1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
180 struct ice_hw *hw = &pf->hw;
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
197 mutex_unlock(&pf->vfs.table_lock);
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
229 * send a link status message to a single VF
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
254 void ice_vc_notify_link_state(struct ice_pf *pf)
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
269 * indicate a pending reset to all VFs on a given PF
271 void ice_vc_notify_reset(struct ice_pf *pf)
273 struct virtchnl_pf_event pfe;
275 if (!ice_has_vfs(pf))
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
303 dev = ice_pf_to_dev(pf);
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
322 * called from the VF to request the API version used by the PF
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
354 max_frame_size = pi->phy.link_info.max_frame_size;
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
359 return max_frame_size;
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
415 * called from the VF to request its resources
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
433 vfres = kzalloc(len, GFP_KERNEL);
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
551 * check for the valid VSI ID
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
555 return vsi_id == ICE_VF_VSI_ID;
559 * ice_vc_isvalid_q_id
560 * @vsi: VSI to check queue ID against
561 * @qid: VSI relative queue ID
563 * check for the valid queue ID
565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
567 /* allocated Tx and Rx queues should be always equal for VF VSI */
568 return qid < vsi->alloc_txq;
572 * ice_vc_isvalid_ring_len
573 * @ring_len: length of ring
575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
578 static bool ice_vc_isvalid_ring_len(u16 ring_len)
580 return ring_len == 0 ||
581 (ring_len >= ICE_MIN_NUM_DESC &&
582 ring_len <= ICE_MAX_NUM_DESC &&
583 !(ring_len % ICE_REQ_DESC_MULTIPLE));
587 * ice_vc_validate_pattern
588 * @vf: pointer to the VF info
589 * @proto: virtchnl protocol headers
591 * validate the pattern is supported or not.
593 * Return: true on success, false on error.
596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
598 bool is_ipv4 = false;
599 bool is_ipv6 = false;
604 while (i < proto->count &&
605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 switch (proto->proto_hdr[i].type) {
607 case VIRTCHNL_PROTO_HDR_ETH:
608 ptype = ICE_PTYPE_MAC_PAY;
610 case VIRTCHNL_PROTO_HDR_IPV4:
611 ptype = ICE_PTYPE_IPV4_PAY;
614 case VIRTCHNL_PROTO_HDR_IPV6:
615 ptype = ICE_PTYPE_IPV6_PAY;
618 case VIRTCHNL_PROTO_HDR_UDP:
620 ptype = ICE_PTYPE_IPV4_UDP_PAY;
622 ptype = ICE_PTYPE_IPV6_UDP_PAY;
625 case VIRTCHNL_PROTO_HDR_TCP:
627 ptype = ICE_PTYPE_IPV4_TCP_PAY;
629 ptype = ICE_PTYPE_IPV6_TCP_PAY;
631 case VIRTCHNL_PROTO_HDR_SCTP:
633 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
635 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
637 case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 case VIRTCHNL_PROTO_HDR_GTPU_EH:
640 ptype = ICE_MAC_IPV4_GTPU;
642 ptype = ICE_MAC_IPV6_GTPU;
644 case VIRTCHNL_PROTO_HDR_L2TPV3:
646 ptype = ICE_MAC_IPV4_L2TPV3;
648 ptype = ICE_MAC_IPV6_L2TPV3;
650 case VIRTCHNL_PROTO_HDR_ESP:
652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
658 case VIRTCHNL_PROTO_HDR_AH:
660 ptype = ICE_MAC_IPV4_AH;
662 ptype = ICE_MAC_IPV6_AH;
664 case VIRTCHNL_PROTO_HDR_PFCP:
666 ptype = ICE_MAC_IPV4_PFCP_SESSION;
668 ptype = ICE_MAC_IPV6_PFCP_SESSION;
677 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
682 * a specific virtchnl RSS cfg
683 * @hw: pointer to the hardware
684 * @rss_cfg: pointer to the virtchnl RSS cfg
685 * @hash_cfg: pointer to the HW hash configuration
687 * Return true if all the protocol header and hash fields in the RSS cfg could
688 * be parsed, else return false
690 * This function parses the virtchnl RSS cfg to be the intended
691 * hash fields and the intended header for RSS configuration
693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 struct virtchnl_rss_cfg *rss_cfg,
695 struct ice_rss_hash_cfg *hash_cfg)
697 const struct ice_vc_hash_field_match_type *hf_list;
698 const struct ice_vc_hdr_match_type *hdr_list;
699 int i, hf_list_len, hdr_list_len;
700 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 u64 *hash_flds = &hash_cfg->hash_flds;
703 /* set outer layer RSS as default */
704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 hash_cfg->symm = true;
709 hash_cfg->symm = false;
711 hf_list = ice_vc_hash_field_list;
712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 hdr_list = ice_vc_hdr_list;
714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 struct virtchnl_proto_hdr *proto_hdr =
718 &rss_cfg->proto_hdrs.proto_hdr[i];
719 bool hdr_found = false;
722 /* Find matched ice headers according to virtchnl headers. */
723 for (j = 0; j < hdr_list_len; j++) {
724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
726 if (proto_hdr->type == hdr_map.vc_hdr) {
727 *addl_hdrs |= hdr_map.ice_hdr;
735 /* Find matched ice hash fields according to
736 * virtchnl hash fields.
738 for (j = 0; j < hf_list_len; j++) {
739 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
741 if (proto_hdr->type == hf_map.vc_hdr &&
742 proto_hdr->field_selector == hf_map.vc_hash_field) {
743 *hash_flds |= hf_map.ice_hash_field;
753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
755 * @caps: VF driver negotiated capabilities
757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
760 static bool ice_vf_adv_rss_offload_ena(u32 caps)
762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
766 * ice_vc_handle_rss_cfg
767 * @vf: pointer to the VF info
768 * @msg: pointer to the message buffer
769 * @add: add a RSS config if true, otherwise delete a RSS config
771 * This function adds/deletes a RSS config
773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 struct device *dev = ice_pf_to_dev(vf->pf);
779 struct ice_hw *hw = &vf->pf->hw;
782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
806 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
810 vsi = ice_get_vf_vsi(vf);
812 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 struct ice_vsi_ctx *ctx;
823 u8 lut_type, hash_type;
826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
836 ctx->info.q_opt_rss =
837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
840 /* Preserve existing queueing option setting */
841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
846 ctx->info.valid_sections =
847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 status, ice_aq_str(hw->adminq.sq_last_status));
853 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
860 struct ice_rss_hash_cfg cfg;
862 /* Only check for none raw pattern case */
863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 cfg.hash_flds = ICE_HASH_INVALID;
869 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
877 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 vsi->vsi_num, v_ret);
885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 /* We just ignore -ENOENT, because if two configurations
887 * share the same profile remove one of them actually
888 * removes both, since the profile is deleted.
890 if (status && status != -ENOENT) {
891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
903 * ice_vc_config_rss_key
904 * @vf: pointer to the VF info
905 * @msg: pointer to the msg buffer
907 * Configure the VF's RSS key
909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 struct virtchnl_rss_key *vrk =
913 (struct virtchnl_rss_key *)msg;
916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 vsi = ice_get_vf_vsi(vf);
938 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
942 if (ice_set_rss_key(vsi, vrk->key))
943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
950 * ice_vc_config_rss_lut
951 * @vf: pointer to the VF info
952 * @msg: pointer to the msg buffer
954 * Configure the VF's RSS LUT
956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
982 vsi = ice_get_vf_vsi(vf);
984 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
996 * ice_vc_config_rss_hfunc
997 * @vf: pointer to the VF info
998 * @msg: pointer to the msg buffer
1000 * Configure the VF's RSS Hash function
1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 struct ice_vsi *vsi;
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1024 vsi = ice_get_vf_vsi(vf);
1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1033 if (ice_set_rss_hfunc(vsi, hfunc))
1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1041 * ice_vc_get_qos_caps - Get current QoS caps from PF
1042 * @vf: pointer to the VF info
1044 * Get VF's QoS capabilities, such as TC number, arbiter and
1045 * bandwidth from PF.
1047 * Return: 0 on success or negative error value.
1049 static int ice_vc_get_qos_caps(struct ice_vf *vf)
1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052 struct virtchnl_qos_cap_list *cap_list = NULL;
1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054 struct virtchnl_qos_cap_elem *cfg = NULL;
1055 struct ice_vsi_ctx *vsi_ctx;
1056 struct ice_pf *pf = vf->pf;
1057 struct ice_port_info *pi;
1058 struct ice_vsi *vsi;
1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1068 vsi = ice_get_vf_vsi(vf);
1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1074 pi = pf->hw.port_info;
1075 numtc = vsi->tc_cfg.numtc;
1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1083 len = struct_size(cap_list, cap, numtc);
1084 cap_list = kzalloc(len, GFP_KERNEL);
1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1091 cap_list->vsi_id = vsi->vsi_num;
1092 cap_list->num_elem = numtc;
1094 /* Store the UP2TC configuration from DCB to a user priority bitmap
1095 * of each TC. Each element of prio_of_tc represents one TC. Each
1096 * bitmap indicates the user priorities belong to this TC.
