1 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
22 static bool all_callee_regs_used[4] = {true, true, true, true};
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
37 #define EMIT(bytes, len) \
38 do { prog = emit_code(prog, bytes, len); } while (0)
40 #define EMIT1(b1) EMIT(b1, 1)
41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
45 #define EMIT1_off32(b1, off) \
46 do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
59 #define EMIT_ENDBR_POISON()
62 static bool is_imm8(int value)
64 return value <= 127 && value >= -128;
67 static bool is_simm32(s64 value)
69 return value == (s64)(s32)value;
72 static bool is_uimm32(u64 value)
74 return value == (u64)(u32)value;
78 #define EMIT_mov(DST, SRC) \
81 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
84 static int bpf_size_to_x86_bytes(int bpf_size)
86 if (bpf_size == BPF_W)
88 else if (bpf_size == BPF_H)
90 else if (bpf_size == BPF_B)
92 else if (bpf_size == BPF_DW)
99 * List of x86 cond jumps opcodes (. + s8)
100 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
113 /* Pick a register outside of BPF range for JIT internal work */
114 #define AUX_REG (MAX_BPF_JIT_REG + 1)
115 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
118 * The following table maps BPF registers to x86-64 registers.
120 * x86-64 register R12 is unused, since if used as base address
121 * register in load/store instructions, it always needs an
122 * extra byte of encoding and is callee saved.
124 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
125 * trampoline. x86-64 register R10 is used for blinding (if enabled).
127 static const int reg2hex[] = {
128 [BPF_REG_0] = 0, /* RAX */
129 [BPF_REG_1] = 7, /* RDI */
130 [BPF_REG_2] = 6, /* RSI */
131 [BPF_REG_3] = 2, /* RDX */
132 [BPF_REG_4] = 1, /* RCX */
133 [BPF_REG_5] = 0, /* R8 */
134 [BPF_REG_6] = 3, /* RBX callee saved */
135 [BPF_REG_7] = 5, /* R13 callee saved */
136 [BPF_REG_8] = 6, /* R14 callee saved */
137 [BPF_REG_9] = 7, /* R15 callee saved */
138 [BPF_REG_FP] = 5, /* RBP readonly */
139 [BPF_REG_AX] = 2, /* R10 temp register */
140 [AUX_REG] = 3, /* R11 temp register */
141 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
144 static const int reg2pt_regs[] = {
145 [BPF_REG_0] = offsetof(struct pt_regs, ax),
146 [BPF_REG_1] = offsetof(struct pt_regs, di),
147 [BPF_REG_2] = offsetof(struct pt_regs, si),
148 [BPF_REG_3] = offsetof(struct pt_regs, dx),
149 [BPF_REG_4] = offsetof(struct pt_regs, cx),
150 [BPF_REG_5] = offsetof(struct pt_regs, r8),
151 [BPF_REG_6] = offsetof(struct pt_regs, bx),
152 [BPF_REG_7] = offsetof(struct pt_regs, r13),
153 [BPF_REG_8] = offsetof(struct pt_regs, r14),
154 [BPF_REG_9] = offsetof(struct pt_regs, r15),
158 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
159 * which need extra byte of encoding.
160 * rax,rcx,...,rbp have simpler encoding
162 static bool is_ereg(u32 reg)
164 return (1 << reg) & (BIT(BPF_REG_5) |
174 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
175 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
176 * of encoding. al,cl,dl,bl have simpler encoding.
178 static bool is_ereg_8l(u32 reg)
180 return is_ereg(reg) ||
181 (1 << reg) & (BIT(BPF_REG_1) |
186 static bool is_axreg(u32 reg)
188 return reg == BPF_REG_0;
191 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
192 static u8 add_1mod(u8 byte, u32 reg)
199 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
208 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
209 static u8 add_1reg(u8 byte, u32 dst_reg)
211 return byte + reg2hex[dst_reg];
214 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
215 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
217 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
220 /* Some 1-byte opcodes for binary ALU operations */
221 static u8 simple_alu_opcodes[] = {
232 static void jit_fill_hole(void *area, unsigned int size)
234 /* Fill whole space with INT3 instructions */
235 memset(area, 0xcc, size);
238 int bpf_arch_text_invalidate(void *dst, size_t len)
240 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
244 int cleanup_addr; /* Epilogue code offset */
247 * Program specific offsets of labels in the code; these rely on the
248 * JIT doing at least 2 passes, recording the position on the first
249 * pass, only to generate the correct offset on the second pass.
251 int tail_call_direct_label;
252 int tail_call_indirect_label;
255 /* Maximum number of bytes emitted while JITing one eBPF insn */
256 #define BPF_MAX_INSN_SIZE 128
257 #define BPF_INSN_SAFETY 64
259 /* Number of bytes emit_patch() needs to generate instructions */
260 #define X86_PATCH_SIZE 5
261 /* Number of bytes that will be skipped on tailcall */
262 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
264 static void push_r12(u8 **pprog)
268 EMIT2(0x41, 0x54); /* push r12 */
272 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
276 if (callee_regs_used[0])
277 EMIT1(0x53); /* push rbx */
278 if (callee_regs_used[1])
279 EMIT2(0x41, 0x55); /* push r13 */
280 if (callee_regs_used[2])
281 EMIT2(0x41, 0x56); /* push r14 */
282 if (callee_regs_used[3])
283 EMIT2(0x41, 0x57); /* push r15 */
287 static void pop_r12(u8 **pprog)
291 EMIT2(0x41, 0x5C); /* pop r12 */
295 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
299 if (callee_regs_used[3])
300 EMIT2(0x41, 0x5F); /* pop r15 */
301 if (callee_regs_used[2])
302 EMIT2(0x41, 0x5E); /* pop r14 */
303 if (callee_regs_used[1])
304 EMIT2(0x41, 0x5D); /* pop r13 */
305 if (callee_regs_used[0])
306 EMIT1(0x5B); /* pop rbx */
311 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
312 * in arch/x86/kernel/alternative.c
315 static void emit_fineibt(u8 **pprog, u32 hash)
320 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
321 EMIT2(0x74, 0x07); /* jz.d8 +7 */
322 EMIT2(0x0f, 0x0b); /* ud2 */
323 EMIT1(0x90); /* nop */
329 static void emit_kcfi(u8 **pprog, u32 hash)
333 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
334 #ifdef CONFIG_CALL_PADDING
352 static void emit_cfi(u8 **pprog, u32 hash)
358 emit_fineibt(&prog, hash);
362 emit_kcfi(&prog, hash);
374 * Emit x86-64 prologue code for BPF program.
375 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
376 * while jumping to another program
378 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
379 bool tail_call_reachable, bool is_subprog,
380 bool is_exception_cb)
384 emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
385 /* BPF trampoline can be made to work without these nops,
386 * but let's waste 5 bytes for now and optimize later
388 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
389 prog += X86_PATCH_SIZE;
390 if (!ebpf_from_cbpf) {
391 if (tail_call_reachable && !is_subprog)
392 /* When it's the entry of the whole tailcall context,
393 * zeroing rax means initialising tail_call_cnt.
395 EMIT2(0x31, 0xC0); /* xor eax, eax */
397 /* Keep the same instruction layout. */
398 EMIT2(0x66, 0x90); /* nop2 */
400 /* Exception callback receives FP as third parameter */
401 if (is_exception_cb) {
402 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
403 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
404 /* The main frame must have exception_boundary as true, so we
405 * first restore those callee-saved regs from stack, before
406 * reusing the stack frame.
408 pop_callee_regs(&prog, all_callee_regs_used);
410 /* Reset the stack frame. */
411 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
413 EMIT1(0x55); /* push rbp */
414 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
417 /* X86_TAIL_CALL_OFFSET is here */
420 /* sub rsp, rounded_stack_depth */
422 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
423 if (tail_call_reachable)
424 EMIT1(0x50); /* push rax */
428 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
433 offset = func - (ip + X86_PATCH_SIZE);
434 if (!is_simm32(offset)) {
435 pr_err("Target call %p is out of range\n", func);
438 EMIT1_off32(opcode, offset);
443 static int emit_call(u8 **pprog, void *func, void *ip)
445 return emit_patch(pprog, func, ip, 0xE8);
448 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
450 OPTIMIZER_HIDE_VAR(func);
451 x86_call_depth_emit_accounting(pprog, func);
452 return emit_patch(pprog, func, ip, 0xE8);
455 static int emit_jump(u8 **pprog, void *func, void *ip)
457 return emit_patch(pprog, func, ip, 0xE9);
460 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
461 void *old_addr, void *new_addr)
463 const u8 *nop_insn = x86_nops[5];
464 u8 old_insn[X86_PATCH_SIZE];
465 u8 new_insn[X86_PATCH_SIZE];
469 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
472 ret = t == BPF_MOD_CALL ?
