]> Git Repo - J-linux.git/blob - drivers/net/ethernet/intel/ice/ice_virtchnl.c
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf...
[J-linux.git] / drivers / net / ethernet / intel / ice / ice_virtchnl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17                 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20         u32 vc_hdr;     /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21         u32 ice_hdr;    /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25         {VIRTCHNL_PROTO_HDR_NONE,       ICE_FLOW_SEG_HDR_NONE},
26         {VIRTCHNL_PROTO_HDR_ETH,        ICE_FLOW_SEG_HDR_ETH},
27         {VIRTCHNL_PROTO_HDR_S_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
28         {VIRTCHNL_PROTO_HDR_C_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
29         {VIRTCHNL_PROTO_HDR_IPV4,       ICE_FLOW_SEG_HDR_IPV4 |
30                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
31         {VIRTCHNL_PROTO_HDR_IPV6,       ICE_FLOW_SEG_HDR_IPV6 |
32                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
33         {VIRTCHNL_PROTO_HDR_TCP,        ICE_FLOW_SEG_HDR_TCP},
34         {VIRTCHNL_PROTO_HDR_UDP,        ICE_FLOW_SEG_HDR_UDP},
35         {VIRTCHNL_PROTO_HDR_SCTP,       ICE_FLOW_SEG_HDR_SCTP},
36         {VIRTCHNL_PROTO_HDR_PPPOE,      ICE_FLOW_SEG_HDR_PPPOE},
37         {VIRTCHNL_PROTO_HDR_GTPU_IP,    ICE_FLOW_SEG_HDR_GTPU_IP},
38         {VIRTCHNL_PROTO_HDR_GTPU_EH,    ICE_FLOW_SEG_HDR_GTPU_EH},
39         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40                                         ICE_FLOW_SEG_HDR_GTPU_DWN},
41         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42                                         ICE_FLOW_SEG_HDR_GTPU_UP},
43         {VIRTCHNL_PROTO_HDR_L2TPV3,     ICE_FLOW_SEG_HDR_L2TPV3},
44         {VIRTCHNL_PROTO_HDR_ESP,        ICE_FLOW_SEG_HDR_ESP},
45         {VIRTCHNL_PROTO_HDR_AH,         ICE_FLOW_SEG_HDR_AH},
46         {VIRTCHNL_PROTO_HDR_PFCP,       ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50         u32 vc_hdr;             /* virtchnl headers
51                                  * (VIRTCHNL_PROTO_HDR_XXX)
52                                  */
53         u32 vc_hash_field;      /* virtchnl hash fields selector
54                                  * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55                                  */
56         u64 ice_hash_field;     /* ice hash fields
57                                  * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58                                  */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69                 ICE_FLOW_HASH_ETH},
70         {VIRTCHNL_PROTO_HDR_ETH,
71                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73         {VIRTCHNL_PROTO_HDR_S_VLAN,
74                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75                 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76         {VIRTCHNL_PROTO_HDR_C_VLAN,
77                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78                 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85                 ICE_FLOW_HASH_IPV4},
86         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97                 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106                 ICE_FLOW_HASH_IPV6},
107         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118                 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121         {VIRTCHNL_PROTO_HDR_TCP,
122                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124         {VIRTCHNL_PROTO_HDR_TCP,
125                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127         {VIRTCHNL_PROTO_HDR_TCP,
128                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130                 ICE_FLOW_HASH_TCP_PORT},
131         {VIRTCHNL_PROTO_HDR_UDP,
132                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134         {VIRTCHNL_PROTO_HDR_UDP,
135                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137         {VIRTCHNL_PROTO_HDR_UDP,
138                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140                 ICE_FLOW_HASH_UDP_PORT},
141         {VIRTCHNL_PROTO_HDR_SCTP,
142                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144         {VIRTCHNL_PROTO_HDR_SCTP,
145                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147         {VIRTCHNL_PROTO_HDR_SCTP,
148                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150                 ICE_FLOW_HASH_SCTP_PORT},
151         {VIRTCHNL_PROTO_HDR_PPPOE,
152                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153                 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154         {VIRTCHNL_PROTO_HDR_GTPU_IP,
155                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156                 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157         {VIRTCHNL_PROTO_HDR_L2TPV3,
158                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159                 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160         {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161                 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162         {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163                 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164         {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165                 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178                     enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180         struct ice_hw *hw = &pf->hw;
181         struct ice_vf *vf;
182         unsigned int bkt;
183
184         mutex_lock(&pf->vfs.table_lock);
185         ice_for_each_vf(pf, bkt, vf) {
186                 /* Not all vfs are enabled so skip the ones that are not */
187                 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188                     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189                         continue;
190
191                 /* Ignore return value on purpose - a given VF may fail, but
192                  * we need to keep going and send to all of them
193                  */
194                 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195                                       msglen, NULL);
196         }
197         mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209                  int ice_link_speed, bool link_up)
210 {
211         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212                 pfe->event_data.link_event_adv.link_status = link_up;
213                 /* Speed in Mbps */
214                 pfe->event_data.link_event_adv.link_speed =
215                         ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216         } else {
217                 pfe->event_data.link_event.link_status = link_up;
218                 /* Legacy method for virtchnl link speeds */
219                 pfe->event_data.link_event.link_speed =
220                         (enum virtchnl_link_speed)
221                         ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222         }
223 }
224
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233         struct virtchnl_pf_event pfe = { 0 };
234         struct ice_hw *hw = &vf->pf->hw;
235
236         pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237         pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239         if (ice_is_vf_link_up(vf))
240                 ice_set_pfe_link(vf, &pfe,
241                                  hw->port_info->phy.link_info.link_speed, true);
242         else
243                 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245         ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246                               VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247                               sizeof(pfe), NULL);
248 }
249
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256         struct ice_vf *vf;
257         unsigned int bkt;
258
259         mutex_lock(&pf->vfs.table_lock);
260         ice_for_each_vf(pf, bkt, vf)
261                 ice_vc_notify_vf_link_state(vf);
262         mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273         struct virtchnl_pf_event pfe;
274
275         if (!ice_has_vfs(pf))
276                 return;
277
278         pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279         pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280         ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281                             (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296                       enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298         struct device *dev;
299         struct ice_pf *pf;
300         int aq_ret;
301
302         pf = vf->pf;
303         dev = ice_pf_to_dev(pf);
304
305         aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306                                        msg, msglen, NULL);
307         if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308                 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309                          vf->vf_id, aq_ret,
310                          ice_aq_str(pf->hw.mailboxq.sq_last_status));
311                 return -EIO;
312         }
313
314         return 0;
315 }
316
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326         struct virtchnl_version_info info = {
327                 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328         };
329
330         vf->vf_ver = *(struct virtchnl_version_info *)msg;
331         /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332         if (VF_IS_V10(&vf->vf_ver))
333                 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336                                      VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337                                      sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351         struct ice_port_info *pi = ice_vf_get_port_info(vf);
352         u16 max_frame_size;
353
354         max_frame_size = pi->phy.link_info.max_frame_size;
355
356         if (ice_vf_is_port_vlan_ena(vf))
357                 max_frame_size -= VLAN_HLEN;
358
359         return max_frame_size;
360 }
361
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373                      u32 driver_caps)
374 {
375         if (ice_is_eswitch_mode_switchdev(vf->pf))
376                 /* In switchdev setting VLAN from VF isn't supported */
377                 return 0;
378
379         if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380                 /* VLAN offloads based on current device configuration */
381                 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382         } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383                 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384                  * these two conditions, which amounts to guest VLAN filtering
385                  * and offloads being based on the inner VLAN or the
386                  * inner/single VLAN respectively and don't allow VF to
387                  * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388                  */
389                 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390                         return VIRTCHNL_VF_OFFLOAD_VLAN;
391                 } else if (!ice_is_dvm_ena(hw) &&
392                            !ice_vf_is_port_vlan_ena(vf)) {
393                         /* configure backward compatible support for VFs that
394                          * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395                          * configured in SVM, and no port VLAN is configured
396                          */
397                         ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398                         return VIRTCHNL_VF_OFFLOAD_VLAN;
399                 } else if (ice_is_dvm_ena(hw)) {
400                         /* configure software offloaded VLAN support when DVM
401                          * is enabled, but no port VLAN is enabled
402                          */
403                         ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404                 }
405         }
406
407         return 0;
408 }
409
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420         struct virtchnl_vf_resource *vfres = NULL;
421         struct ice_hw *hw = &vf->pf->hw;
422         struct ice_vsi *vsi;
423         int len = 0;
424         int ret;
425
426         if (ice_check_vf_init(vf)) {
427                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428                 goto err;
429         }
430
431         len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433         vfres = kzalloc(len, GFP_KERNEL);
434         if (!vfres) {
435                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436                 len = 0;
437                 goto err;
438         }
439         if (VF_IS_V11(&vf->vf_ver))
440                 vf->driver_caps = *(u32 *)msg;
441         else
442                 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443                                   VIRTCHNL_VF_OFFLOAD_RSS_REG |
444                                   VIRTCHNL_VF_OFFLOAD_VLAN;
445
446         vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447         vsi = ice_get_vf_vsi(vf);
448         if (!vsi) {
449                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450                 goto err;
451         }
452
453         vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454                                                     vf->driver_caps);
455
456         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458         } else {
459                 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461                 else
462                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463         }
464
465         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467
468         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470
471         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473
474         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476
477         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479
480         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482
483         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485
486         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488
489         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491
492         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493                 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494
495         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497
498         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500
501         vfres->num_vsis = 1;
502         /* Tx and Rx queue are equal for VF */
503         vfres->num_queue_pairs = vsi->num_txq;
504         vfres->max_vectors = vf->num_msix;
505         vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506         vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507         vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508
509         vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510         vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511         vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512         ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513                         vf->hw_lan_addr);
514
515         /* match guest capabilities */
516         vf->driver_caps = vfres->vf_cap_flags;
517
518         ice_vc_set_caps_allowlist(vf);
519         ice_vc_set_working_allowlist(vf);
520
521         set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522
523 err:
524         /* send the response back to the VF */
525         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526                                     (u8 *)vfres, len);
527
528         kfree(vfres);
529         return ret;
530 }
531
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542         if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543                 ice_reset_vf(vf, 0);
544 }
545
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555         struct ice_pf *pf = vf->pf;
556         struct ice_vsi *vsi;
557
558         vsi = ice_find_vsi(pf, vsi_id);
559
560         return (vsi && (vsi->vf == vf));
561 }
562
563 /**
564  * ice_vc_isvalid_q_id
565  * @vf: pointer to the VF info
566  * @vsi_id: VSI ID
567  * @qid: VSI relative queue ID
568  *
569  * check for the valid queue ID
570  */
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572 {
573         struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574         /* allocated Tx and Rx queues should be always equal for VF VSI */
575         return (vsi && (qid < vsi->alloc_txq));
576 }
577
578 /**
579  * ice_vc_isvalid_ring_len
580  * @ring_len: length of ring
581  *
582  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583  * or zero
584  */
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
586 {
587         return ring_len == 0 ||
588                (ring_len >= ICE_MIN_NUM_DESC &&
589                 ring_len <= ICE_MAX_NUM_DESC &&
590                 !(ring_len % ICE_REQ_DESC_MULTIPLE));
591 }
592
593 /**
594  * ice_vc_validate_pattern
595  * @vf: pointer to the VF info
596  * @proto: virtchnl protocol headers
597  *
598  * validate the pattern is supported or not.
599  *
600  * Return: true on success, false on error.
