1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_dma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
51 #define HVS_FIFO_LATENCY_PIX 6
53 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
54 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
56 static const struct debugfs_reg32 crtc_regs[] = {
57 VC4_REG32(PV_CONTROL),
58 VC4_REG32(PV_V_CONTROL),
59 VC4_REG32(PV_VSYNCD_EVEN),
64 VC4_REG32(PV_VERTA_EVEN),
65 VC4_REG32(PV_VERTB_EVEN),
67 VC4_REG32(PV_INTSTAT),
69 VC4_REG32(PV_HACT_ACT),
73 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
75 struct vc4_hvs *hvs = vc4->hvs;
76 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
77 /* Top/base are supposed to be 4-pixel aligned, but the
78 * Raspberry Pi firmware fills the low bits (which are
79 * presumably ignored).
81 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
82 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
84 return top - base + 4;
87 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
90 ktime_t *stime, ktime_t *etime,
91 const struct drm_display_mode *mode)
93 struct drm_device *dev = crtc->dev;
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95 struct vc4_hvs *hvs = vc4->hvs;
96 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
97 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
98 unsigned int cob_size;
104 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
106 /* Get optional system timestamp before query. */
108 *stime = ktime_get();
111 * Read vertical scanline which is currently composed for our
112 * pixelvalve by the HVS, and also the scaler status.
114 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
116 /* Get optional system timestamp after query. */
118 *etime = ktime_get();
120 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
122 /* Vertical position of hvs composed scanline. */
123 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
126 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
129 /* Use hpos to correct for field offset in interlaced mode. */
130 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
131 *hpos += mode->crtc_htotal / 2;
134 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
135 /* This is the offset we need for translating hvs -> pv scanout pos. */
136 fifo_lines = cob_size / mode->crtc_hdisplay;
141 /* HVS more than fifo_lines into frame for compositing? */
142 if (*vpos > fifo_lines) {
144 * We are in active scanout and can get some meaningful results
145 * from HVS. The actual PV scanout can not trail behind more
146 * than fifo_lines as that is the fifo's capacity. Assume that
147 * in active scanout the HVS and PV work in lockstep wrt. HVS
148 * refilling the fifo and PV consuming from the fifo, ie.
149 * whenever the PV consumes and frees up a scanline in the
150 * fifo, the HVS will immediately refill it, therefore
151 * incrementing vpos. Therefore we choose HVS read position -
152 * fifo size in scanlines as a estimate of the real scanout
153 * position of the PV.
155 *vpos -= fifo_lines + 1;
161 * Less: This happens when we are in vblank and the HVS, after getting
162 * the VSTART restart signal from the PV, just started refilling its
163 * fifo with new lines from the top-most lines of the new framebuffers.
164 * The PV does not scan out in vblank, so does not remove lines from
165 * the fifo, so the fifo will be full quickly and the HVS has to pause.
166 * We can't get meaningful readings wrt. scanline position of the PV
167 * and need to make things up in a approximative but consistent way.
169 vblank_lines = mode->vtotal - mode->vdisplay;
173 * Assume the irq handler got called close to first
174 * line of vblank, so PV has about a full vblank
175 * scanlines to go, and as a base timestamp use the
176 * one taken at entry into vblank irq handler, so it
177 * is not affected by random delays due to lock
178 * contention on event_lock or vblank_time lock in
181 *vpos = -vblank_lines;
184 *stime = vc4_crtc->t_vblank;
186 *etime = vc4_crtc->t_vblank;
189 * If the HVS fifo is not yet full then we know for certain
190 * we are at the very beginning of vblank, as the hvs just
191 * started refilling, and the stime and etime timestamps
192 * truly correspond to start of vblank.
194 * Unfortunately there's no way to report this to upper levels
195 * and make it more useful.
199 * No clue where we are inside vblank. Return a vpos of zero,
200 * which will cause calling code to just return the etime
201 * timestamp uncorrected. At least this is no worse than the
210 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
212 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
213 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
214 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
215 u32 fifo_len_bytes = pv_data->fifo_depth;
218 * Pixels are pulled from the HVS if the number of bytes is
219 * lower than the FIFO full level.