473 emit_call(&prog, old_addr, ip) :
474 emit_jump(&prog, old_addr, ip);
479 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
482 ret = t == BPF_MOD_CALL ?
483 emit_call(&prog, new_addr, ip) :
484 emit_jump(&prog, new_addr, ip);
490 mutex_lock(&text_mutex);
491 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
494 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
495 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
499 mutex_unlock(&text_mutex);
503 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
504 void *old_addr, void *new_addr)
506 if (!is_kernel_text((long)ip) &&
507 !is_bpf_text_address((long)ip))
508 /* BPF poking in modules is not supported */
512 * See emit_prologue(), for IBT builds the trampoline hook is preceded
513 * with an ENDBR instruction.
515 if (is_endbr(*(u32 *)ip))
516 ip += ENDBR_INSN_SIZE;
518 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
521 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
523 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
527 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
529 EMIT2(0xFF, 0xE0 + reg);
530 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
531 OPTIMIZER_HIDE_VAR(reg);
532 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
533 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
535 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
537 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
538 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
539 EMIT1(0xCC); /* int3 */
545 static void emit_return(u8 **pprog, u8 *ip)
549 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
550 emit_jump(&prog, x86_return_thunk, ip);
552 EMIT1(0xC3); /* ret */
553 if (IS_ENABLED(CONFIG_SLS))
554 EMIT1(0xCC); /* int3 */
561 * Generate the following code:
563 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
564 * if (index >= array->map.max_entries)
566 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
568 * prog = array->ptrs[index];
571 * goto *(prog->bpf_func + prologue_size);
574 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
575 u8 **pprog, bool *callee_regs_used,
576 u32 stack_depth, u8 *ip,
577 struct jit_context *ctx)
579 int tcc_off = -4 - round_up(stack_depth, 8);
580 u8 *prog = *pprog, *start = *pprog;
584 * rdi - pointer to ctx
585 * rsi - pointer to bpf_array
586 * rdx - index in bpf_array
590 * if (index >= array->map.max_entries)
593 EMIT2(0x89, 0xD2); /* mov edx, edx */
594 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
595 offsetof(struct bpf_array, map.max_entries));
597 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
598 EMIT2(X86_JBE, offset); /* jbe out */
601 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
604 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
605 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
607 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
608 EMIT2(X86_JAE, offset); /* jae out */
609 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
610 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
612 /* prog = array->ptrs[index]; */
613 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
614 offsetof(struct bpf_array, ptrs));
620 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
622 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
623 EMIT2(X86_JE, offset); /* je out */
625 if (bpf_prog->aux->exception_boundary) {
626 pop_callee_regs(&prog, all_callee_regs_used);
629 pop_callee_regs(&prog, callee_regs_used);
632 EMIT1(0x58); /* pop rax */
634 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
635 round_up(stack_depth, 8));
637 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
638 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
639 offsetof(struct bpf_prog, bpf_func));
640 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
641 X86_TAIL_CALL_OFFSET);
643 * Now we're ready to jump into next BPF program
644 * rdi == ctx (1st arg)
645 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
647 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
650 ctx->tail_call_indirect_label = prog - start;
654 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
655 struct bpf_jit_poke_descriptor *poke,
657 bool *callee_regs_used, u32 stack_depth,
658 struct jit_context *ctx)
660 int tcc_off = -4 - round_up(stack_depth, 8);
661 u8 *prog = *pprog, *start = *pprog;
665 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
668 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
669 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
671 offset = ctx->tail_call_direct_label - (prog + 2 - start);
672 EMIT2(X86_JAE, offset); /* jae out */
673 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
674 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
676 poke->tailcall_bypass = ip + (prog - start);
677 poke->adj_off = X86_TAIL_CALL_OFFSET;
678 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
679 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
681 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
682 poke->tailcall_bypass);
684 if (bpf_prog->aux->exception_boundary) {
685 pop_callee_regs(&prog, all_callee_regs_used);
688 pop_callee_regs(&prog, callee_regs_used);
691 EMIT1(0x58); /* pop rax */
693 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
695 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
696 prog += X86_PATCH_SIZE;
699 ctx->tail_call_direct_label = prog - start;
704 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
706 struct bpf_jit_poke_descriptor *poke;
707 struct bpf_array *array;
708 struct bpf_prog *target;
711 for (i = 0; i < prog->aux->size_poke_tab; i++) {
712 poke = &prog->aux->poke_tab[i];
713 if (poke->aux && poke->aux != prog->aux)
716 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
718 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
721 array = container_of(poke->tail_call.map, struct bpf_array, map);
722 mutex_lock(&array->aux->poke_mutex);
723 target = array->ptrs[poke->tail_call.key];
725 ret = __bpf_arch_text_poke(poke->tailcall_target,
727 (u8 *)target->bpf_func +
730 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
732 (u8 *)poke->tailcall_target +
733 X86_PATCH_SIZE, NULL);
736 WRITE_ONCE(poke->tailcall_target_stable, true);
737 mutex_unlock(&array->aux->poke_mutex);
741 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
742 u32 dst_reg, const u32 imm32)
748 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
749 * (which zero-extends imm32) to save 2 bytes.
751 if (sign_propagate && (s32)imm32 < 0) {
752 /* 'mov %rax, imm32' sign extends imm32 */
753 b1 = add_1mod(0x48, dst_reg);
756 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
761 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
765 if (is_ereg(dst_reg))
766 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
769 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
773 /* mov %eax, imm32 */
774 if (is_ereg(dst_reg))
775 EMIT1(add_1mod(0x40, dst_reg));
776 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
781 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
782 const u32 imm32_hi, const u32 imm32_lo)
786 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
788 * For emitting plain u32, where sign bit must not be
789 * propagated LLVM tends to load imm64 over mov32
790 * directly, so save couple of bytes by just doing
791 * 'mov %eax, imm32' instead.
793 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
795 /* movabsq rax, imm64 */
796 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
804 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
810 EMIT_mov(dst_reg, src_reg);
813 if (is_ereg(dst_reg) || is_ereg(src_reg))
814 EMIT1(add_2mod(0x40, dst_reg, src_reg));
815 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
821 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
827 /* movs[b,w,l]q dst, src */
829 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
830 add_2reg(0xC0, src_reg, dst_reg));
831 else if (num_bits == 16)
832 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
833 add_2reg(0xC0, src_reg, dst_reg));
834 else if (num_bits == 32)
835 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
836 add_2reg(0xC0, src_reg, dst_reg));
838 /* movs[b,w]l dst, src */
840 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
841 add_2reg(0xC0, src_reg, dst_reg));
842 } else if (num_bits == 16) {
843 if (is_ereg(dst_reg) || is_ereg(src_reg))
844 EMIT1(add_2mod(0x40, src_reg, dst_reg));
845 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
846 add_2reg(0xC0, src_reg, dst_reg));
853 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
854 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
859 /* 1-byte signed displacement.
