]> Git Repo - J-linux.git/blob - arch/x86/net/bpf_jit_comp.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet ([email protected])
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26         if (len == 1)
27                 *ptr = bytes;
28         else if (len == 2)
29                 *(u16 *)ptr = bytes;
30         else {
31                 *(u32 *)ptr = bytes;
32                 barrier();
33         }
34         return ptr + len;
35 }
36
37 #define EMIT(bytes, len) \
38         do { prog = emit_code(prog, bytes, len); } while (0)
39
40 #define EMIT1(b1)               EMIT(b1, 1)
41 #define EMIT2(b1, b2)           EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)       EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44
45 #define EMIT1_off32(b1, off) \
46         do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48         do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50         do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52         do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR()            EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON()     EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61
62 static bool is_imm8(int value)
63 {
64         return value <= 127 && value >= -128;
65 }
66
67 /*
68  * Let us limit the positive offset to be <= 123.
69  * This is to ensure eventual jit convergence For the following patterns:
70  * ...
71  * pass4, final_proglen=4391:
72  *   ...
73  *   20e:    48 85 ff                test   rdi,rdi
74  *   211:    74 7d                   je     0x290
75  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
76  *   ...
77  *   289:    48 85 ff                test   rdi,rdi
78  *   28c:    74 17                   je     0x2a5
79  *   28e:    e9 7f ff ff ff          jmp    0x212
80  *   293:    bf 03 00 00 00          mov    edi,0x3
81  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
82  * and insn at 0x28e is 5-byte jmp insn with offset -129.
83  *
84  * pass5, final_proglen=4392:
85  *   ...
86  *   20e:    48 85 ff                test   rdi,rdi
87  *   211:    0f 84 80 00 00 00       je     0x297
88  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
89  *   ...
90  *   28d:    48 85 ff                test   rdi,rdi
91  *   290:    74 1a                   je     0x2ac
92  *   292:    eb 84                   jmp    0x218
93  *   294:    bf 03 00 00 00          mov    edi,0x3
94  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
95  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
96  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
97  * -124.
98  *
99  * pass6 will repeat the same code as in pass4 and this will prevent
100  * eventual convergence.
101  *
102  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
103  * cycle in the above. In the above example je offset <= 0x7c should work.
104  *
105  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
106  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
107  * avoid no convergence issue.
108  *
109  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
110  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
111  */
112 static bool is_imm8_jmp_offset(int value)
113 {
114         return value <= 123 && value >= -128;
115 }
116
117 static bool is_simm32(s64 value)
118 {
119         return value == (s64)(s32)value;
120 }
121
122 static bool is_uimm32(u64 value)
123 {
124         return value == (u64)(u32)value;
125 }
126
127 /* mov dst, src */
128 #define EMIT_mov(DST, SRC)                                                               \
129         do {                                                                             \
130                 if (DST != SRC)                                                          \
131                         EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
132         } while (0)
133
134 static int bpf_size_to_x86_bytes(int bpf_size)
135 {
136         if (bpf_size == BPF_W)
137                 return 4;
138         else if (bpf_size == BPF_H)
139                 return 2;
140         else if (bpf_size == BPF_B)
141                 return 1;
142         else if (bpf_size == BPF_DW)
143                 return 4; /* imm32 */
144         else
145                 return 0;
146 }
147
148 /*
149  * List of x86 cond jumps opcodes (. + s8)
150  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
151  */
152 #define X86_JB  0x72
153 #define X86_JAE 0x73
154 #define X86_JE  0x74
155 #define X86_JNE 0x75
156 #define X86_JBE 0x76
157 #define X86_JA  0x77
158 #define X86_JL  0x7C
159 #define X86_JGE 0x7D
160 #define X86_JLE 0x7E
161 #define X86_JG  0x7F
162
163 /* Pick a register outside of BPF range for JIT internal work */
164 #define AUX_REG (MAX_BPF_JIT_REG + 1)
165 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
166 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
167
168 /*
169  * The following table maps BPF registers to x86-64 registers.
170  *
171  * x86-64 register R12 is unused, since if used as base address
172  * register in load/store instructions, it always needs an
173  * extra byte of encoding and is callee saved.
174  *
175  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
176  * trampoline. x86-64 register R10 is used for blinding (if enabled).
177  */
178 static const int reg2hex[] = {
179         [BPF_REG_0] = 0,  /* RAX */
180         [BPF_REG_1] = 7,  /* RDI */
181         [BPF_REG_2] = 6,  /* RSI */
182         [BPF_REG_3] = 2,  /* RDX */
183         [BPF_REG_4] = 1,  /* RCX */
184         [BPF_REG_5] = 0,  /* R8  */
185         [BPF_REG_6] = 3,  /* RBX callee saved */
186         [BPF_REG_7] = 5,  /* R13 callee saved */
187         [BPF_REG_8] = 6,  /* R14 callee saved */
188         [BPF_REG_9] = 7,  /* R15 callee saved */
189         [BPF_REG_FP] = 5, /* RBP readonly */
190         [BPF_REG_AX] = 2, /* R10 temp register */
191         [AUX_REG] = 3,    /* R11 temp register */
192         [X86_REG_R9] = 1, /* R9 register, 6th function argument */
193         [X86_REG_R12] = 4, /* R12 callee saved */
194 };
195
196 static const int reg2pt_regs[] = {
197         [BPF_REG_0] = offsetof(struct pt_regs, ax),
198         [BPF_REG_1] = offsetof(struct pt_regs, di),
199         [BPF_REG_2] = offsetof(struct pt_regs, si),
200         [BPF_REG_3] = offsetof(struct pt_regs, dx),
201         [BPF_REG_4] = offsetof(struct pt_regs, cx),
202         [BPF_REG_5] = offsetof(struct pt_regs, r8),
203         [BPF_REG_6] = offsetof(struct pt_regs, bx),
204         [BPF_REG_7] = offsetof(struct pt_regs, r13),
205         [BPF_REG_8] = offsetof(struct pt_regs, r14),
206         [BPF_REG_9] = offsetof(struct pt_regs, r15),
207 };
208
209 /*
210  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
211  * which need extra byte of encoding.
212  * rax,rcx,...,rbp have simpler encoding
213  */
214 static bool is_ereg(u32 reg)
215 {
216         return (1 << reg) & (BIT(BPF_REG_5) |
217                              BIT(AUX_REG) |
218                              BIT(BPF_REG_7) |
219                              BIT(BPF_REG_8) |
220                              BIT(BPF_REG_9) |
221                              BIT(X86_REG_R9) |
222                              BIT(X86_REG_R12) |
223                              BIT(BPF_REG_AX));
224 }
225
226 /*
227  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
228  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
229  * of encoding. al,cl,dl,bl have simpler encoding.
230  */
231 static bool is_ereg_8l(u32 reg)
232 {
233         return is_ereg(reg) ||
234             (1 << reg) & (BIT(BPF_REG_1) |
235                           BIT(BPF_REG_2) |
236                           BIT(BPF_REG_FP));
237 }
238
239 static bool is_axreg(u32 reg)
240 {
241         return reg == BPF_REG_0;
242 }
243
244 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
245 static u8 add_1mod(u8 byte, u32 reg)
246 {
247         if (is_ereg(reg))
248                 byte |= 1;
249         return byte;
250 }
251
252 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
253 {
254         if (is_ereg(r1))
255                 byte |= 1;
256         if (is_ereg(r2))
257                 byte |= 4;
258         return byte;
259 }
260
261 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
262 {
263         if (is_ereg(r1))
264                 byte |= 1;
265         if (is_ereg(index))
266                 byte |= 2;
267         if (is_ereg(r2))
268                 byte |= 4;
269         return byte;
270 }
271
272 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
273 static u8 add_1reg(u8 byte, u32 dst_reg)
274 {
275         return byte + reg2hex[dst_reg];
276 }
277
278 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
279 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
280 {
281         return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
282 }
283
284 /* Some 1-byte opcodes for binary ALU operations */
285 static u8 simple_alu_opcodes[] = {
286         [BPF_ADD] = 0x01,
287         [BPF_SUB] = 0x29,
288         [BPF_AND] = 0x21,
289         [BPF_OR] = 0x09,
290         [BPF_XOR] = 0x31,
291         [BPF_LSH] = 0xE0,
292         [BPF_RSH] = 0xE8,
293         [BPF_ARSH] = 0xF8,
294 };
295
296 static void jit_fill_hole(void *area, unsigned int size)
297 {
298         /* Fill whole space with INT3 instructions */
299         memset(area, 0xcc, size);
300 }
301
302 int bpf_arch_text_invalidate(void *dst, size_t len)
303 {
304         return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
305 }
306
307 struct jit_context {
308         int cleanup_addr; /* Epilogue code offset */
309
310         /*
311          * Program specific offsets of labels in the code; these rely on the
312          * JIT doing at least 2 passes, recording the position on the first
313          * pass, only to generate the correct offset on the second pass.
314          */
315         int tail_call_direct_label;
316         int tail_call_indirect_label;
317 };
318
319 /* Maximum number of bytes emitted while JITing one eBPF insn */
320 #define BPF_MAX_INSN_SIZE       128
321 #define BPF_INSN_SAFETY         64
322
323 /* Number of bytes emit_patch() needs to generate instructions */
324 #define X86_PATCH_SIZE          5
325 /* Number of bytes that will be skipped on tailcall */
326 #define X86_TAIL_CALL_OFFSET    (12 + ENDBR_INSN_SIZE)
327
328 static void push_r9(u8 **pprog)
329 {
330         u8 *prog = *pprog;
331
332         EMIT2(0x41, 0x51);   /* push r9 */
333         *pprog = prog;
334 }
335
336 static void pop_r9(u8 **pprog)
337 {
338         u8 *prog = *pprog;
339
340         EMIT2(0x41, 0x59);   /* pop r9 */
341         *pprog = prog;
342 }
343
344 static void push_r12(u8 **pprog)
345 {
346         u8 *prog = *pprog;
347
348         EMIT2(0x41, 0x54);   /* push r12 */
349         *pprog = prog;
350 }
351
352 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
353 {
354         u8 *prog = *pprog;
355
356         if (callee_regs_used[0])
357                 EMIT1(0x53);         /* push rbx */
358         if (callee_regs_used[1])
359                 EMIT2(0x41, 0x55);   /* push r13 */
360         if (callee_regs_used[2])
361                 EMIT2(0x41, 0x56);   /* push r14 */
362         if (callee_regs_used[3])
363                 EMIT2(0x41, 0x57);   /* push r15 */
364         *pprog = prog;
365 }
366
367 static void pop_r12(u8 **pprog)
368 {
369         u8 *prog = *pprog;
370
371         EMIT2(0x41, 0x5C);   /* pop r12 */
372         *pprog = prog;
373 }
374
375 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
376 {
377         u8 *prog = *pprog;
378
379         if (callee_regs_used[3])
380                 EMIT2(0x41, 0x5F);   /* pop r15 */
381         if (callee_regs_used[2])
382                 EMIT2(0x41, 0x5E);   /* pop r14 */
383         if (callee_regs_used[1])
384                 EMIT2(0x41, 0x5D);   /* pop r13 */
385         if (callee_regs_used[0])
386                 EMIT1(0x5B);         /* pop rbx */
387         *pprog = prog;
388 }
389
390 static void emit_nops(u8 **pprog, int len)
391 {
392         u8 *prog = *pprog;
393         int i, noplen;
394
395         while (len > 0) {
396                 noplen = len;
397
398                 if (noplen > ASM_NOP_MAX)
399                         noplen = ASM_NOP_MAX;
400
401                 for (i = 0; i < noplen; i++)
402                         EMIT1(x86_nops[noplen][i]);
403                 len -= noplen;
404         }
405
406         *pprog = prog;
407 }
408
409 /*
410  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
411  * in arch/x86/kernel/alternative.c
412  */
413
414 static void emit_fineibt(u8 **pprog, u32 hash)
415 {
416         u8 *prog = *pprog;
417
418         EMIT_ENDBR();
419         EMIT3_off32(0x41, 0x81, 0xea, hash);            /* subl $hash, %r10d    */
420         EMIT2(0x74, 0x07);                              /* jz.d8 +7             */
421         EMIT2(0x0f, 0x0b);                              /* ud2                  */
422         EMIT1(0x90);                                    /* nop                  */
423         EMIT_ENDBR_POISON();
424
425         *pprog = prog;
426 }
427
428 static void emit_kcfi(u8 **pprog, u32 hash)
429 {
430         u8 *prog = *pprog;
431
432         EMIT1_off32(0xb8, hash);                        /* movl $hash, %eax     */
433 #ifdef CONFIG_CALL_PADDING
434         EMIT1(0x90);
435         EMIT1(0x90);
436         EMIT1(0x90);
437         EMIT1(0x90);
438         EMIT1(0x90);
439         EMIT1(0x90);
440         EMIT1(0x90);
441         EMIT1(0x90);
442         EMIT1(0x90);
443         EMIT1(0x90);
444         EMIT1(0x90);
445 #endif
446         EMIT_ENDBR();
447
448         *pprog = prog;
449 }
450
451 static void emit_cfi(u8 **pprog, u32 hash)
452 {
453         u8 *prog = *pprog;
454
455         switch (cfi_mode) {
456         case CFI_FINEIBT:
457                 emit_fineibt(&prog, hash);
458                 break;
459
460         case CFI_KCFI:
461                 emit_kcfi(&prog, hash);
462                 break;
463
464         default:
465                 EMIT_ENDBR();
466                 break;
467         }
468
469         *pprog = prog;
470 }
471
472 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
473 {
474         u8 *prog = *pprog;
475
476         if (!is_subprog) {
477                 /* cmp rax, MAX_TAIL_CALL_CNT */
478                 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
479                 EMIT2(X86_JA, 6);        /* ja 6 */
480                 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
481                  * case1: entry of main prog.
482                  * case2: tail callee of main prog.
483                  */
484                 EMIT1(0x50);             /* push rax */
485                 /* Make rax as tail_call_cnt_ptr. */
486                 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
487                 EMIT2(0xEB, 1);          /* jmp 1 */
488                 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
489                  * case: tail callee of subprog.
490                  */
491                 EMIT1(0x50);             /* push rax */
492                 /* push tail_call_cnt_ptr */
493                 EMIT1(0x50);             /* push rax */
494         } else { /* is_subprog */
495                 /* rax is tail_call_cnt_ptr. */
496                 EMIT1(0x50);             /* push rax */
497                 EMIT1(0x50);             /* push rax */
498         }
499
500         *pprog = prog;
501 }
502
503 /*
504  * Emit x86-64 prologue code for BPF program.
505  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
506  * while jumping to another program
507  */
508 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
509                           bool tail_call_reachable, bool is_subprog,
510                           bool is_exception_cb)
511 {
512         u8 *prog = *pprog;
513
514         emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
515         /* BPF trampoline can be made to work without these nops,
516          * but let's waste 5 bytes for now and optimize later
517          */
518         emit_nops(&prog, X86_PATCH_SIZE);
519         if (!ebpf_from_cbpf) {
520                 if (tail_call_reachable && !is_subprog)
521                         /* When it's the entry of the whole tailcall context,
522                          * zeroing rax means initialising tail_call_cnt.