1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100 tc_prio[tc] |= BIT(i);
1103 for (i = 0; i < numtc; i++) {
1104 cfg = &cap_list->cap[i];
1106 cfg->tc_prio = tc_prio[i];
1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109 cfg->type = VIRTCHNL_BW_SHAPER;
1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116 (u8 *)cap_list, len);
1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123 * @vf: pointer to the VF info
1124 * @num_queues: number of queues to be configured
1126 * Configure per queue bandwidth.
1128 * Return: 0 on success or negative error value.
1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1132 struct ice_hw *hw = &vf->pf->hw;
1133 struct ice_vsi *vsi;
1137 vsi = ice_get_vf_vsi(vf);
1141 for (i = 0; i < num_queues; i++) {
1142 u32 p_rate, min_rate;
1145 p_rate = vf->qs_bw[i].peak;
1146 min_rate = vf->qs_bw[i].committed;
1147 tc = vf->qs_bw[i].tc;
1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150 vf->qs_bw[i].queue_id,
1151 ICE_MAX_BW, p_rate);
1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154 vf->qs_bw[i].queue_id,
1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161 vf->qs_bw[i].queue_id,
1162 ICE_MIN_BW, min_rate);
1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165 vf->qs_bw[i].queue_id,
1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177 * @vf: pointer to the VF info
1178 * @quanta_prof_idx: pointer to the quanta profile index
1179 * @quanta_size: quanta size to be set
1181 * This function chooses available quanta profile and configures the register.
1182 * The quanta profile is evenly divided by the number of device ports, and then
1183 * available to the specific PF and VFs. The first profile for each PF is a
1184 * reserved default profile. Only quanta size of the rest unused profile can be
1187 * Return: 0 on success or negative error value.
1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190 u16 *quanta_prof_idx)
1192 const u16 n_desc = calc_quanta_desc(quanta_size);
1193 struct ice_hw *hw = &vf->pf->hw;
1194 const u16 n_cmd = 2 * n_desc;
1195 struct ice_pf *pf = vf->pf;
1196 u16 per_pf, begin_id;
1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1203 if (quanta_size == ICE_DFLT_QUANTA) {
1204 *quanta_prof_idx = begin_id;
1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207 hw->dev_caps.num_funcs;
1208 n_used = pf->num_quanta_prof_used;
1209 if (n_used < per_pf) {
1210 *quanta_prof_idx = begin_id + 1 + n_used;
1211 pf->num_quanta_prof_used++;
1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1226 * ice_vc_cfg_promiscuous_mode_msg
1227 * @vf: pointer to the VF info
1228 * @msg: pointer to the msg buffer
1230 * called from the VF to configure VF VSIs promiscuous mode
1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235 bool rm_promisc, alluni = false, allmulti = false;
1236 struct virtchnl_promisc_info *info =
1237 (struct virtchnl_promisc_info *)msg;
1238 struct ice_vsi_vlan_ops *vlan_ops;
1239 int mcast_err = 0, ucast_err = 0;
1240 struct ice_pf *pf = vf->pf;
1241 struct ice_vsi *vsi;
1242 u8 mcast_m, ucast_m;
1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256 vsi = ice_get_vf_vsi(vf);
1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 dev = ice_pf_to_dev(pf);
1263 if (!ice_is_vf_trusted(vf)) {
1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1266 /* Leave v_ret alone, lie to the VF on purpose. */
1270 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1276 rm_promisc = !allmulti && !alluni;
1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1280 ret = vlan_ops->ena_rx_filtering(vsi);
1282 ret = vlan_ops->dis_rx_filtering(vsi);
1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1293 /* in this case we're turning on promiscuous mode */
1294 ret = ice_set_dflt_vsi(vsi);
1296 /* in this case we're turning off promiscuous mode */
1297 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298 ret = ice_clear_dflt_vsi(vsi);
1301 /* in this case we're turning on/off only
1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1326 if (ucast_err || mcast_err)
1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1335 else if (!allmulti &&
1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342 vf->vf_id, mcast_err);
1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357 vf->vf_id, ucast_err);
1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1366 * ice_vc_get_stats_msg
1367 * @vf: pointer to the VF info
1368 * @msg: pointer to the msg buffer
1370 * called from the VF to get VSI stats
1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375 struct virtchnl_queue_select *vqs =
1376 (struct virtchnl_queue_select *)msg;
1377 struct ice_eth_stats stats = { 0 };
1378 struct ice_vsi *vsi;
1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1390 vsi = ice_get_vf_vsi(vf);
1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1396 ice_update_eth_stats(vsi);
1398 stats = vsi->eth_stats;
1401 /* send the response to the VF */
1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403 (u8 *)&stats, sizeof(stats));
1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1410 * Return true on successful validation, else false
1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1414 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424 * @vsi: VSI of the VF to configure
1425 * @q_idx: VF queue index used to determine the queue in the PF's space
1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1429 struct ice_hw *hw = &vsi->back->hw;
1430 u32 pfq = vsi->txq_map[q_idx];
1433 reg = rd32(hw, QINT_TQCTL(pfq));
1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1436 * this is most likely a poll mode VF driver, so don't enable an
1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447 * @vsi: VSI of the VF to configure
1448 * @q_idx: VF queue index used to determine the queue in the PF's space
1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1452 struct ice_hw *hw = &vsi->back->hw;
1453 u32 pfq = vsi->rxq_map[q_idx];
1456 reg = rd32(hw, QINT_RQCTL(pfq));
1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1459 * this is most likely a poll mode VF driver, so don't enable an
1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1470 * @vf: pointer to the VF info
1471 * @msg: pointer to the msg buffer
1473 * called from the VF to enable all or specific queue(s)
1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478 struct virtchnl_queue_select *vqs =
1479 (struct virtchnl_queue_select *)msg;
1480 struct ice_vsi *vsi;
1481 unsigned long q_map;
1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1499 vsi = ice_get_vf_vsi(vf);
1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1506 * Tx queue group list was configured and the context bits were
1507 * programmed using ice_vsi_cfg_txqs
1509 q_map = vqs->rx_queues;
1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1516 /* Skip queue if enabled */
1517 if (test_bit(vf_q_id, vf->rxq_ena))
1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522 vf_q_id, vsi->vsi_num);
1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528 set_bit(vf_q_id, vf->rxq_ena);
1531 q_map = vqs->tx_queues;
1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538 /* Skip queue if enabled */
1539 if (test_bit(vf_q_id, vf->txq_ena))
1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543 set_bit(vf_q_id, vf->txq_ena);
1546 /* Set flag to indicate that queues are enabled */
1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1551 /* send the response to the VF */
1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558 * @vf: VF to disable queue for
1559 * @vsi: VSI for the VF
1560 * @q_id: VF relative (0-based) queue ID
1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563 * disabled then clear q_id bit in the enabled queues bitmap and return
1564 * success. Otherwise return error.
