_ring(adapter, rx_ring);
4783 * igb_free_tx_resources - Free Tx Resources per Queue
4784 * @tx_ring: Tx descriptor ring for a specific queue
4786 * Free all transmit software resources
4788 void igb_free_tx_resources(struct igb_ring *tx_ring)
4790 igb_clean_tx_ring(tx_ring);
4792 vfree(tx_ring->tx_buffer_info);
4793 tx_ring->tx_buffer_info = NULL;
4795 /* if not set, then don't free */
4799 dma_free_coherent(tx_ring->dev, tx_ring->size,
4800 tx_ring->desc, tx_ring->dma);
4802 tx_ring->desc = NULL;
4806 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4807 * @adapter: board private structure
4809 * Free all transmit software resources
4811 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4815 for (i = 0; i < adapter->num_tx_queues; i++)
4816 if (adapter->tx_ring[i])
4817 igb_free_tx_resources(adapter->tx_ring[i]);
4821 * igb_clean_tx_ring - Free Tx Buffers
4822 * @tx_ring: ring to be cleaned
4824 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4826 u16 i = tx_ring->next_to_clean;
4827 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4829 while (i != tx_ring->next_to_use) {
4830 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4832 /* Free all the Tx ring sk_buffs or xdp frames */
4833 if (tx_buffer->type == IGB_TYPE_SKB)
4834 dev_kfree_skb_any(tx_buffer->skb);
4836 xdp_return_frame(tx_buffer->xdpf);
4838 /* unmap skb header data */
4839 dma_unmap_single(tx_ring->dev,
4840 dma_unmap_addr(tx_buffer, dma),
4841 dma_unmap_len(tx_buffer, len),
4844 /* check for eop_desc to determine the end of the packet */
4845 eop_desc = tx_buffer->next_to_watch;
4846 tx_desc = IGB_TX_DESC(tx_ring, i);
4848 /* unmap remaining buffers */
4849 while (tx_desc != eop_desc) {
4853 if (unlikely(i == tx_ring->count)) {
4855 tx_buffer = tx_ring->tx_buffer_info;
4856 tx_desc = IGB_TX_DESC(tx_ring, 0);
4859 /* unmap any remaining paged data */
4860 if (dma_unmap_len(tx_buffer, len))
4861 dma_unmap_page(tx_ring->dev,
4862 dma_unmap_addr(tx_buffer, dma),
4863 dma_unmap_len(tx_buffer, len),
4867 tx_buffer->next_to_watch = NULL;
4869 /* move us one more past the eop_desc for start of next pkt */
4872 if (unlikely(i == tx_ring->count)) {
4874 tx_buffer = tx_ring->tx_buffer_info;
4878 /* reset BQL for queue */
4879 netdev_tx_reset_queue(txring_txq(tx_ring));
4881 /* reset next_to_use and next_to_clean */
4882 tx_ring->next_to_use = 0;
4883 tx_ring->next_to_clean = 0;
4887 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4888 * @adapter: board private structure
4890 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4894 for (i = 0; i < adapter->num_tx_queues; i++)
4895 if (adapter->tx_ring[i])
4896 igb_clean_tx_ring(adapter->tx_ring[i]);
4900 * igb_free_rx_resources - Free Rx Resources
4901 * @rx_ring: ring to clean the resources from
4903 * Free all receive software resources
4905 void igb_free_rx_resources(struct igb_ring *rx_ring)
4907 igb_clean_rx_ring(rx_ring);
4909 rx_ring->xdp_prog = NULL;
4910 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4911 vfree(rx_ring->rx_buffer_info);
4912 rx_ring->rx_buffer_info = NULL;
4914 /* if not set, then don't free */
4918 dma_free_coherent(rx_ring->dev, rx_ring->size,
4919 rx_ring->desc, rx_ring->dma);
4921 rx_ring->desc = NULL;
4925 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4926 * @adapter: board private structure
4928 * Free all receive software resources
4930 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4934 for (i = 0; i < adapter->num_rx_queues; i++)
4935 if (adapter->rx_ring[i])
4936 igb_free_rx_resources(adapter->rx_ring[i]);
4940 * igb_clean_rx_ring - Free Rx Buffers per Queue
4941 * @rx_ring: ring to free buffers from
4943 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4945 u16 i = rx_ring->next_to_clean;
4947 dev_kfree_skb(rx_ring->skb);
4948 rx_ring->skb = NULL;
4950 /* Free all the Rx ring sk_buffs */
4951 while (i != rx_ring->next_to_alloc) {
4952 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4954 /* Invalidate cache lines that may have been written to by
4955 * device so that we avoid corrupting memory.
4957 dma_sync_single_range_for_cpu(rx_ring->dev,
4959 buffer_info->page_offset,
4960 igb_rx_bufsz(rx_ring),
4963 /* free resources associated with mapping */
4964 dma_unmap_page_attrs(rx_ring->dev,
4966 igb_rx_pg_size(rx_ring),
4969 __page_frag_cache_drain(buffer_info->page,
4970 buffer_info->pagecnt_bias);
4973 if (i == rx_ring->count)
4977 rx_ring->next_to_alloc = 0;
4978 rx_ring->next_to_clean = 0;
4979 rx_ring->next_to_use = 0;
4983 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4984 * @adapter: board private structure
4986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4990 for (i = 0; i < adapter->num_rx_queues; i++)
4991 if (adapter->rx_ring[i])
4992 igb_clean_rx_ring(adapter->rx_ring[i]);
4996 * igb_set_mac - Change the Ethernet Address of the NIC
4997 * @netdev: network interface device structure
4998 * @p: pointer to an address structure
5000 * Returns 0 on success, negative on failure
5002 static int igb_set_mac(struct net_device *netdev, void *p)
5004 struct igb_adapter *adapter = netdev_priv(netdev);
5005 struct e1000_hw *hw = &adapter->hw;
5006 struct sockaddr *addr = p;
5008 if (!is_valid_ether_addr(addr->sa_data))
5009 return -EADDRNOTAVAIL;
5011 eth_hw_addr_set(netdev, addr->sa_data);
5012 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5014 /* set the correct pool for the new PF MAC address in entry 0 */
5015 igb_set_default_mac_filter(adapter);
5021 * igb_write_mc_addr_list - write multicast addresses to MTA
5022 * @netdev: network interface device structure
5024 * Writes multicast address list to the MTA hash table.
5025 * Returns: -ENOMEM on failure
5026 * 0 on no addresses written
5027 * X on writing X addresses to MTA
5029 static int igb_write_mc_addr_list(struct net_device *netdev)
5031 struct igb_adapter *adapter = netdev_priv(netdev);
5032 struct e1000_hw *hw = &adapter->hw;
5033 struct netdev_hw_addr *ha;
5037 if (netdev_mc_empty(netdev)) {
5038 /* nothing to program, so clear mc list */
5039 igb_update_mc_addr_list(hw, NULL, 0);
5040 igb_restore_vf_multicasts(adapter);
5044 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5048 /* The shared function expects a packed array of only addresses. */
5050 netdev_for_each_mc_addr(ha, netdev)
5051 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5053 igb_update_mc_addr_list(hw, mta_list, i);
5056 return netdev_mc_count(netdev);
5059 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5061 struct e1000_hw *hw = &adapter->hw;
5064 switch (hw->mac.type) {
5068 /* VLAN filtering needed for VLAN prio filter */
5069 if (adapter->netdev->features & NETIF_F_NTUPLE)
5075 /* VLAN filtering needed for pool filtering */
5076 if (adapter->vfs_allocated_count)
5083 /* We are already in VLAN promisc, nothing to do */
5084 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5087 if (!adapter->vfs_allocated_count)
5090 /* Add PF to all active pools */
5091 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5093 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5094 u32 vlvf = rd32(E1000_VLVF(i));
5097 wr32(E1000_VLVF(i), vlvf);
5101 /* Set all bits in the VLAN filter table array */
5102 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5103 hw->mac.ops.write_vfta(hw, i, ~0U);
5105 /* Set flag so we don't redo unnecessary work */
5106 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5111 #define VFTA_BLOCK_SIZE 8
5112 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5114 struct e1000_hw *hw = &adapter->hw;
5115 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5116 u32 vid_start = vfta_offset * 32;
5117 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5118 u32 i, vid, word, bits, pf_id;
5120 /* guarantee that we don't scrub out management VLAN */
5121 vid = adapter->mng_vlan_id;
5122 if (vid >= vid_start && vid < vid_end)
5123 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5125 if (!adapter->vfs_allocated_count)
5128 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5130 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5131 u32 vlvf = rd32(E1000_VLVF(i));
5133 /* pull VLAN ID from VLVF */
5134 vid = vlvf & VLAN_VID_MASK;
5136 /* only concern ourselves with a certain range */
5137 if (vid < vid_start || vid >= vid_end)
5140 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5141 /* record VLAN ID in VFTA */
5142 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5144 /* if PF is part of this then continue */
5145 if (test_bit(vid, adapter->active_vlans))
5149 /* remove PF from the pool */
5151 bits &= rd32(E1000_VLVF(i));
5152 wr32(E1000_VLVF(i), bits);
5156 /* extract values from active_vlans and write back to VFTA */
5157 for (i = VFTA_BLOCK_SIZE; i--;) {
5158 vid = (vfta_offset + i) * 32;
5159 word = vid / BITS_PER_LONG;
5160 bits = vid % BITS_PER_LONG;
5162 vfta[i] |= adapter->active_vlans[word] >> bits;
5164 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5168 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5172 /* We are not in VLAN promisc, nothing to do */
5173 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5176 /* Set flag so we don't redo unnecessary work */
5177 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5179 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5180 igb_scrub_vfta(adapter, i);
5184 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5185 * @netdev: network interface device structure
5187 * The set_rx_mode entry point is called whenever the unicast or multicast
5188 * address lists or the network interface flags are updated. This routine is
5189 * responsible for configuring the hardware for proper unicast, multicast,
5190 * promiscuous mode, and all-multi behavior.
5192 static void igb_set_rx_mode(struct net_device *netdev)
5194 struct igb_adapter *adapter = netdev_priv(netdev);
5195 struct e1000_hw *hw = &adapter->hw;
5196 unsigned int vfn = adapter->vfs_allocated_count;
5197 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5200 /* Check for Promiscuous and All Multicast modes */
5201 if (netdev->flags & IFF_PROMISC) {
5202 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5203 vmolr |= E1000_VMOLR_MPME;
5205 /* enable use of UTA filter to force packets to default pool */
5206 if (hw->mac.type == e1000_82576)
5207 vmolr |= E1000_VMOLR_ROPE;
5209 if (netdev->flags & IFF_ALLMULTI) {
5210 rctl |= E1000_RCTL_MPE;
5211 vmolr |= E1000_VMOLR_MPME;
5213 /* Write addresses to the MTA, if the attempt fails
5214 * then we should just turn on promiscuous mode so
5215 * that we can at least receive multicast traffic
5217 count = igb_write_mc_addr_list(netdev);
5219 rctl |= E1000_RCTL_MPE;
5220 vmolr |= E1000_VMOLR_MPME;
5222 vmolr |= E1000_VMOLR_ROMPE;
5227 /* Write addresses to available RAR registers, if there is not
5228 * sufficient space to store all the addresses then enable
5229 * unicast promiscuous mode
5231 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5232 rctl |= E1000_RCTL_UPE;
5233 vmolr |= E1000_VMOLR_ROPE;
5236 /* enable VLAN filtering by default */
5237 rctl |= E1000_RCTL_VFE;
5239 /* disable VLAN filtering for modes that require it */
5240 if ((netdev->flags & IFF_PROMISC) ||
5241 (netdev->features & NETIF_F_RXALL)) {
5242 /* if we fail to set all rules then just clear VFE */
5243 if (igb_vlan_promisc_enable(adapter))
5244 rctl &= ~E1000_RCTL_VFE;
5246 igb_vlan_promisc_disable(adapter);
5249 /* update state of unicast, multicast, and VLAN filtering modes */
5250 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5252 wr32(E1000_RCTL, rctl);
5254 #if (PAGE_SIZE < 8192)
5255 if (!adapter->vfs_allocated_count) {
5256 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5257 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5260 wr32(E1000_RLPML, rlpml);
5262 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5263 * the VMOLR to enable the appropriate modes. Without this workaround
5264 * we will have issues with VLAN tag stripping not being done for frames
5265 * that are only arriving because we are the default pool
5267 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5270 /* set UTA to appropriate mode */
5271 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5273 vmolr |= rd32(E1000_VMOLR(vfn)) &
5274 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5276 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5277 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5278 #if (PAGE_SIZE < 8192)
5279 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5280 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5283 vmolr |= MAX_JUMBO_FRAME_SIZE;
5284 vmolr |= E1000_VMOLR_LPE;
5286 wr32(E1000_VMOLR(vfn), vmolr);
5288 igb_restore_vf_multicasts(adapter);
5291 static void igb_check_wvbr(struct igb_adapter *adapter)
5293 struct e1000_hw *hw = &adapter->hw;
5296 switch (hw->mac.type) {
5299 wvbr = rd32(E1000_WVBR);
5307 adapter->wvbr |= wvbr;
5310 #define IGB_STAGGERED_QUEUE_OFFSET 8
5312 static void igb_spoof_check(struct igb_adapter *adapter)
5319 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5320 if (adapter->wvbr & BIT(j) ||
5321 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5322 dev_warn(&adapter->pdev->dev,
5323 "Spoof event(s) detected on VF %d\n", j);
5326 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5331 /* Need to wait a few seconds after link up to get diagnostic information from
5334 static void igb_update_phy_info(struct timer_list *t)
5336 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5337 igb_get_phy_info(&adapter->hw);
5341 * igb_has_link - check shared code for link and determine up/down
5342 * @adapter: pointer to driver private info
5344 bool igb_has_link(struct igb_adapter *adapter)
5346 struct e1000_hw *hw = &adapter->hw;
5347 bool link_active = false;
5349 /* get_link_status is set on LSC (link status) interrupt or
5350 * rx sequence error interrupt. get_link_status will stay
5351 * false until the e1000_check_for_link establishes link
5352 * for copper adapters ONLY
5354 switch (hw->phy.media_type) {
5355 case e1000_media_type_copper:
5356 if (!hw->mac.get_link_status)
5359 case e1000_media_type_internal_serdes:
5360 hw->mac.ops.check_for_link(hw);
5361 link_active = !hw->mac.get_link_status;
5364 case e1000_media_type_unknown:
5368 if (((hw->mac.type == e1000_i210) ||
5369 (hw->mac.type == e1000_i211)) &&
5370 (hw->phy.id == I210_I_PHY_ID)) {
5371 if (!netif_carrier_ok(adapter->netdev)) {
5372 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5373 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5374 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5375 adapter->link_check_timeout = jiffies;
5382 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5385 u32 ctrl_ext, thstat;
5387 /* check for thermal sensor event on i350 copper only */
5388 if (hw->mac.type == e1000_i350) {
5389 thstat = rd32(E1000_THSTAT);
5390 ctrl_ext = rd32(E1000_CTRL_EXT);
5392 if ((hw->phy.media_type == e1000_media_type_copper) &&
5393 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5394 ret = !!(thstat & event);
5401 * igb_check_lvmmc - check for malformed packets received
5402 * and indicated in LVMMC register
5403 * @adapter: pointer to adapter
5405 static void igb_check_lvmmc(struct igb_adapter *adapter)
5407 struct e1000_hw *hw = &adapter->hw;
5410 lvmmc = rd32(E1000_LVMMC);
5412 if (unlikely(net_ratelimit())) {
5413 netdev_warn(adapter->netdev,
5414 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5421 * igb_watchdog - Timer Call-back
5422 * @t: pointer to timer_list containing our private info pointer
5424 static void igb_watchdog(struct timer_list *t)
5426 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5427 /* Do the rest outside of interrupt context */
5428 schedule_work(&adapter->watchdog_task);
5431 static void igb_watchdog_task(struct work_struct *work)
5433 struct igb_adapter *adapter = container_of(work,
5436 struct e1000_hw *hw = &adapter->hw;
5437 struct e1000_phy_info *phy = &hw->phy;
5438 struct net_device *netdev = adapter->netdev;
5442 u16 phy_data, retry_count = 20;
5444 link = igb_has_link(adapter);
5446 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5447 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5448 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5453 /* Force link down if we have fiber to swap to */
5454 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5455 if (hw->phy.media_type == e1000_media_type_copper) {
5456 connsw = rd32(E1000_CONNSW);
5457 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5462 /* Perform a reset if the media type changed. */
5463 if (hw->dev_spec._82575.media_changed) {
5464 hw->dev_spec._82575.media_changed = false;
5465 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5468 /* Cancel scheduled suspend requests. */
5469 pm_runtime_resume(netdev->dev.parent);
5471 if (!netif_carrier_ok(netdev)) {
5474 hw->mac.ops.get_speed_and_duplex(hw,
5475 &adapter->link_speed,
5476 &adapter->link_duplex);
5478 ctrl = rd32(E1000_CTRL);
5479 /* Links status message must follow this format */
5481 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5483 adapter->link_speed,
5484 adapter->link_duplex == FULL_DUPLEX ?