523                          */
524                         EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
525                 else
526                         /* Keep the same instruction layout. */
527                         emit_nops(&prog, 3);     /* nop3 */
528         }
529         /* Exception callback receives FP as third parameter */
530         if (is_exception_cb) {
531                 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
532                 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
533                 /* The main frame must have exception_boundary as true, so we
534                  * first restore those callee-saved regs from stack, before
535                  * reusing the stack frame.
536                  */
537                 pop_callee_regs(&prog, all_callee_regs_used);
538                 pop_r12(&prog);
539                 /* Reset the stack frame. */
540                 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
541         } else {
542                 EMIT1(0x55);             /* push rbp */
543                 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
544         }
545
546         /* X86_TAIL_CALL_OFFSET is here */
547         EMIT_ENDBR();
548
549         /* sub rsp, rounded_stack_depth */
550         if (stack_depth)
551                 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
552         if (tail_call_reachable)
553                 emit_prologue_tail_call(&prog, is_subprog);
554         *pprog = prog;
555 }
556
557 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
558 {
559         u8 *prog = *pprog;
560         s64 offset;
561
562         offset = func - (ip + X86_PATCH_SIZE);
563         if (!is_simm32(offset)) {
564                 pr_err("Target call %p is out of range\n", func);
565                 return -ERANGE;
566         }
567         EMIT1_off32(opcode, offset);
568         *pprog = prog;
569         return 0;
570 }
571
572 static int emit_call(u8 **pprog, void *func, void *ip)
573 {
574         return emit_patch(pprog, func, ip, 0xE8);
575 }
576
577 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
578 {
579         OPTIMIZER_HIDE_VAR(func);
580         ip += x86_call_depth_emit_accounting(pprog, func, ip);
581         return emit_patch(pprog, func, ip, 0xE8);
582 }
583
584 static int emit_jump(u8 **pprog, void *func, void *ip)
585 {
586         return emit_patch(pprog, func, ip, 0xE9);
587 }
588
589 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
590                                 void *old_addr, void *new_addr)
591 {
592         const u8 *nop_insn = x86_nops[5];
593         u8 old_insn[X86_PATCH_SIZE];
594         u8 new_insn[X86_PATCH_SIZE];
595         u8 *prog;
596         int ret;
597
598         memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
599         if (old_addr) {
600                 prog = old_insn;
601                 ret = t == BPF_MOD_CALL ?
602                       emit_call(&prog, old_addr, ip) :
603                       emit_jump(&prog, old_addr, ip);
604                 if (ret)
605                         return ret;
606         }
607
608         memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
609         if (new_addr) {
610                 prog = new_insn;
611                 ret = t == BPF_MOD_CALL ?
612                       emit_call(&prog, new_addr, ip) :
613                       emit_jump(&prog, new_addr, ip);
614                 if (ret)
615                         return ret;
616         }
617
618         ret = -EBUSY;
619         mutex_lock(&text_mutex);
620         if (memcmp(ip, old_insn, X86_PATCH_SIZE))
621                 goto out;
622         ret = 1;
623         if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
624                 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
625                 ret = 0;
626         }
627 out:
628         mutex_unlock(&text_mutex);
629         return ret;
630 }
631
632 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
633                        void *old_addr, void *new_addr)
634 {
635         if (!is_kernel_text((long)ip) &&
636             !is_bpf_text_address((long)ip))
637                 /* BPF poking in modules is not supported */
638                 return -EINVAL;
639
640         /*
641          * See emit_prologue(), for IBT builds the trampoline hook is preceded
642          * with an ENDBR instruction.
643          */
644         if (is_endbr(*(u32 *)ip))
645                 ip += ENDBR_INSN_SIZE;
646
647         return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
648 }
649
650 #define EMIT_LFENCE()   EMIT3(0x0F, 0xAE, 0xE8)
651
652 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
653 {
654         u8 *prog = *pprog;
655
656         if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
657                 EMIT_LFENCE();
658                 EMIT2(0xFF, 0xE0 + reg);
659         } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
660                 OPTIMIZER_HIDE_VAR(reg);
661                 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
662                         emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
663                 else
664                         emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
665         } else {
666                 EMIT2(0xFF, 0xE0 + reg);        /* jmp *%\reg */
667                 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
668                         EMIT1(0xCC);            /* int3 */
669         }
670
671         *pprog = prog;
672 }
673
674 static void emit_return(u8 **pprog, u8 *ip)
675 {
676         u8 *prog = *pprog;
677
678         if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
679                 emit_jump(&prog, x86_return_thunk, ip);
680         } else {
681                 EMIT1(0xC3);            /* ret */
682                 if (IS_ENABLED(CONFIG_MITIGATION_SLS))
683                         EMIT1(0xCC);    /* int3 */
684         }
685
686         *pprog = prog;
687 }
688
689 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)  (-16 - round_up(stack, 8))
690
691 /*
692  * Generate the following code:
693  *
694  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
695  *   if (index >= array->map.max_entries)
696  *     goto out;
697  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
698  *     goto out;
699  *   prog = array->ptrs[index];
700  *   if (prog == NULL)
701  *     goto out;
702  *   goto *(prog->bpf_func + prologue_size);
703  * out:
704  */
705 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
706                                         u8 **pprog, bool *callee_regs_used,
707                                         u32 stack_depth, u8 *ip,
708                                         struct jit_context *ctx)
709 {
710         int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
711         u8 *prog = *pprog, *start = *pprog;
712         int offset;
713
714         /*
715          * rdi - pointer to ctx
716          * rsi - pointer to bpf_array
717          * rdx - index in bpf_array
718          */
719
720         /*
721          * if (index >= array->map.max_entries)
722          *      goto out;
723          */
724         EMIT2(0x89, 0xD2);                        /* mov edx, edx */
725         EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
726               offsetof(struct bpf_array, map.max_entries));
727
728         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
729         EMIT2(X86_JBE, offset);                   /* jbe out */
730
731         /*
732          * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
733          *      goto out;
734          */
735         EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
736         EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
737
738         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
739         EMIT2(X86_JAE, offset);                   /* jae out */
740
741         /* prog = array->ptrs[index]; */
742         EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
743                     offsetof(struct bpf_array, ptrs));
744
745         /*
746          * if (prog == NULL)
747          *      goto out;
748          */
749         EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
750
751         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
752         EMIT2(X86_JE, offset);                    /* je out */
753
754         /* Inc tail_call_cnt if the slot is populated. */
755         EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
756
757         if (bpf_prog->aux->exception_boundary) {
758                 pop_callee_regs(&prog, all_callee_regs_used);
759                 pop_r12(&prog);
760         } else {
761                 pop_callee_regs(&prog, callee_regs_used);
762                 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
763                         pop_r12(&prog);
764         }
765
766         /* Pop tail_call_cnt_ptr. */
767         EMIT1(0x58);                              /* pop rax */
768         /* Pop tail_call_cnt, if it's main prog.
769          * Pop tail_call_cnt_ptr, if it's subprog.
770          */
771         EMIT1(0x58);                              /* pop rax */
772         if (stack_depth)
773                 EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
774                             round_up(stack_depth, 8));
775
776         /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
777         EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
778               offsetof(struct bpf_prog, bpf_func));
779         EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
780               X86_TAIL_CALL_OFFSET);
781         /*
782          * Now we're ready to jump into next BPF program
783          * rdi == ctx (1st arg)
784          * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
785          */
786         emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
787
788         /* out: */
789         ctx->tail_call_indirect_label = prog - start;
790         *pprog = prog;
791 }
792
793 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
794                                       struct bpf_jit_poke_descriptor *poke,
795                                       u8 **pprog, u8 *ip,
796                                       bool *callee_regs_used, u32 stack_depth,
797                                       struct jit_context *ctx)
798 {
799         int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
800         u8 *prog = *pprog, *start = *pprog;
801         int offset;
802
803         /*
804          * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
805          *      goto out;
806          */
807         EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
808         EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
809
810         offset = ctx->tail_call_direct_label - (prog + 2 - start);
811         EMIT2(X86_JAE, offset);                       /* jae out */
812
813         poke->tailcall_bypass = ip + (prog - start);
814         poke->adj_off = X86_TAIL_CALL_OFFSET;
815         poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
816         poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
817
818         emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
819                   poke->tailcall_bypass);
820
821         /* Inc tail_call_cnt if the slot is populated. */
822         EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
823
824         if (bpf_prog->aux->exception_boundary) {
825                 pop_callee_regs(&prog, all_callee_regs_used);
826                 pop_r12(&prog);
827         } else {
828                 pop_callee_regs(&prog, callee_regs_used);
829                 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
830                         pop_r12(&prog);
831         }
832
833         /* Pop tail_call_cnt_ptr. */
834         EMIT1(0x58);                                  /* pop rax */
835         /* Pop tail_call_cnt, if it's main prog.
836          * Pop tail_call_cnt_ptr, if it's subprog.
837          */
838         EMIT1(0x58);                                  /* pop rax */
839         if (stack_depth)
840                 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
841
842         emit_nops(&prog, X86_PATCH_SIZE);
843
844         /* out: */
845         ctx->tail_call_direct_label = prog - start;
846
847         *pprog = prog;
848 }
849
850 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
851 {
852         struct bpf_jit_poke_descriptor *poke;
853         struct bpf_array *array;
854         struct bpf_prog *target;
855         int i, ret;
856
857         for (i = 0; i < prog->aux->size_poke_tab; i++) {
858                 poke = &prog->aux->poke_tab[i];
859                 if (poke->aux && poke->aux != prog->aux)
860                         continue;
861
862                 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
863
864                 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
865                         continue;
866
867                 array = container_of(poke->tail_call.map, struct bpf_array, map);
868                 mutex_lock(&array->aux->poke_mutex);
869                 target = array->ptrs[poke->tail_call.key];
870                 if (target) {
871                         ret = __bpf_arch_text_poke(poke->tailcall_target,
872                                                    BPF_MOD_JUMP, NULL,
873                                                    (u8 *)target->bpf_func +
874                                                    poke->adj_off);
875                         BUG_ON(ret < 0);
876                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
877                                                    BPF_MOD_JUMP,
878                                                    (u8 *)poke->tailcall_target +
879                                                    X86_PATCH_SIZE, NULL);
880                         BUG_ON(ret < 0);
881                 }
882                 WRITE_ONCE(poke->tailcall_target_stable, true);
883                 mutex_unlock(&array->aux->poke_mutex);
884         }
885 }
886
887 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
888                            u32 dst_reg, const u32 imm32)
889 {
890         u8 *prog = *pprog;
891         u8 b1, b2, b3;
892
893         /*
894          * Optimization: if imm32 is positive, use 'mov %eax, imm32'
895          * (which zero-extends imm32) to save 2 bytes.
896          */
897         if (sign_propagate && (s32)imm32 < 0) {
898                 /* 'mov %rax, imm32' sign extends imm32 */
899                 b1 = add_1mod(0x48, dst_reg);
900                 b2 = 0xC7;
901                 b3 = 0xC0;
902                 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
903                 goto done;
904         }
905
906         /*
907          * Optimization: if imm32 is zero, use 'xor %eax, %eax'
908          * to save 3 bytes.
909          */
910         if (imm32 == 0) {
911                 if (is_ereg(dst_reg))
912                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
913                 b2 = 0x31; /* xor */
914                 b3 = 0xC0;
915                 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
916                 goto done;
917         }
918
919         /* mov %eax, imm32 */
920         if (is_ereg(dst_reg))
921                 EMIT1(add_1mod(0x40, dst_reg));
922         EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
923 done:
924         *pprog = prog;
925 }
926
927 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
928                            const u32 imm32_hi, const u32 imm32_lo)
929 {
930         u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
931         u8 *prog = *pprog;
932
933         if (is_uimm32(imm64)) {
934                 /*
935                  * For emitting plain u32, where sign bit must not be
936                  * propagated LLVM tends to load imm64 over mov32
937                  * directly, so save couple of bytes by just doing
938                  * 'mov %eax, imm32' instead.
939                  */
940                 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
941         } else if (is_simm32(imm64)) {
942                 emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
943         } else {
944                 /* movabsq rax, imm64 */
945                 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
946                 EMIT(imm32_lo, 4);
947                 EMIT(imm32_hi, 4);
948         }
949
950         *pprog = prog;
951 }
952
953 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
954 {
955         u8 *prog = *pprog;
956
957         if (is64) {
958                 /* mov dst, src */
959                 EMIT_mov(dst_reg, src_reg);
960         } else {
961                 /* mov32 dst, src */
962                 if (is_ereg(dst_reg) || is_ereg(src_reg))
963                         EMIT1(add_2mod(0x40, dst_reg, src_reg));
964                 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
965         }
966
967         *pprog = prog;
968 }
969
970 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
971                            u32 src_reg)
972 {
973         u8 *prog = *pprog;
974
975         if (is64) {
976                 /* movs[b,w,l]q dst, src */
977                 if (num_bits == 8)
978                         EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
979                               add_2reg(0xC0, src_reg, dst_reg));
980                 else if (num_bits == 16)
981                         EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
982                               add_2reg(0xC0, src_reg, dst_reg));
983                 else if (num_bits == 32)
984                         EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
985                               add_2reg(0xC0, src_reg, dst_reg));
986         } else {
987                 /* movs[b,w]l dst, src */
988                 if (num_bits == 8) {
989                         EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
990                               add_2reg(0xC0, src_reg, dst_reg));
991                 } else if (num_bits == 16) {
992                         if (is_ereg(dst_reg) || is_ereg(src_reg))
993                                 EMIT1(add_2mod(0x40, src_reg, dst_reg));
994                         EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
995                               add_2reg(0xC0, src_reg, dst_reg));
996                 }
997         }
998
999         *pprog = prog;
1000 }
1001
1002 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1003 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1004 {
1005         u8 *prog = *pprog;
1006
1007         if (is_imm8(off)) {
1008                 /* 1-byte signed displacement.