601  */
602 bool
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604 {
605         bool is_ipv4 = false;
606         bool is_ipv6 = false;
607         bool is_udp = false;
608         u16 ptype = -1;
609         int i = 0;
610
611         while (i < proto->count &&
612                proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613                 switch (proto->proto_hdr[i].type) {
614                 case VIRTCHNL_PROTO_HDR_ETH:
615                         ptype = ICE_PTYPE_MAC_PAY;
616                         break;
617                 case VIRTCHNL_PROTO_HDR_IPV4:
618                         ptype = ICE_PTYPE_IPV4_PAY;
619                         is_ipv4 = true;
620                         break;
621                 case VIRTCHNL_PROTO_HDR_IPV6:
622                         ptype = ICE_PTYPE_IPV6_PAY;
623                         is_ipv6 = true;
624                         break;
625                 case VIRTCHNL_PROTO_HDR_UDP:
626                         if (is_ipv4)
627                                 ptype = ICE_PTYPE_IPV4_UDP_PAY;
628                         else if (is_ipv6)
629                                 ptype = ICE_PTYPE_IPV6_UDP_PAY;
630                         is_udp = true;
631                         break;
632                 case VIRTCHNL_PROTO_HDR_TCP:
633                         if (is_ipv4)
634                                 ptype = ICE_PTYPE_IPV4_TCP_PAY;
635                         else if (is_ipv6)
636                                 ptype = ICE_PTYPE_IPV6_TCP_PAY;
637                         break;
638                 case VIRTCHNL_PROTO_HDR_SCTP:
639                         if (is_ipv4)
640                                 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641                         else if (is_ipv6)
642                                 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643                         break;
644                 case VIRTCHNL_PROTO_HDR_GTPU_IP:
645                 case VIRTCHNL_PROTO_HDR_GTPU_EH:
646                         if (is_ipv4)
647                                 ptype = ICE_MAC_IPV4_GTPU;
648                         else if (is_ipv6)
649                                 ptype = ICE_MAC_IPV6_GTPU;
650                         goto out;
651                 case VIRTCHNL_PROTO_HDR_L2TPV3:
652                         if (is_ipv4)
653                                 ptype = ICE_MAC_IPV4_L2TPV3;
654                         else if (is_ipv6)
655                                 ptype = ICE_MAC_IPV6_L2TPV3;
656                         goto out;
657                 case VIRTCHNL_PROTO_HDR_ESP:
658                         if (is_ipv4)
659                                 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660                                                 ICE_MAC_IPV4_ESP;
661                         else if (is_ipv6)
662                                 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663                                                 ICE_MAC_IPV6_ESP;
664                         goto out;
665                 case VIRTCHNL_PROTO_HDR_AH:
666                         if (is_ipv4)
667                                 ptype = ICE_MAC_IPV4_AH;
668                         else if (is_ipv6)
669                                 ptype = ICE_MAC_IPV6_AH;
670                         goto out;
671                 case VIRTCHNL_PROTO_HDR_PFCP:
672                         if (is_ipv4)
673                                 ptype = ICE_MAC_IPV4_PFCP_SESSION;
674                         else if (is_ipv6)
675                                 ptype = ICE_MAC_IPV6_PFCP_SESSION;
676                         goto out;
677                 default:
678                         break;
679                 }
680                 i++;
681         }
682
683 out:
684         return ice_hw_ptype_ena(&vf->pf->hw, ptype);
685 }
686
687 /**
688  * ice_vc_parse_rss_cfg - parses hash fields and headers from
689  * a specific virtchnl RSS cfg
690  * @hw: pointer to the hardware
691  * @rss_cfg: pointer to the virtchnl RSS cfg
692  * @hash_cfg: pointer to the HW hash configuration
693  *
694  * Return true if all the protocol header and hash fields in the RSS cfg could
695  * be parsed, else return false
696  *
697  * This function parses the virtchnl RSS cfg to be the intended
698  * hash fields and the intended header for RSS configuration
699  */
700 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
701                                  struct virtchnl_rss_cfg *rss_cfg,
702                                  struct ice_rss_hash_cfg *hash_cfg)
703 {
704         const struct ice_vc_hash_field_match_type *hf_list;
705         const struct ice_vc_hdr_match_type *hdr_list;
706         int i, hf_list_len, hdr_list_len;
707         u32 *addl_hdrs = &hash_cfg->addl_hdrs;
708         u64 *hash_flds = &hash_cfg->hash_flds;
709
710         /* set outer layer RSS as default */
711         hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
712
713         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
714                 hash_cfg->symm = true;
715         else
716                 hash_cfg->symm = false;
717
718         hf_list = ice_vc_hash_field_list;
719         hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
720         hdr_list = ice_vc_hdr_list;
721         hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
722
723         for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
724                 struct virtchnl_proto_hdr *proto_hdr =
725                                         &rss_cfg->proto_hdrs.proto_hdr[i];
726                 bool hdr_found = false;
727                 int j;
728
729                 /* Find matched ice headers according to virtchnl headers. */
730                 for (j = 0; j < hdr_list_len; j++) {
731                         struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
732
733                         if (proto_hdr->type == hdr_map.vc_hdr) {
734                                 *addl_hdrs |= hdr_map.ice_hdr;
735                                 hdr_found = true;
736                         }
737                 }
738
739                 if (!hdr_found)
740                         return false;
741
742                 /* Find matched ice hash fields according to
743                  * virtchnl hash fields.
744                  */
745                 for (j = 0; j < hf_list_len; j++) {
746                         struct ice_vc_hash_field_match_type hf_map = hf_list[j];
747
748                         if (proto_hdr->type == hf_map.vc_hdr &&
749                             proto_hdr->field_selector == hf_map.vc_hash_field) {
750                                 *hash_flds |= hf_map.ice_hash_field;
751                                 break;
752                         }
753                 }
754         }
755
756         return true;
757 }
758
759 /**
760  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
761  * RSS offloads
762  * @caps: VF driver negotiated capabilities
763  *
764  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
765  * else return false
766  */
767 static bool ice_vf_adv_rss_offload_ena(u32 caps)
768 {
769         return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
770 }
771
772 /**
773  * ice_vc_handle_rss_cfg
774  * @vf: pointer to the VF info
775  * @msg: pointer to the message buffer
776  * @add: add a RSS config if true, otherwise delete a RSS config
777  *
778  * This function adds/deletes a RSS config
779  */
780 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
781 {
782         u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
783         struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
784         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
785         struct device *dev = ice_pf_to_dev(vf->pf);
786         struct ice_hw *hw = &vf->pf->hw;
787         struct ice_vsi *vsi;
788
789         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
790                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
791                         vf->vf_id);
792                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
793                 goto error_param;
794         }
795
796         if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
797                 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
798                         vf->vf_id);
799                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800                 goto error_param;
801         }
802
803         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
804                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
805                 goto error_param;
806         }
807
808         if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
809             rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
810             rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
811                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
812                         vf->vf_id);
813                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814                 goto error_param;
815         }
816
817         vsi = ice_get_vf_vsi(vf);
818         if (!vsi) {
819                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
820                 goto error_param;
821         }
822
823         if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
824                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
825                 goto error_param;
826         }
827
828         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
829                 struct ice_vsi_ctx *ctx;
830                 u8 lut_type, hash_type;
831                 int status;
832
833                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
834                 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
835                                 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
836
837                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
838                 if (!ctx) {
839                         v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
840                         goto error_param;
841                 }
842
843                 ctx->info.q_opt_rss =
844                         FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
845                         FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
846
847                 /* Preserve existing queueing option setting */
848                 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
849                                           ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
850                 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
851                 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
852
853                 ctx->info.valid_sections =
854                                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
855
856                 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
857                 if (status) {
858                         dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
859                                 status, ice_aq_str(hw->adminq.sq_last_status));
860                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
861                 } else {
862                         vsi->info.q_opt_rss = ctx->info.q_opt_rss;
863                 }
864
865                 kfree(ctx);
866         } else {
867                 struct ice_rss_hash_cfg cfg;
868
869                 /* Only check for none raw pattern case */
870                 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
871                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872                         goto error_param;
873                 }
874                 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
875                 cfg.hash_flds = ICE_HASH_INVALID;
876                 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
877
878                 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
879                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
880                         goto error_param;
881                 }
882
883                 if (add) {
884                         if (ice_add_rss_cfg(hw, vsi, &cfg)) {
885                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
886                                 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
887                                         vsi->vsi_num, v_ret);
888                         }
889                 } else {
890                         int status;
891
892                         status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
893                         /* We just ignore -ENOENT, because if two configurations
894                          * share the same profile remove one of them actually
895                          * removes both, since the profile is deleted.
896                          */
897                         if (status && status != -ENOENT) {
898                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
899                                 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
900                                         vf->vf_id, status);
901                         }
902                 }
903         }
904
905 error_param:
906         return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
907 }
908
909 /**
910  * ice_vc_config_rss_key
911  * @vf: pointer to the VF info
912  * @msg: pointer to the msg buffer
913  *
914  * Configure the VF's RSS key
915  */
916 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
917 {
918         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
919         struct virtchnl_rss_key *vrk =
920                 (struct virtchnl_rss_key *)msg;
921         struct ice_vsi *vsi;
922
923         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
924                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
925                 goto error_param;
926         }
927
928         if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
929                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
930                 goto error_param;
931         }
932
933         if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
934                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935                 goto error_param;
936         }
937
938         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
939                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
940                 goto error_param;
941         }
942
943         vsi = ice_get_vf_vsi(vf);
944         if (!vsi) {
945                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
946                 goto error_param;
947         }
948
949         if (ice_set_rss_key(vsi, vrk->key))
950                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
951 error_param:
952         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
953                                      NULL, 0);
954 }
955
956 /**
957  * ice_vc_config_rss_lut
958  * @vf: pointer to the VF info
959  * @msg: pointer to the msg buffer
960  *
961  * Configure the VF's RSS LUT
962  */
963 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
964 {
965         struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
966         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
967         struct ice_vsi *vsi;
968
969         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
970                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
971                 goto error_param;
972         }
973
974         if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
975                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
976                 goto error_param;
977         }
978
979         if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
980                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981                 goto error_param;
982         }
983
984         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
985                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
986                 goto error_param;
987         }
988
989         vsi = ice_get_vf_vsi(vf);
990         if (!vsi) {
991                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
992                 goto error_param;
993         }
994
995         if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
996                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
997 error_param:
998         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
999                                      NULL, 0);
1000 }
1001
1002 /**
1003  * ice_vc_config_rss_hfunc
1004  * @vf: pointer to the VF info
1005  * @msg: pointer to the msg buffer
1006  *
1007  * Configure the VF's RSS Hash function
1008  */
1009 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1010 {
1011         struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1012         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1013         u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1014         struct ice_vsi *vsi;
1015
1016         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1017                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1018                 goto error_param;
1019         }
1020
1021         if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1022                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1023                 goto error_param;
1024         }
1025
1026         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1027                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1028                 goto error_param;
1029         }
1030
1031         vsi = ice_get_vf_vsi(vf);
1032         if (!vsi) {
1033                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1034                 goto error_param;
1035         }
1036
1037         if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1038                 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1039
1040         if (ice_set_rss_hfunc(vsi, hfunc))
1041                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1042 error_param:
1043         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1044                                      NULL, 0);
1045 }
1046
1047 /**
1048  * ice_vc_cfg_promiscuous_mode_msg
1049  * @vf: pointer to the VF info
1050  * @msg: pointer to the msg buffer
1051  *
1052  * called from the VF to configure VF VSIs promiscuous mode
1053  */
1054 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1055 {
1056         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1057         bool rm_promisc, alluni = false, allmulti = false;
1058         struct virtchnl_promisc_info *info =
1059             (struct virtchnl_promisc_info *)msg;
1060         struct ice_vsi_vlan_ops *vlan_ops;
1061         int mcast_err = 0, ucast_err = 0;
1062         struct ice_pf *pf = vf->pf;
1063         struct ice_vsi *vsi;
1064         u8 mcast_m, ucast_m;
1065         struct device *dev;
1066         int ret = 0;
1067
1068         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1069                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1070                 goto error_param;
1071         }
1072
1073         if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1074                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1075                 goto error_param;
1076         }
1077
1078         vsi = ice_get_vf_vsi(vf);
1079         if (!vsi) {
1080                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1081                 goto error_param;
1082         }
1083
1084         dev = ice_pf_to_dev(pf);
1085         if (!ice_is_vf_trusted(vf)) {
1086                 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1087                         vf->vf_id);
1088                 /* Leave v_ret alone, lie to the VF on purpose. */
1089                 goto error_param;
1090         }
1091
1092         if (info->flags & FLAG_VF_UNICAST_PROMISC)
1093                 alluni = true;
1094
1095         if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1096                 allmulti = true;
1097
1098         rm_promisc = !allmulti && !alluni;
1099
1100         vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1101         if (rm_promisc)
1102                 ret = vlan_ops->ena_rx_filtering(vsi);
1103         else
1104                 ret = vlan_ops->dis_rx_filtering(vsi);
1105         if (ret) {
1106                 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1107                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1108                 goto error_param;
1109         }
1110
1111         ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1112
1113         if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1114                 if (alluni) {
1115                         /* in this case we're turning on promiscuous mode */
1116                         ret = ice_set_dflt_vsi(vsi);
1117                 } else {
1118                         /* in this case we're turning off promiscuous mode */
1119                         if (ice_is_dflt_vsi_in_use(vsi->port_info))
1120                                 ret = ice_clear_dflt_vsi(vsi);
1121                 }
1122
1123                 /* in this case we're turning on/off only
1124                  * allmulticast
1125                  */
1126                 if (allmulti)
1127                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1128                 else
1129                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1130
1131                 if (ret) {
1132                         dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1133                                 vf->vf_id, ret);
1134                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1135                         goto error_param;
1136                 }
1137         } else {
1138                 if (alluni)
1139                         ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1140                 else
1141                         ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1142
1143                 if (allmulti)
1144                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1145                 else
1146                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1147
1148                 if (ucast_err || mcast_err)
1149                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150         }
1151
1152         if (!mcast_err) {
1153                 if (allmulti &&
1154                     !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1155                         dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1156                                  vf->vf_id);
1157                 else if (!allmulti &&
1158                          test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1159                                             vf->vf_states))
1160                         dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1161                                  vf->vf_id);
1162         } else {
1163                 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1164                         vf->vf_id, mcast_err);
1165         }
1166
1167         if (!ucast_err) {
1168                 if (alluni &&
1169                     !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1170                         dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1171                                  vf->vf_id);
1172                 else if (!alluni &&
1173                          test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1174                                             vf->vf_states))
1175                         dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1176                                  vf->vf_id);
1177         } else {
1178                 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1179                         vf->vf_id, ucast_err);
1180         }
1181
1182 error_param:
1183         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1184                                      v_ret, NULL, 0);
