1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
180 struct ice_hw *hw = &pf->hw;
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
197 mutex_unlock(&pf->vfs.table_lock);
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
229 * send a link status message to a single VF
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
254 void ice_vc_notify_link_state(struct ice_pf *pf)
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
269 * indicate a pending reset to all VFs on a given PF
271 void ice_vc_notify_reset(struct ice_pf *pf)
273 struct virtchnl_pf_event pfe;
275 if (!ice_has_vfs(pf))
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
303 dev = ice_pf_to_dev(pf);
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
322 * called from the VF to request the API version used by the PF
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
354 max_frame_size = pi->phy.link_info.max_frame_size;
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
359 return max_frame_size;
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
415 * called from the VF to request its resources
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
433 vfres = kzalloc(len, GFP_KERNEL);
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 VIRTCHNL_VF_OFFLOAD_VLAN;
446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 vsi = ice_get_vf_vsi(vf);
449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
509 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
551 * check for the valid VSI ID
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
555 struct ice_pf *pf = vf->pf;
558 vsi = ice_find_vsi(pf, vsi_id);
560 return (vsi && (vsi->vf == vf));
564 * ice_vc_isvalid_q_id
565 * @vf: pointer to the VF info
567 * @qid: VSI relative queue ID
569 * check for the valid queue ID
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
573 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 /* allocated Tx and Rx queues should be always equal for VF VSI */
575 return (vsi && (qid < vsi->alloc_txq));
579 * ice_vc_isvalid_ring_len
580 * @ring_len: length of ring
582 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
587 return ring_len == 0 ||
588 (ring_len >= ICE_MIN_NUM_DESC &&
589 ring_len <= ICE_MAX_NUM_DESC &&
590 !(ring_len % ICE_REQ_DESC_MULTIPLE));
594 * ice_vc_validate_pattern
595 * @vf: pointer to the VF info
596 * @proto: virtchnl protocol headers
598 * validate the pattern is supported or not.
600 * Return: true on success, false on error.
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
605 bool is_ipv4 = false;
606 bool is_ipv6 = false;
611 while (i < proto->count &&
612 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 switch (proto->proto_hdr[i].type) {
614 case VIRTCHNL_PROTO_HDR_ETH:
615 ptype = ICE_PTYPE_MAC_PAY;
617 case VIRTCHNL_PROTO_HDR_IPV4:
618 ptype = ICE_PTYPE_IPV4_PAY;
621 case VIRTCHNL_PROTO_HDR_IPV6:
622 ptype = ICE_PTYPE_IPV6_PAY;
625 case VIRTCHNL_PROTO_HDR_UDP:
627 ptype = ICE_PTYPE_IPV4_UDP_PAY;
629 ptype = ICE_PTYPE_IPV6_UDP_PAY;
632 case VIRTCHNL_PROTO_HDR_TCP:
634 ptype = ICE_PTYPE_IPV4_TCP_PAY;
636 ptype = ICE_PTYPE_IPV6_TCP_PAY;
638 case VIRTCHNL_PROTO_HDR_SCTP:
640 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
642 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
644 case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 case VIRTCHNL_PROTO_HDR_GTPU_EH:
647 ptype = ICE_MAC_IPV4_GTPU;
649 ptype = ICE_MAC_IPV6_GTPU;
651 case VIRTCHNL_PROTO_HDR_L2TPV3:
653 ptype = ICE_MAC_IPV4_L2TPV3;
655 ptype = ICE_MAC_IPV6_L2TPV3;
657 case VIRTCHNL_PROTO_HDR_ESP:
659 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
662 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
665 case VIRTCHNL_PROTO_HDR_AH:
667 ptype = ICE_MAC_IPV4_AH;
669 ptype = ICE_MAC_IPV6_AH;
671 case VIRTCHNL_PROTO_HDR_PFCP:
673 ptype = ICE_MAC_IPV4_PFCP_SESSION;
675 ptype = ICE_MAC_IPV6_PFCP_SESSION;
684 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
688 * ice_vc_parse_rss_cfg - parses hash fields and headers from
689 * a specific virtchnl RSS cfg
690 * @hw: pointer to the hardware
691 * @rss_cfg: pointer to the virtchnl RSS cfg
692 * @hash_cfg: pointer to the HW hash configuration
694 * Return true if all the protocol header and hash fields in the RSS cfg could
695 * be parsed, else return false
697 * This function parses the virtchnl RSS cfg to be the intended
698 * hash fields and the intended header for RSS configuration
700 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
701 struct virtchnl_rss_cfg *rss_cfg,
702 struct ice_rss_hash_cfg *hash_cfg)
704 const struct ice_vc_hash_field_match_type *hf_list;
705 const struct ice_vc_hdr_match_type *hdr_list;
706 int i, hf_list_len, hdr_list_len;
707 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
708 u64 *hash_flds = &hash_cfg->hash_flds;
710 /* set outer layer RSS as default */
711 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
713 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
714 hash_cfg->symm = true;
716 hash_cfg->symm = false;
718 hf_list = ice_vc_hash_field_list;
719 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
720 hdr_list = ice_vc_hdr_list;
721 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
723 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
724 struct virtchnl_proto_hdr *proto_hdr =
725 &rss_cfg->proto_hdrs.proto_hdr[i];
726 bool hdr_found = false;
729 /* Find matched ice headers according to virtchnl headers. */
730 for (j = 0; j < hdr_list_len; j++) {
731 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
733 if (proto_hdr->type == hdr_map.vc_hdr) {
734 *addl_hdrs |= hdr_map.ice_hdr;
742 /* Find matched ice hash fields according to
743 * virtchnl hash fields.
745 for (j = 0; j < hf_list_len; j++) {
746 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
748 if (proto_hdr->type == hf_map.vc_hdr &&
749 proto_hdr->field_selector == hf_map.vc_hash_field) {
750 *hash_flds |= hf_map.ice_hash_field;
760 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
762 * @caps: VF driver negotiated capabilities
764 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
767 static bool ice_vf_adv_rss_offload_ena(u32 caps)
769 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
773 * ice_vc_handle_rss_cfg
774 * @vf: pointer to the VF info
775 * @msg: pointer to the message buffer
776 * @add: add a RSS config if true, otherwise delete a RSS config
778 * This function adds/deletes a RSS config
780 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
782 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
783 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
784 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
785 struct device *dev = ice_pf_to_dev(vf->pf);
786 struct ice_hw *hw = &vf->pf->hw;
789 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
792 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
796 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
797 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
799 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
804 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
808 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
809 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
810 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
811 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
813 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
817 vsi = ice_get_vf_vsi(vf);
819 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
823 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
824 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
828 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
829 struct ice_vsi_ctx *ctx;
830 u8 lut_type, hash_type;
833 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
834 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
835 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
837 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
839 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
843 ctx->info.q_opt_rss =
844 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
845 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
847 /* Preserve existing queueing option setting */
848 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
849 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
850 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
851 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
853 ctx->info.valid_sections =
854 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
856 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
858 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
859 status, ice_aq_str(hw->adminq.sq_last_status));
860 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
862 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
867 struct ice_rss_hash_cfg cfg;
869 /* Only check for none raw pattern case */
870 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
875 cfg.hash_flds = ICE_HASH_INVALID;
876 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
878 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
879 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
884 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
885 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
886 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
887 vsi->vsi_num, v_ret);
892 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
893 /* We just ignore -ENOENT, because if two configurations
894 * share the same profile remove one of them actually
895 * removes both, since the profile is deleted.
