]> Git Repo - J-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge branch 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[J-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX    6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53         VC4_REG32(PV_CONTROL),
54         VC4_REG32(PV_V_CONTROL),
55         VC4_REG32(PV_VSYNCD_EVEN),
56         VC4_REG32(PV_HORZA),
57         VC4_REG32(PV_HORZB),
58         VC4_REG32(PV_VERTA),
59         VC4_REG32(PV_VERTB),
60         VC4_REG32(PV_VERTA_EVEN),
61         VC4_REG32(PV_VERTB_EVEN),
62         VC4_REG32(PV_INTEN),
63         VC4_REG32(PV_INTSTAT),
64         VC4_REG32(PV_STAT),
65         VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72         /* Top/base are supposed to be 4-pixel aligned, but the
73          * Raspberry Pi firmware fills the low bits (which are
74          * presumably ignored).
75          */
76         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79         return top - base + 4;
80 }
81
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83                                           bool in_vblank_irq,
84                                           int *vpos, int *hpos,
85                                           ktime_t *stime, ktime_t *etime,
86                                           const struct drm_display_mode *mode)
87 {
88         struct drm_device *dev = crtc->dev;
89         struct vc4_dev *vc4 = to_vc4_dev(dev);
90         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92         unsigned int cob_size;
93         u32 val;
94         int fifo_lines;
95         int vblank_lines;
96         bool ret = false;
97
98         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100         /* Get optional system timestamp before query. */
101         if (stime)
102                 *stime = ktime_get();
103
104         /*
105          * Read vertical scanline which is currently composed for our
106          * pixelvalve by the HVS, and also the scaler status.
107          */
108         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110         /* Get optional system timestamp after query. */
111         if (etime)
112                 *etime = ktime_get();
113
114         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116         /* Vertical position of hvs composed scanline. */
117         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118         *hpos = 0;
119
120         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121                 *vpos /= 2;
122
123                 /* Use hpos to correct for field offset in interlaced mode. */
124                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125                         *hpos += mode->crtc_htotal / 2;
126         }
127
128         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129         /* This is the offset we need for translating hvs -> pv scanout pos. */
130         fifo_lines = cob_size / mode->crtc_hdisplay;
131
132         if (fifo_lines > 0)
133                 ret = true;
134
135         /* HVS more than fifo_lines into frame for compositing? */
136         if (*vpos > fifo_lines) {
137                 /*
138                  * We are in active scanout and can get some meaningful results
139                  * from HVS. The actual PV scanout can not trail behind more
140                  * than fifo_lines as that is the fifo's capacity. Assume that
141                  * in active scanout the HVS and PV work in lockstep wrt. HVS
142                  * refilling the fifo and PV consuming from the fifo, ie.
143                  * whenever the PV consumes and frees up a scanline in the
144                  * fifo, the HVS will immediately refill it, therefore
145                  * incrementing vpos. Therefore we choose HVS read position -
146                  * fifo size in scanlines as a estimate of the real scanout
147                  * position of the PV.
148                  */
149                 *vpos -= fifo_lines + 1;
150
151                 return ret;
152         }
153
154         /*
155          * Less: This happens when we are in vblank and the HVS, after getting
156          * the VSTART restart signal from the PV, just started refilling its
157          * fifo with new lines from the top-most lines of the new framebuffers.
158          * The PV does not scan out in vblank, so does not remove lines from
159          * the fifo, so the fifo will be full quickly and the HVS has to pause.
160          * We can't get meaningful readings wrt. scanline position of the PV
161          * and need to make things up in a approximative but consistent way.
162          */
163         vblank_lines = mode->vtotal - mode->vdisplay;
164
165         if (in_vblank_irq) {
166                 /*
167                  * Assume the irq handler got called close to first
168                  * line of vblank, so PV has about a full vblank
169                  * scanlines to go, and as a base timestamp use the
170                  * one taken at entry into vblank irq handler, so it
171                  * is not affected by random delays due to lock
172                  * contention on event_lock or vblank_time lock in
173                  * the core.
174                  */
175                 *vpos = -vblank_lines;
176
177                 if (stime)
178                         *stime = vc4_crtc->t_vblank;
179                 if (etime)
180                         *etime = vc4_crtc->t_vblank;
181
182                 /*
183                  * If the HVS fifo is not yet full then we know for certain
184                  * we are at the very beginning of vblank, as the hvs just
185                  * started refilling, and the stime and etime timestamps
186                  * truly correspond to start of vblank.