5486 (ctrl & E1000_CTRL_TFCE) &&
5487 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5488 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5489 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5491 /* disable EEE if enabled */
5492 if ((adapter->flags & IGB_FLAG_EEE) &&
5493 (adapter->link_duplex == HALF_DUPLEX)) {
5494 dev_info(&adapter->pdev->dev,
5495 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5496 adapter->hw.dev_spec._82575.eee_disable = true;
5497 adapter->flags &= ~IGB_FLAG_EEE;
5500 /* check if SmartSpeed worked */
5501 igb_check_downshift(hw);
5502 if (phy->speed_downgraded)
5503 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5505 /* check for thermal sensor event */
5506 if (igb_thermal_sensor_event(hw,
5507 E1000_THSTAT_LINK_THROTTLE))
5508 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5510 /* adjust timeout factor according to speed/duplex */
5511 adapter->tx_timeout_factor = 1;
5512 switch (adapter->link_speed) {
5514 adapter->tx_timeout_factor = 14;
5517 /* maybe add some timeout factor ? */
5521 if (adapter->link_speed != SPEED_1000 ||
5522 !hw->phy.ops.read_reg)
5525 /* wait for Remote receiver status OK */
5527 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5529 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5533 goto retry_read_status;
5534 } else if (!retry_count) {
5535 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5538 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5541 netif_carrier_on(netdev);
5543 igb_ping_all_vfs(adapter);
5544 igb_check_vf_rate_limit(adapter);
5546 /* link state has changed, schedule phy info update */
5547 if (!test_bit(__IGB_DOWN, &adapter->state))
5548 mod_timer(&adapter->phy_info_timer,
5549 round_jiffies(jiffies + 2 * HZ));
5552 if (netif_carrier_ok(netdev)) {
5553 adapter->link_speed = 0;
5554 adapter->link_duplex = 0;
5556 /* check for thermal sensor event */
5557 if (igb_thermal_sensor_event(hw,
5558 E1000_THSTAT_PWR_DOWN)) {
5559 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5562 /* Links status message must follow this format */
5563 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5565 netif_carrier_off(netdev);
5567 igb_ping_all_vfs(adapter);
5569 /* link state has changed, schedule phy info update */
5570 if (!test_bit(__IGB_DOWN, &adapter->state))
5571 mod_timer(&adapter->phy_info_timer,
5572 round_jiffies(jiffies + 2 * HZ));
5574 /* link is down, time to check for alternate media */
5575 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5576 igb_check_swap_media(adapter);
5577 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5578 schedule_work(&adapter->reset_task);
5579 /* return immediately */
5583 pm_schedule_suspend(netdev->dev.parent,
5586 /* also check for alternate media here */
5587 } else if (!netif_carrier_ok(netdev) &&
5588 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5589 igb_check_swap_media(adapter);
5590 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5591 schedule_work(&adapter->reset_task);
5592 /* return immediately */
5598 spin_lock(&adapter->stats64_lock);
5599 igb_update_stats(adapter);
5600 spin_unlock(&adapter->stats64_lock);
5602 for (i = 0; i < adapter->num_tx_queues; i++) {
5603 struct igb_ring *tx_ring = adapter->tx_ring[i];
5604 if (!netif_carrier_ok(netdev)) {
5605 /* We've lost link, so the controller stops DMA,
5606 * but we've got queued Tx work that's never going
5607 * to get done, so reset controller to flush Tx.
5608 * (Do the reset outside of interrupt context).
5610 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5611 adapter->tx_timeout_count++;
5612 schedule_work(&adapter->reset_task);
5613 /* return immediately since reset is imminent */
5618 /* Force detection of hung controller every watchdog period */
5619 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5622 /* Cause software interrupt to ensure Rx ring is cleaned */
5623 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5626 for (i = 0; i < adapter->num_q_vectors; i++)
5627 eics |= adapter->q_vector[i]->eims_value;
5628 wr32(E1000_EICS, eics);
5630 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5633 igb_spoof_check(adapter);
5634 igb_ptp_rx_hang(adapter);
5635 igb_ptp_tx_hang(adapter);
5637 /* Check LVMMC register on i350/i354 only */
5638 if ((adapter->hw.mac.type == e1000_i350) ||
5639 (adapter->hw.mac.type == e1000_i354))
5640 igb_check_lvmmc(adapter);
5642 /* Reset the timer */
5643 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5644 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5645 mod_timer(&adapter->watchdog_timer,
5646 round_jiffies(jiffies + HZ));
5648 mod_timer(&adapter->watchdog_timer,
5649 round_jiffies(jiffies + 2 * HZ));
5653 enum latency_range {
5657 latency_invalid = 255
5661 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5662 * @q_vector: pointer to q_vector
5664 * Stores a new ITR value based on strictly on packet size. This
5665 * algorithm is less sophisticated than that used in igb_update_itr,
5666 * due to the difficulty of synchronizing statistics across multiple
5667 * receive rings. The divisors and thresholds used by this function
5668 * were determined based on theoretical maximum wire speed and testing
5669 * data, in order to minimize response time while increasing bulk
5671 * This functionality is controlled by ethtool's coalescing settings.
5672 * NOTE: This function is called only when operating in a multiqueue
5673 * receive environment.
5675 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5677 int new_val = q_vector->itr_val;
5678 int avg_wire_size = 0;
5679 struct igb_adapter *adapter = q_vector->adapter;
5680 unsigned int packets;
5682 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5683 * ints/sec - ITR timer value of 120 ticks.
5685 if (adapter->link_speed != SPEED_1000) {
5686 new_val = IGB_4K_ITR;
5690 packets = q_vector->rx.total_packets;
5692 avg_wire_size = q_vector->rx.total_bytes / packets;
5694 packets = q_vector->tx.total_packets;
5696 avg_wire_size = max_t(u32, avg_wire_size,
5697 q_vector->tx.total_bytes / packets);
5699 /* if avg_wire_size isn't set no work was done */
5703 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5704 avg_wire_size += 24;
5706 /* Don't starve jumbo frames */
5707 avg_wire_size = min(avg_wire_size, 3000);
5709 /* Give a little boost to mid-size frames */
5710 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5711 new_val = avg_wire_size / 3;
5713 new_val = avg_wire_size / 2;
5715 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5716 if (new_val < IGB_20K_ITR &&
5717 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5718 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5719 new_val = IGB_20K_ITR;
5722 if (new_val != q_vector->itr_val) {
5723 q_vector->itr_val = new_val;
5724 q_vector->set_itr = 1;
5727 q_vector->rx.total_bytes = 0;
5728 q_vector->rx.total_packets = 0;
5729 q_vector->tx.total_bytes = 0;
5730 q_vector->tx.total_packets = 0;
5734 * igb_update_itr - update the dynamic ITR value based on statistics
5735 * @q_vector: pointer to q_vector
5736 * @ring_container: ring info to update the itr for
5738 * Stores a new ITR value based on packets and byte
5739 * counts during the last interrupt. The advantage of per interrupt
5740 * computation is faster updates and more accurate ITR for the current
5741 * traffic pattern. Constants in this function were computed
5742 * based on theoretical maximum wire speed and thresholds were set based
5743 * on testing data as well as attempting to minimize response time
5744 * while increasing bulk throughput.
5745 * This functionality is controlled by ethtool's coalescing settings.
5746 * NOTE: These calculations are only valid when operating in a single-
5747 * queue environment.
5749 static void igb_update_itr(struct igb_q_vector *q_vector,
5750 struct igb_ring_container *ring_container)
5752 unsigned int packets = ring_container->total_packets;
5753 unsigned int bytes = ring_container->total_bytes;
5754 u8 itrval = ring_container->itr;
5756 /* no packets, exit with status unchanged */
5761 case lowest_latency:
5762 /* handle TSO and jumbo frames */
5763 if (bytes/packets > 8000)
5764 itrval = bulk_latency;
5765 else if ((packets < 5) && (bytes > 512))
5766 itrval = low_latency;
5768 case low_latency: /* 50 usec aka 20000 ints/s */
5769 if (bytes > 10000) {
5770 /* this if handles the TSO accounting */
5771 if (bytes/packets > 8000)
5772 itrval = bulk_latency;
5773 else if ((packets < 10) || ((bytes/packets) > 1200))
5774 itrval = bulk_latency;
5775 else if ((packets > 35))
5776 itrval = lowest_latency;
5777 } else if (bytes/packets > 2000) {
5778 itrval = bulk_latency;
5779 } else if (packets <= 2 && bytes < 512) {
5780 itrval = lowest_latency;
5783 case bulk_latency: /* 250 usec aka 4000 ints/s */
5784 if (bytes > 25000) {
5786 itrval = low_latency;
5787 } else if (bytes < 1500) {
5788 itrval = low_latency;
5793 /* clear work counters since we have the values we need */
5794 ring_container->total_bytes = 0;
5795 ring_container->total_packets = 0;
5797 /* write updated itr to ring container */
5798 ring_container->itr = itrval;
5801 static void igb_set_itr(struct igb_q_vector *q_vector)
5803 struct igb_adapter *adapter = q_vector->adapter;
5804 u32 new_itr = q_vector->itr_val;
5807 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5808 if (adapter->link_speed != SPEED_1000) {
5810 new_itr = IGB_4K_ITR;
5814 igb_update_itr(q_vector, &q_vector->tx);
5815 igb_update_itr(q_vector, &q_vector->rx);
5817 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5819 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5820 if (current_itr == lowest_latency &&
5821 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5822 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5823 current_itr = low_latency;
5825 switch (current_itr) {
5826 /* counts and packets in update_itr are dependent on these numbers */
5827 case lowest_latency:
5828 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5831 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5834 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5841 if (new_itr != q_vector->itr_val) {
5842 /* this attempts to bias the interrupt rate towards Bulk
5843 * by adding intermediate steps when interrupt rate is
5846 new_itr = new_itr > q_vector->itr_val ?
5847 max((new_itr * q_vector->itr_val) /
5848 (new_itr + (q_vector->itr_val >> 2)),
5850 /* Don't write the value here; it resets the adapter's
5851 * internal timer, and causes us to delay far longer than
5852 * we should between interrupts. Instead, we write the ITR
5853 * value at the beginning of the next interrupt so the timing
5854 * ends up being correct.
5856 q_vector->itr_val = new_itr;
5857 q_vector->set_itr = 1;
5861 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5862 struct igb_tx_buffer *first,
5863 u32 vlan_macip_lens, u32 type_tucmd,
5866 struct e1000_adv_tx_context_desc *context_desc;
5867 u16 i = tx_ring->next_to_use;
5868 struct timespec64 ts;
5870 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5873 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5875 /* set bits to identify this as an advanced context descriptor */
5876 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5878 /* For 82575, context index must be unique per ring. */
5879 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5880 mss_l4len_idx |= tx_ring->reg_idx << 4;
5882 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5883 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5884 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5886 /* We assume there is always a valid tx time available. Invalid times
5887 * should have been handled by the upper layers.
5889 if (tx_ring->launchtime_enable) {
5890 ts = ktime_to_timespec64(first->skb->tstamp);
5891 skb_txtime_consumed(first->skb);
5892 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5894 context_desc->seqnum_seed = 0;
5898 static int igb_tso(struct igb_ring *tx_ring,
5899 struct igb_tx_buffer *first,
5902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5903 struct sk_buff *skb = first->skb;
5914 u32 paylen, l4_offset;
5917 if (skb->ip_summed != CHECKSUM_PARTIAL)
5920 if (!skb_is_gso(skb))
5923 err = skb_cow_head(skb, 0);
5927 ip.hdr = skb_network_header(skb);
5928 l4.hdr = skb_checksum_start(skb);
5930 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5931 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5932 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5934 /* initialize outer IP header fields */
5935 if (ip.v4->version == 4) {
5936 unsigned char *csum_start = skb_checksum_start(skb);
5937 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5939 /* IP header will have to cancel out any data that
5940 * is not a part of the outer IP header
5942 ip.v4->check = csum_fold(csum_partial(trans_start,
5943 csum_start - trans_start,
5945 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5948 first->tx_flags |= IGB_TX_FLAGS_TSO |
5952 ip.v6->payload_len = 0;
5953 first->tx_flags |= IGB_TX_FLAGS_TSO |
5957 /* determine offset of inner transport header */
5958 l4_offset = l4.hdr - skb->data;
5960 /* remove payload length from inner checksum */
5961 paylen = skb->len - l4_offset;
5962 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5963 /* compute length of segmentation header */
5964 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5965 csum_replace_by_diff(&l4.tcp->check,
5966 (__force __wsum)htonl(paylen));
5968 /* compute length of segmentation header */
5969 *hdr_len = sizeof(*l4.udp) + l4_offset;
5970 csum_replace_by_diff(&l4.udp->check,
5971 (__force __wsum)htonl(paylen));
5974 /* update gso size and bytecount with header size */
5975 first->gso_segs = skb_shinfo(skb)->gso_segs;
5976 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5979 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5980 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5982 /* VLAN MACLEN IPLEN */
5983 vlan_macip_lens = l4.hdr - ip.hdr;
5984 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5985 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5987 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5988 type_tucmd, mss_l4len_idx);
5993 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5995 struct sk_buff *skb = first->skb;
5996 u32 vlan_macip_lens = 0;
5999 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6001 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6002 !tx_ring->launchtime_enable)
6007 switch (skb->csum_offset) {
6008 case offsetof(struct tcphdr, check):
6009 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6011 case offsetof(struct udphdr, check):
6013 case offsetof(struct sctphdr, checksum):
6014 /* validate that this is actually an SCTP request */
6015 if (skb_csum_is_sctp(skb)) {
6016 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6021 skb_checksum_help(skb);
6025 /* update TX checksum flag */
6026 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6027 vlan_macip_lens = skb_checksum_start_offset(skb) -
6028 skb_network_offset(skb);
6030 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6031 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6033 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6036 #define IGB_SET_FLAG(_input, _flag, _result) \
6037 ((_flag <= _result) ? \
6038 ((u32)(_input & _flag) * (_result / _flag)) : \
6039 ((u32)(_input & _flag) / (_flag / _result)))
6041 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6043 /* set type for advanced descriptor with frame checksum insertion */
6044 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6045 E1000_ADVTXD_DCMD_DEXT |
6046 E1000_ADVTXD_DCMD_IFCS;
6048 /* set HW vlan bit if vlan is present */
6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6050 (E1000_ADVTXD_DCMD_VLE));
6052 /* set segmentation bits for TSO */
6053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6054 (E1000_ADVTXD_DCMD_TSE));
6056 /* set timestamp bit if present */
6057 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6058 (E1000_ADVTXD_MAC_TSTAMP));
6060 /* insert frame checksum */
6061 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6066 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6067 union e1000_adv_tx_desc *tx_desc,
6068 u32 tx_flags, unsigned int paylen)
6070 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6072 /* 82575 requires a unique index per ring */
6073 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6074 olinfo_status |= tx_ring->reg_idx << 4;
6076 /* insert L4 checksum */
6077 olinfo_status |= IGB_SET_FLAG(tx_flags,
6079 (E1000_TXD_POPTS_TXSM << 8));
6081 /* insert IPv4 checksum */
6082 olinfo_status |= IGB_SET_FLAG(tx_flags,
6084 (E1000_TXD_POPTS_IXSM << 8));
6086 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6089 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6091 struct net_device *netdev = tx_ring->netdev;
6093 netif_stop_subqueue(netdev, tx_ring->queue_index);
6095 /* Herbert's original patch had:
6096 * smp_mb__after_netif_stop_queue();
6097 * but since that doesn't exist yet, just open code it.