897 if (status && status != -ENOENT) {
898 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
899 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
906 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
910 * ice_vc_config_rss_key
911 * @vf: pointer to the VF info
912 * @msg: pointer to the msg buffer
914 * Configure the VF's RSS key
916 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
918 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
919 struct virtchnl_rss_key *vrk =
920 (struct virtchnl_rss_key *)msg;
923 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
924 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
929 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
938 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
939 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
943 vsi = ice_get_vf_vsi(vf);
945 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
949 if (ice_set_rss_key(vsi, vrk->key))
950 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
952 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
957 * ice_vc_config_rss_lut
958 * @vf: pointer to the VF info
959 * @msg: pointer to the msg buffer
961 * Configure the VF's RSS LUT
963 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
965 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
966 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
969 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
970 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
975 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
980 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
984 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
985 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
989 vsi = ice_get_vf_vsi(vf);
991 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
995 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
996 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
998 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
1003 * ice_vc_config_rss_hfunc
1004 * @vf: pointer to the VF info
1005 * @msg: pointer to the msg buffer
1007 * Configure the VF's RSS Hash function
1009 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1011 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1012 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1013 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1014 struct ice_vsi *vsi;
1016 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1017 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1022 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1026 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1027 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1031 vsi = ice_get_vf_vsi(vf);
1033 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1037 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1038 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1040 if (ice_set_rss_hfunc(vsi, hfunc))
1041 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1043 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1048 * ice_vc_cfg_promiscuous_mode_msg
1049 * @vf: pointer to the VF info
1050 * @msg: pointer to the msg buffer
1052 * called from the VF to configure VF VSIs promiscuous mode
1054 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1056 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1057 bool rm_promisc, alluni = false, allmulti = false;
1058 struct virtchnl_promisc_info *info =
1059 (struct virtchnl_promisc_info *)msg;
1060 struct ice_vsi_vlan_ops *vlan_ops;
1061 int mcast_err = 0, ucast_err = 0;
1062 struct ice_pf *pf = vf->pf;
1063 struct ice_vsi *vsi;
1064 u8 mcast_m, ucast_m;
1068 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1069 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1073 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1074 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1078 vsi = ice_get_vf_vsi(vf);
1080 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1084 dev = ice_pf_to_dev(pf);
1085 if (!ice_is_vf_trusted(vf)) {
1086 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1088 /* Leave v_ret alone, lie to the VF on purpose. */
1092 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1095 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1098 rm_promisc = !allmulti && !alluni;
1100 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1102 ret = vlan_ops->ena_rx_filtering(vsi);
1104 ret = vlan_ops->dis_rx_filtering(vsi);
1106 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1107 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1111 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1113 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1115 /* in this case we're turning on promiscuous mode */
1116 ret = ice_set_dflt_vsi(vsi);
1118 /* in this case we're turning off promiscuous mode */
1119 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1120 ret = ice_clear_dflt_vsi(vsi);
1123 /* in this case we're turning on/off only
1127 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1129 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1132 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1134 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1139 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1141 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1144 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1146 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1148 if (ucast_err || mcast_err)
1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1154 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1155 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1157 else if (!allmulti &&
1158 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1160 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1163 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1164 vf->vf_id, mcast_err);
1169 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1170 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1173 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1175 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1178 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1179 vf->vf_id, ucast_err);
1183 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1188 * ice_vc_get_stats_msg
1189 * @vf: pointer to the VF info
1190 * @msg: pointer to the msg buffer
1192 * called from the VF to get VSI stats
1194 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1196 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1197 struct virtchnl_queue_select *vqs =
1198 (struct virtchnl_queue_select *)msg;
1199 struct ice_eth_stats stats = { 0 };
1200 struct ice_vsi *vsi;
1202 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1203 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1207 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1208 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1212 vsi = ice_get_vf_vsi(vf);
1214 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1218 ice_update_eth_stats(vsi);
1220 stats = vsi->eth_stats;
1223 /* send the response to the VF */
1224 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1225 (u8 *)&stats, sizeof(stats));
1229 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1230 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1232 * Return true on successful validation, else false
1234 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1236 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1237 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1238 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1245 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1246 * @vsi: VSI of the VF to configure
1247 * @q_idx: VF queue index used to determine the queue in the PF's space
1249 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1251 struct ice_hw *hw = &vsi->back->hw;
1252 u32 pfq = vsi->txq_map[q_idx];
1255 reg = rd32(hw, QINT_TQCTL(pfq));
1257 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1258 * this is most likely a poll mode VF driver, so don't enable an
1259 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1261 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1264 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1268 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1269 * @vsi: VSI of the VF to configure
1270 * @q_idx: VF queue index used to determine the queue in the PF's space
1272 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1274 struct ice_hw *hw = &vsi->back->hw;
1275 u32 pfq = vsi->rxq_map[q_idx];
1278 reg = rd32(hw, QINT_RQCTL(pfq));
1280 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1281 * this is most likely a poll mode VF driver, so don't enable an
1282 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1284 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1287 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1292 * @vf: pointer to the VF info
1293 * @msg: pointer to the msg buffer
1295 * called from the VF to enable all or specific queue(s)
1297 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1299 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1300 struct virtchnl_queue_select *vqs =
1301 (struct virtchnl_queue_select *)msg;
1302 struct ice_vsi *vsi;
1303 unsigned long q_map;
1306 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1307 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1311 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1312 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1316 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1317 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321 vsi = ice_get_vf_vsi(vf);
1323 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1327 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1328 * Tx queue group list was configured and the context bits were
1329 * programmed using ice_vsi_cfg_txqs
1331 q_map = vqs->rx_queues;
1332 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1333 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1334 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1338 /* Skip queue if enabled */
1339 if (test_bit(vf_q_id, vf->rxq_ena))
1342 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1343 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1344 vf_q_id, vsi->vsi_num);
1345 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1349 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1350 set_bit(vf_q_id, vf->rxq_ena);
1353 q_map = vqs->tx_queues;
1354 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1355 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1356 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1360 /* Skip queue if enabled */
1361 if (test_bit(vf_q_id, vf->txq_ena))
1364 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1365 set_bit(vf_q_id, vf->txq_ena);
1368 /* Set flag to indicate that queues are enabled */
1369 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1370 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1373 /* send the response to the VF */
1374 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1379 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1380 * @vf: VF to disable queue for
1381 * @vsi: VSI for the VF
1382 * @q_id: VF relative (0-based) queue ID
1384 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1385 * disabled then clear q_id bit in the enabled queues bitmap and return
1386 * success. Otherwise return error.