187                  *
188                  * Unfortunately there's no way to report this to upper levels
189                  * and make it more useful.
190                  */
191         } else {
192                 /*
193                  * No clue where we are inside vblank. Return a vpos of zero,
194                  * which will cause calling code to just return the etime
195                  * timestamp uncorrected. At least this is no worse than the
196                  * standard fallback.
197                  */
198                 *vpos = 0;
199         }
200
201         return ret;
202 }
203
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206         drm_crtc_cleanup(crtc);
207 }
208
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213         u32 fifo_len_bytes = pv_data->fifo_depth;
214
215         /*
216          * Pixels are pulled from the HVS if the number of bytes is
217          * lower than the FIFO full level.
218          *
219          * The latency of the pixel fetch mechanism is 6 pixels, so we
220          * need to convert those 6 pixels in bytes, depending on the
221          * format, and then subtract that from the length of the FIFO
222          * to make sure we never end up in a situation where the FIFO
223          * is full.
224          */
225         switch (format) {
226         case PV_CONTROL_FORMAT_DSIV_16:
227         case PV_CONTROL_FORMAT_DSIC_16:
228                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
229         case PV_CONTROL_FORMAT_DSIV_18:
230                 return fifo_len_bytes - 14;
231         case PV_CONTROL_FORMAT_24:
232         case PV_CONTROL_FORMAT_DSIV_24:
233         default:
234                 /*
235                  * For some reason, the pixelvalve4 doesn't work with
236                  * the usual formula and will only work with 32.
237                  */
238                 if (crtc_data->hvs_output == 5)
239                         return 32;
240
241                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
242         }
243 }
244
245 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
246                                              u32 format)
247 {
248         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
249         u32 ret = 0;
250
251         ret |= VC4_SET_FIELD((level >> 6),
252                              PV5_CONTROL_FIFO_LEVEL_HIGH);
253
254         return ret | VC4_SET_FIELD(level & 0x3f,
255                                    PV_CONTROL_FIFO_LEVEL);
256 }
257
258 /*
259  * Returns the encoder attached to the CRTC.
260  *
261  * VC4 can only scan out to one encoder at a time, while the DRM core
262  * allows drivers to push pixels to more than one encoder from the
263  * same CRTC.
264  */
265 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
266 {
267         struct drm_connector *connector;
268         struct drm_connector_list_iter conn_iter;
269
270         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
271         drm_for_each_connector_iter(connector, &conn_iter) {
272                 if (connector->state->crtc == crtc) {
273                         drm_connector_list_iter_end(&conn_iter);
274                         return connector->encoder;
275                 }
276         }
277         drm_connector_list_iter_end(&conn_iter);
278
279         return NULL;
280 }
281
282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
283 {
284         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
285
286         /* The PV needs to be disabled before it can be flushed */
287         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
288         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
289 }
290
291 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
292 {
293         struct drm_device *dev = crtc->dev;
294         struct vc4_dev *vc4 = to_vc4_dev(dev);
295         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
299         struct drm_crtc_state *state = crtc->state;
300         struct drm_display_mode *mode = &state->adjusted_mode;
301         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
306         u8 ppc = pv_data->pixels_per_clock;
307         bool debug_dump_regs = false;
308
309         if (debug_dump_regs) {
310                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
311                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
312                          drm_crtc_index(crtc));
313                 drm_print_regset32(&p, &vc4_crtc->regset);
314         }
315
316         vc4_crtc_pixelvalve_reset(crtc);
317
318         CRTC_WRITE(PV_HORZA,
319                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
320                                  PV_HORZA_HBP) |
321                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
322                                  PV_HORZA_HSYNC));
323
324         CRTC_WRITE(PV_HORZB,
325                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
326                                  PV_HORZB_HFP) |
327                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
328                                  PV_HORZB_HACTIVE));
329
330         CRTC_WRITE(PV_VERTA,
331                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
332                                  PV_VERTA_VBP) |
333                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
334                                  PV_VERTA_VSYNC));
335         CRTC_WRITE(PV_VERTB,
336                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
337                                  PV_VERTB_VFP) |
338                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
339
340         if (interlace) {
341                 CRTC_WRITE(PV_VERTA_EVEN,
342                            VC4_SET_FIELD(mode->crtc_vtotal -
343                                          mode->crtc_vsync_end - 1,
344                                          PV_VERTA_VBP) |
345                            VC4_SET_FIELD(mode->crtc_vsync_end -
346                                          mode->crtc_vsync_start,
347                                          PV_VERTA_VSYNC));
348                 CRTC_WRITE(PV_VERTB_EVEN,
349                            VC4_SET_FIELD(mode->crtc_vsync_start -
350                                          mode->crtc_vdisplay,
351                                          PV_VERTB_VFP) |
352                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
353
354                 /* We set up first field even mode for HDMI.  VEC's
355                  * NTSC mode would want first field odd instead, once
356                  * we support it (to do so, set ODD_FIRST and put the
357                  * delay in VSYNCD_EVEN instead).