6101 /* We need to check again in a case another CPU has just
6102 * made room available.
6104 if (igb_desc_unused(tx_ring) < size)
6108 netif_wake_subqueue(netdev, tx_ring->queue_index);
6110 u64_stats_update_begin(&tx_ring->tx_syncp2);
6111 tx_ring->tx_stats.restart_queue2++;
6112 u64_stats_update_end(&tx_ring->tx_syncp2);
6117 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6119 if (igb_desc_unused(tx_ring) >= size)
6121 return __igb_maybe_stop_tx(tx_ring, size);
6124 static int igb_tx_map(struct igb_ring *tx_ring,
6125 struct igb_tx_buffer *first,
6128 struct sk_buff *skb = first->skb;
6129 struct igb_tx_buffer *tx_buffer;
6130 union e1000_adv_tx_desc *tx_desc;
6133 unsigned int data_len, size;
6134 u32 tx_flags = first->tx_flags;
6135 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6136 u16 i = tx_ring->next_to_use;
6138 tx_desc = IGB_TX_DESC(tx_ring, i);
6140 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6142 size = skb_headlen(skb);
6143 data_len = skb->data_len;
6145 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6149 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6150 if (dma_mapping_error(tx_ring->dev, dma))
6153 /* record length, and DMA address */
6154 dma_unmap_len_set(tx_buffer, len, size);
6155 dma_unmap_addr_set(tx_buffer, dma, dma);
6157 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6159 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6160 tx_desc->read.cmd_type_len =
6161 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6165 if (i == tx_ring->count) {
6166 tx_desc = IGB_TX_DESC(tx_ring, 0);
6169 tx_desc->read.olinfo_status = 0;
6171 dma += IGB_MAX_DATA_PER_TXD;
6172 size -= IGB_MAX_DATA_PER_TXD;
6174 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6177 if (likely(!data_len))
6180 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6184 if (i == tx_ring->count) {
6185 tx_desc = IGB_TX_DESC(tx_ring, 0);
6188 tx_desc->read.olinfo_status = 0;
6190 size = skb_frag_size(frag);
6193 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6194 size, DMA_TO_DEVICE);
6196 tx_buffer = &tx_ring->tx_buffer_info[i];
6199 /* write last descriptor with RS and EOP bits */
6200 cmd_type |= size | IGB_TXD_DCMD;
6201 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6203 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6205 /* set the timestamp */
6206 first->time_stamp = jiffies;
6208 skb_tx_timestamp(skb);
6210 /* Force memory writes to complete before letting h/w know there
6211 * are new descriptors to fetch. (Only applicable for weak-ordered
6212 * memory model archs, such as IA-64).
6214 * We also need this memory barrier to make certain all of the
6215 * status bits have been updated before next_to_watch is written.
6219 /* set next_to_watch value indicating a packet is present */
6220 first->next_to_watch = tx_desc;
6223 if (i == tx_ring->count)
6226 tx_ring->next_to_use = i;
6228 /* Make sure there is space in the ring for the next send. */
6229 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6231 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6232 writel(i, tx_ring->tail);
6237 dev_err(tx_ring->dev, "TX DMA map failed\n");
6238 tx_buffer = &tx_ring->tx_buffer_info[i];
6240 /* clear dma mappings for failed tx_buffer_info map */
6241 while (tx_buffer != first) {
6242 if (dma_unmap_len(tx_buffer, len))
6243 dma_unmap_page(tx_ring->dev,
6244 dma_unmap_addr(tx_buffer, dma),
6245 dma_unmap_len(tx_buffer, len),
6247 dma_unmap_len_set(tx_buffer, len, 0);
6250 i += tx_ring->count;
6251 tx_buffer = &tx_ring->tx_buffer_info[i];
6254 if (dma_unmap_len(tx_buffer, len))
6255 dma_unmap_single(tx_ring->dev,
6256 dma_unmap_addr(tx_buffer, dma),
6257 dma_unmap_len(tx_buffer, len),
6259 dma_unmap_len_set(tx_buffer, len, 0);
6261 dev_kfree_skb_any(tx_buffer->skb);
6262 tx_buffer->skb = NULL;
6264 tx_ring->next_to_use = i;
6269 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6270 struct igb_ring *tx_ring,
6271 struct xdp_frame *xdpf)
6273 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6274 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6275 u16 count, i, index = tx_ring->next_to_use;
6276 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6277 struct igb_tx_buffer *tx_buffer = tx_head;
6278 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6279 u32 len = xdpf->len, cmd_type, olinfo_status;
6280 void *data = xdpf->data;
6282 count = TXD_USE_COUNT(len);
6283 for (i = 0; i < nr_frags; i++)
6284 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6286 if (igb_maybe_stop_tx(tx_ring, count + 3))
6287 return IGB_XDP_CONSUMED;
6290 /* record the location of the first descriptor for this packet */
6291 tx_head->bytecount = xdp_get_frame_len(xdpf);
6292 tx_head->type = IGB_TYPE_XDP;
6293 tx_head->gso_segs = 1;
6294 tx_head->xdpf = xdpf;
6296 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6297 /* 82575 requires a unique index per ring */
6298 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6299 olinfo_status |= tx_ring->reg_idx << 4;
6300 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6305 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6306 if (dma_mapping_error(tx_ring->dev, dma))
6309 /* record length, and DMA address */
6310 dma_unmap_len_set(tx_buffer, len, len);
6311 dma_unmap_addr_set(tx_buffer, dma, dma);
6313 /* put descriptor type bits */
6314 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6315 E1000_ADVTXD_DCMD_IFCS | len;
6317 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6318 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6320 tx_buffer->protocol = 0;
6322 if (++index == tx_ring->count)
6328 tx_buffer = &tx_ring->tx_buffer_info[index];
6329 tx_desc = IGB_TX_DESC(tx_ring, index);
6330 tx_desc->read.olinfo_status = 0;
6332 data = skb_frag_address(&sinfo->frags[i]);
6333 len = skb_frag_size(&sinfo->frags[i]);
6336 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6338 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6339 /* set the timestamp */
6340 tx_head->time_stamp = jiffies;
6342 /* Avoid any potential race with xdp_xmit and cleanup */
6345 /* set next_to_watch value indicating a packet is present */
6346 tx_head->next_to_watch = tx_desc;
6347 tx_ring->next_to_use = index;
6349 /* Make sure there is space in the ring for the next send. */
6350 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6352 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6353 writel(index, tx_ring->tail);
6359 tx_buffer = &tx_ring->tx_buffer_info[index];
6360 if (dma_unmap_len(tx_buffer, len))
6361 dma_unmap_page(tx_ring->dev,
6362 dma_unmap_addr(tx_buffer, dma),
6363 dma_unmap_len(tx_buffer, len),
6365 dma_unmap_len_set(tx_buffer, len, 0);
6366 if (tx_buffer == tx_head)
6370 index += tx_ring->count;
6374 return IGB_XDP_CONSUMED;
6377 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6378 struct igb_ring *tx_ring)
6380 struct igb_tx_buffer *first;
6384 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6385 __be16 protocol = vlan_get_protocol(skb);
6388 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6389 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6390 * + 2 desc gap to keep tail from touching head,
6391 * + 1 desc for context descriptor,
6392 * otherwise try next time
6394 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6395 count += TXD_USE_COUNT(skb_frag_size(
6396 &skb_shinfo(skb)->frags[f]));
6398 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6399 /* this is a hard error */
6400 return NETDEV_TX_BUSY;
6403 /* record the location of the first descriptor for this packet */
6404 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6405 first->type = IGB_TYPE_SKB;
6407 first->bytecount = skb->len;
6408 first->gso_segs = 1;
6410 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6411 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6413 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6414 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6416 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6417 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6419 adapter->ptp_tx_skb = skb_get(skb);
6420 adapter->ptp_tx_start = jiffies;
6421 if (adapter->hw.mac.type == e1000_82576)
6422 schedule_work(&adapter->ptp_tx_work);
6424 adapter->tx_hwtstamp_skipped++;
6428 if (skb_vlan_tag_present(skb)) {
6429 tx_flags |= IGB_TX_FLAGS_VLAN;
6430 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6433 /* record initial flags and protocol */
6434 first->tx_flags = tx_flags;
6435 first->protocol = protocol;
6437 tso = igb_tso(tx_ring, first, &hdr_len);
6441 igb_tx_csum(tx_ring, first);
6443 if (igb_tx_map(tx_ring, first, hdr_len))
6444 goto cleanup_tx_tstamp;
6446 return NETDEV_TX_OK;
6449 dev_kfree_skb_any(first->skb);
6452 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6453 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6455 dev_kfree_skb_any(adapter->ptp_tx_skb);
6456 adapter->ptp_tx_skb = NULL;
6457 if (adapter->hw.mac.type == e1000_82576)
6458 cancel_work_sync(&adapter->ptp_tx_work);
6459 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6462 return NETDEV_TX_OK;
6465 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6466 struct sk_buff *skb)
6468 unsigned int r_idx = skb->queue_mapping;
6470 if (r_idx >= adapter->num_tx_queues)
6471 r_idx = r_idx % adapter->num_tx_queues;
6473 return adapter->tx_ring[r_idx];
6476 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6477 struct net_device *netdev)
6479 struct igb_adapter *adapter = netdev_priv(netdev);
6481 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6482 * in order to meet this minimum size requirement.
6484 if (skb_put_padto(skb, 17))
6485 return NETDEV_TX_OK;
6487 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6491 * igb_tx_timeout - Respond to a Tx Hang
6492 * @netdev: network interface device structure
6493 * @txqueue: number of the Tx queue that hung (unused)
6495 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6497 struct igb_adapter *adapter = netdev_priv(netdev);
6498 struct e1000_hw *hw = &adapter->hw;
6500 /* Do the reset outside of interrupt context */
6501 adapter->tx_timeout_count++;
6503 if (hw->mac.type >= e1000_82580)
6504 hw->dev_spec._82575.global_device_reset = true;
6506 schedule_work(&adapter->reset_task);
6508 (adapter->eims_enable_mask & ~adapter->eims_other));
6511 static void igb_reset_task(struct work_struct *work)
6513 struct igb_adapter *adapter;
6514 adapter = container_of(work, struct igb_adapter, reset_task);
6517 /* If we're already down or resetting, just bail */
6518 if (test_bit(__IGB_DOWN, &adapter->state) ||
6519 test_bit(__IGB_RESETTING, &adapter->state)) {
6525 netdev_err(adapter->netdev, "Reset adapter\n");
6526 igb_reinit_locked(adapter);
6531 * igb_get_stats64 - Get System Network Statistics
6532 * @netdev: network interface device structure
6533 * @stats: rtnl_link_stats64 pointer
6535 static void igb_get_stats64(struct net_device *netdev,
6536 struct rtnl_link_stats64 *stats)
6538 struct igb_adapter *adapter = netdev_priv(netdev);
6540 spin_lock(&adapter->stats64_lock);
6541 igb_update_stats(adapter);
6542 memcpy(stats, &adapter->stats64, sizeof(*stats));
6543 spin_unlock(&adapter->stats64_lock);
6547 * igb_change_mtu - Change the Maximum Transfer Unit
6548 * @netdev: network interface device structure
6549 * @new_mtu: new value for maximum frame size
6551 * Returns 0 on success, negative on failure
6553 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6555 struct igb_adapter *adapter = netdev_priv(netdev);
6556 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6558 if (adapter->xdp_prog) {
6561 for (i = 0; i < adapter->num_rx_queues; i++) {
6562 struct igb_ring *ring = adapter->rx_ring[i];
6564 if (max_frame > igb_rx_bufsz(ring)) {
6565 netdev_warn(adapter->netdev,
6566 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6573 /* adjust max frame to be at least the size of a standard frame */
6574 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6575 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6577 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6578 usleep_range(1000, 2000);
6580 /* igb_down has a dependency on max_frame_size */
6581 adapter->max_frame_size = max_frame;
6583 if (netif_running(netdev))
6586 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6587 netdev->mtu, new_mtu);
6588 netdev->mtu = new_mtu;
6590 if (netif_running(netdev))
6595 clear_bit(__IGB_RESETTING, &adapter->state);
6601 * igb_update_stats - Update the board statistics counters
6602 * @adapter: board private structure
6604 void igb_update_stats(struct igb_adapter *adapter)
6606 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6607 struct e1000_hw *hw = &adapter->hw;
6608 struct pci_dev *pdev = adapter->pdev;
6613 u64 _bytes, _packets;
6615 /* Prevent stats update while adapter is being reset, or if the pci
6616 * connection is down.