1389 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1391 struct ice_txq_meta txq_meta = { 0 };
1392 struct ice_tx_ring *ring;
1395 if (!test_bit(q_id, vf->txq_ena))
1396 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1397 q_id, vsi->vsi_num);
1399 ring = vsi->tx_rings[q_id];
1403 ice_fill_txq_meta(vsi, ring, &txq_meta);
1405 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1407 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1408 q_id, vsi->vsi_num);
1412 /* Clear enabled queues flag */
1413 clear_bit(q_id, vf->txq_ena);
1420 * @vf: pointer to the VF info
1421 * @msg: pointer to the msg buffer
1423 * called from the VF to disable all or specific queue(s)
1425 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1427 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1428 struct virtchnl_queue_select *vqs =
1429 (struct virtchnl_queue_select *)msg;
1430 struct ice_vsi *vsi;
1431 unsigned long q_map;
1434 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1435 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1436 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1440 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1441 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1445 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1446 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1450 vsi = ice_get_vf_vsi(vf);
1452 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1456 if (vqs->tx_queues) {
1457 q_map = vqs->tx_queues;
1459 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1460 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1461 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1465 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1466 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1472 q_map = vqs->rx_queues;
1473 /* speed up Rx queue disable by batching them if possible */
1475 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1476 if (ice_vsi_stop_all_rx_rings(vsi)) {
1477 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1479 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1483 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1485 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1486 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1487 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491 /* Skip queue if not enabled */
1492 if (!test_bit(vf_q_id, vf->rxq_ena))
1495 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1497 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1498 vf_q_id, vsi->vsi_num);
1499 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1503 /* Clear enabled queues flag */
1504 clear_bit(vf_q_id, vf->rxq_ena);
1508 /* Clear enabled queues flag */
1509 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1510 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1513 /* send the response to the VF */
1514 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1520 * @vf: pointer to the VF info
1521 * @vsi: the VSI being configured
1522 * @vector_id: vector ID
1523 * @map: vector map for mapping vectors to queues
1524 * @q_vector: structure for interrupt vector
1525 * configure the IRQ to queue map
1528 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1529 struct virtchnl_vector_map *map,
1530 struct ice_q_vector *q_vector)
1532 u16 vsi_q_id, vsi_q_id_idx;
1535 q_vector->num_ring_rx = 0;
1536 q_vector->num_ring_tx = 0;
1538 qmap = map->rxq_map;
1539 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540 vsi_q_id = vsi_q_id_idx;
1542 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1543 return VIRTCHNL_STATUS_ERR_PARAM;
1545 q_vector->num_ring_rx++;
1546 q_vector->rx.itr_idx = map->rxitr_idx;
1547 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1548 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1549 q_vector->rx.itr_idx);
1552 qmap = map->txq_map;
1553 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1554 vsi_q_id = vsi_q_id_idx;
1556 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1557 return VIRTCHNL_STATUS_ERR_PARAM;
1559 q_vector->num_ring_tx++;
1560 q_vector->tx.itr_idx = map->txitr_idx;
1561 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1562 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1563 q_vector->tx.itr_idx);
1566 return VIRTCHNL_STATUS_SUCCESS;
1570 * ice_vc_cfg_irq_map_msg
1571 * @vf: pointer to the VF info
1572 * @msg: pointer to the msg buffer
1574 * called from the VF to configure the IRQ to queue map
1576 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1578 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1579 u16 num_q_vectors_mapped, vsi_id, vector_id;
1580 struct virtchnl_irq_map_info *irqmap_info;
1581 struct virtchnl_vector_map *map;
1582 struct ice_vsi *vsi;
1585 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1586 num_q_vectors_mapped = irqmap_info->num_vectors;
1588 /* Check to make sure number of VF vectors mapped is not greater than
1589 * number of VF vectors originally allocated, and check that
1590 * there is actually at least a single VF queue vector mapped
1592 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1593 vf->num_msix < num_q_vectors_mapped ||
1594 !num_q_vectors_mapped) {
1595 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1599 vsi = ice_get_vf_vsi(vf);
1601 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605 for (i = 0; i < num_q_vectors_mapped; i++) {
1606 struct ice_q_vector *q_vector;
1608 map = &irqmap_info->vecmap[i];
1610 vector_id = map->vector_id;
1611 vsi_id = map->vsi_id;
1612 /* vector_id is always 0-based for each VF, and can never be
1613 * larger than or equal to the max allowed interrupts per VF
1615 if (!(vector_id < vf->num_msix) ||
1616 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1617 (!vector_id && (map->rxq_map || map->txq_map))) {
1618 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1622 /* No need to map VF miscellaneous or rogue vector */
1626 /* Subtract non queue vector from vector_id passed by VF
1627 * to get actual number of VSI queue vector array index
1629 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1631 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1635 /* lookout for the invalid queue index */
1636 v_ret = (enum virtchnl_status_code)
1637 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1643 /* send the response to the VF */
1644 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1650 * @vf: pointer to the VF info
1651 * @msg: pointer to the msg buffer
1653 * called from the VF to configure the Rx/Tx queues
1655 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1657 struct virtchnl_vsi_queue_config_info *qci =
1658 (struct virtchnl_vsi_queue_config_info *)msg;
1659 struct virtchnl_queue_pair_info *qpi;
1660 struct ice_pf *pf = vf->pf;
1661 struct ice_lag *lag;
1662 struct ice_vsi *vsi;
1663 u8 act_prt, pri_prt;
1667 mutex_lock(&pf->lag_mutex);
1668 act_prt = ICE_LAG_INVALID_PORT;
1669 pri_prt = pf->hw.port_info->lport;
1670 if (lag && lag->bonded && lag->primary) {
1671 act_prt = lag->active_port;
1672 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1674 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1676 act_prt = ICE_LAG_INVALID_PORT;
1679 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1682 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1685 vsi = ice_get_vf_vsi(vf);
1689 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1690 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1691 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1692 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1696 for (i = 0; i < qci->num_queue_pairs; i++) {
1697 if (!qci->qpair[i].rxq.crc_disable)
1700 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1705 for (i = 0; i < qci->num_queue_pairs; i++) {
1706 qpi = &qci->qpair[i];
1707 if (qpi->txq.vsi_id != qci->vsi_id ||
1708 qpi->rxq.vsi_id != qci->vsi_id ||
1709 qpi->rxq.queue_id != qpi->txq.queue_id ||
1710 qpi->txq.headwb_enabled ||
1711 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1712 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1713 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1717 q_idx = qpi->rxq.queue_id;
1719 /* make sure selected "q_idx" is in valid range of queues
1720 * for selected "vsi"
1722 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1726 /* copy Tx queue info from VF into VSI */
1727 if (qpi->txq.ring_len > 0) {
1728 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1729 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1731 /* Disable any existing queue first */
1732 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1735 /* Configure a queue with the requested settings */
1736 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1737 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1743 /* copy Rx queue info from VF into VSI */
1744 if (qpi->rxq.ring_len > 0) {
1745 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1748 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1749 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1751 if (qpi->rxq.crc_disable)
1752 vsi->rx_rings[q_idx]->flags |=
1753 ICE_RX_FLAGS_CRC_STRIP_DIS;
1755 vsi->rx_rings[q_idx]->flags &=
1756 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1758 if (qpi->rxq.databuffer_size != 0 &&
1759 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1760 qpi->rxq.databuffer_size < 1024))
1762 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1763 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1764 if (qpi->rxq.max_pkt_size > max_frame_size ||
1765 qpi->rxq.max_pkt_size < 64)
1768 vsi->max_frame = qpi->rxq.max_pkt_size;
1769 /* add space for the port VLAN since the VF driver is
1770 * not expected to account for it in the MTU
1773 if (ice_vf_is_port_vlan_ena(vf))
1774 vsi->max_frame += VLAN_HLEN;
1776 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1777 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1782 /* If Rx flex desc is supported, select RXDID for Rx
1783 * queues. Otherwise, use legacy 32byte descriptor
1784 * format. Legacy 16byte descriptor is not supported.
1785 * If this RXDID is selected, return error.