1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1569 struct ice_txq_meta txq_meta = { 0 };
1570 struct ice_tx_ring *ring;
1573 if (!test_bit(q_id, vf->txq_ena))
1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575 q_id, vsi->vsi_num);
1577 ring = vsi->tx_rings[q_id];
1581 ice_fill_txq_meta(vsi, ring, &txq_meta);
1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586 q_id, vsi->vsi_num);
1590 /* Clear enabled queues flag */
1591 clear_bit(q_id, vf->txq_ena);
1598 * @vf: pointer to the VF info
1599 * @msg: pointer to the msg buffer
1601 * called from the VF to disable all or specific queue(s)
1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606 struct virtchnl_queue_select *vqs =
1607 (struct virtchnl_queue_select *)msg;
1608 struct ice_vsi *vsi;
1609 unsigned long q_map;
1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1628 vsi = ice_get_vf_vsi(vf);
1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1634 if (vqs->tx_queues) {
1635 q_map = vqs->tx_queues;
1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1650 q_map = vqs->rx_queues;
1651 /* speed up Rx queue disable by batching them if possible */
1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654 if (ice_vsi_stop_all_rx_rings(vsi)) {
1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1669 /* Skip queue if not enabled */
1670 if (!test_bit(vf_q_id, vf->rxq_ena))
1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676 vf_q_id, vsi->vsi_num);
1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1681 /* Clear enabled queues flag */
1682 clear_bit(vf_q_id, vf->rxq_ena);
1686 /* Clear enabled queues flag */
1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1691 /* send the response to the VF */
1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1698 * @vf: pointer to the VF info
1699 * @vsi: the VSI being configured
1700 * @map: vector map for mapping vectors to queues
1701 * @q_vector: structure for interrupt vector
1702 * configure the IRQ to queue map
1704 static enum virtchnl_status_code
1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706 struct virtchnl_vector_map *map,
1707 struct ice_q_vector *q_vector)
1709 u16 vsi_q_id, vsi_q_id_idx;
1712 q_vector->num_ring_rx = 0;
1713 q_vector->num_ring_tx = 0;
1715 qmap = map->rxq_map;
1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717 vsi_q_id = vsi_q_id_idx;
1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720 return VIRTCHNL_STATUS_ERR_PARAM;
1722 q_vector->num_ring_rx++;
1723 q_vector->rx.itr_idx = map->rxitr_idx;
1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726 q_vector->vf_reg_idx,
1727 q_vector->rx.itr_idx);
1730 qmap = map->txq_map;
1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732 vsi_q_id = vsi_q_id_idx;
1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735 return VIRTCHNL_STATUS_ERR_PARAM;
1737 q_vector->num_ring_tx++;
1738 q_vector->tx.itr_idx = map->txitr_idx;
1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741 q_vector->vf_reg_idx,
1742 q_vector->tx.itr_idx);
1745 return VIRTCHNL_STATUS_SUCCESS;
1749 * ice_vc_cfg_irq_map_msg
1750 * @vf: pointer to the VF info
1751 * @msg: pointer to the msg buffer
1753 * called from the VF to configure the IRQ to queue map
1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758 u16 num_q_vectors_mapped, vsi_id, vector_id;
1759 struct virtchnl_irq_map_info *irqmap_info;
1760 struct virtchnl_vector_map *map;
1761 struct ice_vsi *vsi;
1764 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765 num_q_vectors_mapped = irqmap_info->num_vectors;
1767 /* Check to make sure number of VF vectors mapped is not greater than
1768 * number of VF vectors originally allocated, and check that
1769 * there is actually at least a single VF queue vector mapped
1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772 vf->num_msix < num_q_vectors_mapped ||
1773 !num_q_vectors_mapped) {
1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1778 vsi = ice_get_vf_vsi(vf);
1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1784 for (i = 0; i < num_q_vectors_mapped; i++) {
1785 struct ice_q_vector *q_vector;
1787 map = &irqmap_info->vecmap[i];
1789 vector_id = map->vector_id;
1790 vsi_id = map->vsi_id;
1791 /* vector_id is always 0-based for each VF, and can never be
1792 * larger than or equal to the max allowed interrupts per VF
1794 if (!(vector_id < vf->num_msix) ||
1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796 (!vector_id && (map->rxq_map || map->txq_map))) {
1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1801 /* No need to map VF miscellaneous or rogue vector */
1805 /* Subtract non queue vector from vector_id passed by VF
1806 * to get actual number of VSI queue vector array index
1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1814 /* lookout for the invalid queue index */
1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1821 /* send the response to the VF */
1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828 * @vf: pointer to the VF info
1829 * @msg: pointer to the msg buffer which holds the command descriptor
1831 * Configure VF queues bandwidth.
1833 * Return: 0 on success or negative error value.
1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838 struct virtchnl_queues_bw_cfg *qbw =
1839 (struct virtchnl_queues_bw_cfg *)msg;
1840 struct ice_vsi *vsi;
1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1849 vsi = ice_get_vf_vsi(vf);
1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1863 for (i = 0; i < qbw->num_queues; i++) {
1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate)
1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867 qbw->cfg[i].queue_id, vf->vf_id,
1869 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1870 qbw->cfg[i].shaper.committed < vf->min_tx_rate)
1871 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1872 qbw->cfg[i].queue_id, vf->vf_id,
1876 for (i = 0; i < qbw->num_queues; i++) {
1877 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1878 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1879 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1880 vf->qs_bw[i].tc = qbw->cfg[i].tc;
1883 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1887 /* send the response to the VF */
1888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1893 * ice_vc_cfg_q_quanta - Configure per queue quanta
1894 * @vf: pointer to the VF info
1895 * @msg: pointer to the msg buffer which holds the command descriptor
1897 * Configure VF queues quanta.
1899 * Return: 0 on success or negative error value.
1901 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1903 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1904 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i;
1905 struct virtchnl_quanta_cfg *qquanta =
1906 (struct virtchnl_quanta_cfg *)msg;
1907 struct ice_vsi *vsi;
1910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1911 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1915 vsi = ice_get_vf_vsi(vf);
1917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1921 end_qid = qquanta->queue_select.start_queue_id +
1922 qquanta->queue_select.num_queues;
1923 if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1924 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1925 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1926 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1931 quanta_size = qquanta->quanta_size;
1932 if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1933 quanta_size < ICE_MIN_QUANTA_SIZE) {
1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1938 if (quanta_size % 64) {
1939 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1944 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1947 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1951 start_qid = qquanta->queue_select.start_queue_id;
1952 for (i = start_qid; i < end_qid; i++)
1953 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1956 /* send the response to the VF */
1957 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1963 * @vf: pointer to the VF info
1964 * @msg: pointer to the msg buffer
1966 * called from the VF to configure the Rx/Tx queues
1968 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1970 struct virtchnl_vsi_queue_config_info *qci =
1971 (struct virtchnl_vsi_queue_config_info *)msg;
1972 struct virtchnl_queue_pair_info *qpi;
1973 struct ice_pf *pf = vf->pf;
1974 struct ice_lag *lag;
1975 struct ice_vsi *vsi;
1976 u8 act_prt, pri_prt;
1980 mutex_lock(&pf->lag_mutex);
1981 act_prt = ICE_LAG_INVALID_PORT;
1982 pri_prt = pf->hw.port_info->lport;
1983 if (lag && lag->bonded && lag->primary) {
1984 act_prt = lag->active_port;
1985 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1987 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1989 act_prt = ICE_LAG_INVALID_PORT;
1992 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1995 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1998 vsi = ice_get_vf_vsi(vf);
2002 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2003 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2004 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2005 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2009 for (i = 0; i < qci->num_queue_pairs; i++) {
2010 if (!qci->qpair[i].rxq.crc_disable)
2013 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2018 for (i = 0; i < qci->num_queue_pairs; i++) {
2019 qpi = &qci->qpair[i];
2020 if (qpi->txq.vsi_id != qci->vsi_id ||
2021 qpi->rxq.vsi_id != qci->vsi_id ||
2022 qpi->rxq.queue_id != qpi->txq.queue_id ||
2023 qpi->txq.headwb_enabled ||
2024 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2025 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2026 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2030 q_idx = qpi->rxq.queue_id;
2032 /* make sure selected "q_idx" is in valid range of queues
2033 * for selected "vsi"
2035 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2039 /* copy Tx queue info from VF into VSI */
2040 if (qpi->txq.ring_len > 0) {
2041 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2042 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2044 /* Disable any existing queue first */
2045 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2048 /* Configure a queue with the requested settings */
2049 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2050 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2056 /* copy Rx queue info from VF into VSI */
2057 if (qpi->rxq.ring_len > 0) {
2058 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2059 struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2062 ring->dma = qpi->rxq.dma_ring_addr;
2063 ring->count = qpi->rxq.ring_len;
2065 if (qpi->rxq.crc_disable)
2066 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2068 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2070 if (qpi->rxq.databuffer_size != 0 &&
2071 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2072 qpi->rxq.databuffer_size < 1024))
2074 ring->rx_buf_len = qpi->rxq.databuffer_size;
2075 if (qpi->rxq.max_pkt_size > max_frame_size ||
2076 qpi->rxq.max_pkt_size < 64)
2079 ring->max_frame = qpi->rxq.max_pkt_size;
2080 /* add space for the port VLAN since the VF driver is
2081 * not expected to account for it in the MTU
2084 if (ice_vf_is_port_vlan_ena(vf))
2085 ring->max_frame += VLAN_HLEN;
2087 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2088 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2093 /* If Rx flex desc is supported, select RXDID for Rx
2094 * queues. Otherwise, use legacy 32byte descriptor
2095 * format. Legacy 16byte descriptor is not supported.
2096 * If this RXDID is selected, return error.