6618 if (adapter->link_speed == 0)
6620 if (pci_channel_offline(pdev))
6627 for (i = 0; i < adapter->num_rx_queues; i++) {
6628 struct igb_ring *ring = adapter->rx_ring[i];
6629 u32 rqdpc = rd32(E1000_RQDPC(i));
6630 if (hw->mac.type >= e1000_i210)
6631 wr32(E1000_RQDPC(i), 0);
6634 ring->rx_stats.drops += rqdpc;
6635 net_stats->rx_fifo_errors += rqdpc;
6639 start = u64_stats_fetch_begin(&ring->rx_syncp);
6640 _bytes = ring->rx_stats.bytes;
6641 _packets = ring->rx_stats.packets;
6642 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6644 packets += _packets;
6647 net_stats->rx_bytes = bytes;
6648 net_stats->rx_packets = packets;
6652 for (i = 0; i < adapter->num_tx_queues; i++) {
6653 struct igb_ring *ring = adapter->tx_ring[i];
6655 start = u64_stats_fetch_begin(&ring->tx_syncp);
6656 _bytes = ring->tx_stats.bytes;
6657 _packets = ring->tx_stats.packets;
6658 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6660 packets += _packets;
6662 net_stats->tx_bytes = bytes;
6663 net_stats->tx_packets = packets;
6666 /* read stats registers */
6667 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6668 adapter->stats.gprc += rd32(E1000_GPRC);
6669 adapter->stats.gorc += rd32(E1000_GORCL);
6670 rd32(E1000_GORCH); /* clear GORCL */
6671 adapter->stats.bprc += rd32(E1000_BPRC);
6672 adapter->stats.mprc += rd32(E1000_MPRC);
6673 adapter->stats.roc += rd32(E1000_ROC);
6675 adapter->stats.prc64 += rd32(E1000_PRC64);
6676 adapter->stats.prc127 += rd32(E1000_PRC127);
6677 adapter->stats.prc255 += rd32(E1000_PRC255);
6678 adapter->stats.prc511 += rd32(E1000_PRC511);
6679 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6680 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6681 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6682 adapter->stats.sec += rd32(E1000_SEC);
6684 mpc = rd32(E1000_MPC);
6685 adapter->stats.mpc += mpc;
6686 net_stats->rx_fifo_errors += mpc;
6687 adapter->stats.scc += rd32(E1000_SCC);
6688 adapter->stats.ecol += rd32(E1000_ECOL);
6689 adapter->stats.mcc += rd32(E1000_MCC);
6690 adapter->stats.latecol += rd32(E1000_LATECOL);
6691 adapter->stats.dc += rd32(E1000_DC);
6692 adapter->stats.rlec += rd32(E1000_RLEC);
6693 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6694 adapter->stats.xontxc += rd32(E1000_XONTXC);
6695 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6696 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6697 adapter->stats.fcruc += rd32(E1000_FCRUC);
6698 adapter->stats.gptc += rd32(E1000_GPTC);
6699 adapter->stats.gotc += rd32(E1000_GOTCL);
6700 rd32(E1000_GOTCH); /* clear GOTCL */
6701 adapter->stats.rnbc += rd32(E1000_RNBC);
6702 adapter->stats.ruc += rd32(E1000_RUC);
6703 adapter->stats.rfc += rd32(E1000_RFC);
6704 adapter->stats.rjc += rd32(E1000_RJC);
6705 adapter->stats.tor += rd32(E1000_TORH);
6706 adapter->stats.tot += rd32(E1000_TOTH);
6707 adapter->stats.tpr += rd32(E1000_TPR);
6709 adapter->stats.ptc64 += rd32(E1000_PTC64);
6710 adapter->stats.ptc127 += rd32(E1000_PTC127);
6711 adapter->stats.ptc255 += rd32(E1000_PTC255);
6712 adapter->stats.ptc511 += rd32(E1000_PTC511);
6713 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6714 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6716 adapter->stats.mptc += rd32(E1000_MPTC);
6717 adapter->stats.bptc += rd32(E1000_BPTC);
6719 adapter->stats.tpt += rd32(E1000_TPT);
6720 adapter->stats.colc += rd32(E1000_COLC);
6722 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6723 /* read internal phy specific stats */
6724 reg = rd32(E1000_CTRL_EXT);
6725 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6726 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6728 /* this stat has invalid values on i210/i211 */
6729 if ((hw->mac.type != e1000_i210) &&
6730 (hw->mac.type != e1000_i211))
6731 adapter->stats.tncrs += rd32(E1000_TNCRS);
6734 adapter->stats.tsctc += rd32(E1000_TSCTC);
6735 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6737 adapter->stats.iac += rd32(E1000_IAC);
6738 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6739 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6740 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6741 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6742 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6743 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6744 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6745 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6747 /* Fill out the OS statistics structure */
6748 net_stats->multicast = adapter->stats.mprc;
6749 net_stats->collisions = adapter->stats.colc;
6753 /* RLEC on some newer hardware can be incorrect so build
6754 * our own version based on RUC and ROC
6756 net_stats->rx_errors = adapter->stats.rxerrc +
6757 adapter->stats.crcerrs + adapter->stats.algnerrc +
6758 adapter->stats.ruc + adapter->stats.roc +
6759 adapter->stats.cexterr;
6760 net_stats->rx_length_errors = adapter->stats.ruc +
6762 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6763 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6764 net_stats->rx_missed_errors = adapter->stats.mpc;
6767 net_stats->tx_errors = adapter->stats.ecol +
6768 adapter->stats.latecol;
6769 net_stats->tx_aborted_errors = adapter->stats.ecol;
6770 net_stats->tx_window_errors = adapter->stats.latecol;
6771 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6773 /* Tx Dropped needs to be maintained elsewhere */
6775 /* Management Stats */
6776 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6777 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6778 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6781 reg = rd32(E1000_MANC);
6782 if (reg & E1000_MANC_EN_BMC2OS) {
6783 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6784 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6785 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6786 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6790 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6792 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6793 struct e1000_hw *hw = &adapter->hw;
6794 struct timespec64 ts;
6797 if (pin < 0 || pin >= IGB_N_PEROUT)
6800 spin_lock(&adapter->tmreg_lock);
6802 if (hw->mac.type == e1000_82580 ||
6803 hw->mac.type == e1000_i354 ||
6804 hw->mac.type == e1000_i350) {
6805 s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6806 u32 systiml, systimh, level_mask, level, rem;
6809 /* read systim registers in sequence */
6810 rd32(E1000_SYSTIMR);
6811 systiml = rd32(E1000_SYSTIML);
6812 systimh = rd32(E1000_SYSTIMH);
6813 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6814 now = timecounter_cyc2time(&adapter->tc, systim);
6817 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6818 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6820 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6821 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6824 div_u64_rem(now, ns, &rem);
6825 systim = systim + (ns - rem);
6827 /* synchronize pin level with rising/falling edges */
6828 div_u64_rem(now, ns << 1, &rem);
6830 /* first half of period */
6832 /* output is already low, skip this period */
6834 pr_notice("igb: periodic output on %s missed falling edge\n",
6835 adapter->sdp_config[pin].name);
6838 /* second half of period */
6840 /* output is already high, skip this period */
6842 pr_notice("igb: periodic output on %s missed rising edge\n",
6843 adapter->sdp_config[pin].name);
6847 /* for this chip family tv_sec is the upper part of the binary value,
6850 ts.tv_nsec = (u32)systim;
6851 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6853 ts = timespec64_add(adapter->perout[pin].start,
6854 adapter->perout[pin].period);
6857 /* u32 conversion of tv_sec is safe until y2106 */
6858 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6859 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6860 tsauxc = rd32(E1000_TSAUXC);
6861 tsauxc |= TSAUXC_EN_TT0;
6862 wr32(E1000_TSAUXC, tsauxc);
6863 adapter->perout[pin].start = ts;
6865 spin_unlock(&adapter->tmreg_lock);
6868 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6870 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6871 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6872 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6873 struct e1000_hw *hw = &adapter->hw;
6874 struct ptp_clock_event event;
6875 struct timespec64 ts;
6877 if (pin < 0 || pin >= IGB_N_EXTTS)
6880 if (hw->mac.type == e1000_82580 ||
6881 hw->mac.type == e1000_i354 ||
6882 hw->mac.type == e1000_i350) {
6883 s64 ns = rd32(auxstmpl);
6885 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6886 ts = ns_to_timespec64(ns);
6888 ts.tv_nsec = rd32(auxstmpl);
6889 ts.tv_sec = rd32(auxstmph);
6892 event.type = PTP_CLOCK_EXTTS;
6893 event.index = tsintr_tt;
6894 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6895 ptp_clock_event(adapter->ptp_clock, &event);
6898 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6900 struct e1000_hw *hw = &adapter->hw;
6901 u32 ack = 0, tsicr = rd32(E1000_TSICR);
6902 struct ptp_clock_event event;
6904 if (tsicr & TSINTR_SYS_WRAP) {
6905 event.type = PTP_CLOCK_PPS;
6906 if (adapter->ptp_caps.pps)
6907 ptp_clock_event(adapter->ptp_clock, &event);
6908 ack |= TSINTR_SYS_WRAP;
6911 if (tsicr & E1000_TSICR_TXTS) {
6912 /* retrieve hardware timestamp */
6913 schedule_work(&adapter->ptp_tx_work);
6914 ack |= E1000_TSICR_TXTS;
6917 if (tsicr & TSINTR_TT0) {
6918 igb_perout(adapter, 0);
6922 if (tsicr & TSINTR_TT1) {
6923 igb_perout(adapter, 1);
6927 if (tsicr & TSINTR_AUTT0) {
6928 igb_extts(adapter, 0);
6929 ack |= TSINTR_AUTT0;
6932 if (tsicr & TSINTR_AUTT1) {
6933 igb_extts(adapter, 1);
6934 ack |= TSINTR_AUTT1;
6937 /* acknowledge the interrupts */
6938 wr32(E1000_TSICR, ack);
6941 static irqreturn_t igb_msix_other(int irq, void *data)
6943 struct igb_adapter *adapter = data;
6944 struct e1000_hw *hw = &adapter->hw;
6945 u32 icr = rd32(E1000_ICR);
6946 /* reading ICR causes bit 31 of EICR to be cleared */
6948 if (icr & E1000_ICR_DRSTA)
6949 schedule_work(&adapter->reset_task);
6951 if (icr & E1000_ICR_DOUTSYNC) {
6952 /* HW is reporting DMA is out of sync */
6953 adapter->stats.doosync++;
6954 /* The DMA Out of Sync is also indication of a spoof event
6955 * in IOV mode. Check the Wrong VM Behavior register to
6956 * see if it is really a spoof event.
6958 igb_check_wvbr(adapter);
6961 /* Check for a mailbox event */
6962 if (icr & E1000_ICR_VMMB)
6963 igb_msg_task(adapter);
6965 if (icr & E1000_ICR_LSC) {
6966 hw->mac.get_link_status = 1;
6967 /* guard against interrupt when we're going down */
6968 if (!test_bit(__IGB_DOWN, &adapter->state))
6969 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6972 if (icr & E1000_ICR_TS)
6973 igb_tsync_interrupt(adapter);
6975 wr32(E1000_EIMS, adapter->eims_other);
6980 static void igb_write_itr(struct igb_q_vector *q_vector)
6982 struct igb_adapter *adapter = q_vector->adapter;
6983 u32 itr_val = q_vector->itr_val & 0x7FFC;
6985 if (!q_vector->set_itr)
6991 if (adapter->hw.mac.type == e1000_82575)
6992 itr_val |= itr_val << 16;
6994 itr_val |= E1000_EITR_CNT_IGNR;
6996 writel(itr_val, q_vector->itr_register);
6997 q_vector->set_itr = 0;
7000 static irqreturn_t igb_msix_ring(int irq, void *data)
7002 struct igb_q_vector *q_vector = data;
7004 /* Write the ITR value calculated from the previous interrupt. */
7005 igb_write_itr(q_vector);
7007 napi_schedule(&q_vector->napi);
7012 #ifdef CONFIG_IGB_DCA
7013 static void igb_update_tx_dca(struct igb_adapter *adapter,
7014 struct igb_ring *tx_ring,
7017 struct e1000_hw *hw = &adapter->hw;
7018 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7020 if (hw->mac.type != e1000_82575)
7021 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7023 /* We can enable relaxed ordering for reads, but not writes when
7024 * DCA is enabled. This is due to a known issue in some chipsets
7025 * which will cause the DCA tag to be cleared.
7027 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7028 E1000_DCA_TXCTRL_DATA_RRO_EN |
7029 E1000_DCA_TXCTRL_DESC_DCA_EN;
7031 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7034 static void igb_update_rx_dca(struct igb_adapter *adapter,
7035 struct igb_ring *rx_ring,
7038 struct e1000_hw *hw = &adapter->hw;
7039 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7041 if (hw->mac.type != e1000_82575)
7042 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7044 /* We can enable relaxed ordering for reads, but not writes when
7045 * DCA is enabled. This is due to a known issue in some chipsets
7046 * which will cause the DCA tag to be cleared.
7048 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7049 E1000_DCA_RXCTRL_DESC_DCA_EN;
7051 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7054 static void igb_update_dca(struct igb_q_vector *q_vector)
7056 struct igb_adapter *adapter = q_vector->adapter;
7057 int cpu = get_cpu();
7059 if (q_vector->cpu == cpu)
7062 if (q_vector->tx.ring)
7063 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7065 if (q_vector->rx.ring)
7066 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7068 q_vector->cpu = cpu;
7073 static void igb_setup_dca(struct igb_adapter *adapter)
7075 struct e1000_hw *hw = &adapter->hw;
7078 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7081 /* Always use CB2 mode, difference is masked in the CB driver. */
7082 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7084 for (i = 0; i < adapter->num_q_vectors; i++) {
7085 adapter->q_vector[i]->cpu = -1;
7086 igb_update_dca(adapter->q_vector[i]);
7090 static int __igb_notify_dca(struct device *dev, void *data)
7092 struct net_device *netdev = dev_get_drvdata(dev);
7093 struct igb_adapter *adapter = netdev_priv(netdev);
7094 struct pci_dev *pdev = adapter->pdev;
7095 struct e1000_hw *hw = &adapter->hw;
7096 unsigned long event = *(unsigned long *)data;
7099 case DCA_PROVIDER_ADD:
7100 /* if already enabled, don't do it again */
7101 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7103 if (dca_add_requester(dev) == 0) {
7104 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7105 dev_info(&pdev->dev, "DCA enabled\n");
7106 igb_setup_dca(adapter);
7109 fallthrough; /* since DCA is disabled. */
7110 case DCA_PROVIDER_REMOVE:
7111 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7112 /* without this a class_device is left
7113 * hanging around in the sysfs model
7115 dca_remove_requester(dev);
7116 dev_info(&pdev->dev, "DCA disabled\n");
7117 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7118 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7126 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7131 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7134 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7136 #endif /* CONFIG_IGB_DCA */
7138 #ifdef CONFIG_PCI_IOV
7139 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7141 unsigned char mac_addr[ETH_ALEN];
7143 eth_zero_addr(mac_addr);
7144 igb_set_vf_mac(adapter, vf, mac_addr);
7146 /* By default spoof check is enabled for all VFs */
7147 adapter->vf_data[vf].spoofchk_enabled = true;
7149 /* By default VFs are not trusted */
7150 adapter->vf_data[vf].trusted = false;
7156 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7158 struct e1000_hw *hw = &adapter->hw;
7162 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7163 ping = E1000_PF_CONTROL_MSG;
7164 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7165 ping |= E1000_VT_MSGTYPE_CTS;
7166 igb_write_mbx(hw, &ping, 1, i);
7170 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7172 struct e1000_hw *hw = &adapter->hw;
7173 u32 vmolr = rd32(E1000_VMOLR(vf));
7174 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7176 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7177 IGB_VF_FLAG_MULTI_PROMISC);
7178 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7180 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7181 vmolr |= E1000_VMOLR_MPME;
7182 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7183 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7185 /* if we have hashes and we are clearing a multicast promisc
7186 * flag we need to write the hashes to the MTA as this step
7187 * was previously skipped
7189 if (vf_data->num_vf_mc_hashes > 30) {
7190 vmolr |= E1000_VMOLR_MPME;
7191 } else if (vf_data->num_vf_mc_hashes) {
7194 vmolr |= E1000_VMOLR_ROMPE;
7195 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7196 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7200 wr32(E1000_VMOLR(vf), vmolr);
7202 /* there are flags left unprocessed, likely not supported */
7203 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7209 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7210 u32 *msgbuf, u32 vf)
7212 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7213 u16 *hash_list = (u16 *)&msgbuf[1];
7214 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7217 /* salt away the number of multicast addresses assigned
7218 * to this VF for later use to restore when the PF multi cast
7221 vf_data->num_vf_mc_hashes = n;
7223 /* only up to 30 hash values supported */
7227 /* store the hashes for later use */
7228 for (i = 0; i < n; i++)
7229 vf_data->vf_mc_hashes[i] = hash_list[i];
7231 /* Flush and reset the mta with the new values */
7232 igb_set_rx_mode(adapter->netdev);
7237 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7239 struct e1000_hw *hw = &adapter->hw;
7240 struct vf_data_storage *vf_data;
7243 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7244 u32 vmolr = rd32(E1000_VMOLR(i));
7246 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7248 vf_data = &adapter->vf_data[i];
7250 if ((vf_data->num_vf_mc_hashes > 30) ||
7251 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7252 vmolr |= E1000_VMOLR_MPME;
7253 } else if (vf_data->num_vf_mc_hashes) {
7254 vmolr |= E1000_VMOLR_ROMPE;
7255 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7256 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7258 wr32(E1000_VMOLR(i), vmolr);
7262 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7264 struct e1000_hw *hw = &adapter->hw;
7265 u32 pool_mask, vlvf_mask, i;
7267 /* create mask for VF and other pools */
7268 pool_mask = E1000_VLVF_POOLSEL_MASK;
7269 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7271 /* drop PF from pool bits */
7272 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7273 adapter->vfs_allocated_count);
7275 /* Find the vlan filter for this id */
7276 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7277 u32 vlvf = rd32(E1000_VLVF(i));
7278 u32 vfta_mask, vid, vfta;
7280 /* remove the vf from the pool */
7281 if (!(vlvf & vlvf_mask))
7284 /* clear out bit from VLVF */
7287 /* if other pools are present, just remove ourselves */
7288 if (vlvf & pool_mask)
7291 /* if PF is present, leave VFTA */
7292 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7295 vid = vlvf & E1000_VLVF_VLANID_MASK;
7296 vfta_mask = BIT(vid % 32);
7298 /* clear bit from VFTA */
7299 vfta = adapter->shadow_vfta[vid / 32];
7300 if (vfta & vfta_mask)
7301 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7303 /* clear pool selection enable */
7304 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7305 vlvf &= E1000_VLVF_POOLSEL_MASK;
7309 /* clear pool bits */
7310 wr32(E1000_VLVF(i), vlvf);
7314 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7319 /* short cut the special case */
7323 /* Search for the VLAN id in the VLVF entries */
7324 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7325 vlvf = rd32(E1000_VLVF(idx));
7326 if ((vlvf & VLAN_VID_MASK) == vlan)
7333 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7335 struct e1000_hw *hw = &adapter->hw;
7339 idx = igb_find_vlvf_entry(hw, vid);
7343 /* See if any other pools are set for this VLAN filter
7344 * entry other than the PF.