861 * If off == 0 we could skip this and save one extra byte, but
862 * special case of x86 R13 which always needs an offset is not
865 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
867 /* 4-byte signed displacement */
868 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
874 * Emit a REX byte if it will be necessary to address these registers
876 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
881 EMIT1(add_2mod(0x48, dst_reg, src_reg));
882 else if (is_ereg(dst_reg) || is_ereg(src_reg))
883 EMIT1(add_2mod(0x40, dst_reg, src_reg));
888 * Similar version of maybe_emit_mod() for a single register
890 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
895 EMIT1(add_1mod(0x48, reg));
896 else if (is_ereg(reg))
897 EMIT1(add_1mod(0x40, reg));
901 /* LDX: dst_reg = *(u8*)(src_reg + off) */
902 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
908 /* Emit 'movzx rax, byte ptr [rax + off]' */
909 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
912 /* Emit 'movzx rax, word ptr [rax + off]' */
913 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
916 /* Emit 'mov eax, dword ptr [rax+0x14]' */
917 if (is_ereg(dst_reg) || is_ereg(src_reg))
918 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
923 /* Emit 'mov rax, qword ptr [rax+0x14]' */
924 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
927 emit_insn_suffix(&prog, src_reg, dst_reg, off);
931 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
932 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
938 /* Emit 'movsx rax, byte ptr [rax + off]' */
939 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
942 /* Emit 'movsx rax, word ptr [rax + off]' */
943 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
946 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
947 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
950 emit_insn_suffix(&prog, src_reg, dst_reg, off);
954 /* STX: *(u8*)(dst_reg + off) = src_reg */
955 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
961 /* Emit 'mov byte ptr [rax + off], al' */
962 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
963 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
964 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
969 if (is_ereg(dst_reg) || is_ereg(src_reg))
970 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
975 if (is_ereg(dst_reg) || is_ereg(src_reg))
976 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
981 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
984 emit_insn_suffix(&prog, dst_reg, src_reg, off);
988 static int emit_atomic(u8 **pprog, u8 atomic_op,
989 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
993 EMIT1(0xF0); /* lock prefix */
995 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1003 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1004 EMIT1(simple_alu_opcodes[atomic_op]);
1006 case BPF_ADD | BPF_FETCH:
1007 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1011 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1015 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1019 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1023 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1029 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1031 u32 reg = x->fixup >> 8;
1033 /* jump over faulting load and clear dest register */
1034 *(unsigned long *)((void *)regs + reg) = 0;
1035 regs->ip += x->fixup & 0xff;
1039 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1040 bool *regs_used, bool *tail_call_seen)
1044 for (i = 1; i <= insn_cnt; i++, insn++) {
1045 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
1046 *tail_call_seen = true;
1047 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1048 regs_used[0] = true;
1049 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1050 regs_used[1] = true;
1051 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1052 regs_used[2] = true;
1053 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1054 regs_used[3] = true;
1058 static void emit_nops(u8 **pprog, int len)
1066 if (noplen > ASM_NOP_MAX)
1067 noplen = ASM_NOP_MAX;
1069 for (i = 0; i < noplen; i++)
1070 EMIT1(x86_nops[noplen][i]);
1077 /* emit the 3-byte VEX prefix
1079 * r: same as rex.r, extra bit for ModRM reg field
1080 * x: same as rex.x, extra bit for SIB index field
1081 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1082 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1083 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1084 * src_reg2: additional source reg (encoded as BPF reg)
1085 * l: vector length (128 bit or 256 bit) or reserved
1086 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1088 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1089 bool w, u8 src_reg2, bool l, u8 pp)
1092 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1094 u8 vvvv = reg2hex[src_reg2];
1096 /* reg2hex gives only the lower 3 bit of vvvv */
1097 if (is_ereg(src_reg2))
1101 * 2nd byte of 3-byte VEX prefix
1102 * ~ means bit inverted encoding
1105 * +---+---+---+---+---+---+---+---+
1107 * +---+---+---+---+---+---+---+---+
1109 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1111 * 3rd byte of 3-byte VEX prefix
1114 * +---+---+---+---+---+---+---+---+
1115 * | W | ~vvvv | L | pp |
1116 * +---+---+---+---+---+---+---+---+
1118 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1124 /* emit BMI2 shift instruction */
1125 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1128 bool r = is_ereg(dst_reg);
1129 u8 m = 2; /* escape code 0f38 */
1131 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1132 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1136 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1138 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1139 #define RESTORE_TAIL_CALL_CNT(stack) \
1140 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1142 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1143 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1145 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1146 struct bpf_insn *insn = bpf_prog->insnsi;
1147 bool callee_regs_used[4] = {};
1148 int insn_cnt = bpf_prog->len;
1149 bool tail_call_seen = false;
1150 bool seen_exit = false;
1151 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1153 int ilen, proglen = 0;
1157 detect_reg_usage(insn, insn_cnt, callee_regs_used,
1160 /* tail call's presence in current prog implies it is reachable */
1161 tail_call_reachable |= tail_call_seen;
1163 emit_prologue(&prog, bpf_prog->aux->stack_depth,
1164 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1165 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1166 /* Exception callback will clobber callee regs for its own use, and
1167 * restore the original callee regs from main prog's stack frame.
1169 if (bpf_prog->aux->exception_boundary) {
1170 /* We also need to save r12, which is not mapped to any BPF
1171 * register, as we throw after entry into the kernel, which may
1175 push_callee_regs(&prog, all_callee_regs_used);
1177 push_callee_regs(&prog, callee_regs_used);
1182 memcpy(rw_image + proglen, temp, ilen);
1187 for (i = 1; i <= insn_cnt; i++, insn++) {
1188 const s32 imm32 = insn->imm;
1189 u32 dst_reg = insn->dst_reg;
1190 u32 src_reg = insn->src_reg;
1199 switch (insn->code) {
1201 case BPF_ALU | BPF_ADD | BPF_X:
1202 case BPF_ALU | BPF_SUB | BPF_X:
1203 case BPF_ALU | BPF_AND | BPF_X:
1204 case BPF_ALU | BPF_OR | BPF_X:
1205 case BPF_ALU | BPF_XOR | BPF_X:
1206 case BPF_ALU64 | BPF_ADD | BPF_X:
1207 case BPF_ALU64 | BPF_SUB | BPF_X:
1208 case BPF_ALU64 | BPF_AND | BPF_X:
1209 case BPF_ALU64 | BPF_OR | BPF_X:
1210 case BPF_ALU64 | BPF_XOR | BPF_X:
1211 maybe_emit_mod(&prog, dst_reg, src_reg,
1212 BPF_CLASS(insn->code) == BPF_ALU64);
1213 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1214 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1217 case BPF_ALU64 | BPF_MOV | BPF_X:
1218 case BPF_ALU | BPF_MOV | BPF_X:
1221 BPF_CLASS(insn->code) == BPF_ALU64,
1224 emit_movsx_reg(&prog, insn->off,
1225 BPF_CLASS(insn->code) == BPF_ALU64,
1230 case BPF_ALU | BPF_NEG:
1231 case BPF_ALU64 | BPF_NEG:
1232 maybe_emit_1mod(&prog, dst_reg,
1233 BPF_CLASS(insn->code) == BPF_ALU64);
1234 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1237 case BPF_ALU | BPF_ADD | BPF_K:
1238 case BPF_ALU | BPF_SUB | BPF_K:
1239 case BPF_ALU | BPF_AND | BPF_K:
1240 case BPF_ALU | BPF_OR | BPF_K:
1241 case BPF_ALU | BPF_XOR | BPF_K:
1242 case BPF_ALU64 | BPF_ADD | BPF_K:
1243 case BPF_ALU64 | BPF_SUB | BPF_K:
1244 case BPF_ALU64 | BPF_AND | BPF_K:
1245 case BPF_ALU64 | BPF_OR | BPF_K:
1246 case BPF_ALU64 | BPF_XOR | BPF_K:
1247 maybe_emit_1mod(&prog, dst_reg,
1248 BPF_CLASS(insn->code) == BPF_ALU64);
1251 * b3 holds 'normal' opcode, b2 short form only valid
1252 * in case dst is eax/rax.