358                  */
359                 CRTC_WRITE(PV_V_CONTROL,
360                            PV_VCONTROL_CONTINUOUS |
361                            (is_dsi ? PV_VCONTROL_DSI : 0) |
362                            PV_VCONTROL_INTERLACE |
363                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
364                                          PV_VCONTROL_ODD_DELAY));
365                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
366         } else {
367                 CRTC_WRITE(PV_V_CONTROL,
368                            PV_VCONTROL_CONTINUOUS |
369                            (is_dsi ? PV_VCONTROL_DSI : 0));
370         }
371
372         if (is_dsi)
373                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
374
375         if (vc4->hvs->hvs5)
376                 CRTC_WRITE(PV_MUX_CFG,
377                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
378                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
379
380         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
381                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
382                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
383                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
384                    PV_CONTROL_CLR_AT_START |
385                    PV_CONTROL_TRIGGER_UNDERFLOW |
386                    PV_CONTROL_WAIT_HSTART |
387                    VC4_SET_FIELD(vc4_encoder->clock_select,
388                                  PV_CONTROL_CLK_SELECT));
389
390         if (debug_dump_regs) {
391                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
392                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
393                          drm_crtc_index(crtc));
394                 drm_print_regset32(&p, &vc4_crtc->regset);
395         }
396 }
397
398 static void require_hvs_enabled(struct drm_device *dev)
399 {
400         struct vc4_dev *vc4 = to_vc4_dev(dev);
401
402         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
403                      SCALER_DISPCTRL_ENABLE);
404 }
405
406 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
407 {
408         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
409         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
410         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
411         struct drm_device *dev = crtc->dev;
412         int ret;
413
414         CRTC_WRITE(PV_V_CONTROL,
415                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
416         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
417         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
418
419         /*
420          * This delay is needed to avoid to get a pixel stuck in an
421          * unflushable FIFO between the pixelvalve and the HDMI
422          * controllers on the BCM2711.
423          *
424          * Timing is fairly sensitive here, so mdelay is the safest
425          * approach.
426          *
427          * If it was to be reworked, the stuck pixel happens on a
428          * BCM2711 when changing mode with a good probability, so a
429          * script that changes mode on a regular basis should trigger
430          * the bug after less than 10 attempts. It manifests itself with
431          * every pixels being shifted by one to the right, and thus the
432          * last pixel of a line actually being displayed as the first
433          * pixel on the next line.
434          */
435         mdelay(20);
436
437         if (vc4_encoder && vc4_encoder->post_crtc_disable)
438                 vc4_encoder->post_crtc_disable(encoder);
439
440         vc4_crtc_pixelvalve_reset(crtc);
441         vc4_hvs_stop_channel(dev, channel);
442
443         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
444                 vc4_encoder->post_crtc_powerdown(encoder);
445
446         return 0;
447 }
448
449 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
450 {
451         struct drm_device *drm = crtc->dev;
452         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453         int channel;
454
455         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
456                                       "brcm,bcm2711-pixelvalve2") ||
457               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
458                                       "brcm,bcm2711-pixelvalve4")))
459                 return 0;
460
461         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
462                 return 0;
463
464         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
465                 return 0;
466
467         channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
468         if (channel < 0)
469                 return 0;
470
471         return vc4_crtc_disable(crtc, channel);
472 }
473
474 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
475                                     struct drm_atomic_state *state)
476 {
477         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
478                                                                          crtc);
479         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
480         struct drm_device *dev = crtc->dev;
481
482         require_hvs_enabled(dev);
483
484         /* Disable vblank irq handling before crtc is disabled. */
485         drm_crtc_vblank_off(crtc);
486
487         vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
488
489         /*
490          * Make sure we issue a vblank event after disabling the CRTC if
491          * someone was waiting it.