1787 if (vf->driver_caps &
1788 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1789 rxdid = qpi->rxq.rxdid;
1790 if (!(BIT(rxdid) & pf->supported_rxdids))
1793 rxdid = ICE_RXDID_LEGACY_1;
1796 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1797 vsi->rxq_map[q_idx],
1798 rxdid, 0x03, false);
1802 if (lag && lag->bonded && lag->primary &&
1803 act_prt != ICE_LAG_INVALID_PORT)
1804 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1805 mutex_unlock(&pf->lag_mutex);
1807 /* send the response to the VF */
1808 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1809 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1811 /* disable whatever we can */
1812 for (; i >= 0; i--) {
1813 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1814 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1816 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1817 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1821 if (lag && lag->bonded && lag->primary &&
1822 act_prt != ICE_LAG_INVALID_PORT)
1823 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1824 mutex_unlock(&pf->lag_mutex);
1826 ice_lag_move_new_vf_nodes(vf);
1828 /* send the response to the VF */
1829 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1830 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1834 * ice_can_vf_change_mac
1835 * @vf: pointer to the VF info
1837 * Return true if the VF is allowed to change its MAC filters, false otherwise
1839 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1841 /* If the VF MAC address has been set administratively (via the
1842 * ndo_set_vf_mac command), then deny permission to the VF to
1843 * add/delete unicast MAC addresses, unless the VF is trusted
1845 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1852 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1853 * @vc_ether_addr: used to extract the type
1856 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1858 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1862 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1863 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1866 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1868 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1874 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1875 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1877 * This function should only be called when the MAC address in
1878 * virtchnl_ether_addr is a valid unicast MAC
1881 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1883 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1885 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1889 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1891 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1894 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1896 u8 *mac_addr = vc_ether_addr->addr;
1898 if (!is_valid_ether_addr(mac_addr))
1901 /* only allow legacy VF drivers to set the device and hardware MAC if it
1902 * is zero and allow new VF drivers to set the hardware MAC if the type
1903 * was correctly specified over VIRTCHNL
1905 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1906 is_zero_ether_addr(vf->hw_lan_addr)) ||
1907 ice_is_vc_addr_primary(vc_ether_addr)) {
1908 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1909 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1912 /* hardware and device MACs are already set, but its possible that the
1913 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1914 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1915 * away for the legacy VF driver case as it will be updated in the
1916 * delete flow for this case
1918 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1919 ether_addr_copy(vf->legacy_last_added_umac.addr,
1921 vf->legacy_last_added_umac.time_modified = jiffies;
1926 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1927 * @vf: pointer to the VF info
1928 * @vsi: pointer to the VF's VSI
1929 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1932 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1933 struct virtchnl_ether_addr *vc_ether_addr)
1935 struct device *dev = ice_pf_to_dev(vf->pf);
1936 u8 *mac_addr = vc_ether_addr->addr;
1939 /* device MAC already added */
1940 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1943 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1944 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1948 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1949 if (ret == -EEXIST) {
1950 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1952 /* don't return since we might need to update
1953 * the primary MAC in ice_vfhw_mac_add() below
1956 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1957 mac_addr, vf->vf_id, ret);
1963 ice_vfhw_mac_add(vf, vc_ether_addr);
1969 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1970 * @last_added_umac: structure used to check expiration
1972 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1974 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1975 return time_is_before_jiffies(last_added_umac->time_modified +
1976 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1980 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1982 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1984 * only update cached hardware MAC for legacy VF drivers on delete
1985 * because we cannot guarantee order/type of MAC from the VF driver
1988 ice_update_legacy_cached_mac(struct ice_vf *vf,
1989 struct virtchnl_ether_addr *vc_ether_addr)
1991 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1992 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1995 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1996 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2000 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2002 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2005 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2007 u8 *mac_addr = vc_ether_addr->addr;
2009 if (!is_valid_ether_addr(mac_addr) ||
2010 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2013 /* allow the device MAC to be repopulated in the add flow and don't
2014 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2015 * to be persistent on VM reboot and across driver unload/load, which
2016 * won't work if we clear the hardware MAC here
2018 eth_zero_addr(vf->dev_lan_addr);
2020 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2024 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2025 * @vf: pointer to the VF info
2026 * @vsi: pointer to the VF's VSI
2027 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2030 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2031 struct virtchnl_ether_addr *vc_ether_addr)
2033 struct device *dev = ice_pf_to_dev(vf->pf);
2034 u8 *mac_addr = vc_ether_addr->addr;
2037 if (!ice_can_vf_change_mac(vf) &&
2038 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2041 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2042 if (status == -ENOENT) {
2043 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2046 } else if (status) {
2047 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2048 mac_addr, vf->vf_id, status);
2052 ice_vfhw_mac_del(vf, vc_ether_addr);
2060 * ice_vc_handle_mac_addr_msg
2061 * @vf: pointer to the VF info
2062 * @msg: pointer to the msg buffer
2063 * @set: true if MAC filters are being set, false otherwise
2065 * add guest MAC address filter
2068 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2070 int (*ice_vc_cfg_mac)
2071 (struct ice_vf *vf, struct ice_vsi *vsi,
2072 struct virtchnl_ether_addr *virtchnl_ether_addr);
2073 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2074 struct virtchnl_ether_addr_list *al =
2075 (struct virtchnl_ether_addr_list *)msg;
2076 struct ice_pf *pf = vf->pf;
2077 enum virtchnl_ops vc_op;
2078 struct ice_vsi *vsi;
2082 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2083 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2085 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2086 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2089 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2090 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2091 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2092 goto handle_mac_exit;
2095 /* If this VF is not privileged, then we can't add more than a
2096 * limited number of addresses. Check to make sure that the
2097 * additions do not push us over the limit.
2099 if (set && !ice_is_vf_trusted(vf) &&
2100 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2101 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2103 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104 goto handle_mac_exit;
2107 vsi = ice_get_vf_vsi(vf);
2109 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2110 goto handle_mac_exit;
2113 for (i = 0; i < al->num_elements; i++) {
2114 u8 *mac_addr = al->list[i].addr;
2117 if (is_broadcast_ether_addr(mac_addr) ||
2118 is_zero_ether_addr(mac_addr))
2121 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2122 if (result == -EEXIST || result == -ENOENT) {
2124 } else if (result) {
2125 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2126 goto handle_mac_exit;
2131 /* send the response to the VF */
2132 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2136 * ice_vc_add_mac_addr_msg
2137 * @vf: pointer to the VF info
2138 * @msg: pointer to the msg buffer
2140 * add guest MAC address filter
2142 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2144 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2148 * ice_vc_del_mac_addr_msg
2149 * @vf: pointer to the VF info
2150 * @msg: pointer to the msg buffer
2152 * remove guest MAC address filter
2154 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2156 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2160 * ice_vc_request_qs_msg
2161 * @vf: pointer to the VF info
2162 * @msg: pointer to the msg buffer
2164 * VFs get a default number of queues but can use this message to request a
2165 * different number. If the request is successful, PF will reset the VF and
2166 * return 0. If unsuccessful, PF will send message informing VF of number of
2167 * available queue pairs via virtchnl message response to VF.
2169 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2171 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2172 struct virtchnl_vf_res_request *vfres =
2173 (struct virtchnl_vf_res_request *)msg;
2174 u16 req_queues = vfres->num_queue_pairs;
2175 struct ice_pf *pf = vf->pf;
2176 u16 max_allowed_vf_queues;
2177 u16 tx_rx_queue_left;
2181 dev = ice_pf_to_dev(pf);
2182 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2183 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2187 cur_queues = vf->num_vf_qs;
2188 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2189 ice_get_avail_rxq_count(pf));
2190 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2192 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2194 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2195 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2196 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2197 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2198 } else if (req_queues > cur_queues &&
2199 req_queues - cur_queues > tx_rx_queue_left) {
2200 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2201 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2202 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2203 ICE_MAX_RSS_QS_PER_VF);
2205 /* request is successful, then reset VF */
2206 vf->num_req_qs = req_queues;
2207 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2208 dev_info(dev, "VF %d granted request of %u queues.\n",
2209 vf->vf_id, req_queues);
2214 /* send the response to the VF */
2215 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2216 v_ret, (u8 *)vfres, sizeof(*vfres));
2220 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2221 * @caps: VF driver negotiated capabilities
2223 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2225 static bool ice_vf_vlan_offload_ena(u32 caps)
2227 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2231 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2232 * @vf: VF used to determine if VLAN promiscuous config is allowed
2234 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2236 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2237 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2238 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2245 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2246 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2247 * @vlan: VLAN used to enable VLAN promiscuous
2249 * This function should only be called if VLAN promiscuous mode is allowed,
2250 * which can be determined via ice_is_vlan_promisc_allowed().
2252 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2254 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2257 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2259 if (status && status != -EEXIST)
2266 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2267 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2268 * @vlan: VLAN used to disable VLAN promiscuous
2270 * This function should only be called if VLAN promiscuous mode is allowed,
2271 * which can be determined via ice_is_vlan_promisc_allowed().
2273 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2275 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2278 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2280 if (status && status != -ENOENT)
2287 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2288 * @vf: VF to check against
2291 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2292 * wants to, so return false.
2294 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2295 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2297 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2299 if (ice_is_vf_trusted(vf))
2302 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2303 return ((ice_vsi_num_non_zero_vlans(vsi) +
2304 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2308 * ice_vc_process_vlan_msg
2309 * @vf: pointer to the VF info
2310 * @msg: pointer to the msg buffer
2311 * @add_v: Add VLAN if true, otherwise delete VLAN
2313 * Process virtchnl op to add or remove programmed guest VLAN ID
2315 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2317 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2318 struct virtchnl_vlan_filter_list *vfl =
2319 (struct virtchnl_vlan_filter_list *)msg;
2320 struct ice_pf *pf = vf->pf;
2321 bool vlan_promisc = false;
2322 struct ice_vsi *vsi;
2327 dev = ice_pf_to_dev(pf);
2328 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2329 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2333 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2334 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2338 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2339 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2343 for (i = 0; i < vfl->num_elements; i++) {
2344 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2345 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2346 dev_err(dev, "invalid VF VLAN id %d\n",
2352 vsi = ice_get_vf_vsi(vf);
2354 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2359 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2361 /* There is no need to let VF know about being not trusted,
2362 * so we can just return success message here
2367 /* in DVM a VF can add/delete inner VLAN filters when
2368 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2370 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2371 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2375 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2376 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2377 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2379 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2380 !ice_is_dvm_ena(&pf->hw) &&
2381 !ice_vf_is_port_vlan_ena(vf);
2384 for (i = 0; i < vfl->num_elements; i++) {
2385 u16 vid = vfl->vlan_id[i];
2386 struct ice_vlan vlan;
2388 if (ice_vf_has_max_vlans(vf, vsi)) {
2389 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2391 /* There is no need to let VF know about being
2392 * not trusted, so we can just return success
2393 * message here as well.