1254 switch (BPF_OP(insn->code)) {
1278 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1279 else if (is_axreg(dst_reg))
1280 EMIT1_off32(b2, imm32);
1282 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1285 case BPF_ALU64 | BPF_MOV | BPF_K:
1286 case BPF_ALU | BPF_MOV | BPF_K:
1287 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1291 case BPF_LD | BPF_IMM | BPF_DW:
1292 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1297 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1298 case BPF_ALU | BPF_MOD | BPF_X:
1299 case BPF_ALU | BPF_DIV | BPF_X:
1300 case BPF_ALU | BPF_MOD | BPF_K:
1301 case BPF_ALU | BPF_DIV | BPF_K:
1302 case BPF_ALU64 | BPF_MOD | BPF_X:
1303 case BPF_ALU64 | BPF_DIV | BPF_X:
1304 case BPF_ALU64 | BPF_MOD | BPF_K:
1305 case BPF_ALU64 | BPF_DIV | BPF_K: {
1306 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1308 if (dst_reg != BPF_REG_0)
1309 EMIT1(0x50); /* push rax */
1310 if (dst_reg != BPF_REG_3)
1311 EMIT1(0x52); /* push rdx */
1313 if (BPF_SRC(insn->code) == BPF_X) {
1314 if (src_reg == BPF_REG_0 ||
1315 src_reg == BPF_REG_3) {
1316 /* mov r11, src_reg */
1317 EMIT_mov(AUX_REG, src_reg);
1321 /* mov r11, imm32 */
1322 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1326 if (dst_reg != BPF_REG_0)
1327 /* mov rax, dst_reg */
1328 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1330 if (insn->off == 0) {
1333 * equivalent to 'xor rdx, rdx', but one byte less
1338 maybe_emit_1mod(&prog, src_reg, is64);
1339 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1341 if (BPF_CLASS(insn->code) == BPF_ALU)
1342 EMIT1(0x99); /* cdq */
1344 EMIT2(0x48, 0x99); /* cqo */
1347 maybe_emit_1mod(&prog, src_reg, is64);
1348 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1351 if (BPF_OP(insn->code) == BPF_MOD &&
1352 dst_reg != BPF_REG_3)
1353 /* mov dst_reg, rdx */
1354 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1355 else if (BPF_OP(insn->code) == BPF_DIV &&
1356 dst_reg != BPF_REG_0)
1357 /* mov dst_reg, rax */
1358 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1360 if (dst_reg != BPF_REG_3)
1361 EMIT1(0x5A); /* pop rdx */
1362 if (dst_reg != BPF_REG_0)
1363 EMIT1(0x58); /* pop rax */
1367 case BPF_ALU | BPF_MUL | BPF_K:
1368 case BPF_ALU64 | BPF_MUL | BPF_K:
1369 maybe_emit_mod(&prog, dst_reg, dst_reg,
1370 BPF_CLASS(insn->code) == BPF_ALU64);
1373 /* imul dst_reg, dst_reg, imm8 */
1374 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1377 /* imul dst_reg, dst_reg, imm32 */
1379 add_2reg(0xC0, dst_reg, dst_reg),
1383 case BPF_ALU | BPF_MUL | BPF_X:
1384 case BPF_ALU64 | BPF_MUL | BPF_X:
1385 maybe_emit_mod(&prog, src_reg, dst_reg,
1386 BPF_CLASS(insn->code) == BPF_ALU64);
1388 /* imul dst_reg, src_reg */
1389 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1393 case BPF_ALU | BPF_LSH | BPF_K:
1394 case BPF_ALU | BPF_RSH | BPF_K:
1395 case BPF_ALU | BPF_ARSH | BPF_K:
1396 case BPF_ALU64 | BPF_LSH | BPF_K:
1397 case BPF_ALU64 | BPF_RSH | BPF_K:
1398 case BPF_ALU64 | BPF_ARSH | BPF_K:
1399 maybe_emit_1mod(&prog, dst_reg,
1400 BPF_CLASS(insn->code) == BPF_ALU64);
1402 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1404 EMIT2(0xD1, add_1reg(b3, dst_reg));
1406 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1409 case BPF_ALU | BPF_LSH | BPF_X:
1410 case BPF_ALU | BPF_RSH | BPF_X:
1411 case BPF_ALU | BPF_ARSH | BPF_X:
1412 case BPF_ALU64 | BPF_LSH | BPF_X:
1413 case BPF_ALU64 | BPF_RSH | BPF_X:
1414 case BPF_ALU64 | BPF_ARSH | BPF_X:
1415 /* BMI2 shifts aren't better when shift count is already in rcx */
1416 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1417 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1418 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1421 switch (BPF_OP(insn->code)) {
1423 op = 1; /* prefix 0x66 */
1426 op = 3; /* prefix 0xf2 */
1429 op = 2; /* prefix 0xf3 */
1433 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1438 if (src_reg != BPF_REG_4) { /* common case */
1439 /* Check for bad case when dst_reg == rcx */
1440 if (dst_reg == BPF_REG_4) {
1441 /* mov r11, dst_reg */
1442 EMIT_mov(AUX_REG, dst_reg);
1445 EMIT1(0x51); /* push rcx */
1447 /* mov rcx, src_reg */
1448 EMIT_mov(BPF_REG_4, src_reg);
1451 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1452 maybe_emit_1mod(&prog, dst_reg,
1453 BPF_CLASS(insn->code) == BPF_ALU64);
1455 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1456 EMIT2(0xD3, add_1reg(b3, dst_reg));
1458 if (src_reg != BPF_REG_4) {
1459 if (insn->dst_reg == BPF_REG_4)
1460 /* mov dst_reg, r11 */
1461 EMIT_mov(insn->dst_reg, AUX_REG);
1463 EMIT1(0x59); /* pop rcx */
1468 case BPF_ALU | BPF_END | BPF_FROM_BE:
1469 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1472 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1474 if (is_ereg(dst_reg))
1476 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1478 /* Emit 'movzwl eax, ax' */
1479 if (is_ereg(dst_reg))
1480 EMIT3(0x45, 0x0F, 0xB7);
1483 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1486 /* Emit 'bswap eax' to swap lower 4 bytes */
1487 if (is_ereg(dst_reg))
1491 EMIT1(add_1reg(0xC8, dst_reg));
1494 /* Emit 'bswap rax' to swap 8 bytes */
1495 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1496 add_1reg(0xC8, dst_reg));
1501 case BPF_ALU | BPF_END | BPF_FROM_LE:
1505 * Emit 'movzwl eax, ax' to zero extend 16-bit
1508 if (is_ereg(dst_reg))
1509 EMIT3(0x45, 0x0F, 0xB7);
1512 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1515 /* Emit 'mov eax, eax' to clear upper 32-bits */
1516 if (is_ereg(dst_reg))
1518 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1526 /* speculation barrier */
1527 case BPF_ST | BPF_NOSPEC:
1531 /* ST: *(u8*)(dst_reg + off) = imm */
1532 case BPF_ST | BPF_MEM | BPF_B:
1533 if (is_ereg(dst_reg))
1538 case BPF_ST | BPF_MEM | BPF_H:
1539 if (is_ereg(dst_reg))
1540 EMIT3(0x66, 0x41, 0xC7);
1544 case BPF_ST | BPF_MEM | BPF_W:
1545 if (is_ereg(dst_reg))
1550 case BPF_ST | BPF_MEM | BPF_DW:
1551 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1553 st: if (is_imm8(insn->off))
1554 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1556 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1558 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1561 /* STX: *(u8*)(dst_reg + off) = src_reg */
1562 case BPF_STX | BPF_MEM | BPF_B:
1563 case BPF_STX | BPF_MEM | BPF_H:
1564 case BPF_STX | BPF_MEM | BPF_W:
1565 case BPF_STX | BPF_MEM | BPF_DW:
1566 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1569 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1570 case BPF_LDX | BPF_MEM | BPF_B:
1571 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1572 case BPF_LDX | BPF_MEM | BPF_H:
1573 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1574 case BPF_LDX | BPF_MEM | BPF_W:
1575 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1576 case BPF_LDX | BPF_MEM | BPF_DW:
1577 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1578 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1579 case BPF_LDX | BPF_MEMSX | BPF_B:
1580 case BPF_LDX | BPF_MEMSX | BPF_H:
1581 case BPF_LDX | BPF_MEMSX | BPF_W:
1582 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1583 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1584 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1585 insn_off = insn->off;
1587 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1588 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1589 /* Conservatively check that src_reg + insn->off is a kernel address:
1590 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1591 * src_reg is used as scratch for src_reg += insn->off and restored
1592 * after emit_ldx if necessary
1595 u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1598 /* At end of these emitted checks, insn->off will have been added
1599 * to src_reg, so no need to do relative load with insn->off offset
1603 /* movabsq r11, limit */
1604 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1605 EMIT((u32)limit, 4);
1606 EMIT(limit >> 32, 4);
1609 /* add src_reg, insn->off */
1610 maybe_emit_1mod(&prog, src_reg, true);
1611 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1614 /* cmp src_reg, r11 */
1615 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1616 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1618 /* if unsigned '>=', goto load */
1622 /* xor dst_reg, dst_reg */
1623 emit_mov_imm32(&prog, false, dst_reg, 0);
1624 /* jmp byte_after_ldx */
1627 /* populate jmp_offset for JAE above to jump to start_of_ldx */
1628 start_of_ldx = prog;
1629 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1631 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1632 BPF_MODE(insn->code) == BPF_MEMSX)
1633 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1635 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1636 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1637 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1638 struct exception_table_entry *ex;
1639 u8 *_insn = image + proglen + (start_of_ldx - temp);
1642 /* populate jmp_offset for JMP above */
1643 start_of_ldx[-1] = prog - start_of_ldx;
1645 if (insn->off && src_reg != dst_reg) {
1646 /* sub src_reg, insn->off
1647 * Restore src_reg after "add src_reg, insn->off" in prev
1648 * if statement. But if src_reg == dst_reg, emit_ldx
1649 * above already clobbered src_reg, so no need to restore.
1650 * If add src_reg, insn->off was unnecessary, no need to
1653 maybe_emit_1mod(&prog, src_reg, true);
1654 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1657 if (!bpf_prog->aux->extable)
1660 if (excnt >= bpf_prog->aux->num_exentries) {
1661 pr_err("ex gen bug\n");
1664 ex = &bpf_prog->aux->extable[excnt++];
1666 delta = _insn - (u8 *)&ex->insn;
1667 if (!is_simm32(delta)) {
1668 pr_err("extable->insn doesn't fit into 32-bit\n");
1671 /* switch ex to rw buffer for writes */
1672 ex = (void *)rw_image + ((void *)ex - (void *)image);
1676 ex->data = EX_TYPE_BPF;
1678 if (dst_reg > BPF_REG_9) {
1679 pr_err("verifier error\n");
1683 * Compute size of x86 insn and its target dest x86 register.
1684 * ex_handler_bpf() will use lower 8 bits to adjust
1685 * pt_regs->ip to jump over this x86 instruction
1686 * and upper bits to figure out which pt_regs to zero out.
1687 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1688 * of 4 bytes will be ignored and rbx will be zero inited.