1185 }
1186
1187 /**
1188  * ice_vc_get_stats_msg
1189  * @vf: pointer to the VF info
1190  * @msg: pointer to the msg buffer
1191  *
1192  * called from the VF to get VSI stats
1193  */
1194 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1195 {
1196         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1197         struct virtchnl_queue_select *vqs =
1198                 (struct virtchnl_queue_select *)msg;
1199         struct ice_eth_stats stats = { 0 };
1200         struct ice_vsi *vsi;
1201
1202         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1203                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1204                 goto error_param;
1205         }
1206
1207         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1208                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1209                 goto error_param;
1210         }
1211
1212         vsi = ice_get_vf_vsi(vf);
1213         if (!vsi) {
1214                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1215                 goto error_param;
1216         }
1217
1218         ice_update_eth_stats(vsi);
1219
1220         stats = vsi->eth_stats;
1221
1222 error_param:
1223         /* send the response to the VF */
1224         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1225                                      (u8 *)&stats, sizeof(stats));
1226 }
1227
1228 /**
1229  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1230  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1231  *
1232  * Return true on successful validation, else false
1233  */
1234 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1235 {
1236         if ((!vqs->rx_queues && !vqs->tx_queues) ||
1237             vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1238             vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1239                 return false;
1240
1241         return true;
1242 }
1243
1244 /**
1245  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1246  * @vsi: VSI of the VF to configure
1247  * @q_idx: VF queue index used to determine the queue in the PF's space
1248  */
1249 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1250 {
1251         struct ice_hw *hw = &vsi->back->hw;
1252         u32 pfq = vsi->txq_map[q_idx];
1253         u32 reg;
1254
1255         reg = rd32(hw, QINT_TQCTL(pfq));
1256
1257         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1258          * this is most likely a poll mode VF driver, so don't enable an
1259          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1260          */
1261         if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1262                 return;
1263
1264         wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1265 }
1266
1267 /**
1268  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1269  * @vsi: VSI of the VF to configure
1270  * @q_idx: VF queue index used to determine the queue in the PF's space
1271  */
1272 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1273 {
1274         struct ice_hw *hw = &vsi->back->hw;
1275         u32 pfq = vsi->rxq_map[q_idx];
1276         u32 reg;
1277
1278         reg = rd32(hw, QINT_RQCTL(pfq));
1279
1280         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1281          * this is most likely a poll mode VF driver, so don't enable an
1282          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1283          */
1284         if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1285                 return;
1286
1287         wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1288 }
1289
1290 /**
1291  * ice_vc_ena_qs_msg
1292  * @vf: pointer to the VF info
1293  * @msg: pointer to the msg buffer
1294  *
1295  * called from the VF to enable all or specific queue(s)
1296  */
1297 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1298 {
1299         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1300         struct virtchnl_queue_select *vqs =
1301             (struct virtchnl_queue_select *)msg;
1302         struct ice_vsi *vsi;
1303         unsigned long q_map;
1304         u16 vf_q_id;
1305
1306         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1307                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1308                 goto error_param;
1309         }
1310
1311         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1312                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1313                 goto error_param;
1314         }
1315
1316         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1317                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1318                 goto error_param;
1319         }
1320
1321         vsi = ice_get_vf_vsi(vf);
1322         if (!vsi) {
1323                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1324                 goto error_param;
1325         }
1326
1327         /* Enable only Rx rings, Tx rings were enabled by the FW when the
1328          * Tx queue group list was configured and the context bits were
1329          * programmed using ice_vsi_cfg_txqs
1330          */
1331         q_map = vqs->rx_queues;
1332         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1333                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1334                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1335                         goto error_param;
1336                 }
1337
1338                 /* Skip queue if enabled */
1339                 if (test_bit(vf_q_id, vf->rxq_ena))
1340                         continue;
1341
1342                 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1343                         dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1344                                 vf_q_id, vsi->vsi_num);
1345                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1346                         goto error_param;
1347                 }
1348
1349                 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1350                 set_bit(vf_q_id, vf->rxq_ena);
1351         }
1352
1353         q_map = vqs->tx_queues;
1354         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1355                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1356                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1357                         goto error_param;
1358                 }
1359
1360                 /* Skip queue if enabled */
1361                 if (test_bit(vf_q_id, vf->txq_ena))
1362                         continue;
1363
1364                 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1365                 set_bit(vf_q_id, vf->txq_ena);
1366         }
1367
1368         /* Set flag to indicate that queues are enabled */
1369         if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1370                 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1371
1372 error_param:
1373         /* send the response to the VF */
1374         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1375                                      NULL, 0);
1376 }
1377
1378 /**
1379  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1380  * @vf: VF to disable queue for
1381  * @vsi: VSI for the VF
1382  * @q_id: VF relative (0-based) queue ID
1383  *
1384  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1385  * disabled then clear q_id bit in the enabled queues bitmap and return
1386  * success. Otherwise return error.
1387  */
1388 static int
1389 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1390 {
1391         struct ice_txq_meta txq_meta = { 0 };
1392         struct ice_tx_ring *ring;
1393         int err;
1394
1395         if (!test_bit(q_id, vf->txq_ena))
1396                 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1397                         q_id, vsi->vsi_num);
1398
1399         ring = vsi->tx_rings[q_id];
1400         if (!ring)
1401                 return -EINVAL;
1402
1403         ice_fill_txq_meta(vsi, ring, &txq_meta);
1404
1405         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1406         if (err) {
1407                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1408                         q_id, vsi->vsi_num);
1409                 return err;
1410         }
1411
1412         /* Clear enabled queues flag */
1413         clear_bit(q_id, vf->txq_ena);
1414
1415         return 0;
1416 }
1417
1418 /**
1419  * ice_vc_dis_qs_msg
1420  * @vf: pointer to the VF info
1421  * @msg: pointer to the msg buffer
1422  *
1423  * called from the VF to disable all or specific queue(s)
1424  */
1425 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1426 {
1427         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1428         struct virtchnl_queue_select *vqs =
1429             (struct virtchnl_queue_select *)msg;
1430         struct ice_vsi *vsi;
1431         unsigned long q_map;
1432         u16 vf_q_id;
1433
1434         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1435             !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1436                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1437                 goto error_param;
1438         }
1439
1440         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1441                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1442                 goto error_param;
1443         }
1444
1445         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1446                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1447                 goto error_param;
1448         }
1449
1450         vsi = ice_get_vf_vsi(vf);
1451         if (!vsi) {
1452                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453                 goto error_param;
1454         }
1455
1456         if (vqs->tx_queues) {
1457                 q_map = vqs->tx_queues;
1458
1459                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1460                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1461                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1462                                 goto error_param;
1463                         }
1464
1465                         if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1466                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1467                                 goto error_param;
1468                         }
1469                 }
1470         }
1471
1472         q_map = vqs->rx_queues;
1473         /* speed up Rx queue disable by batching them if possible */
1474         if (q_map &&
1475             bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1476                 if (ice_vsi_stop_all_rx_rings(vsi)) {
1477                         dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1478                                 vsi->vsi_num);
1479                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1480                         goto error_param;
1481                 }
1482
1483                 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1484         } else if (q_map) {
1485                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1486                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1487                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1488                                 goto error_param;
1489                         }
1490
1491                         /* Skip queue if not enabled */
1492                         if (!test_bit(vf_q_id, vf->rxq_ena))
1493                                 continue;
1494
1495                         if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1496                                                      true)) {
1497                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1498                                         vf_q_id, vsi->vsi_num);
1499                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1500                                 goto error_param;
1501                         }
1502
1503                         /* Clear enabled queues flag */
1504                         clear_bit(vf_q_id, vf->rxq_ena);
1505                 }
1506         }
1507
1508         /* Clear enabled queues flag */
1509         if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1510                 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1511
1512 error_param:
1513         /* send the response to the VF */
1514         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1515                                      NULL, 0);
1516 }
1517
1518 /**
1519  * ice_cfg_interrupt
1520  * @vf: pointer to the VF info
1521  * @vsi: the VSI being configured
1522  * @vector_id: vector ID
1523  * @map: vector map for mapping vectors to queues
1524  * @q_vector: structure for interrupt vector
1525  * configure the IRQ to queue map
1526  */
1527 static int
1528 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1529                   struct virtchnl_vector_map *map,
1530                   struct ice_q_vector *q_vector)
1531 {
1532         u16 vsi_q_id, vsi_q_id_idx;
1533         unsigned long qmap;
1534
1535         q_vector->num_ring_rx = 0;
1536         q_vector->num_ring_tx = 0;
1537
1538         qmap = map->rxq_map;
1539         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540                 vsi_q_id = vsi_q_id_idx;
1541
1542                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1543                         return VIRTCHNL_STATUS_ERR_PARAM;
1544
1545                 q_vector->num_ring_rx++;
1546                 q_vector->rx.itr_idx = map->rxitr_idx;
1547                 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1548                 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1549                                       q_vector->rx.itr_idx);
1550         }
1551
1552         qmap = map->txq_map;
1553         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1554                 vsi_q_id = vsi_q_id_idx;
1555
1556                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1557                         return VIRTCHNL_STATUS_ERR_PARAM;
1558
1559                 q_vector->num_ring_tx++;
1560                 q_vector->tx.itr_idx = map->txitr_idx;
1561                 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1562                 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1563                                       q_vector->tx.itr_idx);
1564         }
1565
1566         return VIRTCHNL_STATUS_SUCCESS;
1567 }
1568
1569 /**
1570  * ice_vc_cfg_irq_map_msg
1571  * @vf: pointer to the VF info
1572  * @msg: pointer to the msg buffer
1573  *
1574  * called from the VF to configure the IRQ to queue map
1575  */
1576 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1577 {
1578         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1579         u16 num_q_vectors_mapped, vsi_id, vector_id;
1580         struct virtchnl_irq_map_info *irqmap_info;
1581         struct virtchnl_vector_map *map;
1582         struct ice_vsi *vsi;
1583         int i;
1584
1585         irqmap_info = (struct virtchnl_irq_map_info *)msg;
1586         num_q_vectors_mapped = irqmap_info->num_vectors;
1587
1588         /* Check to make sure number of VF vectors mapped is not greater than
1589          * number of VF vectors originally allocated, and check that
1590          * there is actually at least a single VF queue vector mapped
1591          */
1592         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1593             vf->num_msix < num_q_vectors_mapped ||
1594             !num_q_vectors_mapped) {
1595                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1596                 goto error_param;
1597         }
1598
1599         vsi = ice_get_vf_vsi(vf);
1600         if (!vsi) {
1601                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1602                 goto error_param;
1603         }
1604
1605         for (i = 0; i < num_q_vectors_mapped; i++) {
1606                 struct ice_q_vector *q_vector;
1607
1608                 map = &irqmap_info->vecmap[i];
1609
1610                 vector_id = map->vector_id;
1611                 vsi_id = map->vsi_id;
1612                 /* vector_id is always 0-based for each VF, and can never be
1613                  * larger than or equal to the max allowed interrupts per VF
1614                  */
1615                 if (!(vector_id < vf->num_msix) ||
1616                     !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1617                     (!vector_id && (map->rxq_map || map->txq_map))) {
1618                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1619                         goto error_param;
1620                 }
1621
1622                 /* No need to map VF miscellaneous or rogue vector */
1623                 if (!vector_id)
1624                         continue;
1625
1626                 /* Subtract non queue vector from vector_id passed by VF
1627                  * to get actual number of VSI queue vector array index
1628                  */
1629                 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1630                 if (!q_vector) {
1631                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1632                         goto error_param;
1633                 }
1634
1635                 /* lookout for the invalid queue index */
1636                 v_ret = (enum virtchnl_status_code)
1637                         ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1638                 if (v_ret)
1639                         goto error_param;
1640         }
1641
1642 error_param:
1643         /* send the response to the VF */
1644         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1645                                      NULL, 0);
1646 }
1647
1648 /**
1649  * ice_vc_cfg_qs_msg
1650  * @vf: pointer to the VF info
1651  * @msg: pointer to the msg buffer
1652  *
1653  * called from the VF to configure the Rx/Tx queues
1654  */
1655 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1656 {
1657         struct virtchnl_vsi_queue_config_info *qci =
1658             (struct virtchnl_vsi_queue_config_info *)msg;
1659         struct virtchnl_queue_pair_info *qpi;
1660         struct ice_pf *pf = vf->pf;
1661         struct ice_lag *lag;
1662         struct ice_vsi *vsi;
1663         u8 act_prt, pri_prt;
1664         int i = -1, q_idx;
1665
1666         lag = pf->lag;
1667         mutex_lock(&pf->lag_mutex);
1668         act_prt = ICE_LAG_INVALID_PORT;
1669         pri_prt = pf->hw.port_info->lport;
1670         if (lag && lag->bonded && lag->primary) {
1671                 act_prt = lag->active_port;
1672                 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1673                     lag->upper_netdev)
1674                         ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1675                 else
1676                         act_prt = ICE_LAG_INVALID_PORT;
1677         }
1678
1679         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1680                 goto error_param;
1681
1682         if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1683                 goto error_param;
1684
1685         vsi = ice_get_vf_vsi(vf);
1686         if (!vsi)
1687                 goto error_param;
1688
1689         if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1690             qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1691                 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1692                         vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1693                 goto error_param;
1694         }
1695
1696         for (i = 0; i < qci->num_queue_pairs; i++) {
1697                 if (!qci->qpair[i].rxq.crc_disable)
1698                         continue;
1699
1700                 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1701                     vf->vlan_strip_ena)
1702                         goto error_param;
1703         }
1704
1705         for (i = 0; i < qci->num_queue_pairs; i++) {
1706                 qpi = &qci->qpair[i];
1707                 if (qpi->txq.vsi_id != qci->vsi_id ||
1708                     qpi->rxq.vsi_id != qci->vsi_id ||
1709                     qpi->rxq.queue_id != qpi->txq.queue_id ||
1710                     qpi->txq.headwb_enabled ||
1711                     !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1712                     !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1713                     !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1714                         goto error_param;
1715                 }
1716
1717                 q_idx = qpi->rxq.queue_id;
1718
1719                 /* make sure selected "q_idx" is in valid range of queues
1720                  * for selected "vsi"
1721                  */
1722                 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1723                         goto error_param;
1724                 }
1725
1726                 /* copy Tx queue info from VF into VSI */
1727                 if (qpi->txq.ring_len > 0) {
1728                         vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1729                         vsi->tx_rings[i]->count = qpi->txq.ring_len;
1730
1731                         /* Disable any existing queue first */
1732                         if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1733                                 goto error_param;
1734
1735                         /* Configure a queue with the requested settings */
1736                         if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1737                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1738                                          vf->vf_id, i);
1739                                 goto error_param;
1740                         }
1741                 }
1742
1743                 /* copy Rx queue info from VF into VSI */
1744                 if (qpi->rxq.ring_len > 0) {
1745                         u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1746                         u32 rxdid;
1747
1748                         vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1749                         vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1750
1751                         if (qpi->rxq.crc_disable)
1752                                 vsi->rx_rings[q_idx]->flags |=
1753                                         ICE_RX_FLAGS_CRC_STRIP_DIS;
1754                         else
1755                                 vsi->rx_rings[q_idx]->flags &=
1756                                         ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1757
1758                         if (qpi->rxq.databuffer_size != 0 &&
1759                             (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1760                              qpi->rxq.databuffer_size < 1024))
1761                                 goto error_param;
1762                         vsi->rx_buf_len = qpi->rxq.databuffer_size;
1763                         vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1764                         if (qpi->rxq.max_pkt_size > max_frame_size ||
1765                             qpi->rxq.max_pkt_size < 64)
1766                                 goto error_param;
1767
1768                         vsi->max_frame = qpi->rxq.max_pkt_size;
1769                         /* add space for the port VLAN since the VF driver is
1770                          * not expected to account for it in the MTU
1771                          * calculation
1772                          */
1773                         if (ice_vf_is_port_vlan_ena(vf))
1774                                 vsi->max_frame += VLAN_HLEN;
1775
1776                         if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1777                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1778                                          vf->vf_id, i);
1779                                 goto error_param;
1780                         }
1781
1782                         /* If Rx flex desc is supported, select RXDID for Rx
1783                          * queues. Otherwise, use legacy 32byte descriptor
1784                          * format. Legacy 16byte descriptor is not supported.