492          */
493         if (crtc->state->event) {
494                 unsigned long flags;
495
496                 spin_lock_irqsave(&dev->event_lock, flags);
497                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
498                 crtc->state->event = NULL;
499                 spin_unlock_irqrestore(&dev->event_lock, flags);
500         }
501 }
502
503 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
504                                    struct drm_atomic_state *state)
505 {
506         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
507                                                                          crtc);
508         struct drm_device *dev = crtc->dev;
509         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
510         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
511         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
512
513         require_hvs_enabled(dev);
514
515         /* Enable vblank irq handling before crtc is started otherwise
516          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
517          */
518         drm_crtc_vblank_on(crtc);
519
520         vc4_hvs_atomic_enable(crtc, old_state);
521
522         if (vc4_encoder->pre_crtc_configure)
523                 vc4_encoder->pre_crtc_configure(encoder);
524
525         vc4_crtc_config_pv(crtc);
526
527         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
528
529         if (vc4_encoder->pre_crtc_enable)
530                 vc4_encoder->pre_crtc_enable(encoder);
531
532         /* When feeding the transposer block the pixelvalve is unneeded and
533          * should not be enabled.
534          */
535         CRTC_WRITE(PV_V_CONTROL,
536                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
537
538         if (vc4_encoder->post_crtc_enable)
539                 vc4_encoder->post_crtc_enable(encoder);
540 }
541
542 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
543                                                 const struct drm_display_mode *mode)
544 {
545         /* Do not allow doublescan modes from user space */
546         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
547                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
548                               crtc->base.id);
549                 return MODE_NO_DBLESCAN;
550         }
551
552         return MODE_OK;
553 }
554
555 void vc4_crtc_get_margins(struct drm_crtc_state *state,
556                           unsigned int *left, unsigned int *right,
557                           unsigned int *top, unsigned int *bottom)
558 {
559         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
560         struct drm_connector_state *conn_state;
561         struct drm_connector *conn;
562         int i;
563
564         *left = vc4_state->margins.left;
565         *right = vc4_state->margins.right;
566         *top = vc4_state->margins.top;
567         *bottom = vc4_state->margins.bottom;
568
569         /* We have to interate over all new connector states because
570          * vc4_crtc_get_margins() might be called before
571          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
572          * might be outdated.
573          */
574         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
575                 if (conn_state->crtc != state->crtc)
576                         continue;
577
578                 *left = conn_state->tv.margins.left;
579                 *right = conn_state->tv.margins.right;
580                 *top = conn_state->tv.margins.top;
581                 *bottom = conn_state->tv.margins.bottom;
582                 break;
583         }
584 }
585
586 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
587                                  struct drm_atomic_state *state)
588 {
589         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
590                                                                           crtc);
591         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
592         struct drm_connector *conn;
593         struct drm_connector_state *conn_state;
594         int ret, i;
595
596         ret = vc4_hvs_atomic_check(crtc, crtc_state);
597         if (ret)
598                 return ret;
599
600         for_each_new_connector_in_state(state, conn, conn_state,
601                                         i) {
602                 if (conn_state->crtc != crtc)
603                         continue;
604
605                 vc4_state->margins.left = conn_state->tv.margins.left;
606                 vc4_state->margins.right = conn_state->tv.margins.right;
607                 vc4_state->margins.top = conn_state->tv.margins.top;
608                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
609                 break;
610         }
611
612         return 0;
613 }
614
615 static int vc4_enable_vblank(struct drm_crtc *crtc)
616 {
617         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
618
619         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
620
621         return 0;
622 }
623
624 static void vc4_disable_vblank(struct drm_crtc *crtc)
625 {
626         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
627
628         CRTC_WRITE(PV_INTEN, 0);
629 }
630
631 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
632 {
633         struct drm_crtc *crtc = &vc4_crtc->base;
634         struct drm_device *dev = crtc->dev;
635         struct vc4_dev *vc4 = to_vc4_dev(dev);
636         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
637         u32 chan = vc4_state->assigned_channel;
638         unsigned long flags;
639
640         spin_lock_irqsave(&dev->event_lock, flags);
641         if (vc4_crtc->event &&
642             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
643              vc4_state->feed_txp)) {
644                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
645                 vc4_crtc->event = NULL;
646                 drm_crtc_vblank_put(crtc);
647
648                 /* Wait for the page flip to unmask the underrun to ensure that
649                  * the display list was updated by the hardware. Before that
650                  * happens, the HVS will be using the previous display list with
651                  * the CRTC and encoder already reconfigured, leading to
652                  * underruns. This can be seen when reconfiguring the CRTC.