1690 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1694 case BPF_STX | BPF_ATOMIC | BPF_W:
1695 case BPF_STX | BPF_ATOMIC | BPF_DW:
1696 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1697 insn->imm == (BPF_OR | BPF_FETCH) ||
1698 insn->imm == (BPF_XOR | BPF_FETCH)) {
1699 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1700 u32 real_src_reg = src_reg;
1701 u32 real_dst_reg = dst_reg;
1705 * Can't be implemented with a single x86 insn.
1706 * Need to do a CMPXCHG loop.
1709 /* Will need RAX as a CMPXCHG operand so save R0 */
1710 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1711 if (src_reg == BPF_REG_0)
1712 real_src_reg = BPF_REG_AX;
1713 if (dst_reg == BPF_REG_0)
1714 real_dst_reg = BPF_REG_AX;
1716 branch_target = prog;
1717 /* Load old value */
1718 emit_ldx(&prog, BPF_SIZE(insn->code),
1719 BPF_REG_0, real_dst_reg, insn->off);
1721 * Perform the (commutative) operation locally,
1722 * put the result in the AUX_REG.
1724 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1725 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1726 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1727 add_2reg(0xC0, AUX_REG, real_src_reg));
1728 /* Attempt to swap in new value */
1729 err = emit_atomic(&prog, BPF_CMPXCHG,
1730 real_dst_reg, AUX_REG,
1732 BPF_SIZE(insn->code));
1736 * ZF tells us whether we won the race. If it's
1737 * cleared we need to try again.
1739 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1740 /* Return the pre-modification value */
1741 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1742 /* Restore R0 after clobbering RAX */
1743 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1747 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1748 insn->off, BPF_SIZE(insn->code));
1754 case BPF_JMP | BPF_CALL: {
1757 func = (u8 *) __bpf_call_base + imm32;
1758 if (tail_call_reachable) {
1759 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1762 offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1766 offs = x86_call_depth_emit_accounting(&prog, func);
1768 if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1773 case BPF_JMP | BPF_TAIL_CALL:
1775 emit_bpf_tail_call_direct(bpf_prog,
1776 &bpf_prog->aux->poke_tab[imm32 - 1],
1777 &prog, image + addrs[i - 1],
1779 bpf_prog->aux->stack_depth,
1782 emit_bpf_tail_call_indirect(bpf_prog,
1785 bpf_prog->aux->stack_depth,
1786 image + addrs[i - 1],
1791 case BPF_JMP | BPF_JEQ | BPF_X:
1792 case BPF_JMP | BPF_JNE | BPF_X:
1793 case BPF_JMP | BPF_JGT | BPF_X:
1794 case BPF_JMP | BPF_JLT | BPF_X:
1795 case BPF_JMP | BPF_JGE | BPF_X:
1796 case BPF_JMP | BPF_JLE | BPF_X:
1797 case BPF_JMP | BPF_JSGT | BPF_X:
1798 case BPF_JMP | BPF_JSLT | BPF_X:
1799 case BPF_JMP | BPF_JSGE | BPF_X:
1800 case BPF_JMP | BPF_JSLE | BPF_X:
1801 case BPF_JMP32 | BPF_JEQ | BPF_X:
1802 case BPF_JMP32 | BPF_JNE | BPF_X:
1803 case BPF_JMP32 | BPF_JGT | BPF_X:
1804 case BPF_JMP32 | BPF_JLT | BPF_X:
1805 case BPF_JMP32 | BPF_JGE | BPF_X:
1806 case BPF_JMP32 | BPF_JLE | BPF_X:
1807 case BPF_JMP32 | BPF_JSGT | BPF_X:
1808 case BPF_JMP32 | BPF_JSLT | BPF_X:
1809 case BPF_JMP32 | BPF_JSGE | BPF_X:
1810 case BPF_JMP32 | BPF_JSLE | BPF_X:
1811 /* cmp dst_reg, src_reg */
1812 maybe_emit_mod(&prog, dst_reg, src_reg,
1813 BPF_CLASS(insn->code) == BPF_JMP);
1814 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1817 case BPF_JMP | BPF_JSET | BPF_X:
1818 case BPF_JMP32 | BPF_JSET | BPF_X:
1819 /* test dst_reg, src_reg */
1820 maybe_emit_mod(&prog, dst_reg, src_reg,
1821 BPF_CLASS(insn->code) == BPF_JMP);
1822 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1825 case BPF_JMP | BPF_JSET | BPF_K:
1826 case BPF_JMP32 | BPF_JSET | BPF_K:
1827 /* test dst_reg, imm32 */
1828 maybe_emit_1mod(&prog, dst_reg,
1829 BPF_CLASS(insn->code) == BPF_JMP);
1830 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1833 case BPF_JMP | BPF_JEQ | BPF_K:
1834 case BPF_JMP | BPF_JNE | BPF_K:
1835 case BPF_JMP | BPF_JGT | BPF_K:
1836 case BPF_JMP | BPF_JLT | BPF_K:
1837 case BPF_JMP | BPF_JGE | BPF_K:
1838 case BPF_JMP | BPF_JLE | BPF_K:
1839 case BPF_JMP | BPF_JSGT | BPF_K:
1840 case BPF_JMP | BPF_JSLT | BPF_K:
1841 case BPF_JMP | BPF_JSGE | BPF_K:
1842 case BPF_JMP | BPF_JSLE | BPF_K:
1843 case BPF_JMP32 | BPF_JEQ | BPF_K:
1844 case BPF_JMP32 | BPF_JNE | BPF_K:
1845 case BPF_JMP32 | BPF_JGT | BPF_K:
1846 case BPF_JMP32 | BPF_JLT | BPF_K:
1847 case BPF_JMP32 | BPF_JGE | BPF_K:
1848 case BPF_JMP32 | BPF_JLE | BPF_K:
1849 case BPF_JMP32 | BPF_JSGT | BPF_K:
1850 case BPF_JMP32 | BPF_JSLT | BPF_K:
1851 case BPF_JMP32 | BPF_JSGE | BPF_K:
1852 case BPF_JMP32 | BPF_JSLE | BPF_K:
1853 /* test dst_reg, dst_reg to save one extra byte */
1855 maybe_emit_mod(&prog, dst_reg, dst_reg,
1856 BPF_CLASS(insn->code) == BPF_JMP);
1857 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1861 /* cmp dst_reg, imm8/32 */
1862 maybe_emit_1mod(&prog, dst_reg,
1863 BPF_CLASS(insn->code) == BPF_JMP);
1866 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1868 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1870 emit_cond_jmp: /* Convert BPF opcode to x86 */
1871 switch (BPF_OP(insn->code)) {
1880 /* GT is unsigned '>', JA in x86 */
1884 /* LT is unsigned '<', JB in x86 */
1888 /* GE is unsigned '>=', JAE in x86 */
1892 /* LE is unsigned '<=', JBE in x86 */
1896 /* Signed '>', GT in x86 */
1900 /* Signed '<', LT in x86 */
1904 /* Signed '>=', GE in x86 */
1908 /* Signed '<=', LE in x86 */
1911 default: /* to silence GCC warning */
1914 jmp_offset = addrs[i + insn->off] - addrs[i];
1915 if (is_imm8(jmp_offset)) {
1917 /* To keep the jmp_offset valid, the extra bytes are
1918 * padded before the jump insn, so we subtract the
1919 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1921 * If the previous pass already emits an imm8
1922 * jmp_cond, then this BPF insn won't shrink, so
1925 * On the other hand, if the previous pass emits an
1926 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1927 * keep the image from shrinking further.
1929 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1930 * is 2 bytes, so the size difference is 4 bytes.
1932 nops = INSN_SZ_DIFF - 2;
1933 if (nops != 0 && nops != 4) {
1934 pr_err("unexpected jmp_cond padding: %d bytes\n",
1938 emit_nops(&prog, nops);
1940 EMIT2(jmp_cond, jmp_offset);
1941 } else if (is_simm32(jmp_offset)) {
1942 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1944 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1950 case BPF_JMP | BPF_JA:
1951 case BPF_JMP32 | BPF_JA:
1952 if (BPF_CLASS(insn->code) == BPF_JMP) {
1953 if (insn->off == -1)
1954 /* -1 jmp instructions will always jump
1955 * backwards two bytes. Explicitly handling
1956 * this case avoids wasting too many passes
1957 * when there are long sequences of replaced
1962 jmp_offset = addrs[i + insn->off] - addrs[i];
1964 if (insn->imm == -1)
1967 jmp_offset = addrs[i + insn->imm] - addrs[i];
1972 * If jmp_padding is enabled, the extra nops will
1973 * be inserted. Otherwise, optimize out nop jumps.
1976 /* There are 3 possible conditions.
1977 * (1) This BPF_JA is already optimized out in
1978 * the previous run, so there is no need
1979 * to pad any extra byte (0 byte).
1980 * (2) The previous pass emits an imm8 jmp,
1981 * so we pad 2 bytes to match the previous
1983 * (3) Similarly, the previous pass emits an
1984 * imm32 jmp, and 5 bytes is padded.