2098 if (vf->driver_caps &
2099 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2100 rxdid = qpi->rxq.rxdid;
2101 if (!(BIT(rxdid) & pf->supported_rxdids))
2104 rxdid = ICE_RXDID_LEGACY_1;
2107 ice_write_qrxflxp_cntxt(&vsi->back->hw,
2108 vsi->rxq_map[q_idx],
2109 rxdid, 0x03, false);
2113 if (lag && lag->bonded && lag->primary &&
2114 act_prt != ICE_LAG_INVALID_PORT)
2115 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2116 mutex_unlock(&pf->lag_mutex);
2118 /* send the response to the VF */
2119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2120 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2122 /* disable whatever we can */
2123 for (; i >= 0; i--) {
2124 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2125 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2127 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2128 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2132 if (lag && lag->bonded && lag->primary &&
2133 act_prt != ICE_LAG_INVALID_PORT)
2134 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2135 mutex_unlock(&pf->lag_mutex);
2137 ice_lag_move_new_vf_nodes(vf);
2139 /* send the response to the VF */
2140 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2141 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2145 * ice_can_vf_change_mac
2146 * @vf: pointer to the VF info
2148 * Return true if the VF is allowed to change its MAC filters, false otherwise
2150 static bool ice_can_vf_change_mac(struct ice_vf *vf)
2152 /* If the VF MAC address has been set administratively (via the
2153 * ndo_set_vf_mac command), then deny permission to the VF to
2154 * add/delete unicast MAC addresses, unless the VF is trusted
2156 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2164 * @vc_ether_addr: used to extract the type
2167 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2169 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2177 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2179 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2181 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2188 * This function should only be called when the MAC address in
2189 * virtchnl_ether_addr is a valid unicast MAC
2192 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2194 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2196 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2205 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2207 u8 *mac_addr = vc_ether_addr->addr;
2209 if (!is_valid_ether_addr(mac_addr))
2212 /* only allow legacy VF drivers to set the device and hardware MAC if it
2213 * is zero and allow new VF drivers to set the hardware MAC if the type
2214 * was correctly specified over VIRTCHNL
2216 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2217 is_zero_ether_addr(vf->hw_lan_addr)) ||
2218 ice_is_vc_addr_primary(vc_ether_addr)) {
2219 ether_addr_copy(vf->dev_lan_addr, mac_addr);
2220 ether_addr_copy(vf->hw_lan_addr, mac_addr);
2223 /* hardware and device MACs are already set, but its possible that the
2224 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2225 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2226 * away for the legacy VF driver case as it will be updated in the
2227 * delete flow for this case
2229 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2230 ether_addr_copy(vf->legacy_last_added_umac.addr,
2232 vf->legacy_last_added_umac.time_modified = jiffies;
2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2238 * @vf: pointer to the VF info
2239 * @vsi: pointer to the VF's VSI
2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2243 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2244 struct virtchnl_ether_addr *vc_ether_addr)
2246 struct device *dev = ice_pf_to_dev(vf->pf);
2247 u8 *mac_addr = vc_ether_addr->addr;
2250 /* device MAC already added */
2251 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2254 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2255 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2259 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2260 if (ret == -EEXIST) {
2261 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2263 /* don't return since we might need to update
2264 * the primary MAC in ice_vfhw_mac_add() below
2267 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2268 mac_addr, vf->vf_id, ret);
2274 ice_vfhw_mac_add(vf, vc_ether_addr);
2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2281 * @last_added_umac: structure used to check expiration
2283 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2285 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
2286 return time_is_before_jiffies(last_added_umac->time_modified +
2287 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2295 * only update cached hardware MAC for legacy VF drivers on delete
2296 * because we cannot guarantee order/type of MAC from the VF driver
2299 ice_update_legacy_cached_mac(struct ice_vf *vf,
2300 struct virtchnl_ether_addr *vc_ether_addr)
2302 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2303 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2306 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2307 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2316 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2318 u8 *mac_addr = vc_ether_addr->addr;
2320 if (!is_valid_ether_addr(mac_addr) ||
2321 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2324 /* allow the device MAC to be repopulated in the add flow and don't
2325 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2326 * to be persistent on VM reboot and across driver unload/load, which
2327 * won't work if we clear the hardware MAC here
2329 eth_zero_addr(vf->dev_lan_addr);
2331 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2336 * @vf: pointer to the VF info
2337 * @vsi: pointer to the VF's VSI
2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2341 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2342 struct virtchnl_ether_addr *vc_ether_addr)
2344 struct device *dev = ice_pf_to_dev(vf->pf);
2345 u8 *mac_addr = vc_ether_addr->addr;
2348 if (!ice_can_vf_change_mac(vf) &&
2349 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2352 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2353 if (status == -ENOENT) {
2354 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2357 } else if (status) {
2358 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2359 mac_addr, vf->vf_id, status);
2363 ice_vfhw_mac_del(vf, vc_ether_addr);
2371 * ice_vc_handle_mac_addr_msg
2372 * @vf: pointer to the VF info
2373 * @msg: pointer to the msg buffer
2374 * @set: true if MAC filters are being set, false otherwise
2376 * add guest MAC address filter
2379 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2381 int (*ice_vc_cfg_mac)
2382 (struct ice_vf *vf, struct ice_vsi *vsi,
2383 struct virtchnl_ether_addr *virtchnl_ether_addr);
2384 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2385 struct virtchnl_ether_addr_list *al =
2386 (struct virtchnl_ether_addr_list *)msg;
2387 struct ice_pf *pf = vf->pf;
2388 enum virtchnl_ops vc_op;
2389 struct ice_vsi *vsi;
2393 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2394 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2396 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2397 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2401 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403 goto handle_mac_exit;
2406 /* If this VF is not privileged, then we can't add more than a
2407 * limited number of addresses. Check to make sure that the
2408 * additions do not push us over the limit.
2410 if (set && !ice_is_vf_trusted(vf) &&
2411 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2412 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415 goto handle_mac_exit;
2418 vsi = ice_get_vf_vsi(vf);
2420 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 goto handle_mac_exit;
2424 for (i = 0; i < al->num_elements; i++) {
2425 u8 *mac_addr = al->list[i].addr;
2428 if (is_broadcast_ether_addr(mac_addr) ||
2429 is_zero_ether_addr(mac_addr))
2432 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2433 if (result == -EEXIST || result == -ENOENT) {
2435 } else if (result) {
2436 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2437 goto handle_mac_exit;
2442 /* send the response to the VF */
2443 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2447 * ice_vc_add_mac_addr_msg
2448 * @vf: pointer to the VF info
2449 * @msg: pointer to the msg buffer
2451 * add guest MAC address filter
2453 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2455 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2459 * ice_vc_del_mac_addr_msg
2460 * @vf: pointer to the VF info
2461 * @msg: pointer to the msg buffer
2463 * remove guest MAC address filter
2465 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2467 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2471 * ice_vc_request_qs_msg
2472 * @vf: pointer to the VF info
2473 * @msg: pointer to the msg buffer
2475 * VFs get a default number of queues but can use this message to request a
2476 * different number. If the request is successful, PF will reset the VF and
2477 * return 0. If unsuccessful, PF will send message informing VF of number of
2478 * available queue pairs via virtchnl message response to VF.
2480 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2482 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2483 struct virtchnl_vf_res_request *vfres =
2484 (struct virtchnl_vf_res_request *)msg;
2485 u16 req_queues = vfres->num_queue_pairs;
2486 struct ice_pf *pf = vf->pf;
2487 u16 max_allowed_vf_queues;
2488 u16 tx_rx_queue_left;
2492 dev = ice_pf_to_dev(pf);
2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2498 cur_queues = vf->num_vf_qs;
2499 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2500 ice_get_avail_rxq_count(pf));
2501 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2503 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2505 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2506 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2507 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2508 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2509 } else if (req_queues > cur_queues &&
2510 req_queues - cur_queues > tx_rx_queue_left) {
2511 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2512 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2513 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2514 ICE_MAX_RSS_QS_PER_VF);
2516 /* request is successful, then reset VF */
2517 vf->num_req_qs = req_queues;
2518 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2519 dev_info(dev, "VF %d granted request of %u queues.\n",
2520 vf->vf_id, req_queues);
2525 /* send the response to the VF */
2526 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2527 v_ret, (u8 *)vfres, sizeof(*vfres));
2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2532 * @caps: VF driver negotiated capabilities
2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2536 static bool ice_vf_vlan_offload_ena(u32 caps)
2538 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2543 * @vf: VF used to determine if VLAN promiscuous config is allowed
2545 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2547 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2548 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2549 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2557 * @vf: VF to enable VLAN promisc on
2558 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2559 * @vlan: VLAN used to enable VLAN promiscuous
2561 * This function should only be called if VLAN promiscuous mode is allowed,
2562 * which can be determined via ice_is_vlan_promisc_allowed().