653                  */
654                 vc4_hvs_unmask_underrun(dev, chan);
655         }
656         spin_unlock_irqrestore(&dev->event_lock, flags);
657 }
658
659 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
660 {
661         crtc->t_vblank = ktime_get();
662         drm_crtc_handle_vblank(&crtc->base);
663         vc4_crtc_handle_page_flip(crtc);
664 }
665
666 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
667 {
668         struct vc4_crtc *vc4_crtc = data;
669         u32 stat = CRTC_READ(PV_INTSTAT);
670         irqreturn_t ret = IRQ_NONE;
671
672         if (stat & PV_INT_VFP_START) {
673                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
674                 vc4_crtc_handle_vblank(vc4_crtc);
675                 ret = IRQ_HANDLED;
676         }
677
678         return ret;
679 }
680
681 struct vc4_async_flip_state {
682         struct drm_crtc *crtc;
683         struct drm_framebuffer *fb;
684         struct drm_framebuffer *old_fb;
685         struct drm_pending_vblank_event *event;
686
687         struct vc4_seqno_cb cb;
688 };
689
690 /* Called when the V3D execution for the BO being flipped to is done, so that
691  * we can actually update the plane's address to point to it.
692  */
693 static void
694 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
695 {
696         struct vc4_async_flip_state *flip_state =
697                 container_of(cb, struct vc4_async_flip_state, cb);
698         struct drm_crtc *crtc = flip_state->crtc;
699         struct drm_device *dev = crtc->dev;
700         struct vc4_dev *vc4 = to_vc4_dev(dev);
701         struct drm_plane *plane = crtc->primary;
702
703         vc4_plane_async_set_fb(plane, flip_state->fb);
704         if (flip_state->event) {
705                 unsigned long flags;
706
707                 spin_lock_irqsave(&dev->event_lock, flags);
708                 drm_crtc_send_vblank_event(crtc, flip_state->event);
709                 spin_unlock_irqrestore(&dev->event_lock, flags);
710         }
711
712         drm_crtc_vblank_put(crtc);
713         drm_framebuffer_put(flip_state->fb);
714
715         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
716          * when the planes are updated through the async update path.
717          * FIXME: we should move to generic async-page-flip when it's
718          * available, so that we can get rid of this hand-made cleanup_fb()
719          * logic.
720          */
721         if (flip_state->old_fb) {
722                 struct drm_gem_cma_object *cma_bo;
723                 struct vc4_bo *bo;
724
725                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
726                 bo = to_vc4_bo(&cma_bo->base);
727                 vc4_bo_dec_usecnt(bo);
728                 drm_framebuffer_put(flip_state->old_fb);
729         }
730
731         kfree(flip_state);
732
733         up(&vc4->async_modeset);
734 }
735
736 /* Implements async (non-vblank-synced) page flips.
737  *
738  * The page flip ioctl needs to return immediately, so we grab the
739  * modeset semaphore on the pipe, and queue the address update for
740  * when V3D is done with the BO being flipped to.
741  */
742 static int vc4_async_page_flip(struct drm_crtc *crtc,
743                                struct drm_framebuffer *fb,
744                                struct drm_pending_vblank_event *event,
745                                uint32_t flags)
746 {
747         struct drm_device *dev = crtc->dev;
748         struct vc4_dev *vc4 = to_vc4_dev(dev);
749         struct drm_plane *plane = crtc->primary;
750         int ret = 0;
751         struct vc4_async_flip_state *flip_state;
752         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
753         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
754
755         /* Increment the BO usecnt here, so that we never end up with an
756          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
757          * plane is later updated through the non-async path.
758          * FIXME: we should move to generic async-page-flip when it's
759          * available, so that we can get rid of this hand-made prepare_fb()
760          * logic.