1986 nops = INSN_SZ_DIFF;
1987 if (nops != 0 && nops != 2 && nops != 5) {
1988 pr_err("unexpected nop jump padding: %d bytes\n",
1992 emit_nops(&prog, nops);
1997 if (is_imm8(jmp_offset)) {
1999 /* To avoid breaking jmp_offset, the extra bytes
2000 * are padded before the actual jmp insn, so
2001 * 2 bytes is subtracted from INSN_SZ_DIFF.
2003 * If the previous pass already emits an imm8
2004 * jmp, there is nothing to pad (0 byte).
2006 * If it emits an imm32 jmp (5 bytes) previously
2007 * and now an imm8 jmp (2 bytes), then we pad
2008 * (5 - 2 = 3) bytes to stop the image from
2009 * shrinking further.
2011 nops = INSN_SZ_DIFF - 2;
2012 if (nops != 0 && nops != 3) {
2013 pr_err("unexpected jump padding: %d bytes\n",
2017 emit_nops(&prog, INSN_SZ_DIFF - 2);
2019 EMIT2(0xEB, jmp_offset);
2020 } else if (is_simm32(jmp_offset)) {
2021 EMIT1_off32(0xE9, jmp_offset);
2023 pr_err("jmp gen bug %llx\n", jmp_offset);
2028 case BPF_JMP | BPF_EXIT:
2030 jmp_offset = ctx->cleanup_addr - addrs[i];
2034 /* Update cleanup_addr */
2035 ctx->cleanup_addr = proglen;
2036 if (bpf_prog->aux->exception_boundary) {
2037 pop_callee_regs(&prog, all_callee_regs_used);
2040 pop_callee_regs(&prog, callee_regs_used);
2042 EMIT1(0xC9); /* leave */
2043 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2048 * By design x86-64 JIT should support all BPF instructions.
2049 * This error will be seen if new instruction was added
2050 * to the interpreter, but not to the JIT, or if there is
2053 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2058 if (ilen > BPF_MAX_INSN_SIZE) {
2059 pr_err("bpf_jit: fatal insn size error\n");
2065 * When populating the image, assert that:
2067 * i) We do not write beyond the allocated space, and
2068 * ii) addrs[i] did not change from the prior run, in order
2069 * to validate assumptions made for computing branch
2072 if (unlikely(proglen + ilen > oldproglen ||
2073 proglen + ilen != addrs[i])) {
2074 pr_err("bpf_jit: fatal error\n");
2077 memcpy(rw_image + proglen, temp, ilen);
2084 if (image && excnt != bpf_prog->aux->num_exentries) {
2085 pr_err("extable is not populated\n");
2091 static void clean_stack_garbage(const struct btf_func_model *m,
2092 u8 **pprog, int nr_stack_slots,
2098 /* Generally speaking, the compiler will pass the arguments
2099 * on-stack with "push" instruction, which will take 8-byte
2100 * on the stack. In this case, there won't be garbage values
2101 * while we copy the arguments from origin stack frame to current
2104 * However, sometimes the compiler will only allocate 4-byte on
2105 * the stack for the arguments. For now, this case will only
2106 * happen if there is only one argument on-stack and its size
2107 * not more than 4 byte. In this case, there will be garbage
2108 * values on the upper 4-byte where we store the argument on
2109 * current stack frame.
2111 * arguments on origin stack:
2113 * stack_arg_1(4-byte) xxx(4-byte)
2117 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2119 * and the xxx is the garbage values which we should clean here.
2121 if (nr_stack_slots != 1)
2124 /* the size of the last argument */
2125 arg_size = m->arg_size[m->nr_args - 1];
2126 if (arg_size <= 4) {
2127 off = -(stack_size - 4);
2129 /* mov DWORD PTR [rbp + off], 0 */
2131 EMIT2_off32(0xC7, 0x85, off);
2133 EMIT3(0xC7, 0x45, off);
2139 /* get the count of the regs that are used to pass arguments */
2140 static int get_nr_used_regs(const struct btf_func_model *m)
2142 int i, arg_regs, nr_used_regs = 0;
2144 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2145 arg_regs = (m->arg_size[i] + 7) / 8;
2146 if (nr_used_regs + arg_regs <= 6)
2147 nr_used_regs += arg_regs;
2149 if (nr_used_regs >= 6)
2153 return nr_used_regs;
2156 static void save_args(const struct btf_func_model *m, u8 **prog,
2157 int stack_size, bool for_call_origin)
2159 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2162 /* Store function arguments to stack.
2163 * For a function that accepts two pointers the sequence will be:
2164 * mov QWORD PTR [rbp-0x10],rdi
2165 * mov QWORD PTR [rbp-0x8],rsi
2167 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2168 arg_regs = (m->arg_size[i] + 7) / 8;
2170 /* According to the research of Yonghong, struct members
2171 * should be all in register or all on the stack.
2172 * Meanwhile, the compiler will pass the argument on regs
2173 * if the remaining regs can hold the argument.
2175 * Disorder of the args can happen. For example:
2177 * struct foo_struct {
2181 * int foo(char, char, char, char, char, struct foo_struct,
2184 * the arg1-5,arg7 will be passed by regs, and arg6 will
2187 if (nr_regs + arg_regs > 6) {
2188 /* copy function arguments from origin stack frame
2189 * into current stack frame.
2191 * The starting address of the arguments on-stack
2193 * rbp + 8(push rbp) +
2194 * 8(return addr of origin call) +
2195 * 8(return addr of the caller)
2196 * which means: rbp + 24
2198 for (j = 0; j < arg_regs; j++) {
2199 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2200 nr_stack_slots * 8 + 0x18);
2201 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2204 if (!nr_stack_slots)
2205 first_off = stack_size;
2210 /* Only copy the arguments on-stack to current
2211 * 'stack_size' and ignore the regs, used to
2212 * prepare the arguments on-stack for orign call.
2214 if (for_call_origin) {
2215 nr_regs += arg_regs;
2219 /* copy the arguments from regs into stack */
2220 for (j = 0; j < arg_regs; j++) {
2221 emit_stx(prog, BPF_DW, BPF_REG_FP,
2222 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2230 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2233 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2236 int i, j, arg_regs, nr_regs = 0;
2238 /* Restore function arguments from stack.
2239 * For a function that accepts two pointers the sequence will be:
2240 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2241 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2243 * The logic here is similar to what we do in save_args()
2245 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2246 arg_regs = (m->arg_size[i] + 7) / 8;
2247 if (nr_regs + arg_regs <= 6) {
2248 for (j = 0; j < arg_regs; j++) {
2249 emit_ldx(prog, BPF_DW,
2250 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2257 stack_size -= 8 * arg_regs;
2265 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2266 struct bpf_tramp_link *l, int stack_size,
2267 int run_ctx_off, bool save_ret,
2268 void *image, void *rw_image)
2272 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2273 struct bpf_prog *p = l->link.prog;
2274 u64 cookie = l->cookie;
2276 /* mov rdi, cookie */
2277 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2279 /* Prepare struct bpf_tramp_run_ctx.
2281 * bpf_tramp_run_ctx is already preserved by
2282 * arch_prepare_bpf_trampoline().
2284 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2286 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2288 /* arg1: mov rdi, progs[i] */
2289 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2290 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2291 if (!is_imm8(-run_ctx_off))
2292 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2294 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2296 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2298 /* remember prog start time returned by __bpf_prog_enter */
2299 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2301 /* if (__bpf_prog_enter*(prog) == 0)
2302 * goto skip_exec_of_prog;
2304 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2305 /* emit 2 nops that will be replaced with JE insn */
2307 emit_nops(&prog, 2);
2309 /* arg1: lea rdi, [rbp - stack_size] */
2310 if (!is_imm8(-stack_size))
2311 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2313 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2314 /* arg2: progs[i]->insnsi for interpreter */
2316 emit_mov_imm64(&prog, BPF_REG_2,
2317 (long) p->insnsi >> 32,
2318 (u32) (long) p->insnsi);
2319 /* call JITed bpf program or interpreter */
2320 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2324 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2325 * of the previous call which is then passed on the stack to
2326 * the next BPF program.