2398 /* we add VLAN 0 by default for each VF so we can enable
2399 * Tx VLAN anti-spoof without triggering MDD events so
2400 * we don't need to add it again here
2405 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2406 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2408 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2412 /* Enable VLAN filtering on first non-zero VLAN */
2413 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2415 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2417 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2423 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2424 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2425 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2429 } else if (vlan_promisc) {
2430 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2432 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2433 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2439 /* In case of non_trusted VF, number of VLAN elements passed
2440 * to PF for removal might be greater than number of VLANs
2441 * filter programmed for that VF - So, use actual number of
2442 * VLANS added earlier with add VLAN opcode. In order to avoid
2443 * removing VLAN that doesn't exist, which result to sending
2444 * erroneous failed message back to the VF
2448 num_vf_vlan = vsi->num_vlan;
2449 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2450 u16 vid = vfl->vlan_id[i];
2451 struct ice_vlan vlan;
2453 /* we add VLAN 0 by default for each VF so we can enable
2454 * Tx VLAN anti-spoof without triggering MDD events so
2455 * we don't want a VIRTCHNL request to remove it
2460 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2461 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2463 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2467 /* Disable VLAN filtering when only VLAN 0 is left */
2468 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2469 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2470 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2474 ice_vf_dis_vlan_promisc(vsi, &vlan);
2479 /* send the response to the VF */
2481 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2484 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2489 * ice_vc_add_vlan_msg
2490 * @vf: pointer to the VF info
2491 * @msg: pointer to the msg buffer
2493 * Add and program guest VLAN ID
2495 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2497 return ice_vc_process_vlan_msg(vf, msg, true);
2501 * ice_vc_remove_vlan_msg
2502 * @vf: pointer to the VF info
2503 * @msg: pointer to the msg buffer
2505 * remove programmed guest VLAN ID
2507 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2509 return ice_vc_process_vlan_msg(vf, msg, false);
2513 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2514 * @vsi: pointer to the VF VSI info
2516 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2520 ice_for_each_alloc_rxq(vsi, i)
2521 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2528 * ice_vc_ena_vlan_stripping
2529 * @vf: pointer to the VF info
2531 * Enable VLAN header stripping for a given VF
2533 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2535 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2536 struct ice_vsi *vsi;
2538 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2539 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2543 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2544 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2548 vsi = ice_get_vf_vsi(vf);
2550 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2554 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2555 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2557 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2560 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2565 * ice_vc_dis_vlan_stripping
2566 * @vf: pointer to the VF info
2568 * Disable VLAN header stripping for a given VF
2570 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2572 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2573 struct ice_vsi *vsi;
2575 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2576 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2580 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2581 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2585 vsi = ice_get_vf_vsi(vf);
2587 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2591 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2592 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2594 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2597 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2602 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2603 * @vf: pointer to the VF info
2605 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2607 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2608 struct virtchnl_rss_hena *vrh = NULL;
2611 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2612 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2616 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2617 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2618 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2622 len = sizeof(struct virtchnl_rss_hena);
2623 vrh = kzalloc(len, GFP_KERNEL);
2625 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2630 vrh->hena = ICE_DEFAULT_RSS_HENA;
2632 /* send the response back to the VF */
2633 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2640 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2641 * @vf: pointer to the VF info
2642 * @msg: pointer to the msg buffer
2644 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2646 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2647 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2648 struct ice_pf *pf = vf->pf;
2649 struct ice_vsi *vsi;
2653 dev = ice_pf_to_dev(pf);
2655 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2656 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2660 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2661 dev_err(dev, "RSS not supported by PF\n");
2662 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2666 vsi = ice_get_vf_vsi(vf);
2668 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2672 /* clear all previously programmed RSS configuration to allow VF drivers
2673 * the ability to customize the RSS configuration and/or completely
2676 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2677 if (status && !vrh->hena) {
2678 /* only report failure to clear the current RSS configuration if
2679 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2681 v_ret = ice_err_to_virt_err(status);
2683 } else if (status) {
2684 /* allow the VF to update the RSS configuration even on failure
2685 * to clear the current RSS confguration in an attempt to keep
2686 * RSS in a working state
2688 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2693 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2694 v_ret = ice_err_to_virt_err(status);
2697 /* send the response to the VF */
2699 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2704 * ice_vc_query_rxdid - query RXDID supported by DDP package
2705 * @vf: pointer to VF info
2707 * Called from VF to query a bitmap of supported flexible
2708 * descriptor RXDIDs of a DDP package.
2710 static int ice_vc_query_rxdid(struct ice_vf *vf)
2712 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2713 struct virtchnl_supported_rxdids *rxdid = NULL;
2714 struct ice_hw *hw = &vf->pf->hw;
2715 struct ice_pf *pf = vf->pf;
2720 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2721 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2725 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2726 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2730 len = sizeof(struct virtchnl_supported_rxdids);
2731 rxdid = kzalloc(len, GFP_KERNEL);
2733 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2738 /* RXDIDs supported by DDP package can be read from the register
2739 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2740 * is not listed in DDP package, add it in the bitmap manually.
2741 * Legacy 16byte descriptor is not supported.
2743 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2745 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2746 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2747 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2748 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2749 rxdid->supported_rxdids |= BIT(i);
2752 pf->supported_rxdids = rxdid->supported_rxdids;
2755 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2756 v_ret, (u8 *)rxdid, len);
2762 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2763 * @vf: VF to enable/disable VLAN stripping for on initialization
2765 * Set the default for VLAN stripping based on whether a port VLAN is configured
2766 * and the current VLAN mode of the device.
2768 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2770 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2772 vf->vlan_strip_ena = 0;
2777 /* don't modify stripping if port VLAN is configured in SVM since the
2778 * port VLAN is based on the inner/single VLAN in SVM
2780 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2783 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2786 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2788 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2792 return vsi->inner_vlan_ops.dis_stripping(vsi);
2795 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2800 return ICE_MAX_VLAN_PER_VF;
2804 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2805 * @vf: VF that being checked for
2807 * When the device is in double VLAN mode, check whether or not the outer VLAN
2810 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2812 if (ice_vf_is_port_vlan_ena(vf))
2819 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2820 * @vf: VF that capabilities are being set for
2821 * @caps: VLAN capabilities to populate
2823 * Determine VLAN capabilities support based on whether a port VLAN is
2824 * configured. If a port VLAN is configured then the VF should use the inner
2825 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2829 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2831 struct virtchnl_vlan_supported_caps *supported_caps;
2833 if (ice_vf_outer_vlan_not_allowed(vf)) {
2834 /* until support for inner VLAN filtering is added when a port
2835 * VLAN is configured, only support software offloaded inner
2836 * VLANs when a port VLAN is confgured in DVM
2838 supported_caps = &caps->filtering.filtering_support;
2839 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2841 supported_caps = &caps->offloads.stripping_support;
2842 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2843 VIRTCHNL_VLAN_TOGGLE |
2844 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2845 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2847 supported_caps = &caps->offloads.insertion_support;
2848 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2849 VIRTCHNL_VLAN_TOGGLE |
2850 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2851 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2853 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2854 caps->offloads.ethertype_match =
2855 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2857 supported_caps = &caps->filtering.filtering_support;
2858 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2859 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2860 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2861 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2862 VIRTCHNL_VLAN_ETHERTYPE_AND;
2863 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2864 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2865 VIRTCHNL_VLAN_ETHERTYPE_9100;
2867 supported_caps = &caps->offloads.stripping_support;
2868 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2869 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2871 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2872 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2873 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2874 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2875 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2876 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2878 supported_caps = &caps->offloads.insertion_support;
2879 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2880 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2881 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2882 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2883 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2884 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2885 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2886 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2887 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2889 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2891 caps->offloads.ethertype_match =
2892 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2895 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2899 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2900 * @vf: VF that capabilities are being set for
2901 * @caps: VLAN capabilities to populate
2903 * Determine VLAN capabilities support based on whether a port VLAN is
2904 * configured. If a port VLAN is configured then the VF does not have any VLAN
2905 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2906 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2907 * VLAN fitlering and offload capabilities.