2564 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2565 struct ice_vlan *vlan)
2570 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2571 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2572 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2573 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2578 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2580 if (status && status != -EEXIST)
2587 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2588 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2589 * @vlan: VLAN used to disable VLAN promiscuous
2591 * This function should only be called if VLAN promiscuous mode is allowed,
2592 * which can be determined via ice_is_vlan_promisc_allowed().
2594 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2596 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2599 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2601 if (status && status != -ENOENT)
2608 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2609 * @vf: VF to check against
2612 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2613 * wants to, so return false.
2615 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2616 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2618 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2620 if (ice_is_vf_trusted(vf))
2623 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2624 return ((ice_vsi_num_non_zero_vlans(vsi) +
2625 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2629 * ice_vc_process_vlan_msg
2630 * @vf: pointer to the VF info
2631 * @msg: pointer to the msg buffer
2632 * @add_v: Add VLAN if true, otherwise delete VLAN
2634 * Process virtchnl op to add or remove programmed guest VLAN ID
2636 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2639 struct virtchnl_vlan_filter_list *vfl =
2640 (struct virtchnl_vlan_filter_list *)msg;
2641 struct ice_pf *pf = vf->pf;
2642 bool vlan_promisc = false;
2643 struct ice_vsi *vsi;
2648 dev = ice_pf_to_dev(pf);
2649 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2650 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2654 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2659 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2660 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2664 for (i = 0; i < vfl->num_elements; i++) {
2665 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2666 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2667 dev_err(dev, "invalid VF VLAN id %d\n",
2673 vsi = ice_get_vf_vsi(vf);
2675 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2679 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2680 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2682 /* There is no need to let VF know about being not trusted,
2683 * so we can just return success message here
2688 /* in DVM a VF can add/delete inner VLAN filters when
2689 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2691 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2696 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2697 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2698 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2700 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2701 !ice_is_dvm_ena(&pf->hw) &&
2702 !ice_vf_is_port_vlan_ena(vf);
2705 for (i = 0; i < vfl->num_elements; i++) {
2706 u16 vid = vfl->vlan_id[i];
2707 struct ice_vlan vlan;
2709 if (ice_vf_has_max_vlans(vf, vsi)) {
2710 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2712 /* There is no need to let VF know about being
2713 * not trusted, so we can just return success
2714 * message here as well.
2719 /* we add VLAN 0 by default for each VF so we can enable
2720 * Tx VLAN anti-spoof without triggering MDD events so
2721 * we don't need to add it again here
2726 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2727 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2729 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2733 /* Enable VLAN filtering on first non-zero VLAN */
2734 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2736 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2739 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2744 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2745 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2746 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2750 } else if (vlan_promisc) {
2751 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2753 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2754 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2760 /* In case of non_trusted VF, number of VLAN elements passed
2761 * to PF for removal might be greater than number of VLANs
2762 * filter programmed for that VF - So, use actual number of
2763 * VLANS added earlier with add VLAN opcode. In order to avoid
2764 * removing VLAN that doesn't exist, which result to sending
2765 * erroneous failed message back to the VF
2769 num_vf_vlan = vsi->num_vlan;
2770 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2771 u16 vid = vfl->vlan_id[i];
2772 struct ice_vlan vlan;
2774 /* we add VLAN 0 by default for each VF so we can enable
2775 * Tx VLAN anti-spoof without triggering MDD events so
2776 * we don't want a VIRTCHNL request to remove it
2781 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2782 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2784 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2788 /* Disable VLAN filtering when only VLAN 0 is left */
2789 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2790 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2791 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2795 ice_vf_dis_vlan_promisc(vsi, &vlan);
2800 /* send the response to the VF */
2802 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2805 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2810 * ice_vc_add_vlan_msg
2811 * @vf: pointer to the VF info
2812 * @msg: pointer to the msg buffer
2814 * Add and program guest VLAN ID
2816 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2818 return ice_vc_process_vlan_msg(vf, msg, true);
2822 * ice_vc_remove_vlan_msg
2823 * @vf: pointer to the VF info
2824 * @msg: pointer to the msg buffer
2826 * remove programmed guest VLAN ID
2828 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2830 return ice_vc_process_vlan_msg(vf, msg, false);
2834 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2835 * @vsi: pointer to the VF VSI info
2837 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2841 ice_for_each_alloc_rxq(vsi, i)
2842 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2849 * ice_vc_ena_vlan_stripping
2850 * @vf: pointer to the VF info
2852 * Enable VLAN header stripping for a given VF
2854 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2857 struct ice_vsi *vsi;
2859 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2860 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2864 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2869 vsi = ice_get_vf_vsi(vf);
2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2875 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2876 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2878 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2881 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2886 * ice_vc_dis_vlan_stripping
2887 * @vf: pointer to the VF info
2889 * Disable VLAN header stripping for a given VF
2891 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2893 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2894 struct ice_vsi *vsi;
2896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2897 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2901 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2902 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2906 vsi = ice_get_vf_vsi(vf);
2908 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2912 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2913 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2915 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2918 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2923 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2924 * @vf: pointer to the VF info
2926 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2928 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2929 struct virtchnl_rss_hena *vrh = NULL;
2932 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2933 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2937 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2938 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2939 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2943 len = sizeof(struct virtchnl_rss_hena);
2944 vrh = kzalloc(len, GFP_KERNEL);
2946 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2951 vrh->hena = ICE_DEFAULT_RSS_HENA;
2953 /* send the response back to the VF */
2954 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2961 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2962 * @vf: pointer to the VF info
2963 * @msg: pointer to the msg buffer
2965 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2967 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2968 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2969 struct ice_pf *pf = vf->pf;
2970 struct ice_vsi *vsi;
2974 dev = ice_pf_to_dev(pf);
2976 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2981 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2982 dev_err(dev, "RSS not supported by PF\n");
2983 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2987 vsi = ice_get_vf_vsi(vf);
2989 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2993 /* clear all previously programmed RSS configuration to allow VF drivers
2994 * the ability to customize the RSS configuration and/or completely
2997 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2998 if (status && !vrh->hena) {
2999 /* only report failure to clear the current RSS configuration if
3000 * that was clearly the VF's intention (i.e. vrh->hena = 0)
3002 v_ret = ice_err_to_virt_err(status);
3004 } else if (status) {
3005 /* allow the VF to update the RSS configuration even on failure
3006 * to clear the current RSS confguration in an attempt to keep
3007 * RSS in a working state
3009 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3014 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3015 v_ret = ice_err_to_virt_err(status);
3018 /* send the response to the VF */
3020 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3025 * ice_vc_query_rxdid - query RXDID supported by DDP package
3026 * @vf: pointer to VF info
3028 * Called from VF to query a bitmap of supported flexible
3029 * descriptor RXDIDs of a DDP package.
3031 static int ice_vc_query_rxdid(struct ice_vf *vf)
3033 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3034 struct virtchnl_supported_rxdids rxdid = {};
3035 struct ice_pf *pf = vf->pf;
3037 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3038 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3042 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3043 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3047 rxdid.supported_rxdids = pf->supported_rxdids;
3050 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3051 v_ret, (u8 *)&rxdid, sizeof(rxdid));
3055 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3056 * @vf: VF to enable/disable VLAN stripping for on initialization
3058 * Set the default for VLAN stripping based on whether a port VLAN is configured
3059 * and the current VLAN mode of the device.
3061 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3063 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3065 vf->vlan_strip_ena = 0;
3070 /* don't modify stripping if port VLAN is configured in SVM since the
3071 * port VLAN is based on the inner/single VLAN in SVM
3073 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3076 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3079 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3081 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3085 return vsi->inner_vlan_ops.dis_stripping(vsi);
3088 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3093 return ICE_MAX_VLAN_PER_VF;
3097 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3098 * @vf: VF that being checked for
3100 * When the device is in double VLAN mode, check whether or not the outer VLAN
3103 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3105 if (ice_vf_is_port_vlan_ena(vf))
3112 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3113 * @vf: VF that capabilities are being set for
3114 * @caps: VLAN capabilities to populate
3116 * Determine VLAN capabilities support based on whether a port VLAN is
3117 * configured. If a port VLAN is configured then the VF should use the inner
3118 * filtering/offload capabilities since the port VLAN is using the outer VLAN
3122 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3124 struct virtchnl_vlan_supported_caps *supported_caps;
3126 if (ice_vf_outer_vlan_not_allowed(vf)) {
3127 /* until support for inner VLAN filtering is added when a port
3128 * VLAN is configured, only support software offloaded inner
3129 * VLANs when a port VLAN is confgured in DVM
3131 supported_caps = &caps->filtering.filtering_support;
3132 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3134 supported_caps = &caps->offloads.stripping_support;
3135 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3136 VIRTCHNL_VLAN_TOGGLE |
3137 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3138 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3140 supported_caps = &caps->offloads.insertion_support;
3141 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3142 VIRTCHNL_VLAN_TOGGLE |
3143 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3144 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3146 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3147 caps->offloads.ethertype_match =
3148 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3150 supported_caps = &caps->filtering.filtering_support;
3151 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3152 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3153 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3154 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3155 VIRTCHNL_VLAN_ETHERTYPE_AND;
3156 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3157 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3158 VIRTCHNL_VLAN_ETHERTYPE_9100;
3160 supported_caps = &caps->offloads.stripping_support;
3161 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3162 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3163 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3164 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3165 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3166 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3167 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3168 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3169 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3171 supported_caps = &caps->offloads.insertion_support;
3172 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3173 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3174 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3175 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3176 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3177 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3178 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3179 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3180 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3182 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3184 caps->offloads.ethertype_match =
3185 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3188 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3192 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3193 * @vf: VF that capabilities are being set for
3194 * @caps: VLAN capabilities to populate
3196 * Determine VLAN capabilities support based on whether a port VLAN is
3197 * configured. If a port VLAN is configured then the VF does not have any VLAN
3198 * filtering or offload capabilities since the port VLAN is using the inner VLAN
3199 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3200 * VLAN fitlering and offload capabilities.