1785                          * If this RXDID is selected, return error.
1786                          */
1787                         if (vf->driver_caps &
1788                             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1789                                 rxdid = qpi->rxq.rxdid;
1790                                 if (!(BIT(rxdid) & pf->supported_rxdids))
1791                                         goto error_param;
1792                         } else {
1793                                 rxdid = ICE_RXDID_LEGACY_1;
1794                         }
1795
1796                         ice_write_qrxflxp_cntxt(&vsi->back->hw,
1797                                                 vsi->rxq_map[q_idx],
1798                                                 rxdid, 0x03, false);
1799                 }
1800         }
1801
1802         if (lag && lag->bonded && lag->primary &&
1803             act_prt != ICE_LAG_INVALID_PORT)
1804                 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1805         mutex_unlock(&pf->lag_mutex);
1806
1807         /* send the response to the VF */
1808         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1809                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1810 error_param:
1811         /* disable whatever we can */
1812         for (; i >= 0; i--) {
1813                 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1814                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1815                                 vf->vf_id, i);
1816                 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1817                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1818                                 vf->vf_id, i);
1819         }
1820
1821         if (lag && lag->bonded && lag->primary &&
1822             act_prt != ICE_LAG_INVALID_PORT)
1823                 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1824         mutex_unlock(&pf->lag_mutex);
1825
1826         ice_lag_move_new_vf_nodes(vf);
1827
1828         /* send the response to the VF */
1829         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1830                                      VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1831 }
1832
1833 /**
1834  * ice_can_vf_change_mac
1835  * @vf: pointer to the VF info
1836  *
1837  * Return true if the VF is allowed to change its MAC filters, false otherwise
1838  */
1839 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1840 {
1841         /* If the VF MAC address has been set administratively (via the
1842          * ndo_set_vf_mac command), then deny permission to the VF to
1843          * add/delete unicast MAC addresses, unless the VF is trusted
1844          */
1845         if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1846                 return false;
1847
1848         return true;
1849 }
1850
1851 /**
1852  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1853  * @vc_ether_addr: used to extract the type
1854  */
1855 static u8
1856 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1857 {
1858         return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1859 }
1860
1861 /**
1862  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1863  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1864  */
1865 static bool
1866 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1867 {
1868         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1869
1870         return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1871 }
1872
1873 /**
1874  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1875  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1876  *
1877  * This function should only be called when the MAC address in
1878  * virtchnl_ether_addr is a valid unicast MAC
1879  */
1880 static bool
1881 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1882 {
1883         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1884
1885         return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1886 }
1887
1888 /**
1889  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1890  * @vf: VF to update
1891  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1892  */
1893 static void
1894 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1895 {
1896         u8 *mac_addr = vc_ether_addr->addr;
1897
1898         if (!is_valid_ether_addr(mac_addr))
1899                 return;
1900
1901         /* only allow legacy VF drivers to set the device and hardware MAC if it
1902          * is zero and allow new VF drivers to set the hardware MAC if the type
1903          * was correctly specified over VIRTCHNL
1904          */
1905         if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1906              is_zero_ether_addr(vf->hw_lan_addr)) ||
1907             ice_is_vc_addr_primary(vc_ether_addr)) {
1908                 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1909                 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1910         }
1911
1912         /* hardware and device MACs are already set, but its possible that the
1913          * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1914          * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1915          * away for the legacy VF driver case as it will be updated in the
1916          * delete flow for this case
1917          */
1918         if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1919                 ether_addr_copy(vf->legacy_last_added_umac.addr,
1920                                 mac_addr);
1921                 vf->legacy_last_added_umac.time_modified = jiffies;
1922         }
1923 }
1924
1925 /**
1926  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1927  * @vf: pointer to the VF info
1928  * @vsi: pointer to the VF's VSI
1929  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1930  */
1931 static int
1932 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1933                     struct virtchnl_ether_addr *vc_ether_addr)
1934 {
1935         struct device *dev = ice_pf_to_dev(vf->pf);
1936         u8 *mac_addr = vc_ether_addr->addr;
1937         int ret;
1938
1939         /* device MAC already added */
1940         if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1941                 return 0;
1942
1943         if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1944                 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1945                 return -EPERM;
1946         }
1947
1948         ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1949         if (ret == -EEXIST) {
1950                 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1951                         vf->vf_id);
1952                 /* don't return since we might need to update
1953                  * the primary MAC in ice_vfhw_mac_add() below
1954                  */
1955         } else if (ret) {
1956                 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1957                         mac_addr, vf->vf_id, ret);
1958                 return ret;
1959         } else {
1960                 vf->num_mac++;
1961         }
1962
1963         ice_vfhw_mac_add(vf, vc_ether_addr);
1964
1965         return ret;
1966 }
1967
1968 /**
1969  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1970  * @last_added_umac: structure used to check expiration
1971  */
1972 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1973 {
1974 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME    msecs_to_jiffies(3000)
1975         return time_is_before_jiffies(last_added_umac->time_modified +
1976                                       ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1977 }
1978
1979 /**
1980  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1981  * @vf: VF to update
1982  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1983  *
1984  * only update cached hardware MAC for legacy VF drivers on delete
1985  * because we cannot guarantee order/type of MAC from the VF driver
1986  */
1987 static void
1988 ice_update_legacy_cached_mac(struct ice_vf *vf,
1989                              struct virtchnl_ether_addr *vc_ether_addr)
1990 {
1991         if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1992             ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1993                 return;
1994
1995         ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1996         ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1997 }
1998
1999 /**
2000  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2001  * @vf: VF to update
2002  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2003  */
2004 static void
2005 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2006 {
2007         u8 *mac_addr = vc_ether_addr->addr;
2008
2009         if (!is_valid_ether_addr(mac_addr) ||
2010             !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2011                 return;
2012
2013         /* allow the device MAC to be repopulated in the add flow and don't
2014          * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2015          * to be persistent on VM reboot and across driver unload/load, which
2016          * won't work if we clear the hardware MAC here
2017          */
2018         eth_zero_addr(vf->dev_lan_addr);
2019
2020         ice_update_legacy_cached_mac(vf, vc_ether_addr);
2021 }
2022
2023 /**
2024  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2025  * @vf: pointer to the VF info
2026  * @vsi: pointer to the VF's VSI
2027  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2028  */
2029 static int
2030 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2031                     struct virtchnl_ether_addr *vc_ether_addr)
2032 {
2033         struct device *dev = ice_pf_to_dev(vf->pf);
2034         u8 *mac_addr = vc_ether_addr->addr;
2035         int status;
2036
2037         if (!ice_can_vf_change_mac(vf) &&
2038             ether_addr_equal(vf->dev_lan_addr, mac_addr))
2039                 return 0;
2040
2041         status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2042         if (status == -ENOENT) {
2043                 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2044                         vf->vf_id);
2045                 return -ENOENT;
2046         } else if (status) {
2047                 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2048                         mac_addr, vf->vf_id, status);
2049                 return -EIO;
2050         }
2051
2052         ice_vfhw_mac_del(vf, vc_ether_addr);
2053
2054         vf->num_mac--;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * ice_vc_handle_mac_addr_msg
2061  * @vf: pointer to the VF info
2062  * @msg: pointer to the msg buffer
2063  * @set: true if MAC filters are being set, false otherwise
2064  *
2065  * add guest MAC address filter
2066  */
2067 static int
2068 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2069 {
2070         int (*ice_vc_cfg_mac)
2071                 (struct ice_vf *vf, struct ice_vsi *vsi,
2072                  struct virtchnl_ether_addr *virtchnl_ether_addr);
2073         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2074         struct virtchnl_ether_addr_list *al =
2075             (struct virtchnl_ether_addr_list *)msg;
2076         struct ice_pf *pf = vf->pf;
2077         enum virtchnl_ops vc_op;
2078         struct ice_vsi *vsi;
2079         int i;
2080
2081         if (set) {
2082                 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2083                 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2084         } else {
2085                 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2086                 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2087         }
2088
2089         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2090             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2091                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2092                 goto handle_mac_exit;
2093         }
2094
2095         /* If this VF is not privileged, then we can't add more than a
2096          * limited number of addresses. Check to make sure that the
2097          * additions do not push us over the limit.
2098          */
2099         if (set && !ice_is_vf_trusted(vf) &&
2100             (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2101                 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2102                         vf->vf_id);
2103                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104                 goto handle_mac_exit;
2105         }
2106
2107         vsi = ice_get_vf_vsi(vf);
2108         if (!vsi) {
2109                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2110                 goto handle_mac_exit;
2111         }
2112
2113         for (i = 0; i < al->num_elements; i++) {
2114                 u8 *mac_addr = al->list[i].addr;
2115                 int result;
2116
2117                 if (is_broadcast_ether_addr(mac_addr) ||
2118                     is_zero_ether_addr(mac_addr))
2119                         continue;
2120
2121                 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2122                 if (result == -EEXIST || result == -ENOENT) {
2123                         continue;
2124                 } else if (result) {
2125                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2126                         goto handle_mac_exit;
2127                 }
2128         }
2129
2130 handle_mac_exit:
2131         /* send the response to the VF */
2132         return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2133 }
2134
2135 /**
2136  * ice_vc_add_mac_addr_msg
2137  * @vf: pointer to the VF info
2138  * @msg: pointer to the msg buffer
2139  *
2140  * add guest MAC address filter
2141  */
2142 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2143 {
2144         return ice_vc_handle_mac_addr_msg(vf, msg, true);
2145 }
2146
2147 /**
2148  * ice_vc_del_mac_addr_msg
2149  * @vf: pointer to the VF info
2150  * @msg: pointer to the msg buffer
2151  *
2152  * remove guest MAC address filter
2153  */
2154 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2155 {
2156         return ice_vc_handle_mac_addr_msg(vf, msg, false);
2157 }
2158
2159 /**
2160  * ice_vc_request_qs_msg
2161  * @vf: pointer to the VF info
2162  * @msg: pointer to the msg buffer
2163  *
2164  * VFs get a default number of queues but can use this message to request a
2165  * different number. If the request is successful, PF will reset the VF and
2166  * return 0. If unsuccessful, PF will send message informing VF of number of
2167  * available queue pairs via virtchnl message response to VF.