2910 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2912 struct virtchnl_vlan_supported_caps *supported_caps;
2914 if (ice_vf_is_port_vlan_ena(vf)) {
2915 supported_caps = &caps->filtering.filtering_support;
2916 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2917 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2919 supported_caps = &caps->offloads.stripping_support;
2920 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2921 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2923 supported_caps = &caps->offloads.insertion_support;
2924 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2925 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2928 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2929 caps->filtering.max_filters = 0;
2931 supported_caps = &caps->filtering.filtering_support;
2932 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2933 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2934 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2936 supported_caps = &caps->offloads.stripping_support;
2937 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2938 VIRTCHNL_VLAN_TOGGLE |
2939 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2940 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2942 supported_caps = &caps->offloads.insertion_support;
2943 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2944 VIRTCHNL_VLAN_TOGGLE |
2945 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2946 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2948 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2949 caps->offloads.ethertype_match =
2950 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2951 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2956 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2957 * @vf: VF to determine VLAN capabilities for
2959 * This will only be called if the VF and PF successfully negotiated
2960 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2962 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2963 * is configured or not.
2965 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2967 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2968 struct virtchnl_vlan_caps *caps = NULL;
2971 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2972 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2976 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2978 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2981 len = sizeof(*caps);
2983 if (ice_is_dvm_ena(&vf->pf->hw))
2984 ice_vc_set_dvm_caps(vf, caps);
2986 ice_vc_set_svm_caps(vf, caps);
2988 /* store negotiated caps to prevent invalid VF messages */
2989 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2992 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2993 v_ret, (u8 *)caps, len);
2999 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3000 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3001 * @tpid: VLAN TPID used for validation
3003 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3004 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3006 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3008 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3012 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3015 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3018 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3022 if (!(filtering_caps & vlan_ethertype))
3029 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3030 * @vc_vlan: virtchnl_vlan to validate
3032 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3033 * false. Otherwise return true.
3035 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3037 if (!vc_vlan->tci || !vc_vlan->tpid)
3044 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3045 * @vfc: negotiated/supported VLAN filtering capabilities
3046 * @vfl: VLAN filter list from VF to validate
3048 * Validate all of the filters in the VLAN filter list from the VF. If any of
3049 * the checks fail then return false. Otherwise return true.
3052 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3053 struct virtchnl_vlan_filter_list_v2 *vfl)
3057 if (!vfl->num_elements)
3060 for (i = 0; i < vfl->num_elements; i++) {
3061 struct virtchnl_vlan_supported_caps *filtering_support =
3062 &vfc->filtering_support;
3063 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3064 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3065 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3067 if ((ice_vc_is_valid_vlan(outer) &&
3068 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3069 (ice_vc_is_valid_vlan(inner) &&
3070 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3073 if ((outer->tci_mask &&
3074 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3076 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3079 if (((outer->tci & VLAN_PRIO_MASK) &&
3080 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3081 ((inner->tci & VLAN_PRIO_MASK) &&
3082 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3085 if ((ice_vc_is_valid_vlan(outer) &&
3086 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3088 (ice_vc_is_valid_vlan(inner) &&
3089 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3098 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3099 * @vc_vlan: struct virtchnl_vlan to transform
3101 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3103 struct ice_vlan vlan = { 0 };
3105 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3106 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3107 vlan.tpid = vc_vlan->tpid;
3113 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3114 * @vsi: VF's VSI used to perform the action
3115 * @vlan_action: function to perform the action with (i.e. add/del)
3116 * @vlan: VLAN filter to perform the action with
3119 ice_vc_vlan_action(struct ice_vsi *vsi,
3120 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3121 struct ice_vlan *vlan)
3125 err = vlan_action(vsi, vlan);
3133 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3134 * @vf: VF used to delete the VLAN(s)
3135 * @vsi: VF's VSI used to delete the VLAN(s)
3136 * @vfl: virthchnl filter list used to delete the filters
3139 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3140 struct virtchnl_vlan_filter_list_v2 *vfl)
3142 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3146 for (i = 0; i < vfl->num_elements; i++) {
3147 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3148 struct virtchnl_vlan *vc_vlan;
3150 vc_vlan = &vlan_fltr->outer;
3151 if (ice_vc_is_valid_vlan(vc_vlan)) {
3152 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3154 err = ice_vc_vlan_action(vsi,
3155 vsi->outer_vlan_ops.del_vlan,
3161 ice_vf_dis_vlan_promisc(vsi, &vlan);
3163 /* Disable VLAN filtering when only VLAN 0 is left */
3164 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3165 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3171 vc_vlan = &vlan_fltr->inner;
3172 if (ice_vc_is_valid_vlan(vc_vlan)) {
3173 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3175 err = ice_vc_vlan_action(vsi,
3176 vsi->inner_vlan_ops.del_vlan,
3181 /* no support for VLAN promiscuous on inner VLAN unless
3182 * we are in Single VLAN Mode (SVM)
3184 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3186 ice_vf_dis_vlan_promisc(vsi, &vlan);
3188 /* Disable VLAN filtering when only VLAN 0 is left */
3189 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3190 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3202 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3203 * @vf: VF the message was received from
3204 * @msg: message received from the VF
3206 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3208 struct virtchnl_vlan_filter_list_v2 *vfl =
3209 (struct virtchnl_vlan_filter_list_v2 *)msg;
3210 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3211 struct ice_vsi *vsi;
3213 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3215 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3219 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3220 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3224 vsi = ice_get_vf_vsi(vf);
3226 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3230 if (ice_vc_del_vlans(vf, vsi, vfl))
3231 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3234 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3239 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3240 * @vf: VF used to add the VLAN(s)
3241 * @vsi: VF's VSI used to add the VLAN(s)
3242 * @vfl: virthchnl filter list used to add the filters
3245 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3246 struct virtchnl_vlan_filter_list_v2 *vfl)
3248 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3252 for (i = 0; i < vfl->num_elements; i++) {
3253 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3254 struct virtchnl_vlan *vc_vlan;
3256 vc_vlan = &vlan_fltr->outer;
3257 if (ice_vc_is_valid_vlan(vc_vlan)) {
3258 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3260 err = ice_vc_vlan_action(vsi,
3261 vsi->outer_vlan_ops.add_vlan,
3267 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3272 /* Enable VLAN filtering on first non-zero VLAN */
3273 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3274 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3280 vc_vlan = &vlan_fltr->inner;
3281 if (ice_vc_is_valid_vlan(vc_vlan)) {
3282 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3284 err = ice_vc_vlan_action(vsi,
3285 vsi->inner_vlan_ops.add_vlan,
3290 /* no support for VLAN promiscuous on inner VLAN unless
3291 * we are in Single VLAN Mode (SVM)
3293 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3295 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3300 /* Enable VLAN filtering on first non-zero VLAN */
3301 if (vf->spoofchk && vlan.vid) {
3302 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3314 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3315 * @vsi: VF VSI used to get number of existing VLAN filters
3316 * @vfc: negotiated/supported VLAN filtering capabilities
3317 * @vfl: VLAN filter list from VF to validate
3319 * Validate all of the filters in the VLAN filter list from the VF during the
3320 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3321 * Otherwise return true.