7346 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7347 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7348 bits &= rd32(E1000_VLVF(idx));
7350 /* Disable the filter so this falls into the default pool. */
7352 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7353 wr32(E1000_VLVF(idx), BIT(pf_id));
7355 wr32(E1000_VLVF(idx), 0);
7359 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7362 int pf_id = adapter->vfs_allocated_count;
7363 struct e1000_hw *hw = &adapter->hw;
7366 /* If VLAN overlaps with one the PF is currently monitoring make
7367 * sure that we are able to allocate a VLVF entry. This may be
7368 * redundant but it guarantees PF will maintain visibility to
7371 if (add && test_bit(vid, adapter->active_vlans)) {
7372 err = igb_vfta_set(hw, vid, pf_id, true, false);
7377 err = igb_vfta_set(hw, vid, vf, add, false);
7382 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7383 * we may need to drop the PF pool bit in order to allow us to free
7384 * up the VLVF resources.
7386 if (test_bit(vid, adapter->active_vlans) ||
7387 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7388 igb_update_pf_vlvf(adapter, vid);
7393 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7395 struct e1000_hw *hw = &adapter->hw;
7398 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7400 wr32(E1000_VMVIR(vf), 0);
7403 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7408 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7412 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7413 igb_set_vmolr(adapter, vf, !vlan);
7415 /* revoke access to previous VLAN */
7416 if (vlan != adapter->vf_data[vf].pf_vlan)
7417 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7420 adapter->vf_data[vf].pf_vlan = vlan;
7421 adapter->vf_data[vf].pf_qos = qos;
7422 igb_set_vf_vlan_strip(adapter, vf, true);
7423 dev_info(&adapter->pdev->dev,
7424 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7425 if (test_bit(__IGB_DOWN, &adapter->state)) {
7426 dev_warn(&adapter->pdev->dev,
7427 "The VF VLAN has been set, but the PF device is not up.\n");
7428 dev_warn(&adapter->pdev->dev,
7429 "Bring the PF device up before attempting to use the VF device.\n");
7435 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7437 /* Restore tagless access via VLAN 0 */
7438 igb_set_vf_vlan(adapter, 0, true, vf);
7440 igb_set_vmvir(adapter, 0, vf);
7441 igb_set_vmolr(adapter, vf, true);
7443 /* Remove any PF assigned VLAN */
7444 if (adapter->vf_data[vf].pf_vlan)
7445 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7448 adapter->vf_data[vf].pf_vlan = 0;
7449 adapter->vf_data[vf].pf_qos = 0;
7450 igb_set_vf_vlan_strip(adapter, vf, false);
7455 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7456 u16 vlan, u8 qos, __be16 vlan_proto)
7458 struct igb_adapter *adapter = netdev_priv(netdev);
7460 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7463 if (vlan_proto != htons(ETH_P_8021Q))
7464 return -EPROTONOSUPPORT;
7466 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7467 igb_disable_port_vlan(adapter, vf);
7470 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7472 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7473 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7476 if (adapter->vf_data[vf].pf_vlan)
7479 /* VLAN 0 is a special case, don't allow it to be removed */
7483 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7485 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7489 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7491 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7493 /* clear flags - except flag that indicates PF has set the MAC */
7494 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7495 vf_data->last_nack = jiffies;
7497 /* reset vlans for device */
7498 igb_clear_vf_vfta(adapter, vf);
7499 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7500 igb_set_vmvir(adapter, vf_data->pf_vlan |
7501 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7502 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7503 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7505 /* reset multicast table array for vf */
7506 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7508 /* Flush and reset the mta with the new values */
7509 igb_set_rx_mode(adapter->netdev);
7512 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7514 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7516 /* clear mac address as we were hotplug removed/added */
7517 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7518 eth_zero_addr(vf_mac);
7520 /* process remaining reset events */
7521 igb_vf_reset(adapter, vf);
7524 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7526 struct e1000_hw *hw = &adapter->hw;
7527 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7528 u32 reg, msgbuf[3] = {};
7529 u8 *addr = (u8 *)(&msgbuf[1]);
7531 /* process all the same items cleared in a function level reset */
7532 igb_vf_reset(adapter, vf);
7534 /* set vf mac address */
7535 igb_set_vf_mac(adapter, vf, vf_mac);
7537 /* enable transmit and receive for vf */
7538 reg = rd32(E1000_VFTE);
7539 wr32(E1000_VFTE, reg | BIT(vf));
7540 reg = rd32(E1000_VFRE);
7541 wr32(E1000_VFRE, reg | BIT(vf));
7543 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7545 /* reply to reset with ack and vf mac address */
7546 if (!is_zero_ether_addr(vf_mac)) {
7547 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7548 memcpy(addr, vf_mac, ETH_ALEN);
7550 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7552 igb_write_mbx(hw, msgbuf, 3, vf);
7555 static void igb_flush_mac_table(struct igb_adapter *adapter)
7557 struct e1000_hw *hw = &adapter->hw;
7560 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7561 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7562 eth_zero_addr(adapter->mac_table[i].addr);
7563 adapter->mac_table[i].queue = 0;
7564 igb_rar_set_index(adapter, i);
7568 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7570 struct e1000_hw *hw = &adapter->hw;
7571 /* do not count rar entries reserved for VFs MAC addresses */
7572 int rar_entries = hw->mac.rar_entry_count -
7573 adapter->vfs_allocated_count;
7576 for (i = 0; i < rar_entries; i++) {
7577 /* do not count default entries */
7578 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7581 /* do not count "in use" entries for different queues */
7582 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7583 (adapter->mac_table[i].queue != queue))
7592 /* Set default MAC address for the PF in the first RAR entry */
7593 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7595 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7597 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7598 mac_table->queue = adapter->vfs_allocated_count;
7599 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7601 igb_rar_set_index(adapter, 0);
7604 /* If the filter to be added and an already existing filter express
7605 * the same address and address type, it should be possible to only
7606 * override the other configurations, for example the queue to steer
7609 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7610 const u8 *addr, const u8 flags)
7612 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7615 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7616 (flags & IGB_MAC_STATE_SRC_ADDR))
7619 if (!ether_addr_equal(addr, entry->addr))
7625 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7626 * 'flags' is used to indicate what kind of match is made, match is by
7627 * default for the destination address, if matching by source address
7628 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7630 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7631 const u8 *addr, const u8 queue,
7634 struct e1000_hw *hw = &adapter->hw;
7635 int rar_entries = hw->mac.rar_entry_count -
7636 adapter->vfs_allocated_count;
7639 if (is_zero_ether_addr(addr))
7642 /* Search for the first empty entry in the MAC table.
7643 * Do not touch entries at the end of the table reserved for the VF MAC
7646 for (i = 0; i < rar_entries; i++) {
7647 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7651 ether_addr_copy(adapter->mac_table[i].addr, addr);
7652 adapter->mac_table[i].queue = queue;
7653 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7655 igb_rar_set_index(adapter, i);
7662 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7665 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7668 /* Remove a MAC filter for 'addr' directing matching traffic to
7669 * 'queue', 'flags' is used to indicate what kind of match need to be
7670 * removed, match is by default for the destination address, if
7671 * matching by source address is to be removed the flag
7672 * IGB_MAC_STATE_SRC_ADDR can be used.
7674 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7675 const u8 *addr, const u8 queue,
7678 struct e1000_hw *hw = &adapter->hw;
7679 int rar_entries = hw->mac.rar_entry_count -
7680 adapter->vfs_allocated_count;
7683 if (is_zero_ether_addr(addr))
7686 /* Search for matching entry in the MAC table based on given address
7687 * and queue. Do not touch entries at the end of the table reserved
7688 * for the VF MAC addresses.
7690 for (i = 0; i < rar_entries; i++) {
7691 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7693 if ((adapter->mac_table[i].state & flags) != flags)
7695 if (adapter->mac_table[i].queue != queue)
7697 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7700 /* When a filter for the default address is "deleted",
7701 * we return it to its initial configuration
7703 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7704 adapter->mac_table[i].state =
7705 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7706 adapter->mac_table[i].queue =
7707 adapter->vfs_allocated_count;
7709 adapter->mac_table[i].state = 0;
7710 adapter->mac_table[i].queue = 0;
7711 eth_zero_addr(adapter->mac_table[i].addr);
7714 igb_rar_set_index(adapter, i);
7721 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7724 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7727 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7728 const u8 *addr, u8 queue, u8 flags)
7730 struct e1000_hw *hw = &adapter->hw;
7732 /* In theory, this should be supported on 82575 as well, but
7733 * that part wasn't easily accessible during development.
7735 if (hw->mac.type != e1000_i210)
7738 return igb_add_mac_filter_flags(adapter, addr, queue,
7739 IGB_MAC_STATE_QUEUE_STEERING | flags);
7742 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7743 const u8 *addr, u8 queue, u8 flags)
7745 return igb_del_mac_filter_flags(adapter, addr, queue,
7746 IGB_MAC_STATE_QUEUE_STEERING | flags);
7749 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7751 struct igb_adapter *adapter = netdev_priv(netdev);
7754 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7756 return min_t(int, ret, 0);
7759 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7761 struct igb_adapter *adapter = netdev_priv(netdev);
7763 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7768 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7769 const u32 info, const u8 *addr)
7771 struct pci_dev *pdev = adapter->pdev;
7772 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7773 struct list_head *pos;
7774 struct vf_mac_filter *entry = NULL;
7777 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7778 !vf_data->trusted) {
7779 dev_warn(&pdev->dev,
7780 "VF %d requested MAC filter but is administratively denied\n",
7784 if (!is_valid_ether_addr(addr)) {
7785 dev_warn(&pdev->dev,
7786 "VF %d attempted to set invalid MAC filter\n",
7792 case E1000_VF_MAC_FILTER_CLR:
7793 /* remove all unicast MAC filters related to the current VF */
7794 list_for_each(pos, &adapter->vf_macs.l) {
7795 entry = list_entry(pos, struct vf_mac_filter, l);
7796 if (entry->vf == vf) {
7799 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7803 case E1000_VF_MAC_FILTER_ADD:
7804 /* try to find empty slot in the list */
7805 list_for_each(pos, &adapter->vf_macs.l) {
7806 entry = list_entry(pos, struct vf_mac_filter, l);
7811 if (entry && entry->free) {
7812 entry->free = false;
7814 ether_addr_copy(entry->vf_mac, addr);
7816 ret = igb_add_mac_filter(adapter, addr, vf);
7817 ret = min_t(int, ret, 0);
7823 dev_warn(&pdev->dev,
7824 "VF %d has requested MAC filter but there is no space for it\n",
7835 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7837 struct pci_dev *pdev = adapter->pdev;
7838 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7839 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7841 /* The VF MAC Address is stored in a packed array of bytes
7842 * starting at the second 32 bit word of the msg array
7844 unsigned char *addr = (unsigned char *)&msg[1];
7848 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7849 !vf_data->trusted) {
7850 dev_warn(&pdev->dev,
7851 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7856 if (!is_valid_ether_addr(addr)) {
7857 dev_warn(&pdev->dev,
7858 "VF %d attempted to set invalid MAC\n",
7863 ret = igb_set_vf_mac(adapter, vf, addr);
7865 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7871 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7873 struct e1000_hw *hw = &adapter->hw;
7874 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7875 u32 msg = E1000_VT_MSGTYPE_NACK;
7877 /* if device isn't clear to send it shouldn't be reading either */
7878 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7879 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7880 igb_write_mbx(hw, &msg, 1, vf);
7881 vf_data->last_nack = jiffies;
7885 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7887 struct pci_dev *pdev = adapter->pdev;
7888 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7889 struct e1000_hw *hw = &adapter->hw;
7890 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7893 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7896 /* if receive failed revoke VF CTS stats and restart init */
7897 dev_err(&pdev->dev, "Error receiving message from VF\n");
7898 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7899 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7904 /* this is a message we already processed, do nothing */
7905 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7908 /* until the vf completes a reset it should not be
7909 * allowed to start any configuration.
7911 if (msgbuf[0] == E1000_VF_RESET) {
7912 /* unlocks mailbox */
7913 igb_vf_reset_msg(adapter, vf);
7917 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7918 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7924 switch ((msgbuf[0] & 0xFFFF)) {
7925 case E1000_VF_SET_MAC_ADDR:
7926 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7928 case E1000_VF_SET_PROMISC:
7929 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7931 case E1000_VF_SET_MULTICAST:
7932 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7934 case E1000_VF_SET_LPE:
7935 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7937 case E1000_VF_SET_VLAN:
7939 if (vf_data->pf_vlan)
7940 dev_warn(&pdev->dev,
7941 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7944 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7947 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7952 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7954 /* notify the VF of the results of what it sent us */
7956 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7958 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7960 /* unlocks mailbox */
7961 igb_write_mbx(hw, msgbuf, 1, vf);
7965 igb_unlock_mbx(hw, vf);
7968 static void igb_msg_task(struct igb_adapter *adapter)
7970 struct e1000_hw *hw = &adapter->hw;
7971 unsigned long flags;
7974 spin_lock_irqsave(&adapter->vfs_lock, flags);
7975 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7976 /* process any reset requests */
7977 if (!igb_check_for_rst(hw, vf))
7978 igb_vf_reset_event(adapter, vf);
7980 /* process any messages pending */
7981 if (!igb_check_for_msg(hw, vf))
7982 igb_rcv_msg_from_vf(adapter, vf);
7984 /* process any acks */
7985 if (!igb_check_for_ack(hw, vf))
7986 igb_rcv_ack_from_vf(adapter, vf);
7988 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7992 * igb_set_uta - Set unicast filter table address
7993 * @adapter: board private structure
7994 * @set: boolean indicating if we are setting or clearing bits
7996 * The unicast table address is a register array of 32-bit registers.