2168  */
2169 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2170 {
2171         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2172         struct virtchnl_vf_res_request *vfres =
2173                 (struct virtchnl_vf_res_request *)msg;
2174         u16 req_queues = vfres->num_queue_pairs;
2175         struct ice_pf *pf = vf->pf;
2176         u16 max_allowed_vf_queues;
2177         u16 tx_rx_queue_left;
2178         struct device *dev;
2179         u16 cur_queues;
2180
2181         dev = ice_pf_to_dev(pf);
2182         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2183                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2184                 goto error_param;
2185         }
2186
2187         cur_queues = vf->num_vf_qs;
2188         tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2189                                  ice_get_avail_rxq_count(pf));
2190         max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2191         if (!req_queues) {
2192                 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2193                         vf->vf_id);
2194         } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2195                 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2196                         vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2197                 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2198         } else if (req_queues > cur_queues &&
2199                    req_queues - cur_queues > tx_rx_queue_left) {
2200                 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2201                          vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2202                 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2203                                                ICE_MAX_RSS_QS_PER_VF);
2204         } else {
2205                 /* request is successful, then reset VF */
2206                 vf->num_req_qs = req_queues;
2207                 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2208                 dev_info(dev, "VF %d granted request of %u queues.\n",
2209                          vf->vf_id, req_queues);
2210                 return 0;
2211         }
2212
2213 error_param:
2214         /* send the response to the VF */
2215         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2216                                      v_ret, (u8 *)vfres, sizeof(*vfres));
2217 }
2218
2219 /**
2220  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2221  * @caps: VF driver negotiated capabilities
2222  *
2223  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2224  */
2225 static bool ice_vf_vlan_offload_ena(u32 caps)
2226 {
2227         return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2228 }
2229
2230 /**
2231  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2232  * @vf: VF used to determine if VLAN promiscuous config is allowed
2233  */
2234 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2235 {
2236         if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2237              test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2238             test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2239                 return true;
2240
2241         return false;
2242 }
2243
2244 /**
2245  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2246  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2247  * @vlan: VLAN used to enable VLAN promiscuous
2248  *
2249  * This function should only be called if VLAN promiscuous mode is allowed,
2250  * which can be determined via ice_is_vlan_promisc_allowed().
2251  */
2252 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2253 {
2254         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2255         int status;
2256
2257         status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2258                                           vlan->vid);
2259         if (status && status != -EEXIST)
2260                 return status;
2261
2262         return 0;
2263 }
2264
2265 /**
2266  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2267  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2268  * @vlan: VLAN used to disable VLAN promiscuous
2269  *
2270  * This function should only be called if VLAN promiscuous mode is allowed,
2271  * which can be determined via ice_is_vlan_promisc_allowed().
2272  */
2273 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2274 {
2275         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2276         int status;
2277
2278         status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2279                                             vlan->vid);
2280         if (status && status != -ENOENT)
2281                 return status;
2282
2283         return 0;
2284 }
2285
2286 /**
2287  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2288  * @vf: VF to check against
2289  * @vsi: VF's VSI
2290  *
2291  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2292  * wants to, so return false.
2293  *
2294  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2295  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2296  */
2297 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2298 {
2299         if (ice_is_vf_trusted(vf))
2300                 return false;
2301
2302 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS    1
2303         return ((ice_vsi_num_non_zero_vlans(vsi) +
2304                 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2305 }
2306
2307 /**
2308  * ice_vc_process_vlan_msg
2309  * @vf: pointer to the VF info
2310  * @msg: pointer to the msg buffer
2311  * @add_v: Add VLAN if true, otherwise delete VLAN
2312  *
2313  * Process virtchnl op to add or remove programmed guest VLAN ID
2314  */
2315 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2316 {
2317         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2318         struct virtchnl_vlan_filter_list *vfl =
2319             (struct virtchnl_vlan_filter_list *)msg;
2320         struct ice_pf *pf = vf->pf;
2321         bool vlan_promisc = false;
2322         struct ice_vsi *vsi;
2323         struct device *dev;
2324         int status = 0;
2325         int i;
2326
2327         dev = ice_pf_to_dev(pf);
2328         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2329                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2330                 goto error_param;
2331         }
2332
2333         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2334                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2335                 goto error_param;
2336         }
2337
2338         if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2339                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2340                 goto error_param;
2341         }
2342
2343         for (i = 0; i < vfl->num_elements; i++) {
2344                 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2345                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2346                         dev_err(dev, "invalid VF VLAN id %d\n",
2347                                 vfl->vlan_id[i]);
2348                         goto error_param;
2349                 }
2350         }
2351
2352         vsi = ice_get_vf_vsi(vf);
2353         if (!vsi) {
2354                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2355                 goto error_param;
2356         }
2357
2358         if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2359                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2360                          vf->vf_id);
2361                 /* There is no need to let VF know about being not trusted,
2362                  * so we can just return success message here
2363                  */
2364                 goto error_param;
2365         }
2366
2367         /* in DVM a VF can add/delete inner VLAN filters when
2368          * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2369          */
2370         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2371                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2372                 goto error_param;
2373         }
2374
2375         /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2376          * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2377          * allow vlan_promisc = true in SVM and if no port VLAN is configured
2378          */
2379         vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2380                 !ice_is_dvm_ena(&pf->hw) &&
2381                 !ice_vf_is_port_vlan_ena(vf);
2382
2383         if (add_v) {
2384                 for (i = 0; i < vfl->num_elements; i++) {
2385                         u16 vid = vfl->vlan_id[i];
2386                         struct ice_vlan vlan;
2387
2388                         if (ice_vf_has_max_vlans(vf, vsi)) {
2389                                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2390                                          vf->vf_id);
2391                                 /* There is no need to let VF know about being
2392                                  * not trusted, so we can just return success
2393                                  * message here as well.
2394                                  */
2395                                 goto error_param;
2396                         }
2397
2398                         /* we add VLAN 0 by default for each VF so we can enable
2399                          * Tx VLAN anti-spoof without triggering MDD events so
2400                          * we don't need to add it again here
2401                          */
2402                         if (!vid)
2403                                 continue;
2404
2405                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2406                         status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2407                         if (status) {
2408                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2409                                 goto error_param;
2410                         }
2411
2412                         /* Enable VLAN filtering on first non-zero VLAN */
2413                         if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2414                                 if (vf->spoofchk) {
2415                                         status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2416                                         if (status) {
2417                                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418                                                 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2419                                                         vid, status);
2420                                                 goto error_param;
2421                                         }
2422                                 }
2423                                 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2424                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2425                                         dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2426                                                 vid, status);
2427                                         goto error_param;
2428                                 }
2429                         } else if (vlan_promisc) {
2430                                 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2431                                 if (status) {
2432                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2433                                         dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2434                                                 vid, status);
2435                                 }
2436                         }
2437                 }
2438         } else {
2439                 /* In case of non_trusted VF, number of VLAN elements passed
2440                  * to PF for removal might be greater than number of VLANs
2441                  * filter programmed for that VF - So, use actual number of
2442                  * VLANS added earlier with add VLAN opcode. In order to avoid
2443                  * removing VLAN that doesn't exist, which result to sending
2444                  * erroneous failed message back to the VF
2445                  */
2446                 int num_vf_vlan;
2447
2448                 num_vf_vlan = vsi->num_vlan;
2449                 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2450                         u16 vid = vfl->vlan_id[i];
2451                         struct ice_vlan vlan;
2452
2453                         /* we add VLAN 0 by default for each VF so we can enable
2454                          * Tx VLAN anti-spoof without triggering MDD events so
2455                          * we don't want a VIRTCHNL request to remove it
2456                          */
2457                         if (!vid)
2458                                 continue;
2459
2460                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2461                         status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2462                         if (status) {
2463                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2464                                 goto error_param;
2465                         }
2466
2467                         /* Disable VLAN filtering when only VLAN 0 is left */
2468                         if (!ice_vsi_has_non_zero_vlans(vsi)) {
2469                                 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2470                                 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2471                         }
2472
2473                         if (vlan_promisc)
2474                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2475                 }
2476         }
2477
2478 error_param:
2479         /* send the response to the VF */
2480         if (add_v)
2481                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2482                                              NULL, 0);
2483         else
2484                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2485                                              NULL, 0);
2486 }
2487
2488 /**
2489  * ice_vc_add_vlan_msg
2490  * @vf: pointer to the VF info
2491  * @msg: pointer to the msg buffer
2492  *
2493  * Add and program guest VLAN ID
2494  */
2495 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2496 {
2497         return ice_vc_process_vlan_msg(vf, msg, true);
2498 }
2499
2500 /**
2501  * ice_vc_remove_vlan_msg
2502  * @vf: pointer to the VF info
2503  * @msg: pointer to the msg buffer
2504  *
2505  * remove programmed guest VLAN ID
2506  */
2507 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2508 {
2509         return ice_vc_process_vlan_msg(vf, msg, false);
2510 }
2511
2512 /**
2513  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2514  * @vsi: pointer to the VF VSI info
2515  */
2516 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2517 {
2518         unsigned int i;
2519
2520         ice_for_each_alloc_rxq(vsi, i)
2521                 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2522                         return true;
2523
2524         return false;
2525 }
2526
2527 /**
2528  * ice_vc_ena_vlan_stripping
2529  * @vf: pointer to the VF info
2530  *
2531  * Enable VLAN header stripping for a given VF
2532  */
2533 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2534 {
2535         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2536         struct ice_vsi *vsi;
2537
2538         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2539                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2540                 goto error_param;
2541         }
2542
2543         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2544                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2545                 goto error_param;
2546         }
2547
2548         vsi = ice_get_vf_vsi(vf);
2549         if (!vsi) {
2550                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2551                 goto error_param;
2552         }
2553
2554         if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2555                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2556         else
2557                 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2558
2559 error_param:
2560         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2561                                      v_ret, NULL, 0);
2562 }
2563
2564 /**
2565  * ice_vc_dis_vlan_stripping
2566  * @vf: pointer to the VF info
2567  *
2568  * Disable VLAN header stripping for a given VF
2569  */
2570 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2571 {
2572         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2573         struct ice_vsi *vsi;
2574
2575         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2576                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2577                 goto error_param;
2578         }
2579
2580         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2581                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2582                 goto error_param;
2583         }
2584
2585         vsi = ice_get_vf_vsi(vf);
2586         if (!vsi) {
2587                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2588                 goto error_param;
2589         }
2590
2591         if (vsi->inner_vlan_ops.dis_stripping(vsi))
2592                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2593         else
2594                 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2595
2596 error_param:
2597         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2598                                      v_ret, NULL, 0);
2599 }
2600
2601 /**
2602  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2603  * @vf: pointer to the VF info
2604  */
2605 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2606 {
2607         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2608         struct virtchnl_rss_hena *vrh = NULL;
2609         int len = 0, ret;
2610
2611         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2612                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2613                 goto err;
2614         }
2615
2616         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2617                 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2618                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2619                 goto err;
2620         }
2621
2622         len = sizeof(struct virtchnl_rss_hena);
2623         vrh = kzalloc(len, GFP_KERNEL);
2624         if (!vrh) {
2625                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2626                 len = 0;
2627                 goto err;
2628         }
2629
2630         vrh->hena = ICE_DEFAULT_RSS_HENA;
2631 err:
2632         /* send the response back to the VF */
2633         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2634                                     (u8 *)vrh, len);
2635         kfree(vrh);
2636         return ret;
2637 }
2638
2639 /**
2640  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2641  * @vf: pointer to the VF info
2642  * @msg: pointer to the msg buffer
2643  */
2644 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2645 {
2646         struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2647         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2648         struct ice_pf *pf = vf->pf;
2649         struct ice_vsi *vsi;
2650         struct device *dev;
2651         int status;
2652
2653         dev = ice_pf_to_dev(pf);
2654
2655         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2656                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2657                 goto err;
2658         }
2659
2660         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2661                 dev_err(dev, "RSS not supported by PF\n");
2662                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2663                 goto err;
2664         }
2665
2666         vsi = ice_get_vf_vsi(vf);
2667         if (!vsi) {
2668                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2669                 goto err;
2670         }
2671
2672         /* clear all previously programmed RSS configuration to allow VF drivers
2673          * the ability to customize the RSS configuration and/or completely
2674          * disable RSS
2675          */
2676         status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2677         if (status && !vrh->hena) {
2678                 /* only report failure to clear the current RSS configuration if
2679                  * that was clearly the VF's intention (i.e. vrh->hena = 0)
2680                  */
2681                 v_ret = ice_err_to_virt_err(status);
2682                 goto err;
2683         } else if (status) {
2684                 /* allow the VF to update the RSS configuration even on failure
2685                  * to clear the current RSS confguration in an attempt to keep
2686                  * RSS in a working state
2687                  */
2688                 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2689                          vf->vf_id);
2690         }
2691
2692         if (vrh->hena) {
2693                 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2694                 v_ret = ice_err_to_virt_err(status);
2695         }
2696
2697         /* send the response to the VF */
2698 err:
2699         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2700                                      NULL, 0);
2701 }
2702
2703 /**
2704  * ice_vc_query_rxdid - query RXDID supported by DDP package
2705  * @vf: pointer to VF info
2706  *
2707  * Called from VF to query a bitmap of supported flexible
2708  * descriptor RXDIDs of a DDP package.