3203 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3205 struct virtchnl_vlan_supported_caps *supported_caps;
3207 if (ice_vf_is_port_vlan_ena(vf)) {
3208 supported_caps = &caps->filtering.filtering_support;
3209 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3210 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3212 supported_caps = &caps->offloads.stripping_support;
3213 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3214 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3216 supported_caps = &caps->offloads.insertion_support;
3217 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3218 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3220 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3221 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3222 caps->filtering.max_filters = 0;
3224 supported_caps = &caps->filtering.filtering_support;
3225 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3226 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3227 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3229 supported_caps = &caps->offloads.stripping_support;
3230 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3231 VIRTCHNL_VLAN_TOGGLE |
3232 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3233 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3235 supported_caps = &caps->offloads.insertion_support;
3236 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3237 VIRTCHNL_VLAN_TOGGLE |
3238 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3239 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3241 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3242 caps->offloads.ethertype_match =
3243 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3244 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3249 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3250 * @vf: VF to determine VLAN capabilities for
3252 * This will only be called if the VF and PF successfully negotiated
3253 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3255 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3256 * is configured or not.
3258 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3260 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3261 struct virtchnl_vlan_caps *caps = NULL;
3264 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3269 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3271 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3274 len = sizeof(*caps);
3276 if (ice_is_dvm_ena(&vf->pf->hw))
3277 ice_vc_set_dvm_caps(vf, caps);
3279 ice_vc_set_svm_caps(vf, caps);
3281 /* store negotiated caps to prevent invalid VF messages */
3282 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3285 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3286 v_ret, (u8 *)caps, len);
3292 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3293 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3294 * @tpid: VLAN TPID used for validation
3296 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3297 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3299 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3301 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3305 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3308 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3311 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3315 if (!(filtering_caps & vlan_ethertype))
3322 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3323 * @vc_vlan: virtchnl_vlan to validate
3325 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3326 * false. Otherwise return true.
3328 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3330 if (!vc_vlan->tci || !vc_vlan->tpid)
3337 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3338 * @vfc: negotiated/supported VLAN filtering capabilities
3339 * @vfl: VLAN filter list from VF to validate
3341 * Validate all of the filters in the VLAN filter list from the VF. If any of
3342 * the checks fail then return false. Otherwise return true.
3345 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3346 struct virtchnl_vlan_filter_list_v2 *vfl)
3350 if (!vfl->num_elements)
3353 for (i = 0; i < vfl->num_elements; i++) {
3354 struct virtchnl_vlan_supported_caps *filtering_support =
3355 &vfc->filtering_support;
3356 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3357 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3358 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3360 if ((ice_vc_is_valid_vlan(outer) &&
3361 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3362 (ice_vc_is_valid_vlan(inner) &&
3363 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3366 if ((outer->tci_mask &&
3367 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3369 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3372 if (((outer->tci & VLAN_PRIO_MASK) &&
3373 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3374 ((inner->tci & VLAN_PRIO_MASK) &&
3375 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3378 if ((ice_vc_is_valid_vlan(outer) &&
3379 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3381 (ice_vc_is_valid_vlan(inner) &&
3382 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3391 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3392 * @vc_vlan: struct virtchnl_vlan to transform
3394 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3396 struct ice_vlan vlan = { 0 };
3398 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3399 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3400 vlan.tpid = vc_vlan->tpid;
3406 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3407 * @vsi: VF's VSI used to perform the action
3408 * @vlan_action: function to perform the action with (i.e. add/del)
3409 * @vlan: VLAN filter to perform the action with
3412 ice_vc_vlan_action(struct ice_vsi *vsi,
3413 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3414 struct ice_vlan *vlan)
3418 err = vlan_action(vsi, vlan);
3426 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3427 * @vf: VF used to delete the VLAN(s)
3428 * @vsi: VF's VSI used to delete the VLAN(s)
3429 * @vfl: virthchnl filter list used to delete the filters
3432 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3433 struct virtchnl_vlan_filter_list_v2 *vfl)
3435 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3439 for (i = 0; i < vfl->num_elements; i++) {
3440 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3441 struct virtchnl_vlan *vc_vlan;
3443 vc_vlan = &vlan_fltr->outer;
3444 if (ice_vc_is_valid_vlan(vc_vlan)) {
3445 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3447 err = ice_vc_vlan_action(vsi,
3448 vsi->outer_vlan_ops.del_vlan,
3454 ice_vf_dis_vlan_promisc(vsi, &vlan);
3456 /* Disable VLAN filtering when only VLAN 0 is left */
3457 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3458 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3464 vc_vlan = &vlan_fltr->inner;
3465 if (ice_vc_is_valid_vlan(vc_vlan)) {
3466 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3468 err = ice_vc_vlan_action(vsi,
3469 vsi->inner_vlan_ops.del_vlan,
3474 /* no support for VLAN promiscuous on inner VLAN unless
3475 * we are in Single VLAN Mode (SVM)
3477 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3479 ice_vf_dis_vlan_promisc(vsi, &vlan);
3481 /* Disable VLAN filtering when only VLAN 0 is left */
3482 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3483 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3495 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3496 * @vf: VF the message was received from
3497 * @msg: message received from the VF
3499 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3501 struct virtchnl_vlan_filter_list_v2 *vfl =
3502 (struct virtchnl_vlan_filter_list_v2 *)msg;
3503 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3504 struct ice_vsi *vsi;
3506 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3508 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3512 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3517 vsi = ice_get_vf_vsi(vf);
3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3523 if (ice_vc_del_vlans(vf, vsi, vfl))
3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3527 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3532 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3533 * @vf: VF used to add the VLAN(s)
3534 * @vsi: VF's VSI used to add the VLAN(s)
3535 * @vfl: virthchnl filter list used to add the filters
3538 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3539 struct virtchnl_vlan_filter_list_v2 *vfl)
3541 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3545 for (i = 0; i < vfl->num_elements; i++) {
3546 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3547 struct virtchnl_vlan *vc_vlan;
3549 vc_vlan = &vlan_fltr->outer;
3550 if (ice_vc_is_valid_vlan(vc_vlan)) {
3551 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3553 err = ice_vc_vlan_action(vsi,
3554 vsi->outer_vlan_ops.add_vlan,
3560 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3565 /* Enable VLAN filtering on first non-zero VLAN */
3566 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3567 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3573 vc_vlan = &vlan_fltr->inner;
3574 if (ice_vc_is_valid_vlan(vc_vlan)) {
3575 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3577 err = ice_vc_vlan_action(vsi,
3578 vsi->inner_vlan_ops.add_vlan,
3583 /* no support for VLAN promiscuous on inner VLAN unless
3584 * we are in Single VLAN Mode (SVM)
3586 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3588 err = ice_vf_ena_vlan_promisc(vf, vsi,
3594 /* Enable VLAN filtering on first non-zero VLAN */
3595 if (vf->spoofchk && vlan.vid) {
3596 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3608 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3609 * @vsi: VF VSI used to get number of existing VLAN filters
3610 * @vfc: negotiated/supported VLAN filtering capabilities
3611 * @vfl: VLAN filter list from VF to validate
3613 * Validate all of the filters in the VLAN filter list from the VF during the
3614 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3615 * Otherwise return true.