3324 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3325 struct virtchnl_vlan_filtering_caps *vfc,
3326 struct virtchnl_vlan_filter_list_v2 *vfl)
3328 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3331 if (num_requested_filters > vfc->max_filters)
3334 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3338 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3339 * @vf: VF the message was received from
3340 * @msg: message received from the VF
3342 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3344 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3345 struct virtchnl_vlan_filter_list_v2 *vfl =
3346 (struct virtchnl_vlan_filter_list_v2 *)msg;
3347 struct ice_vsi *vsi;
3349 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3350 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3354 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3355 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3359 vsi = ice_get_vf_vsi(vf);
3361 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3365 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3366 &vf->vlan_v2_caps.filtering,
3368 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3372 if (ice_vc_add_vlans(vf, vsi, vfl))
3373 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3376 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3381 * ice_vc_valid_vlan_setting - validate VLAN setting
3382 * @negotiated_settings: negotiated VLAN settings during VF init
3383 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3386 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3388 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3391 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3392 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3394 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3395 hweight32(ethertype_setting) > 1)
3398 /* ability to modify the VLAN setting was not negotiated */
3399 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3406 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3407 * @caps: negotiated VLAN settings during VF init
3408 * @msg: message to validate
3410 * Used to validate any VLAN virtchnl message sent as a
3411 * virtchnl_vlan_setting structure. Validates the message against the
3412 * negotiated/supported caps during VF driver init.
3415 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3416 struct virtchnl_vlan_setting *msg)
3418 if ((!msg->outer_ethertype_setting &&
3419 !msg->inner_ethertype_setting) ||
3420 (!caps->outer && !caps->inner))
3423 if (msg->outer_ethertype_setting &&
3424 !ice_vc_valid_vlan_setting(caps->outer,
3425 msg->outer_ethertype_setting))
3428 if (msg->inner_ethertype_setting &&
3429 !ice_vc_valid_vlan_setting(caps->inner,
3430 msg->inner_ethertype_setting))
3437 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3438 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3439 * @tpid: VLAN TPID to populate
3441 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3443 switch (ethertype_setting) {
3444 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3445 *tpid = ETH_P_8021Q;
3447 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3448 *tpid = ETH_P_8021AD;
3450 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3451 *tpid = ETH_P_QINQ1;
3462 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3463 * @vsi: VF's VSI used to enable the VLAN offload
3464 * @ena_offload: function used to enable the VLAN offload
3465 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3468 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3469 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3470 u32 ethertype_setting)
3475 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3479 err = ena_offload(vsi, tpid);
3486 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3487 #define ICE_L2TSEL_BIT_OFFSET 23
3489 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3490 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3494 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3495 * @vsi: VSI used to update l2tsel on
3496 * @l2tsel: l2tsel setting requested
3498 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3499 * This will modify which descriptor field the first offloaded VLAN will be
3502 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3504 struct ice_hw *hw = &vsi->back->hw;
3508 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3511 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3513 for (i = 0; i < vsi->alloc_rxq; i++) {
3514 u16 pfq = vsi->rxq_map[i];
3515 u32 qrx_context_offset;
3518 qrx_context_offset =
3519 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3521 regval = rd32(hw, qrx_context_offset);
3522 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3523 regval |= l2tsel_bit;
3524 wr32(hw, qrx_context_offset, regval);
3529 * ice_vc_ena_vlan_stripping_v2_msg
3530 * @vf: VF the message was received from
3531 * @msg: message received from the VF
3533 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3535 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3537 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3538 struct virtchnl_vlan_supported_caps *stripping_support;
3539 struct virtchnl_vlan_setting *strip_msg =
3540 (struct virtchnl_vlan_setting *)msg;
3541 u32 ethertype_setting;
3542 struct ice_vsi *vsi;
3544 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3545 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3550 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3554 vsi = ice_get_vf_vsi(vf);
3556 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3560 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3561 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3566 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3567 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3571 ethertype_setting = strip_msg->outer_ethertype_setting;
3572 if (ethertype_setting) {
3573 if (ice_vc_ena_vlan_offload(vsi,
3574 vsi->outer_vlan_ops.ena_stripping,
3575 ethertype_setting)) {
3576 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3579 enum ice_l2tsel l2tsel =
3580 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3582 /* PF tells the VF that the outer VLAN tag is always
3583 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3584 * inner is always extracted to
3585 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3586 * support outer stripping so the first tag always ends
3587 * up in L2TAG2_2ND and the second/inner tag, if
3588 * enabled, is extracted in L2TAG1.
3590 ice_vsi_update_l2tsel(vsi, l2tsel);
3592 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3596 ethertype_setting = strip_msg->inner_ethertype_setting;
3597 if (ethertype_setting &&
3598 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3599 ethertype_setting)) {
3600 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3604 if (ethertype_setting)
3605 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3608 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3613 * ice_vc_dis_vlan_stripping_v2_msg
3614 * @vf: VF the message was received from
3615 * @msg: message received from the VF
3617 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3619 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3621 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3622 struct virtchnl_vlan_supported_caps *stripping_support;
3623 struct virtchnl_vlan_setting *strip_msg =
3624 (struct virtchnl_vlan_setting *)msg;
3625 u32 ethertype_setting;
3626 struct ice_vsi *vsi;
3628 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3629 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3634 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3638 vsi = ice_get_vf_vsi(vf);
3640 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3644 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3645 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3646 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 ethertype_setting = strip_msg->outer_ethertype_setting;
3651 if (ethertype_setting) {
3652 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3653 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3656 enum ice_l2tsel l2tsel =
3657 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3659 /* PF tells the VF that the outer VLAN tag is always
3660 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3661 * inner is always extracted to
3662 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3663 * support inner stripping while outer stripping is
3664 * disabled so that the first and only tag is extracted
3667 ice_vsi_update_l2tsel(vsi, l2tsel);
3669 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3673 ethertype_setting = strip_msg->inner_ethertype_setting;
3674 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3675 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3679 if (ethertype_setting)
3680 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3683 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3688 * ice_vc_ena_vlan_insertion_v2_msg
3689 * @vf: VF the message was received from
3690 * @msg: message received from the VF
3692 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3694 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3696 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3697 struct virtchnl_vlan_supported_caps *insertion_support;
3698 struct virtchnl_vlan_setting *insertion_msg =
3699 (struct virtchnl_vlan_setting *)msg;
3700 u32 ethertype_setting;
3701 struct ice_vsi *vsi;
3703 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3704 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3709 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3713 vsi = ice_get_vf_vsi(vf);
3715 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3719 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3720 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3721 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3725 ethertype_setting = insertion_msg->outer_ethertype_setting;
3726 if (ethertype_setting &&
3727 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3728 ethertype_setting)) {
3729 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3733 ethertype_setting = insertion_msg->inner_ethertype_setting;
3734 if (ethertype_setting &&
3735 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3736 ethertype_setting)) {
3737 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3742 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3747 * ice_vc_dis_vlan_insertion_v2_msg
3748 * @vf: VF the message was received from
3749 * @msg: message received from the VF
3751 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3753 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3755 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3756 struct virtchnl_vlan_supported_caps *insertion_support;
3757 struct virtchnl_vlan_setting *insertion_msg =
3758 (struct virtchnl_vlan_setting *)msg;
3759 u32 ethertype_setting;
3760 struct ice_vsi *vsi;
3762 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3763 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3768 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3772 vsi = ice_get_vf_vsi(vf);
3774 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3778 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3779 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3780 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3784 ethertype_setting = insertion_msg->outer_ethertype_setting;
3785 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3786 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3790 ethertype_setting = insertion_msg->inner_ethertype_setting;
3791 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3797 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3801 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3802 .get_ver_msg = ice_vc_get_ver_msg,
3803 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3804 .reset_vf = ice_vc_reset_vf_msg,
3805 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3806 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3807 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3808 .ena_qs_msg = ice_vc_ena_qs_msg,
3809 .dis_qs_msg = ice_vc_dis_qs_msg,
3810 .request_qs_msg = ice_vc_request_qs_msg,
3811 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3812 .config_rss_key = ice_vc_config_rss_key,
3813 .config_rss_lut = ice_vc_config_rss_lut,
3814 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3815 .get_stats_msg = ice_vc_get_stats_msg,
3816 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3817 .add_vlan_msg = ice_vc_add_vlan_msg,
3818 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3819 .query_rxdid = ice_vc_query_rxdid,
3820 .get_rss_hena = ice_vc_get_rss_hena,
3821 .set_rss_hena_msg = ice_vc_set_rss_hena,
3822 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3823 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3824 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3825 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3826 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3827 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3828 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3829 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3830 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3831 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3832 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3833 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3837 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3838 * @vf: the VF to switch ops
3840 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3842 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3846 * ice_vc_repr_add_mac
3847 * @vf: pointer to VF
3848 * @msg: virtchannel message
3850 * When port representors are created, we do not add MAC rule
3851 * to firmware, we store it so that PF could report same
3854 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3857 struct virtchnl_ether_addr_list *al =
3858 (struct virtchnl_ether_addr_list *)msg;
3859 struct ice_vsi *vsi;
3863 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3864 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3866 goto handle_mac_exit;
3871 vsi = ice_get_vf_vsi(vf);
3873 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3874 goto handle_mac_exit;
3877 for (i = 0; i < al->num_elements; i++) {
3878 u8 *mac_addr = al->list[i].addr;
3880 if (!is_unicast_ether_addr(mac_addr) ||
3881 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3884 if (vf->pf_set_mac) {
3885 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3886 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3887 goto handle_mac_exit;
3890 ice_vfhw_mac_add(vf, &al->list[i]);
3896 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3901 * ice_vc_repr_del_mac - response with success for deleting MAC
3902 * @vf: pointer to VF
3903 * @msg: virtchannel message
3905 * Respond with success to not break normal VF flow.