2709  */
2710 static int ice_vc_query_rxdid(struct ice_vf *vf)
2711 {
2712         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2713         struct virtchnl_supported_rxdids *rxdid = NULL;
2714         struct ice_hw *hw = &vf->pf->hw;
2715         struct ice_pf *pf = vf->pf;
2716         int len = 0;
2717         int ret, i;
2718         u32 regval;
2719
2720         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2721                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2722                 goto err;
2723         }
2724
2725         if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2726                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2727                 goto err;
2728         }
2729
2730         len = sizeof(struct virtchnl_supported_rxdids);
2731         rxdid = kzalloc(len, GFP_KERNEL);
2732         if (!rxdid) {
2733                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2734                 len = 0;
2735                 goto err;
2736         }
2737
2738         /* RXDIDs supported by DDP package can be read from the register
2739          * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2740          * is not listed in DDP package, add it in the bitmap manually.
2741          * Legacy 16byte descriptor is not supported.
2742          */
2743         rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2744
2745         for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2746                 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2747                 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2748                         & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2749                         rxdid->supported_rxdids |= BIT(i);
2750         }
2751
2752         pf->supported_rxdids = rxdid->supported_rxdids;
2753
2754 err:
2755         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2756                                     v_ret, (u8 *)rxdid, len);
2757         kfree(rxdid);
2758         return ret;
2759 }
2760
2761 /**
2762  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2763  * @vf: VF to enable/disable VLAN stripping for on initialization
2764  *
2765  * Set the default for VLAN stripping based on whether a port VLAN is configured
2766  * and the current VLAN mode of the device.
2767  */
2768 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2769 {
2770         struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2771
2772         vf->vlan_strip_ena = 0;
2773
2774         if (!vsi)
2775                 return -EINVAL;
2776
2777         /* don't modify stripping if port VLAN is configured in SVM since the
2778          * port VLAN is based on the inner/single VLAN in SVM
2779          */
2780         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2781                 return 0;
2782
2783         if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2784                 int err;
2785
2786                 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2787                 if (!err)
2788                         vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2789                 return err;
2790         }
2791
2792         return vsi->inner_vlan_ops.dis_stripping(vsi);
2793 }
2794
2795 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2796 {
2797         if (vf->trusted)
2798                 return VLAN_N_VID;
2799         else
2800                 return ICE_MAX_VLAN_PER_VF;
2801 }
2802
2803 /**
2804  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2805  * @vf: VF that being checked for
2806  *
2807  * When the device is in double VLAN mode, check whether or not the outer VLAN
2808  * is allowed.
2809  */
2810 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2811 {
2812         if (ice_vf_is_port_vlan_ena(vf))
2813                 return true;
2814
2815         return false;
2816 }
2817
2818 /**
2819  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2820  * @vf: VF that capabilities are being set for
2821  * @caps: VLAN capabilities to populate
2822  *
2823  * Determine VLAN capabilities support based on whether a port VLAN is
2824  * configured. If a port VLAN is configured then the VF should use the inner
2825  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2826  * capabilies.
2827  */
2828 static void
2829 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2830 {
2831         struct virtchnl_vlan_supported_caps *supported_caps;
2832
2833         if (ice_vf_outer_vlan_not_allowed(vf)) {
2834                 /* until support for inner VLAN filtering is added when a port
2835                  * VLAN is configured, only support software offloaded inner
2836                  * VLANs when a port VLAN is confgured in DVM
2837                  */
2838                 supported_caps = &caps->filtering.filtering_support;
2839                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2840
2841                 supported_caps = &caps->offloads.stripping_support;
2842                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2843                                         VIRTCHNL_VLAN_TOGGLE |
2844                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2845                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2846
2847                 supported_caps = &caps->offloads.insertion_support;
2848                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2849                                         VIRTCHNL_VLAN_TOGGLE |
2850                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2851                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2852
2853                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2854                 caps->offloads.ethertype_match =
2855                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2856         } else {
2857                 supported_caps = &caps->filtering.filtering_support;
2858                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2859                 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2860                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2861                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2862                                         VIRTCHNL_VLAN_ETHERTYPE_AND;
2863                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2864                                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2865                                                  VIRTCHNL_VLAN_ETHERTYPE_9100;
2866
2867                 supported_caps = &caps->offloads.stripping_support;
2868                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2869                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2871                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2872                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2873                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2874                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2875                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2876                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2877
2878                 supported_caps = &caps->offloads.insertion_support;
2879                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2880                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2881                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2882                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2883                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2884                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2885                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2886                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2887                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2888
2889                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2890
2891                 caps->offloads.ethertype_match =
2892                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2893         }
2894
2895         caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2896 }
2897
2898 /**
2899  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2900  * @vf: VF that capabilities are being set for
2901  * @caps: VLAN capabilities to populate
2902  *
2903  * Determine VLAN capabilities support based on whether a port VLAN is
2904  * configured. If a port VLAN is configured then the VF does not have any VLAN
2905  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2906  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2907  * VLAN fitlering and offload capabilities.
2908  */
2909 static void
2910 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2911 {
2912         struct virtchnl_vlan_supported_caps *supported_caps;
2913
2914         if (ice_vf_is_port_vlan_ena(vf)) {
2915                 supported_caps = &caps->filtering.filtering_support;
2916                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2917                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2918
2919                 supported_caps = &caps->offloads.stripping_support;
2920                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2921                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2922
2923                 supported_caps = &caps->offloads.insertion_support;
2924                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2925                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2926
2927                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2928                 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2929                 caps->filtering.max_filters = 0;
2930         } else {
2931                 supported_caps = &caps->filtering.filtering_support;
2932                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2933                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2934                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935
2936                 supported_caps = &caps->offloads.stripping_support;
2937                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2938                                         VIRTCHNL_VLAN_TOGGLE |
2939                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2940                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2941
2942                 supported_caps = &caps->offloads.insertion_support;
2943                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2944                                         VIRTCHNL_VLAN_TOGGLE |
2945                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2946                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2947
2948                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2949                 caps->offloads.ethertype_match =
2950                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2951                 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2952         }
2953 }
2954
2955 /**
2956  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2957  * @vf: VF to determine VLAN capabilities for
2958  *
2959  * This will only be called if the VF and PF successfully negotiated
2960  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2961  *
2962  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2963  * is configured or not.
2964  */
2965 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2966 {
2967         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2968         struct virtchnl_vlan_caps *caps = NULL;
2969         int err, len = 0;
2970
2971         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2972                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973                 goto out;
2974         }
2975
2976         caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2977         if (!caps) {
2978                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2979                 goto out;
2980         }
2981         len = sizeof(*caps);
2982
2983         if (ice_is_dvm_ena(&vf->pf->hw))
2984                 ice_vc_set_dvm_caps(vf, caps);
2985         else
2986                 ice_vc_set_svm_caps(vf, caps);
2987
2988         /* store negotiated caps to prevent invalid VF messages */
2989         memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2990
2991 out:
2992         err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2993                                     v_ret, (u8 *)caps, len);
2994         kfree(caps);
2995         return err;
2996 }
2997
2998 /**
2999  * ice_vc_validate_vlan_tpid - validate VLAN TPID
3000  * @filtering_caps: negotiated/supported VLAN filtering capabilities
3001  * @tpid: VLAN TPID used for validation
3002  *
3003  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3004  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3005  */
3006 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3007 {
3008         enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3009
3010         switch (tpid) {
3011         case ETH_P_8021Q:
3012                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3013                 break;
3014         case ETH_P_8021AD:
3015                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3016                 break;
3017         case ETH_P_QINQ1:
3018                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3019                 break;
3020         }
3021
3022         if (!(filtering_caps & vlan_ethertype))
3023                 return false;
3024
3025         return true;
3026 }
3027
3028 /**
3029  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3030  * @vc_vlan: virtchnl_vlan to validate
3031  *
3032  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3033  * false. Otherwise return true.
3034  */
3035 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3036 {
3037         if (!vc_vlan->tci || !vc_vlan->tpid)
3038                 return false;
3039
3040         return true;
3041 }
3042
3043 /**
3044  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3045  * @vfc: negotiated/supported VLAN filtering capabilities
3046  * @vfl: VLAN filter list from VF to validate
3047  *
3048  * Validate all of the filters in the VLAN filter list from the VF. If any of
3049  * the checks fail then return false. Otherwise return true.
3050  */
3051 static bool
3052 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3053                                  struct virtchnl_vlan_filter_list_v2 *vfl)
3054 {
3055         u16 i;
3056
3057         if (!vfl->num_elements)
3058                 return false;
3059
3060         for (i = 0; i < vfl->num_elements; i++) {
3061                 struct virtchnl_vlan_supported_caps *filtering_support =
3062                         &vfc->filtering_support;
3063                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3064                 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3065                 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3066
3067                 if ((ice_vc_is_valid_vlan(outer) &&
3068                      filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3069                     (ice_vc_is_valid_vlan(inner) &&
3070                      filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3071                         return false;
3072
3073                 if ((outer->tci_mask &&
3074                      !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3075                     (inner->tci_mask &&
3076                      !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3077                         return false;
3078
3079                 if (((outer->tci & VLAN_PRIO_MASK) &&
3080                      !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3081                     ((inner->tci & VLAN_PRIO_MASK) &&
3082                      !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3083                         return false;
3084
3085                 if ((ice_vc_is_valid_vlan(outer) &&
3086                      !ice_vc_validate_vlan_tpid(filtering_support->outer,
3087                                                 outer->tpid)) ||
3088                     (ice_vc_is_valid_vlan(inner) &&
3089                      !ice_vc_validate_vlan_tpid(filtering_support->inner,
3090                                                 inner->tpid)))
3091                         return false;
3092         }
3093
3094         return true;
3095 }
3096
3097 /**
3098  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3099  * @vc_vlan: struct virtchnl_vlan to transform
3100  */
3101 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3102 {
3103         struct ice_vlan vlan = { 0 };
3104
3105         vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3106         vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3107         vlan.tpid = vc_vlan->tpid;
3108
3109         return vlan;
3110 }
3111
3112 /**
3113  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3114  * @vsi: VF's VSI used to perform the action
3115  * @vlan_action: function to perform the action with (i.e. add/del)
3116  * @vlan: VLAN filter to perform the action with
3117  */
3118 static int
3119 ice_vc_vlan_action(struct ice_vsi *vsi,
3120                    int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3121                    struct ice_vlan *vlan)
3122 {
3123         int err;
3124
3125         err = vlan_action(vsi, vlan);
3126         if (err)
3127                 return err;
3128
3129         return 0;
3130 }
3131
3132 /**
3133  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3134  * @vf: VF used to delete the VLAN(s)
3135  * @vsi: VF's VSI used to delete the VLAN(s)
3136  * @vfl: virthchnl filter list used to delete the filters
3137  */
3138 static int
3139 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3140                  struct virtchnl_vlan_filter_list_v2 *vfl)
3141 {
3142         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3143         int err;
3144         u16 i;
3145
3146         for (i = 0; i < vfl->num_elements; i++) {
3147                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3148                 struct virtchnl_vlan *vc_vlan;
3149
3150                 vc_vlan = &vlan_fltr->outer;
3151                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3152                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3153
3154                         err = ice_vc_vlan_action(vsi,
3155                                                  vsi->outer_vlan_ops.del_vlan,
3156                                                  &vlan);
3157                         if (err)
3158                                 return err;
3159
3160                         if (vlan_promisc)
3161                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
3162
3163                         /* Disable VLAN filtering when only VLAN 0 is left */
3164                         if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3165                                 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3166                                 if (err)
3167                                         return err;
3168                         }
3169                 }
3170
3171                 vc_vlan = &vlan_fltr->inner;
3172                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3173                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3174
3175                         err = ice_vc_vlan_action(vsi,
3176                                                  vsi->inner_vlan_ops.del_vlan,
3177                                                  &vlan);
3178                         if (err)
3179                                 return err;
3180
3181                         /* no support for VLAN promiscuous on inner VLAN unless
3182                          * we are in Single VLAN Mode (SVM)
3183                          */
3184                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3185                                 if (vlan_promisc)
3186                                         ice_vf_dis_vlan_promisc(vsi, &vlan);
3187
3188                                 /* Disable VLAN filtering when only VLAN 0 is left */
3189                                 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3190                                         err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3191                                         if (err)
3192                                                 return err;
3193                                 }
3194                         }
3195                 }
3196         }
3197
3198         return 0;
3199 }
3200
3201 /**
3202  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3203  * @vf: VF the message was received from
3204  * @msg: message received from the VF
3205  */
3206 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3207 {
3208         struct virtchnl_vlan_filter_list_v2 *vfl =
3209                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3210         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3211         struct ice_vsi *vsi;
3212
3213         if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3214                                               vfl)) {
3215                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3216                 goto out;
3217         }
3218
3219         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3220                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3221                 goto out;
3222         }
3223
3224         vsi = ice_get_vf_vsi(vf);
3225         if (!vsi) {
3226                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3227                 goto out;
3228         }
3229
3230         if (ice_vc_del_vlans(vf, vsi, vfl))
3231                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3232
3233 out:
3234         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3235                                      0);
3236 }
3237
3238 /**
3239  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3240  * @vf: VF used to add the VLAN(s)
3241  * @vsi: VF's VSI used to add the VLAN(s)
3242  * @vfl: virthchnl filter list used to add the filters
3243  */
3244 static int
3245 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3246                  struct virtchnl_vlan_filter_list_v2 *vfl)
3247 {
3248         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3249         int err;
3250         u16 i;
3251
3252         for (i = 0; i < vfl->num_elements; i++) {
3253                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3254                 struct virtchnl_vlan *vc_vlan;
3255
3256                 vc_vlan = &vlan_fltr->outer;
3257                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3258                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3259
3260                         err = ice_vc_vlan_action(vsi,
3261                                                  vsi->outer_vlan_ops.add_vlan,
3262                                                  &vlan);
3263                         if (err)
3264                                 return err;
3265
3266                         if (vlan_promisc) {
3267                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3268                                 if (err)
3269                                         return err;
3270                         }
3271
3272                         /* Enable VLAN filtering on first non-zero VLAN */
3273                         if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3274                                 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3275                                 if (err)
3276                                         return err;
3277                         }
3278                 }
3279
3280                 vc_vlan = &vlan_fltr->inner;
3281                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3282                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3283
3284                         err = ice_vc_vlan_action(vsi,
3285                                                  vsi->inner_vlan_ops.add_vlan,
3286                                                  &vlan);
3287                         if (err)
3288                                 return err;
3289
3290                         /* no support for VLAN promiscuous on inner VLAN unless
3291                          * we are in Single VLAN Mode (SVM)
3292                          */
3293                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3294                                 if (vlan_promisc) {
3295                                         err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3296                                         if (err)
3297                                                 return err;
3298                                 }
3299
3300                                 /* Enable VLAN filtering on first non-zero VLAN */
3301                                 if (vf->spoofchk && vlan.vid) {
3302                                         err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3303                                         if (err)
3304                                                 return err;
3305                                 }
3306                         }
3307                 }
3308         }
3309
3310         return 0;
3311 }
3312
3313 /**
3314  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3315  * @vsi: VF VSI used to get number of existing VLAN filters
3316  * @vfc: negotiated/supported VLAN filtering capabilities
3317  * @vfl: VLAN filter list from VF to validate
3318  *
3319  * Validate all of the filters in the VLAN filter list from the VF during the
3320  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3321  * Otherwise return true.