1009                  *
1010                  * If off == 0 we could skip this and save one extra byte, but
1011                  * special case of x86 R13 which always needs an offset is not
1012                  * worth the hassle
1013                  */
1014                 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1015         } else {
1016                 /* 4-byte signed displacement */
1017                 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1018         }
1019         *pprog = prog;
1020 }
1021
1022 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1023 {
1024         u8 *prog = *pprog;
1025
1026         if (is_imm8(off)) {
1027                 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1028         } else {
1029                 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1030         }
1031         *pprog = prog;
1032 }
1033
1034 /*
1035  * Emit a REX byte if it will be necessary to address these registers
1036  */
1037 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1038 {
1039         u8 *prog = *pprog;
1040
1041         if (is64)
1042                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1043         else if (is_ereg(dst_reg) || is_ereg(src_reg))
1044                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1045         *pprog = prog;
1046 }
1047
1048 /*
1049  * Similar version of maybe_emit_mod() for a single register
1050  */
1051 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1052 {
1053         u8 *prog = *pprog;
1054
1055         if (is64)
1056                 EMIT1(add_1mod(0x48, reg));
1057         else if (is_ereg(reg))
1058                 EMIT1(add_1mod(0x40, reg));
1059         *pprog = prog;
1060 }
1061
1062 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1063 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1064 {
1065         u8 *prog = *pprog;
1066
1067         switch (size) {
1068         case BPF_B:
1069                 /* Emit 'movzx rax, byte ptr [rax + off]' */
1070                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1071                 break;
1072         case BPF_H:
1073                 /* Emit 'movzx rax, word ptr [rax + off]' */
1074                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1075                 break;
1076         case BPF_W:
1077                 /* Emit 'mov eax, dword ptr [rax+0x14]' */
1078                 if (is_ereg(dst_reg) || is_ereg(src_reg))
1079                         EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1080                 else
1081                         EMIT1(0x8B);
1082                 break;
1083         case BPF_DW:
1084                 /* Emit 'mov rax, qword ptr [rax+0x14]' */
1085                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1086                 break;
1087         }
1088         emit_insn_suffix(&prog, src_reg, dst_reg, off);
1089         *pprog = prog;
1090 }
1091
1092 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1093 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1094 {
1095         u8 *prog = *pprog;
1096
1097         switch (size) {
1098         case BPF_B:
1099                 /* Emit 'movsx rax, byte ptr [rax + off]' */
1100                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1101                 break;
1102         case BPF_H:
1103                 /* Emit 'movsx rax, word ptr [rax + off]' */
1104                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1105                 break;
1106         case BPF_W:
1107                 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
1108                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1109                 break;
1110         }
1111         emit_insn_suffix(&prog, src_reg, dst_reg, off);
1112         *pprog = prog;
1113 }
1114
1115 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1116 {
1117         u8 *prog = *pprog;
1118
1119         switch (size) {
1120         case BPF_B:
1121                 /* movzx rax, byte ptr [rax + r12 + off] */
1122                 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1123                 break;
1124         case BPF_H:
1125                 /* movzx rax, word ptr [rax + r12 + off] */
1126                 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1127                 break;
1128         case BPF_W:
1129                 /* mov eax, dword ptr [rax + r12 + off] */
1130                 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1131                 break;
1132         case BPF_DW:
1133                 /* mov rax, qword ptr [rax + r12 + off] */
1134                 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1135                 break;
1136         }
1137         emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1138         *pprog = prog;
1139 }
1140
1141 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1142 {
1143         emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1144 }
1145
1146 /* STX: *(u8*)(dst_reg + off) = src_reg */
1147 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1148 {
1149         u8 *prog = *pprog;
1150
1151         switch (size) {
1152         case BPF_B:
1153                 /* Emit 'mov byte ptr [rax + off], al' */
1154                 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1155                         /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1156                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1157                 else
1158                         EMIT1(0x88);
1159                 break;
1160         case BPF_H:
1161                 if (is_ereg(dst_reg) || is_ereg(src_reg))
1162                         EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1163                 else
1164                         EMIT2(0x66, 0x89);
1165                 break;
1166         case BPF_W:
1167                 if (is_ereg(dst_reg) || is_ereg(src_reg))
1168                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1169                 else
1170                         EMIT1(0x89);
1171                 break;
1172         case BPF_DW:
1173                 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1174                 break;
1175         }
1176         emit_insn_suffix(&prog, dst_reg, src_reg, off);
1177         *pprog = prog;
1178 }
1179
1180 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1181 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1182 {
1183         u8 *prog = *pprog;
1184
1185         switch (size) {
1186         case BPF_B:
1187                 /* mov byte ptr [rax + r12 + off], al */
1188                 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1189                 break;
1190         case BPF_H:
1191                 /* mov word ptr [rax + r12 + off], ax */
1192                 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1193                 break;
1194         case BPF_W:
1195                 /* mov dword ptr [rax + r12 + 1], eax */
1196                 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1197                 break;
1198         case BPF_DW:
1199                 /* mov qword ptr [rax + r12 + 1], rax */
1200                 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1201                 break;
1202         }
1203         emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1204         *pprog = prog;
1205 }
1206
1207 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1208 {
1209         emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1210 }
1211
1212 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1213 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1214 {
1215         u8 *prog = *pprog;
1216
1217         switch (size) {
1218         case BPF_B:
1219                 /* mov byte ptr [rax + r12 + off], imm8 */
1220                 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1221                 break;
1222         case BPF_H:
1223                 /* mov word ptr [rax + r12 + off], imm16 */
1224                 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1225                 break;
1226         case BPF_W:
1227                 /* mov dword ptr [rax + r12 + 1], imm32 */
1228                 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1229                 break;
1230         case BPF_DW:
1231                 /* mov qword ptr [rax + r12 + 1], imm32 */
1232                 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1233                 break;
1234         }
1235         emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1236         EMIT(imm, bpf_size_to_x86_bytes(size));
1237         *pprog = prog;
1238 }
1239
1240 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1241 {
1242         emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1243 }
1244
1245 static int emit_atomic(u8 **pprog, u8 atomic_op,
1246                        u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1247 {
1248         u8 *prog = *pprog;
1249
1250         EMIT1(0xF0); /* lock prefix */
1251
1252         maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1253
1254         /* emit opcode */
1255         switch (atomic_op) {
1256         case BPF_ADD:
1257         case BPF_AND:
1258         case BPF_OR:
1259         case BPF_XOR:
1260                 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1261                 EMIT1(simple_alu_opcodes[atomic_op]);
1262                 break;
1263         case BPF_ADD | BPF_FETCH:
1264                 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1265                 EMIT2(0x0F, 0xC1);
1266                 break;
1267         case BPF_XCHG:
1268                 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1269                 EMIT1(0x87);
1270                 break;
1271         case BPF_CMPXCHG:
1272                 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1273                 EMIT2(0x0F, 0xB1);
1274                 break;
1275         default:
1276                 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1277                 return -EFAULT;
1278         }
1279
1280         emit_insn_suffix(&prog, dst_reg, src_reg, off);
1281
1282         *pprog = prog;
1283         return 0;
1284 }
1285
1286 static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size,
1287                              u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1288 {
1289         u8 *prog = *pprog;
1290
1291         EMIT1(0xF0); /* lock prefix */
1292         switch (size) {
1293         case BPF_W:
1294                 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1295                 break;
1296         case BPF_DW:
1297                 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1298                 break;
1299         default:
1300                 pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n");
1301                 return -EFAULT;
1302         }
1303
1304         /* emit opcode */
1305         switch (atomic_op) {
1306         case BPF_ADD:
1307         case BPF_AND:
1308         case BPF_OR:
1309         case BPF_XOR:
1310                 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1311                 EMIT1(simple_alu_opcodes[atomic_op]);
1312                 break;
1313         case BPF_ADD | BPF_FETCH:
1314                 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1315                 EMIT2(0x0F, 0xC1);
1316                 break;
1317         case BPF_XCHG:
1318                 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1319                 EMIT1(0x87);
1320                 break;
1321         case BPF_CMPXCHG:
1322                 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1323                 EMIT2(0x0F, 0xB1);
1324                 break;
1325         default:
1326                 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1327                 return -EFAULT;
1328         }
1329         emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1330         *pprog = prog;
1331         return 0;
1332 }
1333
1334 #define DONT_CLEAR 1
1335
1336 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1337 {
1338         u32 reg = x->fixup >> 8;
1339
1340         /* jump over faulting load and clear dest register */
1341         if (reg != DONT_CLEAR)
1342                 *(unsigned long *)((void *)regs + reg) = 0;
1343         regs->ip += x->fixup & 0xff;
1344         return true;
1345 }
1346
1347 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1348                              bool *regs_used)
1349 {
1350         int i;
1351
1352         for (i = 1; i <= insn_cnt; i++, insn++) {
1353                 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1354                         regs_used[0] = true;
1355                 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1356                         regs_used[1] = true;
1357                 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1358                         regs_used[2] = true;
1359                 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1360                         regs_used[3] = true;
1361         }
1362 }
1363
1364 /* emit the 3-byte VEX prefix
1365  *
1366  * r: same as rex.r, extra bit for ModRM reg field
1367  * x: same as rex.x, extra bit for SIB index field
1368  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1369  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1370  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1371  * src_reg2: additional source reg (encoded as BPF reg)
1372  * l: vector length (128 bit or 256 bit) or reserved
1373  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1374  */
1375 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1376                       bool w, u8 src_reg2, bool l, u8 pp)
1377 {
1378         u8 *prog = *pprog;
1379         const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1380         u8 b1, b2;
1381         u8 vvvv = reg2hex[src_reg2];
1382
1383         /* reg2hex gives only the lower 3 bit of vvvv */
1384         if (is_ereg(src_reg2))
1385                 vvvv |= 1 << 3;
1386
1387         /*
1388          * 2nd byte of 3-byte VEX prefix
1389          * ~ means bit inverted encoding
1390          *
1391          *    7                           0
1392          *  +---+---+---+---+---+---+---+---+
1393          *  |~R |~X |~B |         m         |
1394          *  +---+---+---+---+---+---+---+---+
1395          */
1396         b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1397         /*
1398          * 3rd byte of 3-byte VEX prefix
1399          *
1400          *    7                           0
1401          *  +---+---+---+---+---+---+---+---+
1402          *  | W |     ~vvvv     | L |   pp  |
1403          *  +---+---+---+---+---+---+---+---+
1404          */
1405         b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1406
1407         EMIT3(b0, b1, b2);
1408         *pprog = prog;
1409 }
1410
1411 /* emit BMI2 shift instruction */
1412 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1413 {
1414         u8 *prog = *pprog;
1415         bool r = is_ereg(dst_reg);
1416         u8 m = 2; /* escape code 0f38 */
1417
1418         emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1419         EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1420         *pprog = prog;
1421 }
1422
1423 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1424 {
1425         u8 *prog = *pprog;
1426
1427         /* movabs r9, priv_frame_ptr */
1428         emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1429                        (u32) (__force long) priv_frame_ptr);
1430
1431 #ifdef CONFIG_SMP
1432         /* add <r9>, gs:[<off>] */
1433         EMIT2(0x65, 0x4c);
1434         EMIT3(0x03, 0x0c, 0x25);
1435         EMIT((u32)(unsigned long)&this_cpu_off, 4);
1436 #endif
1437
1438         *pprog = prog;
1439 }
1440
1441 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1442
1443 #define __LOAD_TCC_PTR(off)                     \
1444         EMIT3_off32(0x48, 0x8B, 0x85, off)
1445 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1446 #define LOAD_TAIL_CALL_CNT_PTR(stack)                           \
1447         __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1448
1449 /* Memory size/value to protect private stack overflow/underflow */
1450 #define PRIV_STACK_GUARD_SZ    8
1451 #define PRIV_STACK_GUARD_VAL   0xEB9F12345678eb9fULL
1452
1453 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1454                   int oldproglen, struct jit_context *ctx, bool jmp_padding)
1455 {
1456         bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1457         struct bpf_insn *insn = bpf_prog->insnsi;
1458         bool callee_regs_used[4] = {};
1459         int insn_cnt = bpf_prog->len;
1460         bool seen_exit = false;
1461         u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1462         void __percpu *priv_frame_ptr = NULL;
1463         u64 arena_vm_start, user_vm_start;
1464         void __percpu *priv_stack_ptr;
1465         int i, excnt = 0;
1466         int ilen, proglen = 0;
1467         u8 *prog = temp;
1468         u32 stack_depth;
1469         int err;
1470
1471         stack_depth = bpf_prog->aux->stack_depth;
1472         priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1473         if (priv_stack_ptr) {
1474                 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1475                 stack_depth = 0;
1476         }
1477
1478         arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1479         user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1480
1481         detect_reg_usage(insn, insn_cnt, callee_regs_used);
1482
1483         emit_prologue(&prog, stack_depth,
1484                       bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1485                       bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1486         /* Exception callback will clobber callee regs for its own use, and
1487          * restore the original callee regs from main prog's stack frame.
1488          */
1489         if (bpf_prog->aux->exception_boundary) {
1490                 /* We also need to save r12, which is not mapped to any BPF
1491                  * register, as we throw after entry into the kernel, which may
1492                  * overwrite r12.
1493                  */
1494                 push_r12(&prog);
1495                 push_callee_regs(&prog, all_callee_regs_used);
1496         } else {
1497                 if (arena_vm_start)
1498                         push_r12(&prog);
1499                 push_callee_regs(&prog, callee_regs_used);
1500         }
1501         if (arena_vm_start)
1502                 emit_mov_imm64(&prog, X86_REG_R12,
1503                                arena_vm_start >> 32, (u32) arena_vm_start);
1504
1505         if (priv_frame_ptr)
1506                 emit_priv_frame_ptr(&prog, priv_frame_ptr);
1507
1508         ilen = prog - temp;
1509         if (rw_image)
1510                 memcpy(rw_image + proglen, temp, ilen);
1511         proglen += ilen;
1512         addrs[0] = proglen;
1513         prog = temp;
1514
1515         for (i = 1; i <= insn_cnt; i++, insn++) {
1516                 const s32 imm32 = insn->imm;
1517                 u32 dst_reg = insn->dst_reg;
1518                 u32 src_reg = insn->src_reg;
1519                 u8 b2 = 0, b3 = 0;
1520                 u8 *start_of_ldx;
1521                 s64 jmp_offset;
1522                 s16 insn_off;
1523                 u8 jmp_cond;
1524                 u8 *func;
1525                 int nops;
1526
1527                 if (priv_frame_ptr) {
1528                         if (src_reg == BPF_REG_FP)
1529                                 src_reg = X86_REG_R9;
1530
1531                         if (dst_reg == BPF_REG_FP)
1532                                 dst_reg = X86_REG_R9;
1533                 }
1534
1535                 switch (insn->code) {
1536                         /* ALU */
1537                 case BPF_ALU | BPF_ADD | BPF_X:
1538                 case BPF_ALU | BPF_SUB | BPF_X:
1539                 case BPF_ALU | BPF_AND | BPF_X:
1540                 case BPF_ALU | BPF_OR | BPF_X:
1541                 case BPF_ALU | BPF_XOR | BPF_X:
1542                 case BPF_ALU64 | BPF_ADD | BPF_X:
1543                 case BPF_ALU64 | BPF_SUB | BPF_X:
1544                 case BPF_ALU64 | BPF_AND | BPF_X:
1545                 case BPF_ALU64 | BPF_OR | BPF_X:
1546                 case BPF_ALU64 | BPF_XOR | BPF_X:
1547                         maybe_emit_mod(&prog, dst_reg, src_reg,
1548                                        BPF_CLASS(insn->code) == BPF_ALU64);
1549                         b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1550                         EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1551                         break;
1552
1553                 case BPF_ALU64 | BPF_MOV | BPF_X:
1554                         if (insn_is_cast_user(insn)) {
1555                                 if (dst_reg != src_reg)
1556                                         /* 32-bit mov */
1557                                         emit_mov_reg(&prog, false, dst_reg, src_reg);
1558                                 /* shl dst_reg, 32 */
1559                                 maybe_emit_1mod(&prog, dst_reg, true);
1560                                 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1561
1562                                 /* or dst_reg, user_vm_start */
1563                                 maybe_emit_1mod(&prog, dst_reg, true);
1564                                 if (is_axreg(dst_reg))
1565                                         EMIT1_off32(0x0D,  user_vm_start >> 32);
1566                                 else
1567                                         EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1568
1569                                 /* rol dst_reg, 32 */
1570                                 maybe_emit_1mod(&prog, dst_reg, true);
1571                                 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1572
1573                                 /* xor r11, r11 */
1574                                 EMIT3(0x4D, 0x31, 0xDB);
1575
1576                                 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1577                                 maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1578                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1579
1580                                 /* cmove r11, dst_reg; if so, set dst_reg to zero */
1581                                 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1582                                 maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1583                                 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1584                                 break;
1585                         } else if (insn_is_mov_percpu_addr(insn)) {
1586                                 /* mov <dst>, <src> (if necessary) */
1587                                 EMIT_mov(dst_reg, src_reg);
1588 #ifdef CONFIG_SMP
1589                                 /* add <dst>, gs:[<off>] */
1590                                 EMIT2(0x65, add_1mod(0x48, dst_reg));
1591                                 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1592                                 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1593 #endif
1594                                 break;
1595                         }
1596                         fallthrough;
1597                 case BPF_ALU | BPF_MOV | BPF_X:
1598                         if (insn->off == 0)
1599                                 emit_mov_reg(&prog,
1600                                              BPF_CLASS(insn->code) == BPF_ALU64,
1601                                              dst_reg, src_reg);
1602                         else
1603                                 emit_movsx_reg(&prog, insn->off,
1604                                                BPF_CLASS(insn->code) == BPF_ALU64,
1605                                                dst_reg, src_reg);
1606                         break;
1607
1608                         /* neg dst */
1609                 case BPF_ALU | BPF_NEG:
1610                 case BPF_ALU64 | BPF_NEG:
1611                         maybe_emit_1mod(&prog, dst_reg,
1612                                         BPF_CLASS(insn->code) == BPF_ALU64);
1613                         EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1614                         break;
1615
1616                 case BPF_ALU | BPF_ADD | BPF_K:
1617                 case BPF_ALU | BPF_SUB | BPF_K:
1618                 case BPF_ALU | BPF_AND | BPF_K:
1619                 case BPF_ALU | BPF_OR | BPF_K:
1620                 case BPF_ALU | BPF_XOR | BPF_K:
1621                 case BPF_ALU64 | BPF_ADD | BPF_K:
1622                 case BPF_ALU64 | BPF_SUB | BPF_K:
1623                 case BPF_ALU64 | BPF_AND | BPF_K:
1624                 case BPF_ALU64 | BPF_OR | BPF_K:
1625                 case BPF_ALU64 | BPF_XOR | BPF_K:
1626                         maybe_emit_1mod(&prog, dst_reg,
1627                                         BPF_CLASS(insn->code) == BPF_ALU64);
1628
1629                         /*
1630                          * b3 holds 'normal' opcode, b2 short form only valid
1631                          * in case dst is eax/rax.