3618 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3619 struct virtchnl_vlan_filtering_caps *vfc,
3620 struct virtchnl_vlan_filter_list_v2 *vfl)
3622 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3625 if (num_requested_filters > vfc->max_filters)
3628 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3632 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3633 * @vf: VF the message was received from
3634 * @msg: message received from the VF
3636 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3639 struct virtchnl_vlan_filter_list_v2 *vfl =
3640 (struct virtchnl_vlan_filter_list_v2 *)msg;
3641 struct ice_vsi *vsi;
3643 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3648 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3653 vsi = ice_get_vf_vsi(vf);
3655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3659 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3660 &vf->vlan_v2_caps.filtering,
3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3666 if (ice_vc_add_vlans(vf, vsi, vfl))
3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3670 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3675 * ice_vc_valid_vlan_setting - validate VLAN setting
3676 * @negotiated_settings: negotiated VLAN settings during VF init
3677 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3680 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3682 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3685 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3686 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3688 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3689 hweight32(ethertype_setting) > 1)
3692 /* ability to modify the VLAN setting was not negotiated */
3693 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3700 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3701 * @caps: negotiated VLAN settings during VF init
3702 * @msg: message to validate
3704 * Used to validate any VLAN virtchnl message sent as a
3705 * virtchnl_vlan_setting structure. Validates the message against the
3706 * negotiated/supported caps during VF driver init.
3709 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3710 struct virtchnl_vlan_setting *msg)
3712 if ((!msg->outer_ethertype_setting &&
3713 !msg->inner_ethertype_setting) ||
3714 (!caps->outer && !caps->inner))
3717 if (msg->outer_ethertype_setting &&
3718 !ice_vc_valid_vlan_setting(caps->outer,
3719 msg->outer_ethertype_setting))
3722 if (msg->inner_ethertype_setting &&
3723 !ice_vc_valid_vlan_setting(caps->inner,
3724 msg->inner_ethertype_setting))
3731 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3732 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3733 * @tpid: VLAN TPID to populate
3735 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3737 switch (ethertype_setting) {
3738 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3739 *tpid = ETH_P_8021Q;
3741 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3742 *tpid = ETH_P_8021AD;
3744 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3745 *tpid = ETH_P_QINQ1;
3756 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3757 * @vsi: VF's VSI used to enable the VLAN offload
3758 * @ena_offload: function used to enable the VLAN offload
3759 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3762 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3763 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3764 u32 ethertype_setting)
3769 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3773 err = ena_offload(vsi, tpid);
3780 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3781 #define ICE_L2TSEL_BIT_OFFSET 23
3783 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3784 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3788 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3789 * @vsi: VSI used to update l2tsel on
3790 * @l2tsel: l2tsel setting requested
3792 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3793 * This will modify which descriptor field the first offloaded VLAN will be
3796 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3798 struct ice_hw *hw = &vsi->back->hw;
3802 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3805 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3807 for (i = 0; i < vsi->alloc_rxq; i++) {
3808 u16 pfq = vsi->rxq_map[i];
3809 u32 qrx_context_offset;
3812 qrx_context_offset =
3813 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3815 regval = rd32(hw, qrx_context_offset);
3816 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3817 regval |= l2tsel_bit;
3818 wr32(hw, qrx_context_offset, regval);
3823 * ice_vc_ena_vlan_stripping_v2_msg
3824 * @vf: VF the message was received from
3825 * @msg: message received from the VF
3827 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3829 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3831 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3832 struct virtchnl_vlan_supported_caps *stripping_support;
3833 struct virtchnl_vlan_setting *strip_msg =
3834 (struct virtchnl_vlan_setting *)msg;
3835 u32 ethertype_setting;
3836 struct ice_vsi *vsi;
3838 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3839 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3843 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3844 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3848 vsi = ice_get_vf_vsi(vf);
3850 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3854 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3855 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3856 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3861 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3865 ethertype_setting = strip_msg->outer_ethertype_setting;
3866 if (ethertype_setting) {
3867 if (ice_vc_ena_vlan_offload(vsi,
3868 vsi->outer_vlan_ops.ena_stripping,
3869 ethertype_setting)) {
3870 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3873 enum ice_l2tsel l2tsel =
3874 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3876 /* PF tells the VF that the outer VLAN tag is always
3877 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3878 * inner is always extracted to
3879 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3880 * support outer stripping so the first tag always ends
3881 * up in L2TAG2_2ND and the second/inner tag, if
3882 * enabled, is extracted in L2TAG1.
3884 ice_vsi_update_l2tsel(vsi, l2tsel);
3886 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3890 ethertype_setting = strip_msg->inner_ethertype_setting;
3891 if (ethertype_setting &&
3892 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3893 ethertype_setting)) {
3894 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3898 if (ethertype_setting)
3899 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3907 * ice_vc_dis_vlan_stripping_v2_msg
3908 * @vf: VF the message was received from
3909 * @msg: message received from the VF
3911 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3913 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3915 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3916 struct virtchnl_vlan_supported_caps *stripping_support;
3917 struct virtchnl_vlan_setting *strip_msg =
3918 (struct virtchnl_vlan_setting *)msg;
3919 u32 ethertype_setting;
3920 struct ice_vsi *vsi;
3922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3923 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3927 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3928 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3932 vsi = ice_get_vf_vsi(vf);
3934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3938 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3939 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3944 ethertype_setting = strip_msg->outer_ethertype_setting;
3945 if (ethertype_setting) {
3946 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3947 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3950 enum ice_l2tsel l2tsel =
3951 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3953 /* PF tells the VF that the outer VLAN tag is always
3954 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3955 * inner is always extracted to
3956 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3957 * support inner stripping while outer stripping is
3958 * disabled so that the first and only tag is extracted
3961 ice_vsi_update_l2tsel(vsi, l2tsel);
3963 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3967 ethertype_setting = strip_msg->inner_ethertype_setting;
3968 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3973 if (ethertype_setting)
3974 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3977 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3982 * ice_vc_ena_vlan_insertion_v2_msg
3983 * @vf: VF the message was received from
3984 * @msg: message received from the VF
3986 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3988 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3990 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3991 struct virtchnl_vlan_supported_caps *insertion_support;
3992 struct virtchnl_vlan_setting *insertion_msg =
3993 (struct virtchnl_vlan_setting *)msg;
3994 u32 ethertype_setting;
3995 struct ice_vsi *vsi;
3997 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3998 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4002 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4003 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4007 vsi = ice_get_vf_vsi(vf);
4009 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4013 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4014 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4019 ethertype_setting = insertion_msg->outer_ethertype_setting;
4020 if (ethertype_setting &&
4021 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4022 ethertype_setting)) {
4023 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4027 ethertype_setting = insertion_msg->inner_ethertype_setting;
4028 if (ethertype_setting &&
4029 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4030 ethertype_setting)) {
4031 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4041 * ice_vc_dis_vlan_insertion_v2_msg
4042 * @vf: VF the message was received from
4043 * @msg: message received from the VF
4045 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4047 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4050 struct virtchnl_vlan_supported_caps *insertion_support;
4051 struct virtchnl_vlan_setting *insertion_msg =
4052 (struct virtchnl_vlan_setting *)msg;
4053 u32 ethertype_setting;
4054 struct ice_vsi *vsi;
4056 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4057 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4061 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4062 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4066 vsi = ice_get_vf_vsi(vf);
4068 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4072 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4073 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4074 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4078 ethertype_setting = insertion_msg->outer_ethertype_setting;
4079 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4080 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4084 ethertype_setting = insertion_msg->inner_ethertype_setting;
4085 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4086 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4091 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4095 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4096 .get_ver_msg = ice_vc_get_ver_msg,
4097 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4098 .reset_vf = ice_vc_reset_vf_msg,
4099 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4100 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4101 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4102 .ena_qs_msg = ice_vc_ena_qs_msg,
4103 .dis_qs_msg = ice_vc_dis_qs_msg,
4104 .request_qs_msg = ice_vc_request_qs_msg,
4105 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4106 .config_rss_key = ice_vc_config_rss_key,
4107 .config_rss_lut = ice_vc_config_rss_lut,
4108 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4109 .get_stats_msg = ice_vc_get_stats_msg,
4110 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4111 .add_vlan_msg = ice_vc_add_vlan_msg,
4112 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4113 .query_rxdid = ice_vc_query_rxdid,
4114 .get_rss_hena = ice_vc_get_rss_hena,
4115 .set_rss_hena_msg = ice_vc_set_rss_hena,
4116 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4117 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4118 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4119 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4120 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4121 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4122 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4123 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4124 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4125 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4126 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4127 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4128 .get_qos_caps = ice_vc_get_qos_caps,
4129 .cfg_q_bw = ice_vc_cfg_q_bw,
4130 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4131 /* If you add a new op here please make sure to add it to
4132 * ice_virtchnl_repr_ops as well.