761          */
762         ret = vc4_bo_inc_usecnt(bo);
763         if (ret)
764                 return ret;
765
766         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
767         if (!flip_state) {
768                 vc4_bo_dec_usecnt(bo);
769                 return -ENOMEM;
770         }
771
772         drm_framebuffer_get(fb);
773         flip_state->fb = fb;
774         flip_state->crtc = crtc;
775         flip_state->event = event;
776
777         /* Make sure all other async modesetes have landed. */
778         ret = down_interruptible(&vc4->async_modeset);
779         if (ret) {
780                 drm_framebuffer_put(fb);
781                 vc4_bo_dec_usecnt(bo);
782                 kfree(flip_state);
783                 return ret;
784         }
785
786         /* Save the current FB before it's replaced by the new one in
787          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
788          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
789          * it consistent.
790          * FIXME: we should move to generic async-page-flip when it's
791          * available, so that we can get rid of this hand-made cleanup_fb()
792          * logic.
793          */
794         flip_state->old_fb = plane->state->fb;
795         if (flip_state->old_fb)
796                 drm_framebuffer_get(flip_state->old_fb);
797
798         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
799
800         /* Immediately update the plane's legacy fb pointer, so that later
801          * modeset prep sees the state that will be present when the semaphore
802          * is released.
803          */
804         drm_atomic_set_fb_for_plane(plane->state, fb);
805
806         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
807                            vc4_async_page_flip_complete);
808
809         /* Driver takes ownership of state on successful async commit. */
810         return 0;
811 }
812
813 int vc4_page_flip(struct drm_crtc *crtc,
814                   struct drm_framebuffer *fb,
815                   struct drm_pending_vblank_event *event,
816                   uint32_t flags,
817                   struct drm_modeset_acquire_ctx *ctx)
818 {
819         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
820                 return vc4_async_page_flip(crtc, fb, event, flags);
821         else
822                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
823 }
824
825 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
826 {
827         struct vc4_crtc_state *vc4_state, *old_vc4_state;
828
829         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
830         if (!vc4_state)
831                 return NULL;
832
833         old_vc4_state = to_vc4_crtc_state(crtc->state);
834         vc4_state->feed_txp = old_vc4_state->feed_txp;
835         vc4_state->margins = old_vc4_state->margins;
836         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
837
838         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
839         return &vc4_state->base;
840 }
841
842 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
843                             struct drm_crtc_state *state)
844 {
845         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
846         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
847
848         if (drm_mm_node_allocated(&vc4_state->mm)) {
849                 unsigned long flags;
850
851                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
852                 drm_mm_remove_node(&vc4_state->mm);
853                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
854
855         }
856
857         drm_atomic_helper_crtc_destroy_state(crtc, state);
858 }
859
860 void vc4_crtc_reset(struct drm_crtc *crtc)
861 {
862         struct vc4_crtc_state *vc4_crtc_state;
863
864         if (crtc->state)
865                 vc4_crtc_destroy_state(crtc, crtc->state);
866
867         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
868         if (!vc4_crtc_state) {
869                 crtc->state = NULL;
870                 return;
871         }
872
873         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
874         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
875 }
876
877 static const struct drm_crtc_funcs vc4_crtc_funcs = {
878         .set_config = drm_atomic_helper_set_config,
879         .destroy = vc4_crtc_destroy,
880         .page_flip = vc4_page_flip,
881         .set_property = NULL,
882         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
883         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
884         .reset = vc4_crtc_reset,
885         .atomic_duplicate_state = vc4_crtc_duplicate_state,
886         .atomic_destroy_state = vc4_crtc_destroy_state,
887         .gamma_set = drm_atomic_helper_legacy_gamma_set,
888         .enable_vblank = vc4_enable_vblank,
889         .disable_vblank = vc4_disable_vblank,
890         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
891 };
892
893 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
894         .mode_valid = vc4_crtc_mode_valid,
895         .atomic_check = vc4_crtc_atomic_check,
896         .atomic_flush = vc4_hvs_atomic_flush,
897         .atomic_enable = vc4_crtc_atomic_enable,
898         .atomic_disable = vc4_crtc_atomic_disable,
899         .get_scanout_position = vc4_crtc_get_scanout_position,
900 };
901
902 static const struct vc4_pv_data bcm2835_pv0_data = {
903         .base = {
904                 .hvs_available_channels = BIT(0),
905                 .hvs_output = 0,
906         },
907         .debugfs_name = "crtc0_regs",
908         .fifo_depth = 64,
909         .pixels_per_clock = 1,