1632                          */
1633                         switch (BPF_OP(insn->code)) {
1634                         case BPF_ADD:
1635                                 b3 = 0xC0;
1636                                 b2 = 0x05;
1637                                 break;
1638                         case BPF_SUB:
1639                                 b3 = 0xE8;
1640                                 b2 = 0x2D;
1641                                 break;
1642                         case BPF_AND:
1643                                 b3 = 0xE0;
1644                                 b2 = 0x25;
1645                                 break;
1646                         case BPF_OR:
1647                                 b3 = 0xC8;
1648                                 b2 = 0x0D;
1649                                 break;
1650                         case BPF_XOR:
1651                                 b3 = 0xF0;
1652                                 b2 = 0x35;
1653                                 break;
1654                         }
1655
1656                         if (is_imm8(imm32))
1657                                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1658                         else if (is_axreg(dst_reg))
1659                                 EMIT1_off32(b2, imm32);
1660                         else
1661                                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1662                         break;
1663
1664                 case BPF_ALU64 | BPF_MOV | BPF_K:
1665                 case BPF_ALU | BPF_MOV | BPF_K:
1666                         emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1667                                        dst_reg, imm32);
1668                         break;
1669
1670                 case BPF_LD | BPF_IMM | BPF_DW:
1671                         emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1672                         insn++;
1673                         i++;
1674                         break;
1675
1676                         /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1677                 case BPF_ALU | BPF_MOD | BPF_X:
1678                 case BPF_ALU | BPF_DIV | BPF_X:
1679                 case BPF_ALU | BPF_MOD | BPF_K:
1680                 case BPF_ALU | BPF_DIV | BPF_K:
1681                 case BPF_ALU64 | BPF_MOD | BPF_X:
1682                 case BPF_ALU64 | BPF_DIV | BPF_X:
1683                 case BPF_ALU64 | BPF_MOD | BPF_K:
1684                 case BPF_ALU64 | BPF_DIV | BPF_K: {
1685                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1686
1687                         if (dst_reg != BPF_REG_0)
1688                                 EMIT1(0x50); /* push rax */
1689                         if (dst_reg != BPF_REG_3)
1690                                 EMIT1(0x52); /* push rdx */
1691
1692                         if (BPF_SRC(insn->code) == BPF_X) {
1693                                 if (src_reg == BPF_REG_0 ||
1694                                     src_reg == BPF_REG_3) {
1695                                         /* mov r11, src_reg */
1696                                         EMIT_mov(AUX_REG, src_reg);
1697                                         src_reg = AUX_REG;
1698                                 }
1699                         } else {
1700                                 /* mov r11, imm32 */
1701                                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1702                                 src_reg = AUX_REG;
1703                         }
1704
1705                         if (dst_reg != BPF_REG_0)
1706                                 /* mov rax, dst_reg */
1707                                 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1708
1709                         if (insn->off == 0) {
1710                                 /*
1711                                  * xor edx, edx
1712                                  * equivalent to 'xor rdx, rdx', but one byte less
1713                                  */
1714                                 EMIT2(0x31, 0xd2);
1715
1716                                 /* div src_reg */
1717                                 maybe_emit_1mod(&prog, src_reg, is64);
1718                                 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1719                         } else {
1720                                 if (BPF_CLASS(insn->code) == BPF_ALU)
1721                                         EMIT1(0x99); /* cdq */
1722                                 else
1723                                         EMIT2(0x48, 0x99); /* cqo */
1724
1725                                 /* idiv src_reg */
1726                                 maybe_emit_1mod(&prog, src_reg, is64);
1727                                 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1728                         }
1729
1730                         if (BPF_OP(insn->code) == BPF_MOD &&
1731                             dst_reg != BPF_REG_3)
1732                                 /* mov dst_reg, rdx */
1733                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1734                         else if (BPF_OP(insn->code) == BPF_DIV &&
1735                                  dst_reg != BPF_REG_0)
1736                                 /* mov dst_reg, rax */
1737                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1738
1739                         if (dst_reg != BPF_REG_3)
1740                                 EMIT1(0x5A); /* pop rdx */
1741                         if (dst_reg != BPF_REG_0)
1742                                 EMIT1(0x58); /* pop rax */
1743                         break;
1744                 }
1745
1746                 case BPF_ALU | BPF_MUL | BPF_K:
1747                 case BPF_ALU64 | BPF_MUL | BPF_K:
1748                         maybe_emit_mod(&prog, dst_reg, dst_reg,
1749                                        BPF_CLASS(insn->code) == BPF_ALU64);
1750
1751                         if (is_imm8(imm32))
1752                                 /* imul dst_reg, dst_reg, imm8 */
1753                                 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1754                                       imm32);
1755                         else
1756                                 /* imul dst_reg, dst_reg, imm32 */
1757                                 EMIT2_off32(0x69,
1758                                             add_2reg(0xC0, dst_reg, dst_reg),
1759                                             imm32);
1760                         break;
1761
1762                 case BPF_ALU | BPF_MUL | BPF_X:
1763                 case BPF_ALU64 | BPF_MUL | BPF_X:
1764                         maybe_emit_mod(&prog, src_reg, dst_reg,
1765                                        BPF_CLASS(insn->code) == BPF_ALU64);
1766
1767                         /* imul dst_reg, src_reg */
1768                         EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1769                         break;
1770
1771                         /* Shifts */
1772                 case BPF_ALU | BPF_LSH | BPF_K:
1773                 case BPF_ALU | BPF_RSH | BPF_K:
1774                 case BPF_ALU | BPF_ARSH | BPF_K:
1775                 case BPF_ALU64 | BPF_LSH | BPF_K:
1776                 case BPF_ALU64 | BPF_RSH | BPF_K:
1777                 case BPF_ALU64 | BPF_ARSH | BPF_K:
1778                         maybe_emit_1mod(&prog, dst_reg,
1779                                         BPF_CLASS(insn->code) == BPF_ALU64);
1780
1781                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1782                         if (imm32 == 1)
1783                                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1784                         else
1785                                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1786                         break;
1787
1788                 case BPF_ALU | BPF_LSH | BPF_X:
1789                 case BPF_ALU | BPF_RSH | BPF_X:
1790                 case BPF_ALU | BPF_ARSH | BPF_X:
1791                 case BPF_ALU64 | BPF_LSH | BPF_X:
1792                 case BPF_ALU64 | BPF_RSH | BPF_X:
1793                 case BPF_ALU64 | BPF_ARSH | BPF_X:
1794                         /* BMI2 shifts aren't better when shift count is already in rcx */
1795                         if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1796                                 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1797                                 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1798                                 u8 op;
1799
1800                                 switch (BPF_OP(insn->code)) {
1801                                 case BPF_LSH:
1802                                         op = 1; /* prefix 0x66 */
1803                                         break;
1804                                 case BPF_RSH:
1805                                         op = 3; /* prefix 0xf2 */
1806                                         break;
1807                                 case BPF_ARSH:
1808                                         op = 2; /* prefix 0xf3 */
1809                                         break;
1810                                 }
1811
1812                                 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1813
1814                                 break;
1815                         }
1816
1817                         if (src_reg != BPF_REG_4) { /* common case */
1818                                 /* Check for bad case when dst_reg == rcx */
1819                                 if (dst_reg == BPF_REG_4) {
1820                                         /* mov r11, dst_reg */
1821                                         EMIT_mov(AUX_REG, dst_reg);
1822                                         dst_reg = AUX_REG;
1823                                 } else {
1824                                         EMIT1(0x51); /* push rcx */
1825                                 }
1826                                 /* mov rcx, src_reg */
1827                                 EMIT_mov(BPF_REG_4, src_reg);
1828                         }
1829
1830                         /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1831                         maybe_emit_1mod(&prog, dst_reg,
1832                                         BPF_CLASS(insn->code) == BPF_ALU64);
1833
1834                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1835                         EMIT2(0xD3, add_1reg(b3, dst_reg));
1836
1837                         if (src_reg != BPF_REG_4) {
1838                                 if (insn->dst_reg == BPF_REG_4)
1839                                         /* mov dst_reg, r11 */
1840                                         EMIT_mov(insn->dst_reg, AUX_REG);
1841                                 else
1842                                         EMIT1(0x59); /* pop rcx */
1843                         }
1844
1845                         break;
1846
1847                 case BPF_ALU | BPF_END | BPF_FROM_BE:
1848                 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1849                         switch (imm32) {
1850                         case 16:
1851                                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1852                                 EMIT1(0x66);
1853                                 if (is_ereg(dst_reg))
1854                                         EMIT1(0x41);
1855                                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1856
1857                                 /* Emit 'movzwl eax, ax' */
1858                                 if (is_ereg(dst_reg))
1859                                         EMIT3(0x45, 0x0F, 0xB7);
1860                                 else
1861                                         EMIT2(0x0F, 0xB7);
1862                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1863                                 break;
1864                         case 32:
1865                                 /* Emit 'bswap eax' to swap lower 4 bytes */
1866                                 if (is_ereg(dst_reg))
1867                                         EMIT2(0x41, 0x0F);
1868                                 else
1869                                         EMIT1(0x0F);
1870                                 EMIT1(add_1reg(0xC8, dst_reg));
1871                                 break;
1872                         case 64:
1873                                 /* Emit 'bswap rax' to swap 8 bytes */
1874                                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1875                                       add_1reg(0xC8, dst_reg));
1876                                 break;
1877                         }
1878                         break;
1879
1880                 case BPF_ALU | BPF_END | BPF_FROM_LE:
1881                         switch (imm32) {
1882                         case 16:
1883                                 /*
1884                                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1885                                  * into 64 bit
1886                                  */
1887                                 if (is_ereg(dst_reg))
1888                                         EMIT3(0x45, 0x0F, 0xB7);
1889                                 else
1890                                         EMIT2(0x0F, 0xB7);
1891                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1892                                 break;
1893                         case 32:
1894                                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1895                                 if (is_ereg(dst_reg))
1896                                         EMIT1(0x45);
1897                                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1898                                 break;
1899                         case 64:
1900                                 /* nop */
1901                                 break;
1902                         }
1903                         break;
1904
1905                         /* speculation barrier */
1906                 case BPF_ST | BPF_NOSPEC:
1907                         EMIT_LFENCE();
1908                         break;
1909
1910                         /* ST: *(u8*)(dst_reg + off) = imm */
1911                 case BPF_ST | BPF_MEM | BPF_B:
1912                         if (is_ereg(dst_reg))
1913                                 EMIT2(0x41, 0xC6);
1914                         else
1915                                 EMIT1(0xC6);
1916                         goto st;
1917                 case BPF_ST | BPF_MEM | BPF_H:
1918                         if (is_ereg(dst_reg))
1919                                 EMIT3(0x66, 0x41, 0xC7);
1920                         else
1921                                 EMIT2(0x66, 0xC7);
1922                         goto st;
1923                 case BPF_ST | BPF_MEM | BPF_W:
1924                         if (is_ereg(dst_reg))
1925                                 EMIT2(0x41, 0xC7);
1926                         else
1927                                 EMIT1(0xC7);
1928                         goto st;
1929                 case BPF_ST | BPF_MEM | BPF_DW:
1930                         EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1931
1932 st:                     if (is_imm8(insn->off))
1933                                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1934                         else
1935                                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1936
1937                         EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1938                         break;
1939
1940                         /* STX: *(u8*)(dst_reg + off) = src_reg */
1941                 case BPF_STX | BPF_MEM | BPF_B:
1942                 case BPF_STX | BPF_MEM | BPF_H:
1943                 case BPF_STX | BPF_MEM | BPF_W:
1944                 case BPF_STX | BPF_MEM | BPF_DW:
1945                         emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1946                         break;
1947
1948                 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1949                 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1950                 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1951                 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1952                         start_of_ldx = prog;
1953                         emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
1954                         goto populate_extable;
1955
1956                         /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
1957                 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1958                 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1959                 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1960                 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1961                 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1962                 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1963                 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1964                 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1965                         start_of_ldx = prog;
1966                         if (BPF_CLASS(insn->code) == BPF_LDX)
1967                                 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1968                         else
1969                                 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1970 populate_extable:
1971                         {
1972                                 struct exception_table_entry *ex;
1973                                 u8 *_insn = image + proglen + (start_of_ldx - temp);
1974                                 s64 delta;
1975
1976                                 if (!bpf_prog->aux->extable)
1977                                         break;
1978
1979                                 if (excnt >= bpf_prog->aux->num_exentries) {
1980                                         pr_err("mem32 extable bug\n");
1981                                         return -EFAULT;
1982                                 }
1983                                 ex = &bpf_prog->aux->extable[excnt++];
1984
1985                                 delta = _insn - (u8 *)&ex->insn;
1986                                 /* switch ex to rw buffer for writes */
1987                                 ex = (void *)rw_image + ((void *)ex - (void *)image);
1988
1989                                 ex->insn = delta;
1990
1991                                 ex->data = EX_TYPE_BPF;
1992
1993                                 ex->fixup = (prog - start_of_ldx) |
1994                                         ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
1995                         }
1996                         break;
1997
1998                         /* LDX: dst_reg = *(u8*)(src_reg + off) */
1999                 case BPF_LDX | BPF_MEM | BPF_B:
2000                 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2001                 case BPF_LDX | BPF_MEM | BPF_H:
2002                 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2003                 case BPF_LDX | BPF_MEM | BPF_W:
2004                 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2005                 case BPF_LDX | BPF_MEM | BPF_DW:
2006                 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2007                         /* LDXS: dst_reg = *(s8*)(src_reg + off) */
2008                 case BPF_LDX | BPF_MEMSX | BPF_B:
2009                 case BPF_LDX | BPF_MEMSX | BPF_H:
2010                 case BPF_LDX | BPF_MEMSX | BPF_W:
2011                 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2012                 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2013                 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2014                         insn_off = insn->off;
2015
2016                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2017                             BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2018                                 /* Conservatively check that src_reg + insn->off is a kernel address:
2019                                  *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2020                                  *   and
2021                                  *   src_reg + insn->off < VSYSCALL_ADDR
2022                                  */
2023
2024                                 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2025                                 u8 *end_of_jmp;
2026
2027                                 /* movabsq r10, VSYSCALL_ADDR */
2028                                 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2029                                                (u32)(long)VSYSCALL_ADDR);
2030
2031                                 /* mov src_reg, r11 */
2032                                 EMIT_mov(AUX_REG, src_reg);
2033
2034                                 if (insn->off) {
2035                                         /* add r11, insn->off */
2036                                         maybe_emit_1mod(&prog, AUX_REG, true);
2037                                         EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2038                                 }
2039
2040                                 /* sub r11, r10 */
2041                                 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2042                                 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2043
2044                                 /* movabsq r10, limit */
2045                                 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2046                                                (u32)(long)limit);
2047
2048                                 /* cmp r10, r11 */
2049                                 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2050                                 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2051
2052                                 /* if unsigned '>', goto load */
2053                                 EMIT2(X86_JA, 0);
2054                                 end_of_jmp = prog;
2055
2056                                 /* xor dst_reg, dst_reg */
2057                                 emit_mov_imm32(&prog, false, dst_reg, 0);
2058                                 /* jmp byte_after_ldx */
2059                                 EMIT2(0xEB, 0);
2060
2061                                 /* populate jmp_offset for JAE above to jump to start_of_ldx */
2062                                 start_of_ldx = prog;
2063                                 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2064                         }
2065                         if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2066                             BPF_MODE(insn->code) == BPF_MEMSX)
2067                                 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2068                         else
2069                                 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2070                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2071                             BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2072                                 struct exception_table_entry *ex;
2073                                 u8 *_insn = image + proglen + (start_of_ldx - temp);
2074                                 s64 delta;
2075
2076                                 /* populate jmp_offset for JMP above */
2077                                 start_of_ldx[-1] = prog - start_of_ldx;
2078
2079                                 if (!bpf_prog->aux->extable)
2080                                         break;
2081
2082                                 if (excnt >= bpf_prog->aux->num_exentries) {
2083                                         pr_err("ex gen bug\n");
2084                                         return -EFAULT;
2085                                 }
2086                                 ex = &bpf_prog->aux->extable[excnt++];
2087
2088                                 delta = _insn - (u8 *)&ex->insn;
2089                                 if (!is_simm32(delta)) {
2090                                         pr_err("extable->insn doesn't fit into 32-bit\n");
2091                                         return -EFAULT;
2092                                 }
2093                                 /* switch ex to rw buffer for writes */
2094                                 ex = (void *)rw_image + ((void *)ex - (void *)image);
2095
2096                                 ex->insn = delta;
2097
2098                                 ex->data = EX_TYPE_BPF;
2099
2100                                 if (dst_reg > BPF_REG_9) {
2101                                         pr_err("verifier error\n");
2102                                         return -EFAULT;
2103                                 }
2104                                 /*
2105                                  * Compute size of x86 insn and its target dest x86 register.