3322  */
3323 static bool
3324 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3325                                      struct virtchnl_vlan_filtering_caps *vfc,
3326                                      struct virtchnl_vlan_filter_list_v2 *vfl)
3327 {
3328         u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3329                 vfl->num_elements;
3330
3331         if (num_requested_filters > vfc->max_filters)
3332                 return false;
3333
3334         return ice_vc_validate_vlan_filter_list(vfc, vfl);
3335 }
3336
3337 /**
3338  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3339  * @vf: VF the message was received from
3340  * @msg: message received from the VF
3341  */
3342 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3343 {
3344         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3345         struct virtchnl_vlan_filter_list_v2 *vfl =
3346                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3347         struct ice_vsi *vsi;
3348
3349         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3350                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3351                 goto out;
3352         }
3353
3354         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3355                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3356                 goto out;
3357         }
3358
3359         vsi = ice_get_vf_vsi(vf);
3360         if (!vsi) {
3361                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3362                 goto out;
3363         }
3364
3365         if (!ice_vc_validate_add_vlan_filter_list(vsi,
3366                                                   &vf->vlan_v2_caps.filtering,
3367                                                   vfl)) {
3368                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3369                 goto out;
3370         }
3371
3372         if (ice_vc_add_vlans(vf, vsi, vfl))
3373                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3374
3375 out:
3376         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3377                                      0);
3378 }
3379
3380 /**
3381  * ice_vc_valid_vlan_setting - validate VLAN setting
3382  * @negotiated_settings: negotiated VLAN settings during VF init
3383  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3384  */
3385 static bool
3386 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3387 {
3388         if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3389                 return false;
3390
3391         /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3392          * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3393          */
3394         if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3395             hweight32(ethertype_setting) > 1)
3396                 return false;
3397
3398         /* ability to modify the VLAN setting was not negotiated */
3399         if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3400                 return false;
3401
3402         return true;
3403 }
3404
3405 /**
3406  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3407  * @caps: negotiated VLAN settings during VF init
3408  * @msg: message to validate
3409  *
3410  * Used to validate any VLAN virtchnl message sent as a
3411  * virtchnl_vlan_setting structure. Validates the message against the
3412  * negotiated/supported caps during VF driver init.
3413  */
3414 static bool
3415 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3416                               struct virtchnl_vlan_setting *msg)
3417 {
3418         if ((!msg->outer_ethertype_setting &&
3419              !msg->inner_ethertype_setting) ||
3420             (!caps->outer && !caps->inner))
3421                 return false;
3422
3423         if (msg->outer_ethertype_setting &&
3424             !ice_vc_valid_vlan_setting(caps->outer,
3425                                        msg->outer_ethertype_setting))
3426                 return false;
3427
3428         if (msg->inner_ethertype_setting &&
3429             !ice_vc_valid_vlan_setting(caps->inner,
3430                                        msg->inner_ethertype_setting))
3431                 return false;
3432
3433         return true;
3434 }
3435
3436 /**
3437  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3438  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3439  * @tpid: VLAN TPID to populate
3440  */
3441 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3442 {
3443         switch (ethertype_setting) {
3444         case VIRTCHNL_VLAN_ETHERTYPE_8100:
3445                 *tpid = ETH_P_8021Q;
3446                 break;
3447         case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3448                 *tpid = ETH_P_8021AD;
3449                 break;
3450         case VIRTCHNL_VLAN_ETHERTYPE_9100:
3451                 *tpid = ETH_P_QINQ1;
3452                 break;
3453         default:
3454                 *tpid = 0;
3455                 return -EINVAL;
3456         }
3457
3458         return 0;
3459 }
3460
3461 /**
3462  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3463  * @vsi: VF's VSI used to enable the VLAN offload
3464  * @ena_offload: function used to enable the VLAN offload
3465  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3466  */
3467 static int
3468 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3469                         int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3470                         u32 ethertype_setting)
3471 {
3472         u16 tpid;
3473         int err;
3474
3475         err = ice_vc_get_tpid(ethertype_setting, &tpid);
3476         if (err)
3477                 return err;
3478
3479         err = ena_offload(vsi, tpid);
3480         if (err)
3481                 return err;
3482
3483         return 0;
3484 }
3485
3486 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX  3
3487 #define ICE_L2TSEL_BIT_OFFSET           23
3488 enum ice_l2tsel {
3489         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3490         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3491 };
3492
3493 /**
3494  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3495  * @vsi: VSI used to update l2tsel on
3496  * @l2tsel: l2tsel setting requested
3497  *
3498  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3499  * This will modify which descriptor field the first offloaded VLAN will be
3500  * stripped into.
3501  */
3502 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3503 {
3504         struct ice_hw *hw = &vsi->back->hw;
3505         u32 l2tsel_bit;
3506         int i;
3507
3508         if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3509                 l2tsel_bit = 0;
3510         else
3511                 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3512
3513         for (i = 0; i < vsi->alloc_rxq; i++) {
3514                 u16 pfq = vsi->rxq_map[i];
3515                 u32 qrx_context_offset;
3516                 u32 regval;
3517
3518                 qrx_context_offset =
3519                         QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3520
3521                 regval = rd32(hw, qrx_context_offset);
3522                 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3523                 regval |= l2tsel_bit;
3524                 wr32(hw, qrx_context_offset, regval);
3525         }
3526 }
3527
3528 /**
3529  * ice_vc_ena_vlan_stripping_v2_msg
3530  * @vf: VF the message was received from
3531  * @msg: message received from the VF
3532  *
3533  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3534  */
3535 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3536 {
3537         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3538         struct virtchnl_vlan_supported_caps *stripping_support;
3539         struct virtchnl_vlan_setting *strip_msg =
3540                 (struct virtchnl_vlan_setting *)msg;
3541         u32 ethertype_setting;
3542         struct ice_vsi *vsi;
3543
3544         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3545                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3546                 goto out;
3547         }
3548
3549         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3550                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3551                 goto out;
3552         }
3553
3554         vsi = ice_get_vf_vsi(vf);
3555         if (!vsi) {
3556                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3557                 goto out;
3558         }
3559
3560         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3561         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3562                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563                 goto out;
3564         }
3565
3566         if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3567                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3568                 goto out;
3569         }
3570
3571         ethertype_setting = strip_msg->outer_ethertype_setting;
3572         if (ethertype_setting) {
3573                 if (ice_vc_ena_vlan_offload(vsi,
3574                                             vsi->outer_vlan_ops.ena_stripping,
3575                                             ethertype_setting)) {
3576                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3577                         goto out;
3578                 } else {
3579                         enum ice_l2tsel l2tsel =
3580                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3581
3582                         /* PF tells the VF that the outer VLAN tag is always
3583                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3584                          * inner is always extracted to
3585                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3586                          * support outer stripping so the first tag always ends
3587                          * up in L2TAG2_2ND and the second/inner tag, if
3588                          * enabled, is extracted in L2TAG1.
3589                          */
3590                         ice_vsi_update_l2tsel(vsi, l2tsel);
3591
3592                         vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3593                 }
3594         }
3595
3596         ethertype_setting = strip_msg->inner_ethertype_setting;
3597         if (ethertype_setting &&
3598             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3599                                     ethertype_setting)) {
3600                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3601                 goto out;
3602         }
3603
3604         if (ethertype_setting)
3605                 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3606
3607 out:
3608         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3609                                      v_ret, NULL, 0);
3610 }
3611
3612 /**
3613  * ice_vc_dis_vlan_stripping_v2_msg
3614  * @vf: VF the message was received from
3615  * @msg: message received from the VF
3616  *
3617  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3618  */
3619 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3620 {
3621         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3622         struct virtchnl_vlan_supported_caps *stripping_support;
3623         struct virtchnl_vlan_setting *strip_msg =
3624                 (struct virtchnl_vlan_setting *)msg;
3625         u32 ethertype_setting;
3626         struct ice_vsi *vsi;
3627
3628         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3629                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3630                 goto out;
3631         }
3632
3633         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3634                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3635                 goto out;
3636         }
3637
3638         vsi = ice_get_vf_vsi(vf);
3639         if (!vsi) {
3640                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3641                 goto out;
3642         }
3643
3644         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3645         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3646                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3647                 goto out;
3648         }
3649
3650         ethertype_setting = strip_msg->outer_ethertype_setting;
3651         if (ethertype_setting) {
3652                 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3653                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3654                         goto out;
3655                 } else {
3656                         enum ice_l2tsel l2tsel =
3657                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3658
3659                         /* PF tells the VF that the outer VLAN tag is always
3660                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3661                          * inner is always extracted to
3662                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3663                          * support inner stripping while outer stripping is
3664                          * disabled so that the first and only tag is extracted
3665                          * in L2TAG1.
3666                          */
3667                         ice_vsi_update_l2tsel(vsi, l2tsel);
3668
3669                         vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3670                 }
3671         }
3672
3673         ethertype_setting = strip_msg->inner_ethertype_setting;
3674         if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3675                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3676                 goto out;
3677         }
3678
3679         if (ethertype_setting)
3680                 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3681
3682 out:
3683         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3684                                      v_ret, NULL, 0);
3685 }
3686
3687 /**
3688  * ice_vc_ena_vlan_insertion_v2_msg
3689  * @vf: VF the message was received from
3690  * @msg: message received from the VF
3691  *
3692  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3693  */
3694 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3695 {
3696         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3697         struct virtchnl_vlan_supported_caps *insertion_support;
3698         struct virtchnl_vlan_setting *insertion_msg =
3699                 (struct virtchnl_vlan_setting *)msg;
3700         u32 ethertype_setting;
3701         struct ice_vsi *vsi;
3702
3703         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3704                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3705                 goto out;
3706         }
3707
3708         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3709                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3710                 goto out;
3711         }
3712
3713         vsi = ice_get_vf_vsi(vf);
3714         if (!vsi) {
3715                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716                 goto out;
3717         }
3718
3719         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3720         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3721                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3722                 goto out;
3723         }
3724
3725         ethertype_setting = insertion_msg->outer_ethertype_setting;
3726         if (ethertype_setting &&
3727             ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3728                                     ethertype_setting)) {
3729                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3730                 goto out;
3731         }
3732
3733         ethertype_setting = insertion_msg->inner_ethertype_setting;
3734         if (ethertype_setting &&
3735             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3736                                     ethertype_setting)) {
3737                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3738                 goto out;
3739         }
3740
3741 out:
3742         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3743                                      v_ret, NULL, 0);
3744 }
3745
3746 /**
3747  * ice_vc_dis_vlan_insertion_v2_msg
3748  * @vf: VF the message was received from
3749  * @msg: message received from the VF
3750  *
3751  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3752  */
3753 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3754 {
3755         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3756         struct virtchnl_vlan_supported_caps *insertion_support;
3757         struct virtchnl_vlan_setting *insertion_msg =
3758                 (struct virtchnl_vlan_setting *)msg;
3759         u32 ethertype_setting;
3760         struct ice_vsi *vsi;
3761
3762         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3763                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3764                 goto out;
3765         }
3766
3767         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3768                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3769                 goto out;
3770         }
3771
3772         vsi = ice_get_vf_vsi(vf);
3773         if (!vsi) {
3774                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3775                 goto out;
3776         }
3777
3778         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3779         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3780                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3781                 goto out;
3782         }
3783
3784         ethertype_setting = insertion_msg->outer_ethertype_setting;
3785         if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3786                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3787                 goto out;
3788         }
3789
3790         ethertype_setting = insertion_msg->inner_ethertype_setting;
3791         if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3792                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3793                 goto out;
3794         }
3795
3796 out:
3797         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3798                                      v_ret, NULL, 0);
3799 }
3800
3801 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3802         .get_ver_msg = ice_vc_get_ver_msg,
3803         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3804         .reset_vf = ice_vc_reset_vf_msg,
3805         .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3806         .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3807         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3808         .ena_qs_msg = ice_vc_ena_qs_msg,
3809         .dis_qs_msg = ice_vc_dis_qs_msg,
3810         .request_qs_msg = ice_vc_request_qs_msg,
3811         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3812         .config_rss_key = ice_vc_config_rss_key,
3813         .config_rss_lut = ice_vc_config_rss_lut,
3814         .config_rss_hfunc = ice_vc_config_rss_hfunc,
3815         .get_stats_msg = ice_vc_get_stats_msg,
3816         .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3817         .add_vlan_msg = ice_vc_add_vlan_msg,
3818         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3819         .query_rxdid = ice_vc_query_rxdid,
3820         .get_rss_hena = ice_vc_get_rss_hena,
3821         .set_rss_hena_msg = ice_vc_set_rss_hena,
3822         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3823         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3824         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3825         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3826         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3827         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3828         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3829         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3830         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3831         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3832         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3833         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3834 };
3835
3836 /**
3837  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3838  * @vf: the VF to switch ops
3839  */
3840 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3841 {
3842         vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3843 }
3844
3845 /**
3846  * ice_vc_repr_add_mac
3847  * @vf: pointer to VF
3848  * @msg: virtchannel message
3849  *
3850  * When port representors are created, we do not add MAC rule
3851  * to firmware, we store it so that PF could report same
3852  * MAC as VF.