7997 * The table is meant to be used in a way similar to how the MTA is used
7998 * however due to certain limitations in the hardware it is necessary to
7999 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8000 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8002 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8004 struct e1000_hw *hw = &adapter->hw;
8005 u32 uta = set ? ~0 : 0;
8008 /* we only need to do this if VMDq is enabled */
8009 if (!adapter->vfs_allocated_count)
8012 for (i = hw->mac.uta_reg_count; i--;)
8013 array_wr32(E1000_UTA, i, uta);
8017 * igb_intr_msi - Interrupt Handler
8018 * @irq: interrupt number
8019 * @data: pointer to a network interface device structure
8021 static irqreturn_t igb_intr_msi(int irq, void *data)
8023 struct igb_adapter *adapter = data;
8024 struct igb_q_vector *q_vector = adapter->q_vector[0];
8025 struct e1000_hw *hw = &adapter->hw;
8026 /* read ICR disables interrupts using IAM */
8027 u32 icr = rd32(E1000_ICR);
8029 igb_write_itr(q_vector);
8031 if (icr & E1000_ICR_DRSTA)
8032 schedule_work(&adapter->reset_task);
8034 if (icr & E1000_ICR_DOUTSYNC) {
8035 /* HW is reporting DMA is out of sync */
8036 adapter->stats.doosync++;
8039 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8040 hw->mac.get_link_status = 1;
8041 if (!test_bit(__IGB_DOWN, &adapter->state))
8042 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8045 if (icr & E1000_ICR_TS)
8046 igb_tsync_interrupt(adapter);
8048 napi_schedule(&q_vector->napi);
8054 * igb_intr - Legacy Interrupt Handler
8055 * @irq: interrupt number
8056 * @data: pointer to a network interface device structure
8058 static irqreturn_t igb_intr(int irq, void *data)
8060 struct igb_adapter *adapter = data;
8061 struct igb_q_vector *q_vector = adapter->q_vector[0];
8062 struct e1000_hw *hw = &adapter->hw;
8063 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8064 * need for the IMC write
8066 u32 icr = rd32(E1000_ICR);
8068 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8069 * not set, then the adapter didn't send an interrupt
8071 if (!(icr & E1000_ICR_INT_ASSERTED))
8074 igb_write_itr(q_vector);
8076 if (icr & E1000_ICR_DRSTA)
8077 schedule_work(&adapter->reset_task);
8079 if (icr & E1000_ICR_DOUTSYNC) {
8080 /* HW is reporting DMA is out of sync */
8081 adapter->stats.doosync++;
8084 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8085 hw->mac.get_link_status = 1;
8086 /* guard against interrupt when we're going down */
8087 if (!test_bit(__IGB_DOWN, &adapter->state))
8088 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8091 if (icr & E1000_ICR_TS)
8092 igb_tsync_interrupt(adapter);
8094 napi_schedule(&q_vector->napi);
8099 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8101 struct igb_adapter *adapter = q_vector->adapter;
8102 struct e1000_hw *hw = &adapter->hw;
8104 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8105 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8106 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8107 igb_set_itr(q_vector);
8109 igb_update_ring_itr(q_vector);
8112 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8113 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8114 wr32(E1000_EIMS, q_vector->eims_value);
8116 igb_irq_enable(adapter);
8121 * igb_poll - NAPI Rx polling callback
8122 * @napi: napi polling structure
8123 * @budget: count of how many packets we should handle
8125 static int igb_poll(struct napi_struct *napi, int budget)
8127 struct igb_q_vector *q_vector = container_of(napi,
8128 struct igb_q_vector,
8130 bool clean_complete = true;
8133 #ifdef CONFIG_IGB_DCA
8134 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8135 igb_update_dca(q_vector);
8137 if (q_vector->tx.ring)
8138 clean_complete = igb_clean_tx_irq(q_vector, budget);
8140 if (q_vector->rx.ring) {
8141 int cleaned = igb_clean_rx_irq(q_vector, budget);
8143 work_done += cleaned;
8144 if (cleaned >= budget)
8145 clean_complete = false;
8148 /* If all work not completed, return budget and keep polling */
8149 if (!clean_complete)
8152 /* Exit the polling mode, but don't re-enable interrupts if stack might
8153 * poll us due to busy-polling
8155 if (likely(napi_complete_done(napi, work_done)))
8156 igb_ring_irq_enable(q_vector);
8162 * igb_clean_tx_irq - Reclaim resources after transmit completes
8163 * @q_vector: pointer to q_vector containing needed info
8164 * @napi_budget: Used to determine if we are in netpoll
8166 * returns true if ring is completely cleaned
8168 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8170 struct igb_adapter *adapter = q_vector->adapter;
8171 struct igb_ring *tx_ring = q_vector->tx.ring;
8172 struct igb_tx_buffer *tx_buffer;
8173 union e1000_adv_tx_desc *tx_desc;
8174 unsigned int total_bytes = 0, total_packets = 0;
8175 unsigned int budget = q_vector->tx.work_limit;
8176 unsigned int i = tx_ring->next_to_clean;
8178 if (test_bit(__IGB_DOWN, &adapter->state))
8181 tx_buffer = &tx_ring->tx_buffer_info[i];
8182 tx_desc = IGB_TX_DESC(tx_ring, i);
8183 i -= tx_ring->count;
8186 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8188 /* if next_to_watch is not set then there is no work pending */
8192 /* prevent any other reads prior to eop_desc */
8195 /* if DD is not set pending work has not been completed */
8196 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8199 /* clear next_to_watch to prevent false hangs */
8200 tx_buffer->next_to_watch = NULL;
8202 /* update the statistics for this packet */
8203 total_bytes += tx_buffer->bytecount;
8204 total_packets += tx_buffer->gso_segs;
8207 if (tx_buffer->type == IGB_TYPE_SKB)
8208 napi_consume_skb(tx_buffer->skb, napi_budget);
8210 xdp_return_frame(tx_buffer->xdpf);
8212 /* unmap skb header data */
8213 dma_unmap_single(tx_ring->dev,
8214 dma_unmap_addr(tx_buffer, dma),
8215 dma_unmap_len(tx_buffer, len),
8218 /* clear tx_buffer data */
8219 dma_unmap_len_set(tx_buffer, len, 0);
8221 /* clear last DMA location and unmap remaining buffers */
8222 while (tx_desc != eop_desc) {
8227 i -= tx_ring->count;
8228 tx_buffer = tx_ring->tx_buffer_info;
8229 tx_desc = IGB_TX_DESC(tx_ring, 0);
8232 /* unmap any remaining paged data */
8233 if (dma_unmap_len(tx_buffer, len)) {
8234 dma_unmap_page(tx_ring->dev,
8235 dma_unmap_addr(tx_buffer, dma),
8236 dma_unmap_len(tx_buffer, len),
8238 dma_unmap_len_set(tx_buffer, len, 0);
8242 /* move us one more past the eop_desc for start of next pkt */
8247 i -= tx_ring->count;
8248 tx_buffer = tx_ring->tx_buffer_info;
8249 tx_desc = IGB_TX_DESC(tx_ring, 0);
8252 /* issue prefetch for next Tx descriptor */
8255 /* update budget accounting */
8257 } while (likely(budget));
8259 netdev_tx_completed_queue(txring_txq(tx_ring),
8260 total_packets, total_bytes);
8261 i += tx_ring->count;
8262 tx_ring->next_to_clean = i;
8263 u64_stats_update_begin(&tx_ring->tx_syncp);
8264 tx_ring->tx_stats.bytes += total_bytes;
8265 tx_ring->tx_stats.packets += total_packets;
8266 u64_stats_update_end(&tx_ring->tx_syncp);
8267 q_vector->tx.total_bytes += total_bytes;
8268 q_vector->tx.total_packets += total_packets;
8270 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8271 struct e1000_hw *hw = &adapter->hw;
8273 /* Detect a transmit hang in hardware, this serializes the
8274 * check with the clearing of time_stamp and movement of i
8276 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8277 if (tx_buffer->next_to_watch &&
8278 time_after(jiffies, tx_buffer->time_stamp +
8279 (adapter->tx_timeout_factor * HZ)) &&
8280 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8282 /* detected Tx unit hang */
8283 dev_err(tx_ring->dev,
8284 "Detected Tx Unit Hang\n"
8288 " next_to_use <%x>\n"
8289 " next_to_clean <%x>\n"
8290 "buffer_info[next_to_clean]\n"
8291 " time_stamp <%lx>\n"
8292 " next_to_watch <%p>\n"
8294 " desc.status <%x>\n",
8295 tx_ring->queue_index,
8296 rd32(E1000_TDH(tx_ring->reg_idx)),
8297 readl(tx_ring->tail),
8298 tx_ring->next_to_use,
8299 tx_ring->next_to_clean,
8300 tx_buffer->time_stamp,
8301 tx_buffer->next_to_watch,
8303 tx_buffer->next_to_watch->wb.status);
8304 netif_stop_subqueue(tx_ring->netdev,
8305 tx_ring->queue_index);
8307 /* we are about to reset, no point in enabling stuff */
8312 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8313 if (unlikely(total_packets &&
8314 netif_carrier_ok(tx_ring->netdev) &&
8315 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8316 /* Make sure that anybody stopping the queue after this
8317 * sees the new next_to_clean.
8320 if (__netif_subqueue_stopped(tx_ring->netdev,
8321 tx_ring->queue_index) &&
8322 !(test_bit(__IGB_DOWN, &adapter->state))) {
8323 netif_wake_subqueue(tx_ring->netdev,
8324 tx_ring->queue_index);
8326 u64_stats_update_begin(&tx_ring->tx_syncp);
8327 tx_ring->tx_stats.restart_queue++;
8328 u64_stats_update_end(&tx_ring->tx_syncp);
8336 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8337 * @rx_ring: rx descriptor ring to store buffers on
8338 * @old_buff: donor buffer to have page reused
8340 * Synchronizes page for reuse by the adapter
8342 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8343 struct igb_rx_buffer *old_buff)
8345 struct igb_rx_buffer *new_buff;
8346 u16 nta = rx_ring->next_to_alloc;
8348 new_buff = &rx_ring->rx_buffer_info[nta];
8350 /* update, and store next to alloc */
8352 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8354 /* Transfer page from old buffer to new buffer.
8355 * Move each member individually to avoid possible store
8356 * forwarding stalls.
8358 new_buff->dma = old_buff->dma;
8359 new_buff->page = old_buff->page;
8360 new_buff->page_offset = old_buff->page_offset;
8361 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8364 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8367 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8368 struct page *page = rx_buffer->page;
8370 /* avoid re-using remote and pfmemalloc pages */
8371 if (!dev_page_is_reusable(page))
8374 #if (PAGE_SIZE < 8192)
8375 /* if we are only owner of page we can reuse it */
8376 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8379 #define IGB_LAST_OFFSET \
8380 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8382 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8386 /* If we have drained the page fragment pool we need to update
8387 * the pagecnt_bias and page count so that we fully restock the
8388 * number of references the driver holds.
8390 if (unlikely(pagecnt_bias == 1)) {
8391 page_ref_add(page, USHRT_MAX - 1);
8392 rx_buffer->pagecnt_bias = USHRT_MAX;
8399 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8400 * @rx_ring: rx descriptor ring to transact packets on
8401 * @rx_buffer: buffer containing page to add
8402 * @skb: sk_buff to place the data into
8403 * @size: size of buffer to be added
8405 * This function will add the data contained in rx_buffer->page to the skb.
8407 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8408 struct igb_rx_buffer *rx_buffer,
8409 struct sk_buff *skb,
8412 #if (PAGE_SIZE < 8192)
8413 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8415 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8416 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8417 SKB_DATA_ALIGN(size);
8419 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8420 rx_buffer->page_offset, size, truesize);
8421 #if (PAGE_SIZE < 8192)
8422 rx_buffer->page_offset ^= truesize;
8424 rx_buffer->page_offset += truesize;
8428 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8429 struct igb_rx_buffer *rx_buffer,
8430 struct xdp_buff *xdp,
8433 #if (PAGE_SIZE < 8192)
8434 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8436 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8437 xdp->data_hard_start);
8439 unsigned int size = xdp->data_end - xdp->data;
8440 unsigned int headlen;
8441 struct sk_buff *skb;
8443 /* prefetch first cache line of first page */
8444 net_prefetch(xdp->data);
8446 /* allocate a skb to store the frags */
8447 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8452 skb_hwtstamps(skb)->hwtstamp = timestamp;
8454 /* Determine available headroom for copy */
8456 if (headlen > IGB_RX_HDR_LEN)
8457 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8459 /* align pull length to size of long to optimize memcpy performance */
8460 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8462 /* update all of the pointers */
8465 skb_add_rx_frag(skb, 0, rx_buffer->page,
8466 (xdp->data + headlen) - page_address(rx_buffer->page),
8468 #if (PAGE_SIZE < 8192)
8469 rx_buffer->page_offset ^= truesize;
8471 rx_buffer->page_offset += truesize;
8474 rx_buffer->pagecnt_bias++;
8480 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8481 struct igb_rx_buffer *rx_buffer,
8482 struct xdp_buff *xdp,
8485 #if (PAGE_SIZE < 8192)
8486 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8488 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8489 SKB_DATA_ALIGN(xdp->data_end -
8490 xdp->data_hard_start);
8492 unsigned int metasize = xdp->data - xdp->data_meta;
8493 struct sk_buff *skb;
8495 /* prefetch first cache line of first page */
8496 net_prefetch(xdp->data_meta);
8498 /* build an skb around the page buffer */
8499 skb = napi_build_skb(xdp->data_hard_start, truesize);
8503 /* update pointers within the skb to store the data */
8504 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8505 __skb_put(skb, xdp->data_end - xdp->data);
8508 skb_metadata_set(skb, metasize);
8511 skb_hwtstamps(skb)->hwtstamp = timestamp;
8513 /* update buffer offset */
8514 #if (PAGE_SIZE < 8192)
8515 rx_buffer->page_offset ^= truesize;
8517 rx_buffer->page_offset += truesize;
8523 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8524 struct igb_ring *rx_ring,
8525 struct xdp_buff *xdp)
8527 int err, result = IGB_XDP_PASS;
8528 struct bpf_prog *xdp_prog;
8531 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8536 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8538 act = bpf_prog_run_xdp(xdp_prog, xdp);
8543 result = igb_xdp_xmit_back(adapter, xdp);
8544 if (result == IGB_XDP_CONSUMED)
8548 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8551 result = IGB_XDP_REDIR;
8554 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8558 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8561 result = IGB_XDP_CONSUMED;
8565 return ERR_PTR(-result);
8568 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8571 unsigned int truesize;
8573 #if (PAGE_SIZE < 8192)
8574 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8576 truesize = ring_uses_build_skb(rx_ring) ?
8577 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8578 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8579 SKB_DATA_ALIGN(size);
8584 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8585 struct igb_rx_buffer *rx_buffer,
8588 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8589 #if (PAGE_SIZE < 8192)
8590 rx_buffer->page_offset ^= truesize;
8592 rx_buffer->page_offset += truesize;
8596 static inline void igb_rx_checksum(struct igb_ring *ring,
8597 union e1000_adv_rx_desc *rx_desc,
8598 struct sk_buff *skb)
8600 skb_checksum_none_assert(skb);
8602 /* Ignore Checksum bit is set */
8603 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8606 /* Rx checksum disabled via ethtool */
8607 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8610 /* TCP/UDP checksum error bit is set */
8611 if (igb_test_staterr(rx_desc,
8612 E1000_RXDEXT_STATERR_TCPE |
8613 E1000_RXDEXT_STATERR_IPE)) {
8614 /* work around errata with sctp packets where the TCPE aka
8615 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8616 * packets, (aka let the stack check the crc32c)
8618 if (!((skb->len == 60) &&
8619 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8620 u64_stats_update_begin(&ring->rx_syncp);
8621 ring->rx_stats.csum_err++;
8622 u64_stats_update_end(&ring->rx_syncp);
8624 /* let the stack verify checksum errors */
8627 /* It must be a TCP or UDP packet with a valid checksum */
8628 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8629 E1000_RXD_STAT_UDPCS))
8630 skb->ip_summed = CHECKSUM_UNNECESSARY;
8632 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8633 le32_to_cpu(rx_desc->wb.upper.status_error));
8636 static inline void igb_rx_hash(struct igb_ring *ring,
8637 union e1000_adv_rx_desc *rx_desc,
8638 struct sk_buff *skb)
8640 if (ring->netdev->features & NETIF_F_RXHASH)
8642 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8647 * igb_is_non_eop - process handling of non-EOP buffers
8648 * @rx_ring: Rx ring being processed
8649 * @rx_desc: Rx descriptor for current buffer
8651 * This function updates next to clean. If the buffer is an EOP buffer
8652 * this function exits returning false, otherwise it will place the
8653 * sk_buff in the next buffer to be chained and return true indicating
8654 * that this is in fact a non-EOP buffer.
8656 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8657 union e1000_adv_rx_desc *rx_desc)
8659 u32 ntc = rx_ring->next_to_clean + 1;
8661 /* fetch, update, and store next to clean */
8662 ntc = (ntc < rx_ring->count) ? ntc : 0;
8663 rx_ring->next_to_clean = ntc;
8665 prefetch(IGB_RX_DESC(rx_ring, ntc));
8667 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8674 * igb_cleanup_headers - Correct corrupted or empty headers
8675 * @rx_ring: rx descriptor ring packet is being transacted on
8676 * @rx_desc: pointer to the EOP Rx descriptor
8677 * @skb: pointer to current skb being fixed
8679 * Address the case where we are pulling data in on pages only
8680 * and as such no data is present in the skb header.