4137 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4138 * @vf: the VF to switch ops
4140 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4142 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4146 * ice_vc_repr_add_mac
4147 * @vf: pointer to VF
4148 * @msg: virtchannel message
4150 * When port representors are created, we do not add MAC rule
4151 * to firmware, we store it so that PF could report same
4154 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4156 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4157 struct virtchnl_ether_addr_list *al =
4158 (struct virtchnl_ether_addr_list *)msg;
4159 struct ice_vsi *vsi;
4163 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4164 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4165 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4166 goto handle_mac_exit;
4171 vsi = ice_get_vf_vsi(vf);
4173 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4174 goto handle_mac_exit;
4177 for (i = 0; i < al->num_elements; i++) {
4178 u8 *mac_addr = al->list[i].addr;
4180 if (!is_unicast_ether_addr(mac_addr) ||
4181 ether_addr_equal(mac_addr, vf->hw_lan_addr))
4184 if (vf->pf_set_mac) {
4185 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4186 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4187 goto handle_mac_exit;
4190 ice_vfhw_mac_add(vf, &al->list[i]);
4196 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4201 * ice_vc_repr_del_mac - response with success for deleting MAC
4202 * @vf: pointer to VF
4203 * @msg: virtchannel message
4205 * Respond with success to not break normal VF flow.
4206 * For legacy VF driver try to update cached MAC address.
4209 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4211 struct virtchnl_ether_addr_list *al =
4212 (struct virtchnl_ether_addr_list *)msg;
4214 ice_update_legacy_cached_mac(vf, &al->list[0]);
4216 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4217 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4221 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4223 dev_dbg(ice_pf_to_dev(vf->pf),
4224 "Can't config promiscuous mode in switchdev mode for VF %d\n",
4226 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4227 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4231 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4232 .get_ver_msg = ice_vc_get_ver_msg,
4233 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4234 .reset_vf = ice_vc_reset_vf_msg,
4235 .add_mac_addr_msg = ice_vc_repr_add_mac,
4236 .del_mac_addr_msg = ice_vc_repr_del_mac,
4237 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4238 .ena_qs_msg = ice_vc_ena_qs_msg,
4239 .dis_qs_msg = ice_vc_dis_qs_msg,
4240 .request_qs_msg = ice_vc_request_qs_msg,
4241 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4242 .config_rss_key = ice_vc_config_rss_key,
4243 .config_rss_lut = ice_vc_config_rss_lut,
4244 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4245 .get_stats_msg = ice_vc_get_stats_msg,
4246 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4247 .add_vlan_msg = ice_vc_add_vlan_msg,
4248 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4249 .query_rxdid = ice_vc_query_rxdid,
4250 .get_rss_hena = ice_vc_get_rss_hena,
4251 .set_rss_hena_msg = ice_vc_set_rss_hena,
4252 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4253 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4254 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4255 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4256 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4257 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4258 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4259 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4260 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4261 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4262 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4263 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4264 .get_qos_caps = ice_vc_get_qos_caps,
4265 .cfg_q_bw = ice_vc_cfg_q_bw,
4266 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4270 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4271 * @vf: the VF to switch ops
4273 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4275 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4279 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4280 * @vf: the VF to check
4281 * @mbxdata: data about the state of the mailbox
4283 * Detect if a given VF might be malicious and attempting to overflow the PF
4284 * mailbox. If so, log a warning message and ignore this event.
4287 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4289 bool report_malvf = false;
4295 dev = ice_pf_to_dev(pf);
4297 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4298 return vf->mbx_info.malicious;
4300 /* check to see if we have a newly malicious VF */
4301 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4304 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4305 vf->vf_id, vf->dev_lan_addr, status);
4308 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4309 u8 zero_addr[ETH_ALEN] = {};
4311 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4313 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4316 return vf->mbx_info.malicious;
4320 * ice_vc_process_vf_msg - Process request from VF
4321 * @pf: pointer to the PF structure
4322 * @event: pointer to the AQ event
4323 * @mbxdata: information used to detect VF attempting mailbox overflow
4325 * Called from the common asq/arq handler to process request from VF. When this
4326 * flow is used for devices with hardware VF to PF message queue overflow
4327 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4330 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4331 struct ice_mbx_data *mbxdata)
4333 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4334 s16 vf_id = le16_to_cpu(event->desc.retval);
4335 const struct ice_virtchnl_ops *ops;
4336 u16 msglen = event->msg_len;
4337 u8 *msg = event->msg_buf;
4338 struct ice_vf *vf = NULL;
4342 dev = ice_pf_to_dev(pf);
4344 vf = ice_get_vf_by_id(pf, vf_id);
4346 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4347 vf_id, v_opcode, msglen);
4351 mutex_lock(&vf->cfg_lock);
4353 /* Check if the VF is trying to overflow the mailbox */
4354 if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4357 /* Check if VF is disabled. */
4358 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4363 ops = vf->virtchnl_ops;
4365 /* Perform basic checks on the msg */
4366 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4368 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4376 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4378 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4379 vf_id, v_opcode, msglen, err);
4383 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4384 ice_vc_send_msg_to_vf(vf, v_opcode,
4385 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4391 case VIRTCHNL_OP_VERSION:
4392 err = ops->get_ver_msg(vf, msg);
4394 case VIRTCHNL_OP_GET_VF_RESOURCES:
4395 err = ops->get_vf_res_msg(vf, msg);
4396 if (ice_vf_init_vlan_stripping(vf))
4397 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4399 ice_vc_notify_vf_link_state(vf);
4401 case VIRTCHNL_OP_RESET_VF:
4404 case VIRTCHNL_OP_ADD_ETH_ADDR:
4405 err = ops->add_mac_addr_msg(vf, msg);
4407 case VIRTCHNL_OP_DEL_ETH_ADDR:
4408 err = ops->del_mac_addr_msg(vf, msg);
4410 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4411 err = ops->cfg_qs_msg(vf, msg);
4413 case VIRTCHNL_OP_ENABLE_QUEUES:
4414 err = ops->ena_qs_msg(vf, msg);
4415 ice_vc_notify_vf_link_state(vf);
4417 case VIRTCHNL_OP_DISABLE_QUEUES:
4418 err = ops->dis_qs_msg(vf, msg);
4420 case VIRTCHNL_OP_REQUEST_QUEUES:
4421 err = ops->request_qs_msg(vf, msg);
4423 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4424 err = ops->cfg_irq_map_msg(vf, msg);
4426 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4427 err = ops->config_rss_key(vf, msg);
4429 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4430 err = ops->config_rss_lut(vf, msg);
4432 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4433 err = ops->config_rss_hfunc(vf, msg);
4435 case VIRTCHNL_OP_GET_STATS:
4436 err = ops->get_stats_msg(vf, msg);
4438 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4439 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4441 case VIRTCHNL_OP_ADD_VLAN:
4442 err = ops->add_vlan_msg(vf, msg);
4444 case VIRTCHNL_OP_DEL_VLAN:
4445 err = ops->remove_vlan_msg(vf, msg);
4447 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4448 err = ops->query_rxdid(vf);
4450 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4451 err = ops->get_rss_hena(vf);
4453 case VIRTCHNL_OP_SET_RSS_HENA:
4454 err = ops->set_rss_hena_msg(vf, msg);
4456 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4457 err = ops->ena_vlan_stripping(vf);
4459 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4460 err = ops->dis_vlan_stripping(vf);
4462 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4463 err = ops->add_fdir_fltr_msg(vf, msg);
4465 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4466 err = ops->del_fdir_fltr_msg(vf, msg);
4468 case VIRTCHNL_OP_ADD_RSS_CFG:
4469 err = ops->handle_rss_cfg_msg(vf, msg, true);
4471 case VIRTCHNL_OP_DEL_RSS_CFG:
4472 err = ops->handle_rss_cfg_msg(vf, msg, false);
4474 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4475 err = ops->get_offload_vlan_v2_caps(vf);
4477 case VIRTCHNL_OP_ADD_VLAN_V2:
4478 err = ops->add_vlan_v2_msg(vf, msg);
4480 case VIRTCHNL_OP_DEL_VLAN_V2:
4481 err = ops->remove_vlan_v2_msg(vf, msg);
4483 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4484 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4486 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4487 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4489 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4490 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4492 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4493 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4495 case VIRTCHNL_OP_GET_QOS_CAPS:
4496 err = ops->get_qos_caps(vf);
4498 case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4499 err = ops->cfg_q_bw(vf, msg);
4501 case VIRTCHNL_OP_CONFIG_QUANTA:
4502 err = ops->cfg_q_quanta(vf, msg);
4504 case VIRTCHNL_OP_UNKNOWN:
4506 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4508 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4509 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4514 /* Helper function cares less about error return values here
4515 * as it is busy with pending work.
4517 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4518 vf_id, v_opcode, err);
4522 mutex_unlock(&vf->cfg_lock);