910         .encoder_types = {
911                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
912                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
913         },
914 };
915
916 static const struct vc4_pv_data bcm2835_pv1_data = {
917         .base = {
918                 .hvs_available_channels = BIT(2),
919                 .hvs_output = 2,
920         },
921         .debugfs_name = "crtc1_regs",
922         .fifo_depth = 64,
923         .pixels_per_clock = 1,
924         .encoder_types = {
925                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
926                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
927         },
928 };
929
930 static const struct vc4_pv_data bcm2835_pv2_data = {
931         .base = {
932                 .hvs_available_channels = BIT(1),
933                 .hvs_output = 1,
934         },
935         .debugfs_name = "crtc2_regs",
936         .fifo_depth = 64,
937         .pixels_per_clock = 1,
938         .encoder_types = {
939                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
940                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
941         },
942 };
943
944 static const struct vc4_pv_data bcm2711_pv0_data = {
945         .base = {
946                 .hvs_available_channels = BIT(0),
947                 .hvs_output = 0,
948         },
949         .debugfs_name = "crtc0_regs",
950         .fifo_depth = 64,
951         .pixels_per_clock = 1,
952         .encoder_types = {
953                 [0] = VC4_ENCODER_TYPE_DSI0,
954                 [1] = VC4_ENCODER_TYPE_DPI,
955         },
956 };
957
958 static const struct vc4_pv_data bcm2711_pv1_data = {
959         .base = {
960                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
961                 .hvs_output = 3,
962         },
963         .debugfs_name = "crtc1_regs",
964         .fifo_depth = 64,
965         .pixels_per_clock = 1,
966         .encoder_types = {
967                 [0] = VC4_ENCODER_TYPE_DSI1,
968                 [1] = VC4_ENCODER_TYPE_SMI,
969         },
970 };
971
972 static const struct vc4_pv_data bcm2711_pv2_data = {
973         .base = {
974                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
975                 .hvs_output = 4,
976         },
977         .debugfs_name = "crtc2_regs",
978         .fifo_depth = 256,
979         .pixels_per_clock = 2,
980         .encoder_types = {
981                 [0] = VC4_ENCODER_TYPE_HDMI0,
982         },
983 };
984
985 static const struct vc4_pv_data bcm2711_pv3_data = {
986         .base = {
987                 .hvs_available_channels = BIT(1),
988                 .hvs_output = 1,
989         },
990         .debugfs_name = "crtc3_regs",
991         .fifo_depth = 64,
992         .pixels_per_clock = 1,
993         .encoder_types = {
994                 [0] = VC4_ENCODER_TYPE_VEC,
995         },
996 };
997
998 static const struct vc4_pv_data bcm2711_pv4_data = {
999         .base = {
1000                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1001                 .hvs_output = 5,
1002         },
1003         .debugfs_name = "crtc4_regs",
1004         .fifo_depth = 64,
1005         .pixels_per_clock = 2,
1006         .encoder_types = {
1007                 [0] = VC4_ENCODER_TYPE_HDMI1,
1008         },
1009 };
1010
1011 static const struct of_device_id vc4_crtc_dt_match[] = {
1012         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1013         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1014         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1015         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1016         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1017         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1018         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1019         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1020         {}
1021 };
1022
1023 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1024                                         struct drm_crtc *crtc)
1025 {
1026         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1027         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1028         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1029         struct drm_encoder *encoder;
1030
1031         drm_for_each_encoder(encoder, drm) {
1032                 struct vc4_encoder *vc4_encoder;
1033                 int i;
1034
1035                 vc4_encoder = to_vc4_encoder(encoder);
1036                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1037                         if (vc4_encoder->type == encoder_types[i]) {
1038                                 vc4_encoder->clock_select = i;
1039                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1040                                 break;
1041                         }
1042                 }
1043         }
1044 }
1045
1046 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1047                   const struct drm_crtc_funcs *crtc_funcs,
1048                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1049 {
1050         struct vc4_dev *vc4 = to_vc4_dev(drm);
1051         struct drm_crtc *crtc = &vc4_crtc->base;
1052         struct drm_plane *primary_plane;
1053         unsigned int i;
1054
1055         /* For now, we create just the primary and the legacy cursor
1056          * planes.  We should be able to stack more planes on easily,
1057          * but to do that we would need to compute the bandwidth
1058          * requirement of the plane configuration, and reject ones
1059          * that will take too much.