8682 * In addition if skb is not at least 60 bytes we need to pad it so that
8683 * it is large enough to qualify as a valid Ethernet frame.
8685 * Returns true if an error was encountered and skb was freed.
8687 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8688 union e1000_adv_rx_desc *rx_desc,
8689 struct sk_buff *skb)
8691 /* XDP packets use error pointer so abort at this point */
8695 if (unlikely((igb_test_staterr(rx_desc,
8696 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8697 struct net_device *netdev = rx_ring->netdev;
8698 if (!(netdev->features & NETIF_F_RXALL)) {
8699 dev_kfree_skb_any(skb);
8704 /* if eth_skb_pad returns an error the skb was freed */
8705 if (eth_skb_pad(skb))
8712 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8713 * @rx_ring: rx descriptor ring packet is being transacted on
8714 * @rx_desc: pointer to the EOP Rx descriptor
8715 * @skb: pointer to current skb being populated
8717 * This function checks the ring, descriptor, and packet information in
8718 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8719 * other fields within the skb.
8721 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8722 union e1000_adv_rx_desc *rx_desc,
8723 struct sk_buff *skb)
8725 struct net_device *dev = rx_ring->netdev;
8727 igb_rx_hash(rx_ring, rx_desc, skb);
8729 igb_rx_checksum(rx_ring, rx_desc, skb);
8731 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8732 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8733 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8735 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8736 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8739 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8740 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8741 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8743 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8745 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8748 skb_record_rx_queue(skb, rx_ring->queue_index);
8750 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8753 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8755 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8758 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8759 const unsigned int size, int *rx_buf_pgcnt)
8761 struct igb_rx_buffer *rx_buffer;
8763 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8765 #if (PAGE_SIZE < 8192)
8766 page_count(rx_buffer->page);
8770 prefetchw(rx_buffer->page);
8772 /* we are reusing so sync this buffer for CPU use */
8773 dma_sync_single_range_for_cpu(rx_ring->dev,
8775 rx_buffer->page_offset,
8779 rx_buffer->pagecnt_bias--;
8784 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8785 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8787 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8788 /* hand second half of page back to the ring */
8789 igb_reuse_rx_page(rx_ring, rx_buffer);
8791 /* We are not reusing the buffer so unmap it and free
8792 * any references we are holding to it
8794 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8795 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8797 __page_frag_cache_drain(rx_buffer->page,
8798 rx_buffer->pagecnt_bias);
8801 /* clear contents of rx_buffer */
8802 rx_buffer->page = NULL;
8805 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8807 struct igb_adapter *adapter = q_vector->adapter;
8808 struct igb_ring *rx_ring = q_vector->rx.ring;
8809 struct sk_buff *skb = rx_ring->skb;
8810 unsigned int total_bytes = 0, total_packets = 0;
8811 u16 cleaned_count = igb_desc_unused(rx_ring);
8812 unsigned int xdp_xmit = 0;
8813 struct xdp_buff xdp;
8817 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8818 #if (PAGE_SIZE < 8192)
8819 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8821 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8823 while (likely(total_packets < budget)) {
8824 union e1000_adv_rx_desc *rx_desc;
8825 struct igb_rx_buffer *rx_buffer;
8826 ktime_t timestamp = 0;
8831 /* return some buffers to hardware, one at a time is too slow */
8832 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8833 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8837 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8838 size = le16_to_cpu(rx_desc->wb.upper.length);
8842 /* This memory barrier is needed to keep us from reading
8843 * any other fields out of the rx_desc until we know the
8844 * descriptor has been written back
8848 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8849 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8851 /* pull rx packet timestamp if available and valid */
8852 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8855 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8856 pktbuf, ×tamp);
8858 pkt_offset += ts_hdr_len;
8862 /* retrieve a buffer from the ring */
8864 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8865 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8867 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8868 xdp_buff_clear_frags_flag(&xdp);
8869 #if (PAGE_SIZE > 4096)
8870 /* At larger PAGE_SIZE, frame_sz depend on len size */
8871 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8873 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8877 unsigned int xdp_res = -PTR_ERR(skb);
8879 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8880 xdp_xmit |= xdp_res;
8881 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8883 rx_buffer->pagecnt_bias++;
8886 total_bytes += size;
8888 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8889 else if (ring_uses_build_skb(rx_ring))
8890 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8893 skb = igb_construct_skb(rx_ring, rx_buffer,
8896 /* exit if we failed to retrieve a buffer */
8898 rx_ring->rx_stats.alloc_failed++;
8899 rx_buffer->pagecnt_bias++;
8903 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8906 /* fetch next buffer in frame if non-eop */
8907 if (igb_is_non_eop(rx_ring, rx_desc))
8910 /* verify the packet layout is correct */
8911 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8916 /* probably a little skewed due to removing CRC */
8917 total_bytes += skb->len;
8919 /* populate checksum, timestamp, VLAN, and protocol */
8920 igb_process_skb_fields(rx_ring, rx_desc, skb);
8922 napi_gro_receive(&q_vector->napi, skb);
8924 /* reset skb pointer */
8927 /* update budget accounting */
8931 /* place incomplete frames back on ring for completion */
8934 if (xdp_xmit & IGB_XDP_REDIR)
8937 if (xdp_xmit & IGB_XDP_TX) {
8938 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8940 igb_xdp_ring_update_tail(tx_ring);
8943 u64_stats_update_begin(&rx_ring->rx_syncp);
8944 rx_ring->rx_stats.packets += total_packets;
8945 rx_ring->rx_stats.bytes += total_bytes;
8946 u64_stats_update_end(&rx_ring->rx_syncp);
8947 q_vector->rx.total_packets += total_packets;
8948 q_vector->rx.total_bytes += total_bytes;
8951 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8953 return total_packets;
8956 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8957 struct igb_rx_buffer *bi)
8959 struct page *page = bi->page;
8962 /* since we are recycling buffers we should seldom need to alloc */
8966 /* alloc new page for storage */
8967 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8968 if (unlikely(!page)) {
8969 rx_ring->rx_stats.alloc_failed++;
8973 /* map page for use */
8974 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8975 igb_rx_pg_size(rx_ring),
8979 /* if mapping failed free memory back to system since
8980 * there isn't much point in holding memory we can't use
8982 if (dma_mapping_error(rx_ring->dev, dma)) {
8983 __free_pages(page, igb_rx_pg_order(rx_ring));
8985 rx_ring->rx_stats.alloc_failed++;
8991 bi->page_offset = igb_rx_offset(rx_ring);
8992 page_ref_add(page, USHRT_MAX - 1);
8993 bi->pagecnt_bias = USHRT_MAX;
8999 * igb_alloc_rx_buffers - Replace used receive buffers
9000 * @rx_ring: rx descriptor ring to allocate new receive buffers
9001 * @cleaned_count: count of buffers to allocate
9003 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9005 union e1000_adv_rx_desc *rx_desc;
9006 struct igb_rx_buffer *bi;
9007 u16 i = rx_ring->next_to_use;
9014 rx_desc = IGB_RX_DESC(rx_ring, i);
9015 bi = &rx_ring->rx_buffer_info[i];
9016 i -= rx_ring->count;
9018 bufsz = igb_rx_bufsz(rx_ring);
9021 if (!igb_alloc_mapped_page(rx_ring, bi))
9024 /* sync the buffer for use by the device */
9025 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9026 bi->page_offset, bufsz,
9029 /* Refresh the desc even if buffer_addrs didn't change
9030 * because each write-back erases this info.
9032 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9038 rx_desc = IGB_RX_DESC(rx_ring, 0);
9039 bi = rx_ring->rx_buffer_info;
9040 i -= rx_ring->count;
9043 /* clear the length for the next_to_use descriptor */
9044 rx_desc->wb.upper.length = 0;
9047 } while (cleaned_count);
9049 i += rx_ring->count;
9051 if (rx_ring->next_to_use != i) {
9052 /* record the next descriptor to use */
9053 rx_ring->next_to_use = i;
9055 /* update next to alloc since we have filled the ring */
9056 rx_ring->next_to_alloc = i;
9058 /* Force memory writes to complete before letting h/w
9059 * know there are new descriptors to fetch. (Only
9060 * applicable for weak-ordered memory model archs,
9064 writel(i, rx_ring->tail);
9070 * @netdev: pointer to netdev struct
9071 * @ifr: interface structure
9072 * @cmd: ioctl command to execute
9074 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9076 struct igb_adapter *adapter = netdev_priv(netdev);
9077 struct mii_ioctl_data *data = if_mii(ifr);
9079 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9084 data->phy_id = adapter->hw.phy.addr;
9087 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9100 * @netdev: pointer to netdev struct
9101 * @ifr: interface structure
9102 * @cmd: ioctl command to execute
9104 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9110 return igb_mii_ioctl(netdev, ifr, cmd);
9112 return igb_ptp_get_ts_config(netdev, ifr);
9114 return igb_ptp_set_ts_config(netdev, ifr);
9120 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9122 struct igb_adapter *adapter = hw->back;
9124 pci_read_config_word(adapter->pdev, reg, value);
9127 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9129 struct igb_adapter *adapter = hw->back;
9131 pci_write_config_word(adapter->pdev, reg, *value);
9134 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9136 struct igb_adapter *adapter = hw->back;
9138 if (pcie_capability_read_word(adapter->pdev, reg, value))
9139 return -E1000_ERR_CONFIG;
9144 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9146 struct igb_adapter *adapter = hw->back;
9148 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9149 return -E1000_ERR_CONFIG;
9154 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9156 struct igb_adapter *adapter = netdev_priv(netdev);
9157 struct e1000_hw *hw = &adapter->hw;
9159 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9162 /* enable VLAN tag insert/strip */
9163 ctrl = rd32(E1000_CTRL);
9164 ctrl |= E1000_CTRL_VME;
9165 wr32(E1000_CTRL, ctrl);
9167 /* Disable CFI check */
9168 rctl = rd32(E1000_RCTL);
9169 rctl &= ~E1000_RCTL_CFIEN;
9170 wr32(E1000_RCTL, rctl);
9172 /* disable VLAN tag insert/strip */
9173 ctrl = rd32(E1000_CTRL);
9174 ctrl &= ~E1000_CTRL_VME;
9175 wr32(E1000_CTRL, ctrl);
9178 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9181 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9182 __be16 proto, u16 vid)
9184 struct igb_adapter *adapter = netdev_priv(netdev);
9185 struct e1000_hw *hw = &adapter->hw;
9186 int pf_id = adapter->vfs_allocated_count;
9188 /* add the filter since PF can receive vlans w/o entry in vlvf */
9189 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9190 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9192 set_bit(vid, adapter->active_vlans);
9197 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9198 __be16 proto, u16 vid)
9200 struct igb_adapter *adapter = netdev_priv(netdev);
9201 int pf_id = adapter->vfs_allocated_count;
9202 struct e1000_hw *hw = &adapter->hw;
9204 /* remove VID from filter table */
9205 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9206 igb_vfta_set(hw, vid, pf_id, false, true);
9208 clear_bit(vid, adapter->active_vlans);
9213 static void igb_restore_vlan(struct igb_adapter *adapter)
9217 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9218 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9220 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9221 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9224 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9226 struct pci_dev *pdev = adapter->pdev;
9227 struct e1000_mac_info *mac = &adapter->hw.mac;
9231 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9232 * for the switch() below to work
9234 if ((spd & 1) || (dplx & ~1))
9237 /* Fiber NIC's only allow 1000 gbps Full duplex
9238 * and 100Mbps Full duplex for 100baseFx sfp
9240 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9241 switch (spd + dplx) {
9242 case SPEED_10 + DUPLEX_HALF:
9243 case SPEED_10 + DUPLEX_FULL:
9244 case SPEED_100 + DUPLEX_HALF:
9251 switch (spd + dplx) {
9252 case SPEED_10 + DUPLEX_HALF:
9253 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9255 case SPEED_10 + DUPLEX_FULL:
9256 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9258 case SPEED_100 + DUPLEX_HALF:
9259 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9261 case SPEED_100 + DUPLEX_FULL:
9262 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9264 case SPEED_1000 + DUPLEX_FULL:
9266 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9268 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9273 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9274 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9279 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9283 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9286 struct net_device *netdev = pci_get_drvdata(pdev);
9287 struct igb_adapter *adapter = netdev_priv(netdev);
9288 struct e1000_hw *hw = &adapter->hw;
9289 u32 ctrl, rctl, status;
9290 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9294 netif_device_detach(netdev);
9296 if (netif_running(netdev))
9297 __igb_close(netdev, true);
9299 igb_ptp_suspend(adapter);
9301 igb_clear_interrupt_scheme(adapter);
9304 status = rd32(E1000_STATUS);
9305 if (status & E1000_STATUS_LU)
9306 wufc &= ~E1000_WUFC_LNKC;
9309 igb_setup_rctl(adapter);
9310 igb_set_rx_mode(netdev);
9312 /* turn on all-multi mode if wake on multicast is enabled */
9313 if (wufc & E1000_WUFC_MC) {
9314 rctl = rd32(E1000_RCTL);
9315 rctl |= E1000_RCTL_MPE;
9316 wr32(E1000_RCTL, rctl);
9319 ctrl = rd32(E1000_CTRL);
9320 ctrl |= E1000_CTRL_ADVD3WUC;
9321 wr32(E1000_CTRL, ctrl);
9323 /* Allow time for pending master requests to run */
9324 igb_disable_pcie_master(hw);
9326 wr32(E1000_WUC, E1000_WUC_PME_EN);
9327 wr32(E1000_WUFC, wufc);
9330 wr32(E1000_WUFC, 0);
9333 wake = wufc || adapter->en_mng_pt;
9335 igb_power_down_link(adapter);
9337 igb_power_up_link(adapter);
9340 *enable_wake = wake;
9342 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9343 * would have already happened in close and is redundant.
9345 igb_release_hw_control(adapter);
9347 pci_disable_device(pdev);
9352 static void igb_deliver_wake_packet(struct net_device *netdev)
9354 struct igb_adapter *adapter = netdev_priv(netdev);
9355 struct e1000_hw *hw = &adapter->hw;
9356 struct sk_buff *skb;
9359 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9361 /* WUPM stores only the first 128 bytes of the wake packet.
9362 * Read the packet only if we have the whole thing.