2106                                  * ex_handler_bpf() will use lower 8 bits to adjust
2107                                  * pt_regs->ip to jump over this x86 instruction
2108                                  * and upper bits to figure out which pt_regs to zero out.
2109                                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2110                                  * of 4 bytes will be ignored and rbx will be zero inited.
2111                                  */
2112                                 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2113                         }
2114                         break;
2115
2116                 case BPF_STX | BPF_ATOMIC | BPF_W:
2117                 case BPF_STX | BPF_ATOMIC | BPF_DW:
2118                         if (insn->imm == (BPF_AND | BPF_FETCH) ||
2119                             insn->imm == (BPF_OR | BPF_FETCH) ||
2120                             insn->imm == (BPF_XOR | BPF_FETCH)) {
2121                                 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2122                                 u32 real_src_reg = src_reg;
2123                                 u32 real_dst_reg = dst_reg;
2124                                 u8 *branch_target;
2125
2126                                 /*
2127                                  * Can't be implemented with a single x86 insn.
2128                                  * Need to do a CMPXCHG loop.
2129                                  */
2130
2131                                 /* Will need RAX as a CMPXCHG operand so save R0 */
2132                                 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2133                                 if (src_reg == BPF_REG_0)
2134                                         real_src_reg = BPF_REG_AX;
2135                                 if (dst_reg == BPF_REG_0)
2136                                         real_dst_reg = BPF_REG_AX;
2137
2138                                 branch_target = prog;
2139                                 /* Load old value */
2140                                 emit_ldx(&prog, BPF_SIZE(insn->code),
2141                                          BPF_REG_0, real_dst_reg, insn->off);
2142                                 /*
2143                                  * Perform the (commutative) operation locally,
2144                                  * put the result in the AUX_REG.
2145                                  */
2146                                 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2147                                 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2148                                 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2149                                       add_2reg(0xC0, AUX_REG, real_src_reg));
2150                                 /* Attempt to swap in new value */
2151                                 err = emit_atomic(&prog, BPF_CMPXCHG,
2152                                                   real_dst_reg, AUX_REG,
2153                                                   insn->off,
2154                                                   BPF_SIZE(insn->code));
2155                                 if (WARN_ON(err))
2156                                         return err;
2157                                 /*
2158                                  * ZF tells us whether we won the race. If it's
2159                                  * cleared we need to try again.
2160                                  */
2161                                 EMIT2(X86_JNE, -(prog - branch_target) - 2);
2162                                 /* Return the pre-modification value */
2163                                 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2164                                 /* Restore R0 after clobbering RAX */
2165                                 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2166                                 break;
2167                         }
2168
2169                         err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
2170                                           insn->off, BPF_SIZE(insn->code));
2171                         if (err)
2172                                 return err;
2173                         break;
2174
2175                 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2176                 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2177                         start_of_ldx = prog;
2178                         err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code),
2179                                                 dst_reg, src_reg, X86_REG_R12, insn->off);
2180                         if (err)
2181                                 return err;
2182                         goto populate_extable;
2183
2184                         /* call */
2185                 case BPF_JMP | BPF_CALL: {
2186                         u8 *ip = image + addrs[i - 1];
2187
2188                         func = (u8 *) __bpf_call_base + imm32;
2189                         if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2190                                 LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2191                                 ip += 7;
2192                         }
2193                         if (!imm32)
2194                                 return -EINVAL;
2195                         if (priv_frame_ptr) {
2196                                 push_r9(&prog);
2197                                 ip += 2;
2198                         }
2199                         ip += x86_call_depth_emit_accounting(&prog, func, ip);
2200                         if (emit_call(&prog, func, ip))
2201                                 return -EINVAL;
2202                         if (priv_frame_ptr)
2203                                 pop_r9(&prog);
2204                         break;
2205                 }
2206
2207                 case BPF_JMP | BPF_TAIL_CALL:
2208                         if (imm32)
2209                                 emit_bpf_tail_call_direct(bpf_prog,
2210                                                           &bpf_prog->aux->poke_tab[imm32 - 1],
2211                                                           &prog, image + addrs[i - 1],
2212                                                           callee_regs_used,
2213                                                           stack_depth,
2214                                                           ctx);
2215                         else
2216                                 emit_bpf_tail_call_indirect(bpf_prog,
2217                                                             &prog,
2218                                                             callee_regs_used,
2219                                                             stack_depth,
2220                                                             image + addrs[i - 1],
2221                                                             ctx);
2222                         break;
2223
2224                         /* cond jump */
2225                 case BPF_JMP | BPF_JEQ | BPF_X:
2226                 case BPF_JMP | BPF_JNE | BPF_X:
2227                 case BPF_JMP | BPF_JGT | BPF_X:
2228                 case BPF_JMP | BPF_JLT | BPF_X:
2229                 case BPF_JMP | BPF_JGE | BPF_X:
2230                 case BPF_JMP | BPF_JLE | BPF_X:
2231                 case BPF_JMP | BPF_JSGT | BPF_X:
2232                 case BPF_JMP | BPF_JSLT | BPF_X:
2233                 case BPF_JMP | BPF_JSGE | BPF_X:
2234                 case BPF_JMP | BPF_JSLE | BPF_X:
2235                 case BPF_JMP32 | BPF_JEQ | BPF_X:
2236                 case BPF_JMP32 | BPF_JNE | BPF_X:
2237                 case BPF_JMP32 | BPF_JGT | BPF_X:
2238                 case BPF_JMP32 | BPF_JLT | BPF_X:
2239                 case BPF_JMP32 | BPF_JGE | BPF_X:
2240                 case BPF_JMP32 | BPF_JLE | BPF_X:
2241                 case BPF_JMP32 | BPF_JSGT | BPF_X:
2242                 case BPF_JMP32 | BPF_JSLT | BPF_X:
2243                 case BPF_JMP32 | BPF_JSGE | BPF_X:
2244                 case BPF_JMP32 | BPF_JSLE | BPF_X:
2245                         /* cmp dst_reg, src_reg */
2246                         maybe_emit_mod(&prog, dst_reg, src_reg,
2247                                        BPF_CLASS(insn->code) == BPF_JMP);
2248                         EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2249                         goto emit_cond_jmp;
2250
2251                 case BPF_JMP | BPF_JSET | BPF_X:
2252                 case BPF_JMP32 | BPF_JSET | BPF_X:
2253                         /* test dst_reg, src_reg */
2254                         maybe_emit_mod(&prog, dst_reg, src_reg,
2255                                        BPF_CLASS(insn->code) == BPF_JMP);
2256                         EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2257                         goto emit_cond_jmp;
2258
2259                 case BPF_JMP | BPF_JSET | BPF_K:
2260                 case BPF_JMP32 | BPF_JSET | BPF_K:
2261                         /* test dst_reg, imm32 */
2262                         maybe_emit_1mod(&prog, dst_reg,
2263                                         BPF_CLASS(insn->code) == BPF_JMP);
2264                         EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2265                         goto emit_cond_jmp;
2266
2267                 case BPF_JMP | BPF_JEQ | BPF_K:
2268                 case BPF_JMP | BPF_JNE | BPF_K:
2269                 case BPF_JMP | BPF_JGT | BPF_K:
2270                 case BPF_JMP | BPF_JLT | BPF_K:
2271                 case BPF_JMP | BPF_JGE | BPF_K:
2272                 case BPF_JMP | BPF_JLE | BPF_K:
2273                 case BPF_JMP | BPF_JSGT | BPF_K:
2274                 case BPF_JMP | BPF_JSLT | BPF_K:
2275                 case BPF_JMP | BPF_JSGE | BPF_K:
2276                 case BPF_JMP | BPF_JSLE | BPF_K:
2277                 case BPF_JMP32 | BPF_JEQ | BPF_K:
2278                 case BPF_JMP32 | BPF_JNE | BPF_K:
2279                 case BPF_JMP32 | BPF_JGT | BPF_K:
2280                 case BPF_JMP32 | BPF_JLT | BPF_K:
2281                 case BPF_JMP32 | BPF_JGE | BPF_K:
2282                 case BPF_JMP32 | BPF_JLE | BPF_K:
2283                 case BPF_JMP32 | BPF_JSGT | BPF_K:
2284                 case BPF_JMP32 | BPF_JSLT | BPF_K:
2285                 case BPF_JMP32 | BPF_JSGE | BPF_K:
2286                 case BPF_JMP32 | BPF_JSLE | BPF_K:
2287                         /* test dst_reg, dst_reg to save one extra byte */
2288                         if (imm32 == 0) {
2289                                 maybe_emit_mod(&prog, dst_reg, dst_reg,
2290                                                BPF_CLASS(insn->code) == BPF_JMP);
2291                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2292                                 goto emit_cond_jmp;
2293                         }
2294
2295                         /* cmp dst_reg, imm8/32 */
2296                         maybe_emit_1mod(&prog, dst_reg,
2297                                         BPF_CLASS(insn->code) == BPF_JMP);
2298
2299                         if (is_imm8(imm32))
2300                                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2301                         else
2302                                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2303
2304 emit_cond_jmp:          /* Convert BPF opcode to x86 */
2305                         switch (BPF_OP(insn->code)) {
2306                         case BPF_JEQ:
2307                                 jmp_cond = X86_JE;
2308                                 break;
2309                         case BPF_JSET:
2310                         case BPF_JNE:
2311                                 jmp_cond = X86_JNE;
2312                                 break;
2313                         case BPF_JGT:
2314                                 /* GT is unsigned '>', JA in x86 */
2315                                 jmp_cond = X86_JA;
2316                                 break;
2317                         case BPF_JLT:
2318                                 /* LT is unsigned '<', JB in x86 */
2319                                 jmp_cond = X86_JB;
2320                                 break;
2321                         case BPF_JGE:
2322                                 /* GE is unsigned '>=', JAE in x86 */
2323                                 jmp_cond = X86_JAE;
2324                                 break;
2325                         case BPF_JLE:
2326                                 /* LE is unsigned '<=', JBE in x86 */
2327                                 jmp_cond = X86_JBE;
2328                                 break;
2329                         case BPF_JSGT:
2330                                 /* Signed '>', GT in x86 */
2331                                 jmp_cond = X86_JG;
2332                                 break;
2333                         case BPF_JSLT:
2334                                 /* Signed '<', LT in x86 */
2335                                 jmp_cond = X86_JL;
2336                                 break;
2337                         case BPF_JSGE:
2338                                 /* Signed '>=', GE in x86 */
2339                                 jmp_cond = X86_JGE;
2340                                 break;
2341                         case BPF_JSLE:
2342                                 /* Signed '<=', LE in x86 */
2343                                 jmp_cond = X86_JLE;
2344                                 break;
2345                         default: /* to silence GCC warning */
2346                                 return -EFAULT;
2347                         }
2348                         jmp_offset = addrs[i + insn->off] - addrs[i];
2349                         if (is_imm8_jmp_offset(jmp_offset)) {
2350                                 if (jmp_padding) {
2351                                         /* To keep the jmp_offset valid, the extra bytes are
2352                                          * padded before the jump insn, so we subtract the
2353                                          * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2354                                          *
2355                                          * If the previous pass already emits an imm8
2356                                          * jmp_cond, then this BPF insn won't shrink, so
2357                                          * "nops" is 0.