2328 * BPF_TRAMP_FENTRY trampoline may need to return the return
2329 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2332 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2334 /* replace 2 nops with JE insn, since jmp target is known */
2335 jmp_insn[0] = X86_JE;
2336 jmp_insn[1] = prog - jmp_insn - 2;
2338 /* arg1: mov rdi, progs[i] */
2339 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2340 /* arg2: mov rsi, rbx <- start time in nsec */
2341 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2342 /* arg3: lea rdx, [rbp - run_ctx_off] */
2343 if (!is_imm8(-run_ctx_off))
2344 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2346 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2347 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2354 static void emit_align(u8 **pprog, u32 align)
2356 u8 *target, *prog = *pprog;
2358 target = PTR_ALIGN(prog, align);
2360 emit_nops(&prog, target - prog);
2365 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2370 offset = func - (ip + 2 + 4);
2371 if (!is_simm32(offset)) {
2372 pr_err("Target %p is out of range\n", func);
2375 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2380 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2381 struct bpf_tramp_links *tl, int stack_size,
2382 int run_ctx_off, bool save_ret,
2383 void *image, void *rw_image)
2388 for (i = 0; i < tl->nr_links; i++) {
2389 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2390 run_ctx_off, save_ret, image, rw_image))
2397 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2398 struct bpf_tramp_links *tl, int stack_size,
2399 int run_ctx_off, u8 **branches,
2400 void *image, void *rw_image)
2405 /* The first fmod_ret program will receive a garbage return value.
2406 * Set this to 0 to avoid confusing the program.
2408 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2409 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2410 for (i = 0; i < tl->nr_links; i++) {
2411 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2415 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2416 * if (*(u64 *)(rbp - 8) != 0)
2419 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2420 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2422 /* Save the location of the branch and Generate 6 nops
2423 * (4 bytes for an offset and 2 bytes for the jump) These nops
2424 * are replaced with a conditional jump once do_fexit (i.e. the
2425 * start of the fexit invocation) is finalized.
2428 emit_nops(&prog, 4 + 2);
2436 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2437 * its 'struct btf_func_model' will be nr_args=2
2438 * The assembly code when eth_type_trans is executing after trampoline:
2442 * sub rsp, 16 // space for skb and dev
2443 * push rbx // temp regs to pass start time
2444 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2445 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2446 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2447 * mov rbx, rax // remember start time in bpf stats are enabled
2448 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2449 * call addr_of_jited_FENTRY_prog
2450 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2451 * mov rsi, rbx // prog start time
2452 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2453 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2454 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2459 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2460 * replaced with 'call generated_bpf_trampoline'. When it returns
2461 * eth_type_trans will continue executing with original skb and dev pointers.
2463 * The assembly code when eth_type_trans is called from trampoline:
2467 * sub rsp, 24 // space for skb, dev, return value
2468 * push rbx // temp regs to pass start time
2469 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2470 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2471 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2472 * mov rbx, rax // remember start time if bpf stats are enabled
2473 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2474 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2475 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2476 * mov rsi, rbx // prog start time
2477 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2478 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2479 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2480 * call eth_type_trans+5 // execute body of eth_type_trans
2481 * mov qword ptr [rbp - 8], rax // save return value
2482 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2483 * mov rbx, rax // remember start time in bpf stats are enabled
2484 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2485 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2486 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2487 * mov rsi, rbx // prog start time
2488 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2489 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2492 * add rsp, 8 // skip eth_type_trans's frame
2493 * ret // return to its caller
2495 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2496 void *rw_image_end, void *image,
2497 const struct btf_func_model *m, u32 flags,
2498 struct bpf_tramp_links *tlinks,
2501 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2502 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2503 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2504 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2505 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2506 void *orig_call = func_addr;
2507 u8 **branches = NULL;
2512 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2513 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2514 * because @func_addr.
2516 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2517 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2519 /* extra registers for struct arguments */
2520 for (i = 0; i < m->nr_args; i++) {
2521 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2522 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2525 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2526 * are passed through regs, the remains are through stack.
2528 if (nr_regs > MAX_BPF_FUNC_ARGS)
2531 /* Generated trampoline stack layout:
2533 * RBP + 8 [ return address ]
2536 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2537 * BPF_TRAMP_F_RET_FENTRY_RET flags
2539 * [ reg_argN ] always
2541 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2543 * RBP - nregs_off [ regs count ] always
2545 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2547 * RBP - rbx_off [ rbx value ] always
2549 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2551 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2554 * RBP - arg_stack_off [ stack_arg1 ]
2555 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2558 /* room for return value of orig_call or fentry prog */
2559 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2563 stack_size += nr_regs * 8;
2564 regs_off = stack_size;
2568 nregs_off = stack_size;
2570 if (flags & BPF_TRAMP_F_IP_ARG)
2571 stack_size += 8; /* room for IP address argument */
2573 ip_off = stack_size;
2576 rbx_off = stack_size;
2578 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2579 run_ctx_off = stack_size;
2581 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2582 /* the space that used to pass arguments on-stack */
2583 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2584 /* make sure the stack pointer is 16-byte aligned if we
2585 * need pass arguments on stack, which means
2586 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2587 * should be 16-byte aligned. Following code depend on
2588 * that stack_size is already 8-byte aligned.
2590 stack_size += (stack_size % 16) ? 0 : 8;
2593 arg_stack_off = stack_size;
2595 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2596 /* skip patched call instruction and point orig_call to actual
2597 * body of the kernel function.
2599 if (is_endbr(*(u32 *)orig_call))
2600 orig_call += ENDBR_INSN_SIZE;
2601 orig_call += X86_PATCH_SIZE;
2606 if (flags & BPF_TRAMP_F_INDIRECT) {
2608 * Indirect call for bpf_struct_ops
2610 emit_cfi(&prog, cfi_get_func_hash(func_addr));
2613 * Direct-call fentry stub, as such it needs accounting for the
2616 x86_call_depth_emit_accounting(&prog, NULL);
2618 EMIT1(0x55); /* push rbp */
2619 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2620 if (!is_imm8(stack_size)) {
2621 /* sub rsp, stack_size */
2622 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2624 /* sub rsp, stack_size */
2625 EMIT4(0x48, 0x83, 0xEC, stack_size);
2627 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2628 EMIT1(0x50); /* push rax */
2629 /* mov QWORD PTR [rbp - rbx_off], rbx */
2630 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2632 /* Store number of argument registers of the traced function:
2634 * mov QWORD PTR [rbp - nregs_off], rax
2636 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2637 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2639 if (flags & BPF_TRAMP_F_IP_ARG) {
2640 /* Store IP address of the traced function:
2641 * movabsq rax, func_addr
2642 * mov QWORD PTR [rbp - ip_off], rax
2644 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2645 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2648 save_args(m, &prog, regs_off, false);
2650 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2651 /* arg1: mov rdi, im */
2652 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2653 if (emit_rsb_call(&prog, __bpf_tramp_enter,
2654 image + (prog - (u8 *)rw_image))) {
2660 if (fentry->nr_links) {
2661 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2662 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
2666 if (fmod_ret->nr_links) {
2667 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2672 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2673 run_ctx_off, branches, image, rw_image)) {
2679 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2680 restore_regs(m, &prog, regs_off);
2681 save_args(m, &prog, arg_stack_off, true);
2683 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2684 /* Before calling the original function, restore the
2685 * tail_call_cnt from stack to rax.
2687 RESTORE_TAIL_CALL_CNT(stack_size);
2690 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2691 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2692 EMIT2(0xff, 0xd3); /* call *rbx */
2694 /* call original function */
2695 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
2700 /* remember return value in a stack for bpf prog to access */
2701 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2702 im->ip_after_call = image + (prog - (u8 *)rw_image);
2703 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2704 prog += X86_PATCH_SIZE;
2707 if (fmod_ret->nr_links) {
2708 /* From Intel 64 and IA-32 Architectures Optimization
2709 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2710 * Coding Rule 11: All branch targets should be 16-byte
2713 emit_align(&prog, 16);
2714 /* Update the branches saved in invoke_bpf_mod_ret with the
2715 * aligned address of do_fexit.
2717 for (i = 0; i < fmod_ret->nr_links; i++) {
2718 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
2719 image + (branches[i] - (u8 *)rw_image), X86_JNE);
2723 if (fexit->nr_links) {
2724 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
2725 false, image, rw_image)) {
2731 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2732 restore_regs(m, &prog, regs_off);
2734 /* This needs to be done regardless. If there were fmod_ret programs,
2735 * the return value is only updated on the stack and still needs to be
2738 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2739 im->ip_epilogue = image + (prog - (u8 *)rw_image);
2740 /* arg1: mov rdi, im */
2741 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2742 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
2746 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2747 /* Before running the original function, restore the
2748 * tail_call_cnt from stack to rax.