3853  */
3854 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3855 {
3856         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3857         struct virtchnl_ether_addr_list *al =
3858             (struct virtchnl_ether_addr_list *)msg;
3859         struct ice_vsi *vsi;
3860         struct ice_pf *pf;
3861         int i;
3862
3863         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3864             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3865                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3866                 goto handle_mac_exit;
3867         }
3868
3869         pf = vf->pf;
3870
3871         vsi = ice_get_vf_vsi(vf);
3872         if (!vsi) {
3873                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3874                 goto handle_mac_exit;
3875         }
3876
3877         for (i = 0; i < al->num_elements; i++) {
3878                 u8 *mac_addr = al->list[i].addr;
3879
3880                 if (!is_unicast_ether_addr(mac_addr) ||
3881                     ether_addr_equal(mac_addr, vf->hw_lan_addr))
3882                         continue;
3883
3884                 if (vf->pf_set_mac) {
3885                         dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3886                         v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3887                         goto handle_mac_exit;
3888                 }
3889
3890                 ice_vfhw_mac_add(vf, &al->list[i]);
3891                 vf->num_mac++;
3892                 break;
3893         }
3894
3895 handle_mac_exit:
3896         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3897                                      v_ret, NULL, 0);
3898 }
3899
3900 /**
3901  * ice_vc_repr_del_mac - response with success for deleting MAC
3902  * @vf: pointer to VF
3903  * @msg: virtchannel message
3904  *
3905  * Respond with success to not break normal VF flow.
3906  * For legacy VF driver try to update cached MAC address.
3907  */
3908 static int
3909 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3910 {
3911         struct virtchnl_ether_addr_list *al =
3912                 (struct virtchnl_ether_addr_list *)msg;
3913
3914         ice_update_legacy_cached_mac(vf, &al->list[0]);
3915
3916         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3917                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3918 }
3919
3920 static int
3921 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3922 {
3923         dev_dbg(ice_pf_to_dev(vf->pf),
3924                 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3925                 vf->vf_id);
3926         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3927                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3928                                      NULL, 0);
3929 }
3930
3931 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3932         .get_ver_msg = ice_vc_get_ver_msg,
3933         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3934         .reset_vf = ice_vc_reset_vf_msg,
3935         .add_mac_addr_msg = ice_vc_repr_add_mac,
3936         .del_mac_addr_msg = ice_vc_repr_del_mac,
3937         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3938         .ena_qs_msg = ice_vc_ena_qs_msg,
3939         .dis_qs_msg = ice_vc_dis_qs_msg,
3940         .request_qs_msg = ice_vc_request_qs_msg,
3941         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3942         .config_rss_key = ice_vc_config_rss_key,
3943         .config_rss_lut = ice_vc_config_rss_lut,
3944         .config_rss_hfunc = ice_vc_config_rss_hfunc,
3945         .get_stats_msg = ice_vc_get_stats_msg,
3946         .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3947         .add_vlan_msg = ice_vc_add_vlan_msg,
3948         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3949         .query_rxdid = ice_vc_query_rxdid,
3950         .get_rss_hena = ice_vc_get_rss_hena,
3951         .set_rss_hena_msg = ice_vc_set_rss_hena,
3952         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3953         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3954         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3955         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3956         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3957         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3958         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3959         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3960         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3961         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3962         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3963         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3964 };
3965
3966 /**
3967  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3968  * @vf: the VF to switch ops
3969  */
3970 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3971 {
3972         vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3973 }
3974
3975 /**
3976  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3977  * @vf: the VF to check
3978  * @mbxdata: data about the state of the mailbox
3979  *
3980  * Detect if a given VF might be malicious and attempting to overflow the PF
3981  * mailbox. If so, log a warning message and ignore this event.
3982  */
3983 static bool
3984 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3985 {
3986         bool report_malvf = false;
3987         struct device *dev;
3988         struct ice_pf *pf;
3989         int status;
3990
3991         pf = vf->pf;
3992         dev = ice_pf_to_dev(pf);
3993
3994         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3995                 return vf->mbx_info.malicious;
3996
3997         /* check to see if we have a newly malicious VF */
3998         status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3999                                           &report_malvf);
4000         if (status)
4001                 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4002                                      vf->vf_id, vf->dev_lan_addr, status);
4003
4004         if (report_malvf) {
4005                 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4006                 u8 zero_addr[ETH_ALEN] = {};
4007
4008                 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4009                          vf->dev_lan_addr,
4010                          pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4011         }
4012
4013         return vf->mbx_info.malicious;
4014 }
4015
4016 /**
4017  * ice_vc_process_vf_msg - Process request from VF
4018  * @pf: pointer to the PF structure
4019  * @event: pointer to the AQ event
4020  * @mbxdata: information used to detect VF attempting mailbox overflow
4021  *
4022  * called from the common asq/arq handler to
4023  * process request from VF
4024  */
4025 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4026                            struct ice_mbx_data *mbxdata)
4027 {
4028         u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4029         s16 vf_id = le16_to_cpu(event->desc.retval);
4030         const struct ice_virtchnl_ops *ops;
4031         u16 msglen = event->msg_len;
4032         u8 *msg = event->msg_buf;
4033         struct ice_vf *vf = NULL;
4034         struct device *dev;
4035         int err = 0;
4036
4037         dev = ice_pf_to_dev(pf);
4038
4039         vf = ice_get_vf_by_id(pf, vf_id);
4040         if (!vf) {
4041                 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4042                         vf_id, v_opcode, msglen);
4043                 return;
4044         }
4045
4046         mutex_lock(&vf->cfg_lock);
4047
4048         /* Check if the VF is trying to overflow the mailbox */
4049         if (ice_is_malicious_vf(vf, mbxdata))
4050                 goto finish;
4051
4052         /* Check if VF is disabled. */
4053         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4054                 err = -EPERM;
4055                 goto error_handler;
4056         }
4057
4058         ops = vf->virtchnl_ops;
4059
4060         /* Perform basic checks on the msg */
4061         err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4062         if (err) {
4063                 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4064                         err = -EPERM;
4065                 else
4066                         err = -EINVAL;
4067         }
4068
4069 error_handler:
4070         if (err) {
4071                 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4072                                       NULL, 0);
4073                 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4074                         vf_id, v_opcode, msglen, err);
4075                 goto finish;
4076         }
4077
4078         if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4079                 ice_vc_send_msg_to_vf(vf, v_opcode,
4080                                       VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4081                                       0);
4082                 goto finish;
4083         }
4084
4085         switch (v_opcode) {
4086         case VIRTCHNL_OP_VERSION:
4087                 err = ops->get_ver_msg(vf, msg);
4088                 break;
4089         case VIRTCHNL_OP_GET_VF_RESOURCES:
4090                 err = ops->get_vf_res_msg(vf, msg);
4091                 if (ice_vf_init_vlan_stripping(vf))
4092                         dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4093                                 vf->vf_id);
4094                 ice_vc_notify_vf_link_state(vf);
4095                 break;
4096         case VIRTCHNL_OP_RESET_VF:
4097                 ops->reset_vf(vf);
4098                 break;
4099         case VIRTCHNL_OP_ADD_ETH_ADDR:
4100                 err = ops->add_mac_addr_msg(vf, msg);
4101                 break;
4102         case VIRTCHNL_OP_DEL_ETH_ADDR:
4103                 err = ops->del_mac_addr_msg(vf, msg);
4104                 break;
4105         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4106                 err = ops->cfg_qs_msg(vf, msg);
4107                 break;
4108         case VIRTCHNL_OP_ENABLE_QUEUES:
4109                 err = ops->ena_qs_msg(vf, msg);
4110                 ice_vc_notify_vf_link_state(vf);
4111                 break;
4112         case VIRTCHNL_OP_DISABLE_QUEUES:
4113                 err = ops->dis_qs_msg(vf, msg);
4114                 break;
4115         case VIRTCHNL_OP_REQUEST_QUEUES:
4116                 err = ops->request_qs_msg(vf, msg);
4117                 break;
4118         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4119                 err = ops->cfg_irq_map_msg(vf, msg);
4120                 break;
4121         case VIRTCHNL_OP_CONFIG_RSS_KEY:
4122                 err = ops->config_rss_key(vf, msg);
4123                 break;
4124         case VIRTCHNL_OP_CONFIG_RSS_LUT:
4125                 err = ops->config_rss_lut(vf, msg);
4126                 break;
4127         case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4128                 err = ops->config_rss_hfunc(vf, msg);
4129                 break;
4130         case VIRTCHNL_OP_GET_STATS:
4131                 err = ops->get_stats_msg(vf, msg);
4132                 break;
4133         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4134                 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4135                 break;
4136         case VIRTCHNL_OP_ADD_VLAN:
4137                 err = ops->add_vlan_msg(vf, msg);
4138                 break;
4139         case VIRTCHNL_OP_DEL_VLAN:
4140                 err = ops->remove_vlan_msg(vf, msg);
4141                 break;
4142         case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4143                 err = ops->query_rxdid(vf);
4144                 break;
4145         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4146                 err = ops->get_rss_hena(vf);
4147                 break;
4148         case VIRTCHNL_OP_SET_RSS_HENA:
4149                 err = ops->set_rss_hena_msg(vf, msg);
4150                 break;
4151         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4152                 err = ops->ena_vlan_stripping(vf);
4153                 break;
4154         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4155                 err = ops->dis_vlan_stripping(vf);
4156                 break;
4157         case VIRTCHNL_OP_ADD_FDIR_FILTER:
4158                 err = ops->add_fdir_fltr_msg(vf, msg);
4159                 break;
4160         case VIRTCHNL_OP_DEL_FDIR_FILTER:
4161                 err = ops->del_fdir_fltr_msg(vf, msg);
4162                 break;
4163         case VIRTCHNL_OP_ADD_RSS_CFG:
4164                 err = ops->handle_rss_cfg_msg(vf, msg, true);
4165                 break;
4166         case VIRTCHNL_OP_DEL_RSS_CFG:
4167                 err = ops->handle_rss_cfg_msg(vf, msg, false);
4168                 break;
4169         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4170                 err = ops->get_offload_vlan_v2_caps(vf);
4171                 break;
4172         case VIRTCHNL_OP_ADD_VLAN_V2:
4173                 err = ops->add_vlan_v2_msg(vf, msg);
4174                 break;
4175         case VIRTCHNL_OP_DEL_VLAN_V2:
4176                 err = ops->remove_vlan_v2_msg(vf, msg);
4177                 break;
4178         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4179                 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4180                 break;
4181         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4182                 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4183                 break;
4184         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4185                 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4186                 break;
4187         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4188                 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4189                 break;
4190         case VIRTCHNL_OP_UNKNOWN:
4191         default:
4192                 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4193                         vf_id);
4194                 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4195                                             VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4196                                             NULL, 0);
4197                 break;
4198         }
4199         if (err) {
4200                 /* Helper function cares less about error return values here
4201                  * as it is busy with pending work.
4202                  */
4203                 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4204                          vf_id, v_opcode, err);
4205         }
4206
4207 finish:
4208         mutex_unlock(&vf->cfg_lock);
4209         ice_put_vf(vf);
4210 }
This page took 0.273955 seconds and 4 git commands to generate.