2358                                          *
2359                                          * On the other hand, if the previous pass emits an
2360                                          * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2361                                          * keep the image from shrinking further.
2362                                          *
2363                                          * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2364                                          *     is 2 bytes, so the size difference is 4 bytes.
2365                                          */
2366                                         nops = INSN_SZ_DIFF - 2;
2367                                         if (nops != 0 && nops != 4) {
2368                                                 pr_err("unexpected jmp_cond padding: %d bytes\n",
2369                                                        nops);
2370                                                 return -EFAULT;
2371                                         }
2372                                         emit_nops(&prog, nops);
2373                                 }
2374                                 EMIT2(jmp_cond, jmp_offset);
2375                         } else if (is_simm32(jmp_offset)) {
2376                                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2377                         } else {
2378                                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2379                                 return -EFAULT;
2380                         }
2381
2382                         break;
2383
2384                 case BPF_JMP | BPF_JA:
2385                 case BPF_JMP32 | BPF_JA:
2386                         if (BPF_CLASS(insn->code) == BPF_JMP) {
2387                                 if (insn->off == -1)
2388                                         /* -1 jmp instructions will always jump
2389                                          * backwards two bytes. Explicitly handling
2390                                          * this case avoids wasting too many passes
2391                                          * when there are long sequences of replaced
2392                                          * dead code.
2393                                          */
2394                                         jmp_offset = -2;
2395                                 else
2396                                         jmp_offset = addrs[i + insn->off] - addrs[i];
2397                         } else {
2398                                 if (insn->imm == -1)
2399                                         jmp_offset = -2;
2400                                 else
2401                                         jmp_offset = addrs[i + insn->imm] - addrs[i];
2402                         }
2403
2404                         if (!jmp_offset) {
2405                                 /*
2406                                  * If jmp_padding is enabled, the extra nops will
2407                                  * be inserted. Otherwise, optimize out nop jumps.
2408                                  */
2409                                 if (jmp_padding) {
2410                                         /* There are 3 possible conditions.
2411                                          * (1) This BPF_JA is already optimized out in
2412                                          *     the previous run, so there is no need
2413                                          *     to pad any extra byte (0 byte).
2414                                          * (2) The previous pass emits an imm8 jmp,
2415                                          *     so we pad 2 bytes to match the previous
2416                                          *     insn size.
2417                                          * (3) Similarly, the previous pass emits an
2418                                          *     imm32 jmp, and 5 bytes is padded.
2419                                          */
2420                                         nops = INSN_SZ_DIFF;
2421                                         if (nops != 0 && nops != 2 && nops != 5) {
2422                                                 pr_err("unexpected nop jump padding: %d bytes\n",
2423                                                        nops);
2424                                                 return -EFAULT;
2425                                         }
2426                                         emit_nops(&prog, nops);
2427                                 }
2428                                 break;
2429                         }
2430 emit_jmp:
2431                         if (is_imm8_jmp_offset(jmp_offset)) {
2432                                 if (jmp_padding) {
2433                                         /* To avoid breaking jmp_offset, the extra bytes
2434                                          * are padded before the actual jmp insn, so
2435                                          * 2 bytes is subtracted from INSN_SZ_DIFF.
2436                                          *
2437                                          * If the previous pass already emits an imm8
2438                                          * jmp, there is nothing to pad (0 byte).
2439                                          *
2440                                          * If it emits an imm32 jmp (5 bytes) previously
2441                                          * and now an imm8 jmp (2 bytes), then we pad
2442                                          * (5 - 2 = 3) bytes to stop the image from
2443                                          * shrinking further.
2444                                          */
2445                                         nops = INSN_SZ_DIFF - 2;
2446                                         if (nops != 0 && nops != 3) {
2447                                                 pr_err("unexpected jump padding: %d bytes\n",
2448                                                        nops);
2449                                                 return -EFAULT;
2450                                         }
2451                                         emit_nops(&prog, INSN_SZ_DIFF - 2);
2452                                 }
2453                                 EMIT2(0xEB, jmp_offset);
2454                         } else if (is_simm32(jmp_offset)) {
2455                                 EMIT1_off32(0xE9, jmp_offset);
2456                         } else {
2457                                 pr_err("jmp gen bug %llx\n", jmp_offset);
2458                                 return -EFAULT;
2459                         }
2460                         break;
2461
2462                 case BPF_JMP | BPF_EXIT:
2463                         if (seen_exit) {
2464                                 jmp_offset = ctx->cleanup_addr - addrs[i];
2465                                 goto emit_jmp;
2466                         }
2467                         seen_exit = true;
2468                         /* Update cleanup_addr */
2469                         ctx->cleanup_addr = proglen;
2470                         if (bpf_prog->aux->exception_boundary) {
2471                                 pop_callee_regs(&prog, all_callee_regs_used);
2472                                 pop_r12(&prog);
2473                         } else {
2474                                 pop_callee_regs(&prog, callee_regs_used);
2475                                 if (arena_vm_start)
2476                                         pop_r12(&prog);
2477                         }
2478                         EMIT1(0xC9);         /* leave */
2479                         emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2480                         break;
2481
2482                 default:
2483                         /*
2484                          * By design x86-64 JIT should support all BPF instructions.
2485                          * This error will be seen if new instruction was added
2486                          * to the interpreter, but not to the JIT, or if there is
2487                          * junk in bpf_prog.
2488                          */
2489                         pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2490                         return -EINVAL;
2491                 }
2492
2493                 ilen = prog - temp;
2494                 if (ilen > BPF_MAX_INSN_SIZE) {
2495                         pr_err("bpf_jit: fatal insn size error\n");
2496                         return -EFAULT;
2497                 }
2498
2499                 if (image) {
2500                         /*
2501                          * When populating the image, assert that:
2502                          *
2503                          *  i) We do not write beyond the allocated space, and
2504                          * ii) addrs[i] did not change from the prior run, in order
2505                          *     to validate assumptions made for computing branch
2506                          *     displacements.
2507                          */
2508                         if (unlikely(proglen + ilen > oldproglen ||
2509                                      proglen + ilen != addrs[i])) {
2510                                 pr_err("bpf_jit: fatal error\n");
2511                                 return -EFAULT;
2512                         }
2513                         memcpy(rw_image + proglen, temp, ilen);
2514                 }
2515                 proglen += ilen;
2516                 addrs[i] = proglen;
2517                 prog = temp;
2518         }
2519
2520         if (image && excnt != bpf_prog->aux->num_exentries) {
2521                 pr_err("extable is not populated\n");
2522                 return -EFAULT;
2523         }
2524         return proglen;
2525 }
2526
2527 static void clean_stack_garbage(const struct btf_func_model *m,
2528                                 u8 **pprog, int nr_stack_slots,
2529                                 int stack_size)
2530 {
2531         int arg_size, off;
2532         u8 *prog;
2533
2534         /* Generally speaking, the compiler will pass the arguments
2535          * on-stack with "push" instruction, which will take 8-byte
2536          * on the stack. In this case, there won't be garbage values
2537          * while we copy the arguments from origin stack frame to current
2538          * in BPF_DW.
2539          *
2540          * However, sometimes the compiler will only allocate 4-byte on
2541          * the stack for the arguments. For now, this case will only
2542          * happen if there is only one argument on-stack and its size
2543          * not more than 4 byte. In this case, there will be garbage
2544          * values on the upper 4-byte where we store the argument on
2545          * current stack frame.
2546          *
2547          * arguments on origin stack:
2548          *
2549          * stack_arg_1(4-byte) xxx(4-byte)
2550          *
2551          * what we copy:
2552          *
2553          * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2554          *
2555          * and the xxx is the garbage values which we should clean here.
2556          */
2557         if (nr_stack_slots != 1)
2558                 return;
2559
2560         /* the size of the last argument */
2561         arg_size = m->arg_size[m->nr_args - 1];
2562         if (arg_size <= 4) {
2563                 off = -(stack_size - 4);
2564                 prog = *pprog;
2565                 /* mov DWORD PTR [rbp + off], 0 */
2566                 if (!is_imm8(off))
2567                         EMIT2_off32(0xC7, 0x85, off);
2568                 else
2569                         EMIT3(0xC7, 0x45, off);
2570                 EMIT(0, 4);
2571                 *pprog = prog;
2572         }
2573 }
2574
2575 /* get the count of the regs that are used to pass arguments */
2576 static int get_nr_used_regs(const struct btf_func_model *m)
2577 {
2578         int i, arg_regs, nr_used_regs = 0;
2579
2580         for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2581                 arg_regs = (m->arg_size[i] + 7) / 8;
2582                 if (nr_used_regs + arg_regs <= 6)
2583                         nr_used_regs += arg_regs;
2584
2585                 if (nr_used_regs >= 6)
2586                         break;
2587         }
2588
2589         return nr_used_regs;
2590 }
2591
2592 static void save_args(const struct btf_func_model *m, u8 **prog,
2593                       int stack_size, bool for_call_origin)
2594 {
2595         int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2596         int i, j;
2597
2598         /* Store function arguments to stack.
2599          * For a function that accepts two pointers the sequence will be:
2600          * mov QWORD PTR [rbp-0x10],rdi
2601          * mov QWORD PTR [rbp-0x8],rsi
2602          */
2603         for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2604                 arg_regs = (m->arg_size[i] + 7) / 8;
2605
2606                 /* According to the research of Yonghong, struct members
2607                  * should be all in register or all on the stack.
2608                  * Meanwhile, the compiler will pass the argument on regs
2609                  * if the remaining regs can hold the argument.
2610                  *
2611                  * Disorder of the args can happen. For example:
2612                  *
2613                  * struct foo_struct {
2614                  *     long a;
2615                  *     int b;
2616                  * };
2617                  * int foo(char, char, char, char, char, struct foo_struct,
2618                  *         char);
2619                  *
2620                  * the arg1-5,arg7 will be passed by regs, and arg6 will
2621                  * by stack.
2622                  */
2623                 if (nr_regs + arg_regs > 6) {
2624                         /* copy function arguments from origin stack frame
2625                          * into current stack frame.
2626                          *
2627                          * The starting address of the arguments on-stack
2628                          * is:
2629                          *   rbp + 8(push rbp) +
2630                          *   8(return addr of origin call) +
2631                          *   8(return addr of the caller)
2632                          * which means: rbp + 24
2633                          */
2634                         for (j = 0; j < arg_regs; j++) {
2635                                 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2636                                          nr_stack_slots * 8 + 0x18);
2637                                 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2638                                          -stack_size);
2639
2640                                 if (!nr_stack_slots)
2641                                         first_off = stack_size;
2642                                 stack_size -= 8;
2643                                 nr_stack_slots++;
2644                         }
2645                 } else {
2646                         /* Only copy the arguments on-stack to current
2647                          * 'stack_size' and ignore the regs, used to
2648                          * prepare the arguments on-stack for origin call.
2649                          */
2650                         if (for_call_origin) {
2651                                 nr_regs += arg_regs;
2652                                 continue;
2653                         }
2654
2655                         /* copy the arguments from regs into stack */
2656                         for (j = 0; j < arg_regs; j++) {
2657                                 emit_stx(prog, BPF_DW, BPF_REG_FP,
2658                                          nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2659                                          -stack_size);
2660                                 stack_size -= 8;
2661                                 nr_regs++;
2662                         }
2663                 }
2664         }
2665
2666         clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2667 }
2668
2669 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2670                          int stack_size)
2671 {
2672         int i, j, arg_regs, nr_regs = 0;
2673
2674         /* Restore function arguments from stack.
2675          * For a function that accepts two pointers the sequence will be:
2676          * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2677          * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2678          *
2679          * The logic here is similar to what we do in save_args()
2680          */
2681         for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2682                 arg_regs = (m->arg_size[i] + 7) / 8;
2683                 if (nr_regs + arg_regs <= 6) {
2684                         for (j = 0; j < arg_regs; j++) {
2685                                 emit_ldx(prog, BPF_DW,
2686                                          nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2687                                          BPF_REG_FP,
2688                                          -stack_size);
2689                                 stack_size -= 8;
2690                                 nr_regs++;
2691                         }
2692                 } else {
2693                         stack_size -= 8 * arg_regs;
2694                 }
2695
2696                 if (nr_regs >= 6)
2697                         break;
2698         }
2699 }
2700
2701 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2702                            struct bpf_tramp_link *l, int stack_size,
2703                            int run_ctx_off, bool save_ret,
2704                            void *image, void *rw_image)
2705 {
2706         u8 *prog = *pprog;
2707         u8 *jmp_insn;
2708         int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2709         struct bpf_prog *p = l->link.prog;
2710         u64 cookie = l->cookie;
2711
2712         /* mov rdi, cookie */
2713         emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2714
2715         /* Prepare struct bpf_tramp_run_ctx.
2716          *
2717          * bpf_tramp_run_ctx is already preserved by
2718          * arch_prepare_bpf_trampoline().
2719          *
2720          * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2721          */
2722         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2723
2724         /* arg1: mov rdi, progs[i] */
2725         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2726         /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2727         if (!is_imm8(-run_ctx_off))
2728                 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2729         else
2730                 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2731
2732         if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2733                 return -EINVAL;
2734         /* remember prog start time returned by __bpf_prog_enter */
2735         emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2736
2737         /* if (__bpf_prog_enter*(prog) == 0)
2738          *      goto skip_exec_of_prog;
2739          */
2740         EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2741         /* emit 2 nops that will be replaced with JE insn */
2742         jmp_insn = prog;
2743         emit_nops(&prog, 2);
2744
2745         /* arg1: lea rdi, [rbp - stack_size] */
2746         if (!is_imm8(-stack_size))
2747                 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2748         else
2749                 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2750         /* arg2: progs[i]->insnsi for interpreter */
2751         if (!p->jited)
2752                 emit_mov_imm64(&prog, BPF_REG_2,
2753                                (long) p->insnsi >> 32,
2754                                (u32) (long) p->insnsi);
2755         /* call JITed bpf program or interpreter */
2756         if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2757                 return -EINVAL;
2758
2759         /*
2760          * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2761          * of the previous call which is then passed on the stack to
2762          * the next BPF program.