9364 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9367 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9373 /* Ensure reads are 32-bit aligned */
9374 wupl = roundup(wupl, 4);
9376 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9378 skb->protocol = eth_type_trans(skb, netdev);
9382 static int __maybe_unused igb_suspend(struct device *dev)
9384 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9387 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9389 struct pci_dev *pdev = to_pci_dev(dev);
9390 struct net_device *netdev = pci_get_drvdata(pdev);
9391 struct igb_adapter *adapter = netdev_priv(netdev);
9392 struct e1000_hw *hw = &adapter->hw;
9395 pci_set_power_state(pdev, PCI_D0);
9396 pci_restore_state(pdev);
9397 pci_save_state(pdev);
9399 if (!pci_device_is_present(pdev))
9401 err = pci_enable_device_mem(pdev);
9404 "igb: Cannot enable PCI device from suspend\n");
9407 pci_set_master(pdev);
9409 pci_enable_wake(pdev, PCI_D3hot, 0);
9410 pci_enable_wake(pdev, PCI_D3cold, 0);
9412 if (igb_init_interrupt_scheme(adapter, true)) {
9413 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9419 /* let the f/w know that the h/w is now under the control of the
9422 igb_get_hw_control(adapter);
9424 val = rd32(E1000_WUS);
9425 if (val & WAKE_PKT_WUS)
9426 igb_deliver_wake_packet(netdev);
9428 wr32(E1000_WUS, ~0);
9432 if (!err && netif_running(netdev))
9433 err = __igb_open(netdev, true);
9436 netif_device_attach(netdev);
9443 static int __maybe_unused igb_resume(struct device *dev)
9445 return __igb_resume(dev, false);
9448 static int __maybe_unused igb_runtime_idle(struct device *dev)
9450 struct net_device *netdev = dev_get_drvdata(dev);
9451 struct igb_adapter *adapter = netdev_priv(netdev);
9453 if (!igb_has_link(adapter))
9454 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9459 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9461 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9464 static int __maybe_unused igb_runtime_resume(struct device *dev)
9466 return __igb_resume(dev, true);
9469 static void igb_shutdown(struct pci_dev *pdev)
9473 __igb_shutdown(pdev, &wake, 0);
9475 if (system_state == SYSTEM_POWER_OFF) {
9476 pci_wake_from_d3(pdev, wake);
9477 pci_set_power_state(pdev, PCI_D3hot);
9481 #ifdef CONFIG_PCI_IOV
9482 static int igb_sriov_reinit(struct pci_dev *dev)
9484 struct net_device *netdev = pci_get_drvdata(dev);
9485 struct igb_adapter *adapter = netdev_priv(netdev);
9486 struct pci_dev *pdev = adapter->pdev;
9490 if (netif_running(netdev))
9495 igb_clear_interrupt_scheme(adapter);
9497 igb_init_queue_configuration(adapter);
9499 if (igb_init_interrupt_scheme(adapter, true)) {
9501 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9505 if (netif_running(netdev))
9513 static int igb_pci_disable_sriov(struct pci_dev *dev)
9515 int err = igb_disable_sriov(dev);
9518 err = igb_sriov_reinit(dev);
9523 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9525 int err = igb_enable_sriov(dev, num_vfs);
9530 err = igb_sriov_reinit(dev);
9539 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9541 #ifdef CONFIG_PCI_IOV
9543 return igb_pci_disable_sriov(dev);
9545 return igb_pci_enable_sriov(dev, num_vfs);
9551 * igb_io_error_detected - called when PCI error is detected
9552 * @pdev: Pointer to PCI device
9553 * @state: The current pci connection state
9555 * This function is called after a PCI bus error affecting
9556 * this device has been detected.
9558 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9559 pci_channel_state_t state)
9561 struct net_device *netdev = pci_get_drvdata(pdev);
9562 struct igb_adapter *adapter = netdev_priv(netdev);
9564 netif_device_detach(netdev);
9566 if (state == pci_channel_io_perm_failure)
9567 return PCI_ERS_RESULT_DISCONNECT;
9569 if (netif_running(netdev))
9571 pci_disable_device(pdev);
9573 /* Request a slot reset. */
9574 return PCI_ERS_RESULT_NEED_RESET;
9578 * igb_io_slot_reset - called after the pci bus has been reset.
9579 * @pdev: Pointer to PCI device
9581 * Restart the card from scratch, as if from a cold-boot. Implementation
9582 * resembles the first-half of the __igb_resume routine.
9584 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9586 struct net_device *netdev = pci_get_drvdata(pdev);
9587 struct igb_adapter *adapter = netdev_priv(netdev);
9588 struct e1000_hw *hw = &adapter->hw;
9589 pci_ers_result_t result;
9591 if (pci_enable_device_mem(pdev)) {
9593 "Cannot re-enable PCI device after reset.\n");
9594 result = PCI_ERS_RESULT_DISCONNECT;
9596 pci_set_master(pdev);
9597 pci_restore_state(pdev);
9598 pci_save_state(pdev);
9600 pci_enable_wake(pdev, PCI_D3hot, 0);
9601 pci_enable_wake(pdev, PCI_D3cold, 0);
9603 /* In case of PCI error, adapter lose its HW address
9604 * so we should re-assign it here.
9606 hw->hw_addr = adapter->io_addr;
9609 wr32(E1000_WUS, ~0);
9610 result = PCI_ERS_RESULT_RECOVERED;
9617 * igb_io_resume - called when traffic can start flowing again.
9618 * @pdev: Pointer to PCI device
9620 * This callback is called when the error recovery driver tells us that
9621 * its OK to resume normal operation. Implementation resembles the
9622 * second-half of the __igb_resume routine.
9624 static void igb_io_resume(struct pci_dev *pdev)
9626 struct net_device *netdev = pci_get_drvdata(pdev);
9627 struct igb_adapter *adapter = netdev_priv(netdev);
9629 if (netif_running(netdev)) {
9630 if (igb_up(adapter)) {
9631 dev_err(&pdev->dev, "igb_up failed after reset\n");
9636 netif_device_attach(netdev);
9638 /* let the f/w know that the h/w is now under the control of the
9641 igb_get_hw_control(adapter);
9645 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9646 * @adapter: Pointer to adapter structure
9647 * @index: Index of the RAR entry which need to be synced with MAC table
9649 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9651 struct e1000_hw *hw = &adapter->hw;
9652 u32 rar_low, rar_high;
9653 u8 *addr = adapter->mac_table[index].addr;
9655 /* HW expects these to be in network order when they are plugged
9656 * into the registers which are little endian. In order to guarantee
9657 * that ordering we need to do an leXX_to_cpup here in order to be
9658 * ready for the byteswap that occurs with writel
9660 rar_low = le32_to_cpup((__le32 *)(addr));
9661 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9663 /* Indicate to hardware the Address is Valid. */
9664 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9665 if (is_valid_ether_addr(addr))
9666 rar_high |= E1000_RAH_AV;
9668 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9669 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9671 switch (hw->mac.type) {
9674 if (adapter->mac_table[index].state &
9675 IGB_MAC_STATE_QUEUE_STEERING)
9676 rar_high |= E1000_RAH_QSEL_ENABLE;
9678 rar_high |= E1000_RAH_POOL_1 *
9679 adapter->mac_table[index].queue;
9682 rar_high |= E1000_RAH_POOL_1 <<
9683 adapter->mac_table[index].queue;
9688 wr32(E1000_RAL(index), rar_low);
9690 wr32(E1000_RAH(index), rar_high);
9694 static int igb_set_vf_mac(struct igb_adapter *adapter,
9695 int vf, unsigned char *mac_addr)
9697 struct e1000_hw *hw = &adapter->hw;
9698 /* VF MAC addresses start at end of receive addresses and moves
9699 * towards the first, as a result a collision should not be possible
9701 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9702 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9704 ether_addr_copy(vf_mac_addr, mac_addr);
9705 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9706 adapter->mac_table[rar_entry].queue = vf;
9707 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9708 igb_rar_set_index(adapter, rar_entry);
9713 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9715 struct igb_adapter *adapter = netdev_priv(netdev);
9717 if (vf >= adapter->vfs_allocated_count)
9720 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9721 * flag and allows to overwrite the MAC via VF netdev. This
9722 * is necessary to allow libvirt a way to restore the original
9723 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9726 if (is_zero_ether_addr(mac)) {
9727 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9728 dev_info(&adapter->pdev->dev,
9729 "remove administratively set MAC on VF %d\n",
9731 } else if (is_valid_ether_addr(mac)) {
9732 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9733 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9735 dev_info(&adapter->pdev->dev,
9736 "Reload the VF driver to make this change effective.");
9737 /* Generate additional warning if PF is down */
9738 if (test_bit(__IGB_DOWN, &adapter->state)) {
9739 dev_warn(&adapter->pdev->dev,
9740 "The VF MAC address has been set, but the PF device is not up.\n");
9741 dev_warn(&adapter->pdev->dev,
9742 "Bring the PF device up before attempting to use the VF device.\n");
9747 return igb_set_vf_mac(adapter, vf, mac);
9750 static int igb_link_mbps(int internal_link_speed)
9752 switch (internal_link_speed) {
9762 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9769 /* Calculate the rate factor values to set */
9770 rf_int = link_speed / tx_rate;
9771 rf_dec = (link_speed - (rf_int * tx_rate));
9772 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9775 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9776 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9777 E1000_RTTBCNRC_RF_INT_MASK);
9778 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9783 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9784 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9785 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9787 wr32(E1000_RTTBCNRM, 0x14);
9788 wr32(E1000_RTTBCNRC, bcnrc_val);
9791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9793 int actual_link_speed, i;
9794 bool reset_rate = false;
9796 /* VF TX rate limit was not set or not supported */
9797 if ((adapter->vf_rate_link_speed == 0) ||
9798 (adapter->hw.mac.type != e1000_82576))
9801 actual_link_speed = igb_link_mbps(adapter->link_speed);
9802 if (actual_link_speed != adapter->vf_rate_link_speed) {
9804 adapter->vf_rate_link_speed = 0;
9805 dev_info(&adapter->pdev->dev,
9806 "Link speed has been changed. VF Transmit rate is disabled\n");
9809 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9811 adapter->vf_data[i].tx_rate = 0;
9813 igb_set_vf_rate_limit(&adapter->hw, i,
9814 adapter->vf_data[i].tx_rate,
9819 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9820 int min_tx_rate, int max_tx_rate)
9822 struct igb_adapter *adapter = netdev_priv(netdev);
9823 struct e1000_hw *hw = &adapter->hw;
9824 int actual_link_speed;
9826 if (hw->mac.type != e1000_82576)
9832 actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 if ((vf >= adapter->vfs_allocated_count) ||
9834 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9835 (max_tx_rate < 0) ||
9836 (max_tx_rate > actual_link_speed))
9839 adapter->vf_rate_link_speed = actual_link_speed;
9840 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9841 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9846 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9849 struct igb_adapter *adapter = netdev_priv(netdev);
9850 struct e1000_hw *hw = &adapter->hw;
9851 u32 reg_val, reg_offset;
9853 if (!adapter->vfs_allocated_count)
9856 if (vf >= adapter->vfs_allocated_count)
9859 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9860 reg_val = rd32(reg_offset);
9862 reg_val |= (BIT(vf) |
9863 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9865 reg_val &= ~(BIT(vf) |
9866 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9867 wr32(reg_offset, reg_val);
9869 adapter->vf_data[vf].spoofchk_enabled = setting;
9873 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9875 struct igb_adapter *adapter = netdev_priv(netdev);
9877 if (vf >= adapter->vfs_allocated_count)
9879 if (adapter->vf_data[vf].trusted == setting)
9882 adapter->vf_data[vf].trusted = setting;
9884 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9885 vf, setting ? "" : "not ");
9889 static int igb_ndo_get_vf_config(struct net_device *netdev,
9890 int vf, struct ifla_vf_info *ivi)
9892 struct igb_adapter *adapter = netdev_priv(netdev);
9893 if (vf >= adapter->vfs_allocated_count)
9896 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9897 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9898 ivi->min_tx_rate = 0;
9899 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9900 ivi->qos = adapter->vf_data[vf].pf_qos;
9901 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9902 ivi->trusted = adapter->vf_data[vf].trusted;
9906 static void igb_vmm_control(struct igb_adapter *adapter)
9908 struct e1000_hw *hw = &adapter->hw;
9911 switch (hw->mac.type) {
9917 /* replication is not supported for 82575 */
9920 /* notify HW that the MAC is adding vlan tags */
9921 reg = rd32(E1000_DTXCTL);
9922 reg |= E1000_DTXCTL_VLAN_ADDED;
9923 wr32(E1000_DTXCTL, reg);
9926 /* enable replication vlan tag stripping */
9927 reg = rd32(E1000_RPLOLR);
9928 reg |= E1000_RPLOLR_STRVLAN;
9929 wr32(E1000_RPLOLR, reg);
9932 /* none of the above registers are supported by i350 */
9936 if (adapter->vfs_allocated_count) {
9937 igb_vmdq_set_loopback_pf(hw, true);
9938 igb_vmdq_set_replication_pf(hw, true);
9939 igb_vmdq_set_anti_spoofing_pf(hw, true,
9940 adapter->vfs_allocated_count);
9942 igb_vmdq_set_loopback_pf(hw, false);
9943 igb_vmdq_set_replication_pf(hw, false);
9947 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9949 struct e1000_hw *hw = &adapter->hw;
9954 if (hw->mac.type > e1000_82580) {
9955 if (adapter->flags & IGB_FLAG_DMAC) {
9956 /* force threshold to 0. */
9957 wr32(E1000_DMCTXTH, 0);
9959 /* DMA Coalescing high water mark needs to be greater
9960 * than the Rx threshold. Set hwm to PBA - max frame
9961 * size in 16B units, capping it at PBA - 6KB.
9963 hwm = 64 * (pba - 6);
9964 reg = rd32(E1000_FCRTC);
9965 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9966 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9967 & E1000_FCRTC_RTH_COAL_MASK);
9968 wr32(E1000_FCRTC, reg);
9970 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9971 * frame size, capping it at PBA - 10KB.
9973 dmac_thr = pba - 10;
9974 reg = rd32(E1000_DMACR);
9975 reg &= ~E1000_DMACR_DMACTHR_MASK;
9976 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9977 & E1000_DMACR_DMACTHR_MASK);
9979 /* transition to L0x or L1 if available..*/
9980 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9982 /* watchdog timer= +-1000 usec in 32usec intervals */
9985 /* Disable BMC-to-OS Watchdog Enable */
9986 if (hw->mac.type != e1000_i354)
9987 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9988 wr32(E1000_DMACR, reg);
9990 /* no lower threshold to disable
9991 * coalescing(smart fifb)-UTRESH=0
9993 wr32(E1000_DMCRTRH, 0);
9995 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9997 wr32(E1000_DMCTLX, reg);
9999 /* free space in tx packet buffer to wake from
10002 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10003 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10006 if (hw->mac.type >= e1000_i210 ||
10007 (adapter->flags & IGB_FLAG_DMAC)) {
10008 reg = rd32(E1000_PCIEMISC);
10009 reg |= E1000_PCIEMISC_LX_DECISION;
10010 wr32(E1000_PCIEMISC, reg);
10011 } /* endif adapter->dmac is not disabled */
10012 } else if (hw->mac.type == e1000_82580) {
10013 u32 reg = rd32(E1000_PCIEMISC);
10015 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10016 wr32(E1000_DMACR, 0);
10021 * igb_read_i2c_byte - Reads 8 bit word over I2C
10022 * @hw: pointer to hardware structure
10023 * @byte_offset: byte offset to read
10024 * @dev_addr: device address
10025 * @data: value read
10027 * Performs byte read operation over I2C interface at
10028 * a specified device address.
10030 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10031 u8 dev_addr, u8 *data)
10033 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10034 struct i2c_client *this_client = adapter->i2c_client;
10039 return E1000_ERR_I2C;
10041 swfw_mask = E1000_SWFW_PHY0_SM;
10043 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10044 return E1000_ERR_SWFW_SYNC;
10046 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10047 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10050 return E1000_ERR_I2C;
10058 * igb_write_i2c_byte - Writes 8 bit word over I2C
10059 * @hw: pointer to hardware structure
10060 * @byte_offset: byte offset to write
10061 * @dev_addr: device address
10062 * @data: value to write
10064 * Performs byte write operation over I2C interface at
10065 * a specified device address.
10067 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10068 u8 dev_addr, u8 data)
10070 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10071 struct i2c_client *this_client = adapter->i2c_client;
10073 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10076 return E1000_ERR_I2C;
10078 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10079 return E1000_ERR_SWFW_SYNC;
10080 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10081 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10084 return E1000_ERR_I2C;
10090 int igb_reinit_queues(struct igb_adapter *adapter)
10092 struct net_device *netdev = adapter->netdev;
10093 struct pci_dev *pdev = adapter->pdev;
10096 if (netif_running(netdev))
10099 igb_reset_interrupt_capability(adapter);
10101 if (igb_init_interrupt_scheme(adapter, true)) {
10102 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10106 if (netif_running(netdev))
10107 err = igb_open(netdev);
10112 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10114 struct igb_nfc_filter *rule;
10116 spin_lock(&adapter->nfc_lock);
10118 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10119 igb_erase_filter(adapter, rule);
10121 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10122 igb_erase_filter(adapter, rule);
10124 spin_unlock(&adapter->nfc_lock);
10127 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10129 struct igb_nfc_filter *rule;
10131 spin_lock(&adapter->nfc_lock);
10133 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10134 igb_add_filter(adapter, rule);
10136 spin_unlock(&adapter->nfc_lock);