3906 * For legacy VF driver try to update cached MAC address.
3909 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3911 struct virtchnl_ether_addr_list *al =
3912 (struct virtchnl_ether_addr_list *)msg;
3914 ice_update_legacy_cached_mac(vf, &al->list[0]);
3916 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3917 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3921 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3923 dev_dbg(ice_pf_to_dev(vf->pf),
3924 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3926 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3927 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3931 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3932 .get_ver_msg = ice_vc_get_ver_msg,
3933 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3934 .reset_vf = ice_vc_reset_vf_msg,
3935 .add_mac_addr_msg = ice_vc_repr_add_mac,
3936 .del_mac_addr_msg = ice_vc_repr_del_mac,
3937 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3938 .ena_qs_msg = ice_vc_ena_qs_msg,
3939 .dis_qs_msg = ice_vc_dis_qs_msg,
3940 .request_qs_msg = ice_vc_request_qs_msg,
3941 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3942 .config_rss_key = ice_vc_config_rss_key,
3943 .config_rss_lut = ice_vc_config_rss_lut,
3944 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3945 .get_stats_msg = ice_vc_get_stats_msg,
3946 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3947 .add_vlan_msg = ice_vc_add_vlan_msg,
3948 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3949 .query_rxdid = ice_vc_query_rxdid,
3950 .get_rss_hena = ice_vc_get_rss_hena,
3951 .set_rss_hena_msg = ice_vc_set_rss_hena,
3952 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3953 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3954 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3955 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3956 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3957 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3958 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3959 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3960 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3961 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3962 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3963 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3967 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3968 * @vf: the VF to switch ops
3970 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3972 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3976 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3977 * @vf: the VF to check
3978 * @mbxdata: data about the state of the mailbox
3980 * Detect if a given VF might be malicious and attempting to overflow the PF
3981 * mailbox. If so, log a warning message and ignore this event.
3984 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3986 bool report_malvf = false;
3992 dev = ice_pf_to_dev(pf);
3994 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3995 return vf->mbx_info.malicious;
3997 /* check to see if we have a newly malicious VF */
3998 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4001 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4002 vf->vf_id, vf->dev_lan_addr, status);
4005 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4006 u8 zero_addr[ETH_ALEN] = {};
4008 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4010 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4013 return vf->mbx_info.malicious;
4017 * ice_vc_process_vf_msg - Process request from VF
4018 * @pf: pointer to the PF structure
4019 * @event: pointer to the AQ event
4020 * @mbxdata: information used to detect VF attempting mailbox overflow
4022 * called from the common asq/arq handler to
4023 * process request from VF
4025 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4026 struct ice_mbx_data *mbxdata)
4028 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4029 s16 vf_id = le16_to_cpu(event->desc.retval);
4030 const struct ice_virtchnl_ops *ops;
4031 u16 msglen = event->msg_len;
4032 u8 *msg = event->msg_buf;
4033 struct ice_vf *vf = NULL;
4037 dev = ice_pf_to_dev(pf);
4039 vf = ice_get_vf_by_id(pf, vf_id);
4041 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4042 vf_id, v_opcode, msglen);
4046 mutex_lock(&vf->cfg_lock);
4048 /* Check if the VF is trying to overflow the mailbox */
4049 if (ice_is_malicious_vf(vf, mbxdata))
4052 /* Check if VF is disabled. */
4053 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4058 ops = vf->virtchnl_ops;
4060 /* Perform basic checks on the msg */
4061 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4063 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4071 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4073 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4074 vf_id, v_opcode, msglen, err);
4078 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4079 ice_vc_send_msg_to_vf(vf, v_opcode,
4080 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4086 case VIRTCHNL_OP_VERSION:
4087 err = ops->get_ver_msg(vf, msg);
4089 case VIRTCHNL_OP_GET_VF_RESOURCES:
4090 err = ops->get_vf_res_msg(vf, msg);
4091 if (ice_vf_init_vlan_stripping(vf))
4092 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4094 ice_vc_notify_vf_link_state(vf);
4096 case VIRTCHNL_OP_RESET_VF:
4099 case VIRTCHNL_OP_ADD_ETH_ADDR:
4100 err = ops->add_mac_addr_msg(vf, msg);
4102 case VIRTCHNL_OP_DEL_ETH_ADDR:
4103 err = ops->del_mac_addr_msg(vf, msg);
4105 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4106 err = ops->cfg_qs_msg(vf, msg);
4108 case VIRTCHNL_OP_ENABLE_QUEUES:
4109 err = ops->ena_qs_msg(vf, msg);
4110 ice_vc_notify_vf_link_state(vf);
4112 case VIRTCHNL_OP_DISABLE_QUEUES:
4113 err = ops->dis_qs_msg(vf, msg);
4115 case VIRTCHNL_OP_REQUEST_QUEUES:
4116 err = ops->request_qs_msg(vf, msg);
4118 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4119 err = ops->cfg_irq_map_msg(vf, msg);
4121 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4122 err = ops->config_rss_key(vf, msg);
4124 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4125 err = ops->config_rss_lut(vf, msg);
4127 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4128 err = ops->config_rss_hfunc(vf, msg);
4130 case VIRTCHNL_OP_GET_STATS:
4131 err = ops->get_stats_msg(vf, msg);
4133 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4134 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4136 case VIRTCHNL_OP_ADD_VLAN:
4137 err = ops->add_vlan_msg(vf, msg);
4139 case VIRTCHNL_OP_DEL_VLAN:
4140 err = ops->remove_vlan_msg(vf, msg);
4142 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4143 err = ops->query_rxdid(vf);
4145 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4146 err = ops->get_rss_hena(vf);
4148 case VIRTCHNL_OP_SET_RSS_HENA:
4149 err = ops->set_rss_hena_msg(vf, msg);
4151 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4152 err = ops->ena_vlan_stripping(vf);
4154 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4155 err = ops->dis_vlan_stripping(vf);
4157 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4158 err = ops->add_fdir_fltr_msg(vf, msg);
4160 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4161 err = ops->del_fdir_fltr_msg(vf, msg);
4163 case VIRTCHNL_OP_ADD_RSS_CFG:
4164 err = ops->handle_rss_cfg_msg(vf, msg, true);
4166 case VIRTCHNL_OP_DEL_RSS_CFG:
4167 err = ops->handle_rss_cfg_msg(vf, msg, false);
4169 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4170 err = ops->get_offload_vlan_v2_caps(vf);
4172 case VIRTCHNL_OP_ADD_VLAN_V2:
4173 err = ops->add_vlan_v2_msg(vf, msg);
4175 case VIRTCHNL_OP_DEL_VLAN_V2:
4176 err = ops->remove_vlan_v2_msg(vf, msg);
4178 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4179 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4181 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4182 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4184 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4185 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4187 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4188 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4190 case VIRTCHNL_OP_UNKNOWN:
4192 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4194 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4195 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4200 /* Helper function cares less about error return values here
4201 * as it is busy with pending work.
4203 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4204 vf_id, v_opcode, err);
4208 mutex_unlock(&vf->cfg_lock);