2763          *
2764          * BPF_TRAMP_FENTRY trampoline may need to return the return
2765          * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2766          */
2767         if (save_ret)
2768                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2769
2770         /* replace 2 nops with JE insn, since jmp target is known */
2771         jmp_insn[0] = X86_JE;
2772         jmp_insn[1] = prog - jmp_insn - 2;
2773
2774         /* arg1: mov rdi, progs[i] */
2775         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2776         /* arg2: mov rsi, rbx <- start time in nsec */
2777         emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2778         /* arg3: lea rdx, [rbp - run_ctx_off] */
2779         if (!is_imm8(-run_ctx_off))
2780                 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2781         else
2782                 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2783         if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2784                 return -EINVAL;
2785
2786         *pprog = prog;
2787         return 0;
2788 }
2789
2790 static void emit_align(u8 **pprog, u32 align)
2791 {
2792         u8 *target, *prog = *pprog;
2793
2794         target = PTR_ALIGN(prog, align);
2795         if (target != prog)
2796                 emit_nops(&prog, target - prog);
2797
2798         *pprog = prog;
2799 }
2800
2801 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2802 {
2803         u8 *prog = *pprog;
2804         s64 offset;
2805
2806         offset = func - (ip + 2 + 4);
2807         if (!is_simm32(offset)) {
2808                 pr_err("Target %p is out of range\n", func);
2809                 return -EINVAL;
2810         }
2811         EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2812         *pprog = prog;
2813         return 0;
2814 }
2815
2816 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2817                       struct bpf_tramp_links *tl, int stack_size,
2818                       int run_ctx_off, bool save_ret,
2819                       void *image, void *rw_image)
2820 {
2821         int i;
2822         u8 *prog = *pprog;
2823
2824         for (i = 0; i < tl->nr_links; i++) {
2825                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2826                                     run_ctx_off, save_ret, image, rw_image))
2827                         return -EINVAL;
2828         }
2829         *pprog = prog;
2830         return 0;
2831 }
2832
2833 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2834                               struct bpf_tramp_links *tl, int stack_size,
2835                               int run_ctx_off, u8 **branches,
2836                               void *image, void *rw_image)
2837 {
2838         u8 *prog = *pprog;
2839         int i;
2840
2841         /* The first fmod_ret program will receive a garbage return value.
2842          * Set this to 0 to avoid confusing the program.
2843          */
2844         emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2845         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2846         for (i = 0; i < tl->nr_links; i++) {
2847                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2848                                     image, rw_image))
2849                         return -EINVAL;
2850
2851                 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2852                  * if (*(u64 *)(rbp - 8) !=  0)
2853                  *      goto do_fexit;
2854                  */
2855                 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2856                 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2857
2858                 /* Save the location of the branch and Generate 6 nops
2859                  * (4 bytes for an offset and 2 bytes for the jump) These nops
2860                  * are replaced with a conditional jump once do_fexit (i.e. the
2861                  * start of the fexit invocation) is finalized.
2862                  */
2863                 branches[i] = prog;
2864                 emit_nops(&prog, 4 + 2);
2865         }
2866
2867         *pprog = prog;
2868         return 0;
2869 }
2870
2871 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
2872 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)     \
2873         __LOAD_TCC_PTR(-round_up(stack, 8) - 8)
2874
2875 /* Example:
2876  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2877  * its 'struct btf_func_model' will be nr_args=2
2878  * The assembly code when eth_type_trans is executing after trampoline:
2879  *
2880  * push rbp
2881  * mov rbp, rsp
2882  * sub rsp, 16                     // space for skb and dev
2883  * push rbx                        // temp regs to pass start time
2884  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2885  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2886  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2887  * mov rbx, rax                    // remember start time in bpf stats are enabled
2888  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2889  * call addr_of_jited_FENTRY_prog
2890  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2891  * mov rsi, rbx                    // prog start time
2892  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2893  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2894  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2895  * pop rbx
2896  * leave
2897  * ret
2898  *
2899  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2900  * replaced with 'call generated_bpf_trampoline'. When it returns
2901  * eth_type_trans will continue executing with original skb and dev pointers.
2902  *
2903  * The assembly code when eth_type_trans is called from trampoline:
2904  *
2905  * push rbp
2906  * mov rbp, rsp
2907  * sub rsp, 24                     // space for skb, dev, return value
2908  * push rbx                        // temp regs to pass start time
2909  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2910  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2911  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2912  * mov rbx, rax                    // remember start time if bpf stats are enabled
2913  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2914  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2915  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2916  * mov rsi, rbx                    // prog start time
2917  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2918  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2919  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2920  * call eth_type_trans+5           // execute body of eth_type_trans
2921  * mov qword ptr [rbp - 8], rax    // save return value
2922  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2923  * mov rbx, rax                    // remember start time in bpf stats are enabled
2924  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2925  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2926  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2927  * mov rsi, rbx                    // prog start time
2928  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2929  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2930  * pop rbx
2931  * leave
2932  * add rsp, 8                      // skip eth_type_trans's frame
2933  * ret                             // return to its caller
2934  */
2935 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2936                                          void *rw_image_end, void *image,
2937                                          const struct btf_func_model *m, u32 flags,
2938                                          struct bpf_tramp_links *tlinks,
2939                                          void *func_addr)
2940 {
2941         int i, ret, nr_regs = m->nr_args, stack_size = 0;
2942         int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2943         struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2944         struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2945         struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2946         void *orig_call = func_addr;
2947         u8 **branches = NULL;
2948         u8 *prog;
2949         bool save_ret;
2950
2951         /*
2952          * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2953          * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2954          * because @func_addr.
2955          */
2956         WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2957                      (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2958
2959         /* extra registers for struct arguments */
2960         for (i = 0; i < m->nr_args; i++) {
2961                 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2962                         nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2963         }
2964
2965         /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2966          * are passed through regs, the remains are through stack.
2967          */
2968         if (nr_regs > MAX_BPF_FUNC_ARGS)
2969                 return -ENOTSUPP;
2970
2971         /* Generated trampoline stack layout:
2972          *
2973          * RBP + 8         [ return address  ]
2974          * RBP + 0         [ RBP             ]
2975          *
2976          * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2977          *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2978          *
2979          *                 [ reg_argN        ]  always
2980          *                 [ ...             ]
2981          * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2982          *
2983          * RBP - nregs_off [ regs count      ]  always
2984          *
2985          * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2986          *
2987          * RBP - rbx_off   [ rbx value       ]  always
2988          *
2989          * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2990          *
2991          *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2992          *                     [ ...        ]
2993          *                     [ stack_arg2 ]
2994          * RBP - arg_stack_off [ stack_arg1 ]
2995          * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
2996          */
2997
2998         /* room for return value of orig_call or fentry prog */
2999         save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3000         if (save_ret)
3001                 stack_size += 8;
3002
3003         stack_size += nr_regs * 8;
3004         regs_off = stack_size;
3005
3006         /* regs count  */
3007         stack_size += 8;
3008         nregs_off = stack_size;
3009
3010         if (flags & BPF_TRAMP_F_IP_ARG)
3011                 stack_size += 8; /* room for IP address argument */
3012
3013         ip_off = stack_size;
3014
3015         stack_size += 8;
3016         rbx_off = stack_size;
3017
3018         stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3019         run_ctx_off = stack_size;
3020
3021         if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3022                 /* the space that used to pass arguments on-stack */
3023                 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3024                 /* make sure the stack pointer is 16-byte aligned if we
3025                  * need pass arguments on stack, which means
3026                  *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3027                  * should be 16-byte aligned. Following code depend on
3028                  * that stack_size is already 8-byte aligned.
3029                  */
3030                 stack_size += (stack_size % 16) ? 0 : 8;
3031         }
3032
3033         arg_stack_off = stack_size;
3034
3035         if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3036                 /* skip patched call instruction and point orig_call to actual
3037                  * body of the kernel function.
3038                  */
3039                 if (is_endbr(*(u32 *)orig_call))
3040                         orig_call += ENDBR_INSN_SIZE;
3041                 orig_call += X86_PATCH_SIZE;
3042         }
3043
3044         prog = rw_image;
3045
3046         if (flags & BPF_TRAMP_F_INDIRECT) {
3047                 /*
3048                  * Indirect call for bpf_struct_ops
3049                  */
3050                 emit_cfi(&prog, cfi_get_func_hash(func_addr));
3051         } else {
3052                 /*
3053                  * Direct-call fentry stub, as such it needs accounting for the
3054                  * __fentry__ call.
3055                  */
3056                 x86_call_depth_emit_accounting(&prog, NULL, image);
3057         }
3058         EMIT1(0x55);             /* push rbp */
3059         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3060         if (!is_imm8(stack_size)) {
3061                 /* sub rsp, stack_size */
3062                 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3063         } else {
3064                 /* sub rsp, stack_size */
3065                 EMIT4(0x48, 0x83, 0xEC, stack_size);
3066         }
3067         if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3068                 EMIT1(0x50);            /* push rax */
3069         /* mov QWORD PTR [rbp - rbx_off], rbx */
3070         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3071
3072         /* Store number of argument registers of the traced function:
3073          *   mov rax, nr_regs
3074          *   mov QWORD PTR [rbp - nregs_off], rax
3075          */
3076         emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3077         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3078
3079         if (flags & BPF_TRAMP_F_IP_ARG) {
3080                 /* Store IP address of the traced function:
3081                  * movabsq rax, func_addr
3082                  * mov QWORD PTR [rbp - ip_off], rax
3083                  */
3084                 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3085                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3086         }
3087
3088         save_args(m, &prog, regs_off, false);
3089
3090         if (flags & BPF_TRAMP_F_CALL_ORIG) {
3091                 /* arg1: mov rdi, im */
3092                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3093                 if (emit_rsb_call(&prog, __bpf_tramp_enter,
3094                                   image + (prog - (u8 *)rw_image))) {
3095                         ret = -EINVAL;
3096                         goto cleanup;
3097                 }
3098         }
3099
3100         if (fentry->nr_links) {
3101                 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3102                                flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3103                         return -EINVAL;
3104         }
3105
3106         if (fmod_ret->nr_links) {
3107                 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3108                                    GFP_KERNEL);
3109                 if (!branches)
3110                         return -ENOMEM;
3111
3112                 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3113                                        run_ctx_off, branches, image, rw_image)) {
3114                         ret = -EINVAL;
3115                         goto cleanup;
3116                 }
3117         }
3118
3119         if (flags & BPF_TRAMP_F_CALL_ORIG) {
3120                 restore_regs(m, &prog, regs_off);
3121                 save_args(m, &prog, arg_stack_off, true);
3122
3123                 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3124                         /* Before calling the original function, load the
3125                          * tail_call_cnt_ptr from stack to rax.
3126                          */
3127                         LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3128                 }
3129
3130                 if (flags & BPF_TRAMP_F_ORIG_STACK) {
3131                         emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3132                         EMIT2(0xff, 0xd3); /* call *rbx */
3133                 } else {
3134                         /* call original function */
3135                         if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3136                                 ret = -EINVAL;
3137                                 goto cleanup;
3138                         }
3139                 }
3140                 /* remember return value in a stack for bpf prog to access */
3141                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3142                 im->ip_after_call = image + (prog - (u8 *)rw_image);
3143                 emit_nops(&prog, X86_PATCH_SIZE);
3144         }
3145
3146         if (fmod_ret->nr_links) {
3147                 /* From Intel 64 and IA-32 Architectures Optimization
3148                  * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3149                  * Coding Rule 11: All branch targets should be 16-byte
3150                  * aligned.
3151                  */
3152                 emit_align(&prog, 16);
3153                 /* Update the branches saved in invoke_bpf_mod_ret with the
3154                  * aligned address of do_fexit.
3155                  */
3156                 for (i = 0; i < fmod_ret->nr_links; i++) {
3157                         emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3158                                             image + (branches[i] - (u8 *)rw_image), X86_JNE);
3159                 }
3160         }
3161
3162         if (fexit->nr_links) {
3163                 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3164                                false, image, rw_image)) {
3165                         ret = -EINVAL;
3166                         goto cleanup;
3167                 }
3168         }
3169
3170         if (flags & BPF_TRAMP_F_RESTORE_REGS)
3171                 restore_regs(m, &prog, regs_off);
3172
3173         /* This needs to be done regardless. If there were fmod_ret programs,
3174          * the return value is only updated on the stack and still needs to be
3175          * restored to R0.
3176          */
3177         if (flags & BPF_TRAMP_F_CALL_ORIG) {
3178                 im->ip_epilogue = image + (prog - (u8 *)rw_image);
3179                 /* arg1: mov rdi, im */
3180                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3181                 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3182                         ret = -EINVAL;
3183                         goto cleanup;
3184                 }
3185         } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3186                 /* Before running the original function, load the
3187                  * tail_call_cnt_ptr from stack to rax.
3188                  */
3189                 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3190         }
3191
3192         /* restore return value of orig_call or fentry prog back into RAX */
3193         if (save_ret)
3194                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3195
3196         emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3197         EMIT1(0xC9); /* leave */
3198         if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3199                 /* skip our return address and return to parent */
3200                 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3201         }
3202         emit_return(&prog, image + (prog - (u8 *)rw_image));
3203         /* Make sure the trampoline generation logic doesn't overflow */
3204         if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3205                 ret = -EFAULT;
3206                 goto cleanup;
3207         }
3208         ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3209
3210 cleanup:
3211         kfree(branches);
3212         return ret;
3213 }
3214
3215 void *arch_alloc_bpf_trampoline(unsigned int size)
3216 {
3217         return bpf_prog_pack_alloc(size, jit_fill_hole);
3218 }
3219
3220 void arch_free_bpf_trampoline(void *image, unsigned int size)
3221 {
3222         bpf_prog_pack_free(image, size);
3223 }
3224
3225 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3226 {
3227         return 0;
3228 }
3229
3230 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3231                                 const struct btf_func_model *m, u32 flags,
3232                                 struct bpf_tramp_links *tlinks,
3233                                 void *func_addr)
3234 {
3235         void *rw_image, *tmp;
3236         int ret;
3237         u32 size = image_end - image;
3238
3239         /* rw_image doesn't need to be in module memory range, so we can
3240          * use kvmalloc.
3241          */
3242         rw_image = kvmalloc(size, GFP_KERNEL);
3243         if (!rw_image)
3244                 return -ENOMEM;
3245
3246         ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3247                                             flags, tlinks, func_addr);
3248         if (ret < 0)
3249                 goto out;
3250
3251         tmp = bpf_arch_text_copy(image, rw_image, size);
3252         if (IS_ERR(tmp))
3253                 ret = PTR_ERR(tmp);
3254 out:
3255         kvfree(rw_image);
3256         return ret;
3257 }
3258
3259 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3260                              struct bpf_tramp_links *tlinks, void *func_addr)
3261 {
3262         struct bpf_tramp_image im;
3263         void *image;
3264         int ret;
3265
3266         /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3267          * This will NOT cause fragmentation in direct map, as we do not
3268          * call set_memory_*() on this buffer.
3269          *
3270          * We cannot use kvmalloc here, because we need image to be in
3271          * module memory range.
3272          */
3273         image = bpf_jit_alloc_exec(PAGE_SIZE);
3274         if (!image)
3275                 return -ENOMEM;
3276
3277         ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3278                                             m, flags, tlinks, func_addr);
3279         bpf_jit_free_exec(image);
3280         return ret;
3281 }
3282
3283 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3284 {
3285         u8 *jg_reloc, *prog = *pprog;
3286         int pivot, err, jg_bytes = 1;
3287         s64 jg_offset;
3288
3289         if (a == b) {
3290                 /* Leaf node of recursion, i.e. not a range of indices
3291                  * anymore.
3292                  */
3293                 EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
3294                 if (!is_simm32(progs[a]))
3295                         return -1;
3296                 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3297                             progs[a]);
3298                 err = emit_cond_near_jump(&prog,        /* je func */
3299                                           (void *)progs[a], image + (prog - buf),
3300                                           X86_JE);
3301                 if (err)
3302                         return err;
3303
3304                 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3305
3306                 *pprog = prog;
3307                 return 0;
3308         }
3309
3310         /* Not a leaf node, so we pivot, and recursively descend into
3311          * the lower and upper ranges.