1060          */
1061         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1062         if (IS_ERR(primary_plane)) {
1063                 dev_err(drm->dev, "failed to construct primary plane\n");
1064                 return PTR_ERR(primary_plane);
1065         }
1066
1067         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1068                                   crtc_funcs, NULL);
1069         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1070
1071         if (!vc4->hvs->hvs5) {
1072                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1073
1074                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1075
1076                 /* We support CTM, but only for one CRTC at a time. It's therefore
1077                  * implemented as private driver state in vc4_kms, not here.
1078                  */
1079                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1080         }
1081
1082         for (i = 0; i < crtc->gamma_size; i++) {
1083                 vc4_crtc->lut_r[i] = i;
1084                 vc4_crtc->lut_g[i] = i;
1085                 vc4_crtc->lut_b[i] = i;
1086         }
1087
1088         return 0;
1089 }
1090
1091 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1092 {
1093         struct platform_device *pdev = to_platform_device(dev);
1094         struct drm_device *drm = dev_get_drvdata(master);
1095         const struct vc4_pv_data *pv_data;
1096         struct vc4_crtc *vc4_crtc;
1097         struct drm_crtc *crtc;
1098         struct drm_plane *destroy_plane, *temp;
1099         int ret;
1100
1101         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1102         if (!vc4_crtc)
1103                 return -ENOMEM;
1104         crtc = &vc4_crtc->base;
1105
1106         pv_data = of_device_get_match_data(dev);
1107         if (!pv_data)
1108                 return -ENODEV;
1109         vc4_crtc->data = &pv_data->base;
1110         vc4_crtc->pdev = pdev;
1111
1112         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1113         if (IS_ERR(vc4_crtc->regs))
1114                 return PTR_ERR(vc4_crtc->regs);
1115
1116         vc4_crtc->regset.base = vc4_crtc->regs;
1117         vc4_crtc->regset.regs = crtc_regs;
1118         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1119
1120         ret = vc4_crtc_init(drm, vc4_crtc,
1121                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1122         if (ret)
1123                 return ret;
1124         vc4_set_crtc_possible_masks(drm, crtc);
1125
1126         CRTC_WRITE(PV_INTEN, 0);
1127         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1128         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1129                                vc4_crtc_irq_handler,
1130                                IRQF_SHARED,
1131                                "vc4 crtc", vc4_crtc);
1132         if (ret)
1133                 goto err_destroy_planes;
1134
1135         platform_set_drvdata(pdev, vc4_crtc);
1136
1137         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1138                                  &vc4_crtc->regset);
1139
1140         return 0;
1141
1142 err_destroy_planes:
1143         list_for_each_entry_safe(destroy_plane, temp,
1144                                  &drm->mode_config.plane_list, head) {
1145                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1146                     destroy_plane->funcs->destroy(destroy_plane);
1147         }
1148
1149         return ret;
1150 }
1151
1152 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1153                             void *data)
1154 {
1155         struct platform_device *pdev = to_platform_device(dev);
1156         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1157
1158         vc4_crtc_destroy(&vc4_crtc->base);
1159
1160         CRTC_WRITE(PV_INTEN, 0);
1161
1162         platform_set_drvdata(pdev, NULL);
1163 }
1164
1165 static const struct component_ops vc4_crtc_ops = {
1166         .bind   = vc4_crtc_bind,
1167         .unbind = vc4_crtc_unbind,
1168 };
1169
1170 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1171 {
1172         return component_add(&pdev->dev, &vc4_crtc_ops);
1173 }
1174
1175 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1176 {
1177         component_del(&pdev->dev, &vc4_crtc_ops);
1178         return 0;
1179 }
1180
1181 struct platform_driver vc4_crtc_driver = {
1182         .probe = vc4_crtc_dev_probe,
1183         .remove = vc4_crtc_dev_remove,
1184         .driver = {
1185                 .name = "vc4_crtc",
1186                 .of_match_table = vc4_crtc_dt_match,
1187         },
1188 };
This page took 0.104791 seconds and 4 git commands to generate.