2750 RESTORE_TAIL_CALL_CNT(stack_size);
2753 /* restore return value of orig_call or fentry prog back into RAX */
2755 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2757 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2758 EMIT1(0xC9); /* leave */
2759 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2760 /* skip our return address and return to parent */
2761 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2763 emit_return(&prog, image + (prog - (u8 *)rw_image));
2764 /* Make sure the trampoline generation logic doesn't overflow */
2765 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
2769 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
2776 void *arch_alloc_bpf_trampoline(unsigned int size)
2778 return bpf_prog_pack_alloc(size, jit_fill_hole);
2781 void arch_free_bpf_trampoline(void *image, unsigned int size)
2783 bpf_prog_pack_free(image, size);
2786 void arch_protect_bpf_trampoline(void *image, unsigned int size)
2790 void arch_unprotect_bpf_trampoline(void *image, unsigned int size)
2794 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2795 const struct btf_func_model *m, u32 flags,
2796 struct bpf_tramp_links *tlinks,
2799 void *rw_image, *tmp;
2801 u32 size = image_end - image;
2803 /* rw_image doesn't need to be in module memory range, so we can
2806 rw_image = kvmalloc(size, GFP_KERNEL);
2810 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
2811 flags, tlinks, func_addr);
2815 tmp = bpf_arch_text_copy(image, rw_image, size);
2823 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2824 struct bpf_tramp_links *tlinks, void *func_addr)
2826 struct bpf_tramp_image im;
2830 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
2831 * This will NOT cause fragmentation in direct map, as we do not
2832 * call set_memory_*() on this buffer.
2834 * We cannot use kvmalloc here, because we need image to be in
2835 * module memory range.
2837 image = bpf_jit_alloc_exec(PAGE_SIZE);
2841 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
2842 m, flags, tlinks, func_addr);
2843 bpf_jit_free_exec(image);
2847 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2849 u8 *jg_reloc, *prog = *pprog;
2850 int pivot, err, jg_bytes = 1;
2854 /* Leaf node of recursion, i.e. not a range of indices
2857 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2858 if (!is_simm32(progs[a]))
2860 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2862 err = emit_cond_near_jump(&prog, /* je func */
2863 (void *)progs[a], image + (prog - buf),
2868 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2874 /* Not a leaf node, so we pivot, and recursively descend into
2875 * the lower and upper ranges.
2877 pivot = (b - a) / 2;
2878 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2879 if (!is_simm32(progs[a + pivot]))
2881 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2883 if (pivot > 2) { /* jg upper_part */
2884 /* Require near jump. */
2886 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2892 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2897 /* From Intel 64 and IA-32 Architectures Optimization
2898 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2899 * Coding Rule 11: All branch targets should be 16-byte
2902 emit_align(&prog, 16);
2903 jg_offset = prog - jg_reloc;
2904 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2906 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2907 b, progs, image, buf);
2915 static int cmp_ips(const void *a, const void *b)
2927 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2931 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2932 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2935 struct x64_jit_data {
2936 struct bpf_binary_header *rw_header;
2937 struct bpf_binary_header *header;
2941 struct jit_context ctx;
2944 #define MAX_PASSES 20
2945 #define PADDING_PASSES (MAX_PASSES - 5)
2947 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2949 struct bpf_binary_header *rw_header = NULL;
2950 struct bpf_binary_header *header = NULL;
2951 struct bpf_prog *tmp, *orig_prog = prog;
2952 struct x64_jit_data *jit_data;
2953 int proglen, oldproglen = 0;
2954 struct jit_context ctx = {};
2955 bool tmp_blinded = false;
2956 bool extra_pass = false;
2957 bool padding = false;
2958 u8 *rw_image = NULL;
2964 if (!prog->jit_requested)
2967 tmp = bpf_jit_blind_constants(prog);
2969 * If blinding was requested and we failed during blinding,
2970 * we must fall back to the interpreter.
2979 jit_data = prog->aux->jit_data;
2981 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2986 prog->aux->jit_data = jit_data;
2988 addrs = jit_data->addrs;
2990 ctx = jit_data->ctx;
2991 oldproglen = jit_data->proglen;
2992 image = jit_data->image;
2993 header = jit_data->header;
2994 rw_header = jit_data->rw_header;
2995 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2998 goto skip_init_addrs;
3000 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3007 * Before first pass, make a rough estimation of addrs[]
3008 * each BPF instruction is translated to less than 64 bytes
3010 for (proglen = 0, i = 0; i <= prog->len; i++) {
3014 ctx.cleanup_addr = proglen;
3018 * JITed image shrinks with every pass and the loop iterates
3019 * until the image stops shrinking. Very large BPF programs
3020 * may converge on the last pass. In such case do one more
3021 * pass to emit the final image.
3023 for (pass = 0; pass < MAX_PASSES || image; pass++) {
3024 if (!padding && pass >= PADDING_PASSES)
3026 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3031 bpf_arch_text_copy(&header->size, &rw_header->size,
3032 sizeof(rw_header->size));
3033 bpf_jit_binary_pack_free(header, rw_header);
3035 /* Fall back to interpreter mode */
3038 prog->bpf_func = NULL;
3040 prog->jited_len = 0;
3045 if (proglen != oldproglen) {
3046 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3047 proglen, oldproglen);
3052 if (proglen == oldproglen) {
3054 * The number of entries in extable is the number of BPF_LDX
3055 * insns that access kernel memory via "pointer to BTF type".
3056 * The verifier changed their opcode from LDX|MEM|size
3057 * to LDX|PROBE_MEM|size to make JITing easier.
3059 u32 align = __alignof__(struct exception_table_entry);
3060 u32 extable_size = prog->aux->num_exentries *
3061 sizeof(struct exception_table_entry);
3063 /* allocate module memory for x86 insns and extable */
3064 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3065 &image, align, &rw_header, &rw_image,
3071 prog->aux->extable = (void *) image + roundup(proglen, align);
3073 oldproglen = proglen;
3077 if (bpf_jit_enable > 1)
3078 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3081 if (!prog->is_func || extra_pass) {
3083 * bpf_jit_binary_pack_finalize fails in two scenarios:
3084 * 1) header is not pointing to proper module memory;
3085 * 2) the arch doesn't support bpf_arch_text_copy().
3087 * Both cases are serious bugs and justify WARN_ON.
3089 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
3090 /* header has been freed */
3095 bpf_tail_call_direct_fixup(prog);
3097 jit_data->addrs = addrs;
3098 jit_data->ctx = ctx;
3099 jit_data->proglen = proglen;
3100 jit_data->image = image;
3101 jit_data->header = header;
3102 jit_data->rw_header = rw_header;
3105 * ctx.prog_offset is used when CFI preambles put code *before*
3106 * the function. See emit_cfi(). For FineIBT specifically this code
3107 * can also be executed and bpf_prog_kallsyms_add() will
3108 * generate an additional symbol to cover this, hence also
3109 * decrement proglen.
3111 prog->bpf_func = (void *)image + cfi_get_offset();
3113 prog->jited_len = proglen - cfi_get_offset();
3118 if (!image || !prog->is_func || extra_pass) {
3120 bpf_prog_fill_jited_linfo(prog, addrs + 1);
3124 prog->aux->jit_data = NULL;
3128 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3133 bool bpf_jit_supports_kfunc_call(void)
3138 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3140 if (text_poke_copy(dst, src, len) == NULL)
3141 return ERR_PTR(-EINVAL);
3145 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3146 bool bpf_jit_supports_subprog_tailcalls(void)
3151 void bpf_jit_free(struct bpf_prog *prog)
3154 struct x64_jit_data *jit_data = prog->aux->jit_data;
3155 struct bpf_binary_header *hdr;
3158 * If we fail the final pass of JIT (from jit_subprogs),
3159 * the program may not be finalized yet. Call finalize here
3160 * before freeing it.
3163 bpf_jit_binary_pack_finalize(prog, jit_data->header,
3164 jit_data->rw_header);
3165 kvfree(jit_data->addrs);
3168 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3169 hdr = bpf_jit_binary_pack_hdr(prog);
3170 bpf_jit_binary_pack_free(hdr, NULL);
3171 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3174 bpf_prog_unlock_free(prog);
3177 bool bpf_jit_supports_exceptions(void)
3179 /* We unwind through both kernel frames (starting from within bpf_throw
3180 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3181 * to walk kernel frames and reach BPF frames in the stack trace.
3183 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3186 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3188 #if defined(CONFIG_UNWINDER_ORC)
3189 struct unwind_state state;
3192 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3193 unwind_next_frame(&state)) {
3194 addr = unwind_get_return_address(&state);
3195 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3200 WARN(1, "verification of programs using bpf_throw should have failed\n");
3203 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3204 struct bpf_prog *new, struct bpf_prog *old)
3206 u8 *old_addr, *new_addr, *old_bypass_addr;
3209 old_bypass_addr = old ? NULL : poke->bypass_addr;
3210 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3211 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3214 * On program loading or teardown, the program's kallsym entry
3215 * might not be in place, so we use __bpf_arch_text_poke to skip
3216 * the kallsyms check.
3219 ret = __bpf_arch_text_poke(poke->tailcall_target,
3221 old_addr, new_addr);
3224 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3231 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3236 /* let other CPUs finish the execution of program
3237 * so that it will not possible to expose them
3238 * to invalid nop, stack unwind, nop state
3242 ret = __bpf_arch_text_poke(poke->tailcall_target,