3312          */
3313         pivot = (b - a) / 2;
3314         EMIT1(add_1mod(0x48, BPF_REG_3));               /* cmp rdx,func */
3315         if (!is_simm32(progs[a + pivot]))
3316                 return -1;
3317         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3318
3319         if (pivot > 2) {                                /* jg upper_part */
3320                 /* Require near jump. */
3321                 jg_bytes = 4;
3322                 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3323         } else {
3324                 EMIT2(X86_JG, 0);
3325         }
3326         jg_reloc = prog;
3327
3328         err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
3329                                   progs, image, buf);
3330         if (err)
3331                 return err;
3332
3333         /* From Intel 64 and IA-32 Architectures Optimization
3334          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3335          * Coding Rule 11: All branch targets should be 16-byte
3336          * aligned.
3337          */
3338         emit_align(&prog, 16);
3339         jg_offset = prog - jg_reloc;
3340         emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3341
3342         err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3343                                   b, progs, image, buf);
3344         if (err)
3345                 return err;
3346
3347         *pprog = prog;
3348         return 0;
3349 }
3350
3351 static int cmp_ips(const void *a, const void *b)
3352 {
3353         const s64 *ipa = a;
3354         const s64 *ipb = b;
3355
3356         if (*ipa > *ipb)
3357                 return 1;
3358         if (*ipa < *ipb)
3359                 return -1;
3360         return 0;
3361 }
3362
3363 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3364 {
3365         u8 *prog = buf;
3366
3367         sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3368         return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3369 }
3370
3371 static const char *bpf_get_prog_name(struct bpf_prog *prog)
3372 {
3373         if (prog->aux->ksym.prog)
3374                 return prog->aux->ksym.name;
3375         return prog->aux->name;
3376 }
3377
3378 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3379 {
3380         int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3381         u64 *stack_ptr;
3382
3383         for_each_possible_cpu(cpu) {
3384                 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3385                 stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3386                 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3387         }
3388 }
3389
3390 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3391                                    struct bpf_prog *prog)
3392 {
3393         int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3394         u64 *stack_ptr;
3395
3396         for_each_possible_cpu(cpu) {
3397                 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3398                 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3399                     stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3400                         pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3401                                bpf_get_prog_name(prog));
3402                         break;
3403                 }
3404         }
3405 }
3406
3407 struct x64_jit_data {
3408         struct bpf_binary_header *rw_header;
3409         struct bpf_binary_header *header;
3410         int *addrs;
3411         u8 *image;
3412         int proglen;
3413         struct jit_context ctx;
3414 };
3415
3416 #define MAX_PASSES 20
3417 #define PADDING_PASSES (MAX_PASSES - 5)
3418
3419 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3420 {
3421         struct bpf_binary_header *rw_header = NULL;
3422         struct bpf_binary_header *header = NULL;
3423         struct bpf_prog *tmp, *orig_prog = prog;
3424         void __percpu *priv_stack_ptr = NULL;
3425         struct x64_jit_data *jit_data;
3426         int priv_stack_alloc_sz;
3427         int proglen, oldproglen = 0;
3428         struct jit_context ctx = {};
3429         bool tmp_blinded = false;
3430         bool extra_pass = false;
3431         bool padding = false;
3432         u8 *rw_image = NULL;
3433         u8 *image = NULL;
3434         int *addrs;
3435         int pass;
3436         int i;
3437
3438         if (!prog->jit_requested)
3439                 return orig_prog;
3440
3441         tmp = bpf_jit_blind_constants(prog);
3442         /*
3443          * If blinding was requested and we failed during blinding,
3444          * we must fall back to the interpreter.
3445          */
3446         if (IS_ERR(tmp))
3447                 return orig_prog;
3448         if (tmp != prog) {
3449                 tmp_blinded = true;
3450                 prog = tmp;
3451         }
3452
3453         jit_data = prog->aux->jit_data;
3454         if (!jit_data) {
3455                 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3456                 if (!jit_data) {
3457                         prog = orig_prog;
3458                         goto out;
3459                 }
3460                 prog->aux->jit_data = jit_data;
3461         }
3462         priv_stack_ptr = prog->aux->priv_stack_ptr;
3463         if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3464                 /* Allocate actual private stack size with verifier-calculated
3465                  * stack size plus two memory guards to protect overflow and
3466                  * underflow.
3467                  */
3468                 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3469                                       2 * PRIV_STACK_GUARD_SZ;
3470                 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3471                 if (!priv_stack_ptr) {
3472                         prog = orig_prog;
3473                         goto out_priv_stack;
3474                 }
3475
3476                 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3477                 prog->aux->priv_stack_ptr = priv_stack_ptr;
3478         }
3479         addrs = jit_data->addrs;
3480         if (addrs) {
3481                 ctx = jit_data->ctx;
3482                 oldproglen = jit_data->proglen;
3483                 image = jit_data->image;
3484                 header = jit_data->header;
3485                 rw_header = jit_data->rw_header;
3486                 rw_image = (void *)rw_header + ((void *)image - (void *)header);
3487                 extra_pass = true;
3488                 padding = true;
3489                 goto skip_init_addrs;
3490         }
3491         addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3492         if (!addrs) {
3493                 prog = orig_prog;
3494                 goto out_addrs;
3495         }
3496
3497         /*
3498          * Before first pass, make a rough estimation of addrs[]
3499          * each BPF instruction is translated to less than 64 bytes
3500          */
3501         for (proglen = 0, i = 0; i <= prog->len; i++) {
3502                 proglen += 64;
3503                 addrs[i] = proglen;
3504         }
3505         ctx.cleanup_addr = proglen;
3506 skip_init_addrs:
3507
3508         /*
3509          * JITed image shrinks with every pass and the loop iterates
3510          * until the image stops shrinking. Very large BPF programs
3511          * may converge on the last pass. In such case do one more
3512          * pass to emit the final image.
3513          */
3514         for (pass = 0; pass < MAX_PASSES || image; pass++) {
3515                 if (!padding && pass >= PADDING_PASSES)
3516                         padding = true;
3517                 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3518                 if (proglen <= 0) {
3519 out_image:
3520                         image = NULL;
3521                         if (header) {
3522                                 bpf_arch_text_copy(&header->size, &rw_header->size,
3523                                                    sizeof(rw_header->size));
3524                                 bpf_jit_binary_pack_free(header, rw_header);
3525                         }
3526                         /* Fall back to interpreter mode */
3527                         prog = orig_prog;
3528                         if (extra_pass) {
3529                                 prog->bpf_func = NULL;
3530                                 prog->jited = 0;
3531                                 prog->jited_len = 0;
3532                         }
3533                         goto out_addrs;
3534                 }
3535                 if (image) {
3536                         if (proglen != oldproglen) {
3537                                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3538                                        proglen, oldproglen);
3539                                 goto out_image;
3540                         }
3541                         break;
3542                 }
3543                 if (proglen == oldproglen) {
3544                         /*
3545                          * The number of entries in extable is the number of BPF_LDX
3546                          * insns that access kernel memory via "pointer to BTF type".
3547                          * The verifier changed their opcode from LDX|MEM|size
3548                          * to LDX|PROBE_MEM|size to make JITing easier.
3549                          */
3550                         u32 align = __alignof__(struct exception_table_entry);
3551                         u32 extable_size = prog->aux->num_exentries *
3552                                 sizeof(struct exception_table_entry);
3553
3554                         /* allocate module memory for x86 insns and extable */
3555                         header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3556                                                            &image, align, &rw_header, &rw_image,
3557                                                            jit_fill_hole);
3558                         if (!header) {
3559                                 prog = orig_prog;
3560                                 goto out_addrs;
3561                         }
3562                         prog->aux->extable = (void *) image + roundup(proglen, align);
3563                 }
3564                 oldproglen = proglen;
3565                 cond_resched();
3566         }
3567
3568         if (bpf_jit_enable > 1)
3569                 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3570
3571         if (image) {
3572                 if (!prog->is_func || extra_pass) {
3573                         /*
3574                          * bpf_jit_binary_pack_finalize fails in two scenarios:
3575                          *   1) header is not pointing to proper module memory;
3576                          *   2) the arch doesn't support bpf_arch_text_copy().
3577                          *
3578                          * Both cases are serious bugs and justify WARN_ON.
3579                          */
3580                         if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3581                                 /* header has been freed */
3582                                 header = NULL;
3583                                 goto out_image;
3584                         }
3585
3586                         bpf_tail_call_direct_fixup(prog);
3587                 } else {
3588                         jit_data->addrs = addrs;
3589                         jit_data->ctx = ctx;
3590                         jit_data->proglen = proglen;
3591                         jit_data->image = image;
3592                         jit_data->header = header;
3593                         jit_data->rw_header = rw_header;
3594                 }
3595                 /*
3596                  * ctx.prog_offset is used when CFI preambles put code *before*
3597                  * the function. See emit_cfi(). For FineIBT specifically this code
3598                  * can also be executed and bpf_prog_kallsyms_add() will
3599                  * generate an additional symbol to cover this, hence also
3600                  * decrement proglen.
3601                  */
3602                 prog->bpf_func = (void *)image + cfi_get_offset();
3603                 prog->jited = 1;
3604                 prog->jited_len = proglen - cfi_get_offset();
3605         } else {
3606                 prog = orig_prog;
3607         }
3608
3609         if (!image || !prog->is_func || extra_pass) {
3610                 if (image)
3611                         bpf_prog_fill_jited_linfo(prog, addrs + 1);
3612 out_addrs:
3613                 kvfree(addrs);
3614                 if (!image && priv_stack_ptr) {
3615                         free_percpu(priv_stack_ptr);
3616                         prog->aux->priv_stack_ptr = NULL;
3617                 }
3618 out_priv_stack:
3619                 kfree(jit_data);
3620                 prog->aux->jit_data = NULL;
3621         }
3622 out:
3623         if (tmp_blinded)
3624                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3625                                            tmp : orig_prog);
3626         return prog;
3627 }
3628
3629 bool bpf_jit_supports_kfunc_call(void)
3630 {
3631         return true;
3632 }
3633
3634 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3635 {
3636         if (text_poke_copy(dst, src, len) == NULL)
3637                 return ERR_PTR(-EINVAL);
3638         return dst;
3639 }
3640
3641 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3642 bool bpf_jit_supports_subprog_tailcalls(void)
3643 {
3644         return true;
3645 }
3646
3647 bool bpf_jit_supports_percpu_insn(void)
3648 {
3649         return true;
3650 }
3651
3652 void bpf_jit_free(struct bpf_prog *prog)
3653 {
3654         if (prog->jited) {
3655                 struct x64_jit_data *jit_data = prog->aux->jit_data;
3656                 struct bpf_binary_header *hdr;
3657                 void __percpu *priv_stack_ptr;
3658                 int priv_stack_alloc_sz;
3659
3660                 /*
3661                  * If we fail the final pass of JIT (from jit_subprogs),
3662                  * the program may not be finalized yet. Call finalize here
3663                  * before freeing it.
3664                  */
3665                 if (jit_data) {
3666                         bpf_jit_binary_pack_finalize(jit_data->header,
3667                                                      jit_data->rw_header);
3668                         kvfree(jit_data->addrs);
3669                         kfree(jit_data);
3670                 }
3671                 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3672                 hdr = bpf_jit_binary_pack_hdr(prog);
3673                 bpf_jit_binary_pack_free(hdr, NULL);
3674                 priv_stack_ptr = prog->aux->priv_stack_ptr;
3675                 if (priv_stack_ptr) {
3676                         priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3677                                               2 * PRIV_STACK_GUARD_SZ;
3678                         priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3679                         free_percpu(prog->aux->priv_stack_ptr);
3680                 }
3681                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3682         }
3683
3684         bpf_prog_unlock_free(prog);
3685 }
3686
3687 bool bpf_jit_supports_exceptions(void)
3688 {
3689         /* We unwind through both kernel frames (starting from within bpf_throw
3690          * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3691          * to walk kernel frames and reach BPF frames in the stack trace.
3692          */
3693         return IS_ENABLED(CONFIG_UNWINDER_ORC);
3694 }
3695
3696 bool bpf_jit_supports_private_stack(void)
3697 {
3698         return true;
3699 }
3700
3701 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3702 {
3703 #if defined(CONFIG_UNWINDER_ORC)
3704         struct unwind_state state;
3705         unsigned long addr;
3706
3707         for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3708              unwind_next_frame(&state)) {
3709                 addr = unwind_get_return_address(&state);
3710                 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3711                         break;
3712         }
3713         return;
3714 #endif
3715         WARN(1, "verification of programs using bpf_throw should have failed\n");
3716 }
3717
3718 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3719                                struct bpf_prog *new, struct bpf_prog *old)
3720 {
3721         u8 *old_addr, *new_addr, *old_bypass_addr;
3722         int ret;
3723
3724         old_bypass_addr = old ? NULL : poke->bypass_addr;
3725         old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3726         new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3727
3728         /*
3729          * On program loading or teardown, the program's kallsym entry
3730          * might not be in place, so we use __bpf_arch_text_poke to skip
3731          * the kallsyms check.
3732          */
3733         if (new) {
3734                 ret = __bpf_arch_text_poke(poke->tailcall_target,
3735                                            BPF_MOD_JUMP,
3736                                            old_addr, new_addr);
3737                 BUG_ON(ret < 0);
3738                 if (!old) {
3739                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3740                                                    BPF_MOD_JUMP,
3741                                                    poke->bypass_addr,
3742                                                    NULL);
3743                         BUG_ON(ret < 0);
3744                 }
3745         } else {
3746                 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3747                                            BPF_MOD_JUMP,
3748                                            old_bypass_addr,
3749                                            poke->bypass_addr);
3750                 BUG_ON(ret < 0);
3751                 /* let other CPUs finish the execution of program
3752                  * so that it will not possible to expose them
3753                  * to invalid nop, stack unwind, nop state
3754                  */
3755                 if (!ret)
3756                         synchronize_rcu();
3757                 ret = __bpf_arch_text_poke(poke->tailcall_target,
3758                                            BPF_MOD_JUMP,
3759                                            old_addr, NULL);
3760                 BUG_ON(ret < 0);
3761         }
3762 }
3763
3764 bool bpf_jit_supports_arena(void)
3765 {
3766         return true;
3767 }
3768
3769 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3770 {
3771         if (!in_arena)
3772                 return true;
3773         switch (insn->code) {
3774         case BPF_STX | BPF_ATOMIC | BPF_W:
3775         case BPF_STX | BPF_ATOMIC | BPF_DW:
3776                 if (insn->imm == (BPF_AND | BPF_FETCH) ||
3777                     insn->imm == (BPF_OR | BPF_FETCH) ||
3778                     insn->imm == (BPF_XOR | BPF_FETCH))
3779                         return false;
3780         }
3781         return true;
3782 }
3783
3784 bool bpf_jit_supports_ptr_xchg(void)
3785 {
3786         return true;
3787 }
3788
3789 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3790 u64 bpf_arch_uaddress_limit(void)
3791 {
3792         return 0;
3793 }
This page took 0.249255 seconds and 4 git commands to generate.