221 * The latency of the pixel fetch mechanism is 6 pixels, so we
222 * need to convert those 6 pixels in bytes, depending on the
223 * format, and then subtract that from the length of the FIFO
224 * to make sure we never end up in a situation where the FIFO
228 case PV_CONTROL_FORMAT_DSIV_16:
229 case PV_CONTROL_FORMAT_DSIC_16:
230 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
231 case PV_CONTROL_FORMAT_DSIV_18:
232 return fifo_len_bytes - 14;
233 case PV_CONTROL_FORMAT_24:
234 case PV_CONTROL_FORMAT_DSIV_24:
237 * For some reason, the pixelvalve4 doesn't work with
238 * the usual formula and will only work with 32.
240 if (crtc_data->hvs_output == 5)
244 * It looks like in some situations, we will overflow
245 * the PixelValve FIFO (with the bit 10 of PV stat being
246 * set) and stall the HVS / PV, eventually resulting in
247 * a page flip timeout.
249 * Displaying the video overlay during a playback with
250 * Kodi on an RPi3 seems to be a great solution with a
251 * failure rate around 50%.
253 * Removing 1 from the FIFO full level however
254 * seems to completely remove that issue.
257 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
259 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
266 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
269 ret |= VC4_SET_FIELD((level >> 6),
270 PV5_CONTROL_FIFO_LEVEL_HIGH);
272 return ret | VC4_SET_FIELD(level & 0x3f,
273 PV_CONTROL_FIFO_LEVEL);
277 * Returns the encoder attached to the CRTC.
279 * VC4 can only scan out to one encoder at a time, while the DRM core
280 * allows drivers to push pixels to more than one encoder from the
283 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
284 struct drm_crtc_state *state)
286 struct drm_encoder *encoder;
288 WARN_ON(hweight32(state->encoder_mask) > 1);
290 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
296 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
298 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299 struct drm_device *dev = crtc->dev;
302 if (!drm_dev_enter(dev, &idx))
305 /* The PV needs to be disabled before it can be flushed */
306 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
307 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
312 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
313 struct drm_atomic_state *state)
315 struct drm_device *dev = crtc->dev;
316 struct vc4_dev *vc4 = to_vc4_dev(dev);
317 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
320 struct drm_crtc_state *crtc_state = crtc->state;
321 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
322 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
323 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
324 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
325 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
326 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
327 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
328 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
329 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
330 u8 ppc = pv_data->pixels_per_clock;
331 bool debug_dump_regs = false;
334 if (!drm_dev_enter(dev, &idx))
337 if (debug_dump_regs) {
338 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
339 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
340 drm_crtc_index(crtc));
341 drm_print_regset32(&p, &vc4_crtc->regset);
344 vc4_crtc_pixelvalve_reset(crtc);
347 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
349 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
353 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
355 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
359 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
362 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
365 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
367 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370 CRTC_WRITE(PV_VERTA_EVEN,
371 VC4_SET_FIELD(mode->crtc_vtotal -
372 mode->crtc_vsync_end,
374 VC4_SET_FIELD(mode->crtc_vsync_end -
375 mode->crtc_vsync_start,
377 CRTC_WRITE(PV_VERTB_EVEN,
378 VC4_SET_FIELD(mode->crtc_vsync_start -
381 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
383 /* We set up first field even mode for HDMI. VEC's
384 * NTSC mode would want first field odd instead, once
385 * we support it (to do so, set ODD_FIRST and put the
386 * delay in VSYNCD_EVEN instead).
388 CRTC_WRITE(PV_V_CONTROL,
389 PV_VCONTROL_CONTINUOUS |
390 (is_dsi ? PV_VCONTROL_DSI : 0) |
391 PV_VCONTROL_INTERLACE |
392 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
393 PV_VCONTROL_ODD_DELAY));
394 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
396 CRTC_WRITE(PV_V_CONTROL,
397 PV_VCONTROL_CONTINUOUS |
398 (is_dsi ? PV_VCONTROL_DSI : 0));
402 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
405 CRTC_WRITE(PV_MUX_CFG,
406 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
407 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
409 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
410 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
411 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
413 PV_CONTROL_CLR_AT_START |
414 PV_CONTROL_TRIGGER_UNDERFLOW |
415 PV_CONTROL_WAIT_HSTART |
416 VC4_SET_FIELD(vc4_encoder->clock_select,
417 PV_CONTROL_CLK_SELECT));
419 if (debug_dump_regs) {
420 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
421 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
422 drm_crtc_index(crtc));
423 drm_print_regset32(&p, &vc4_crtc->regset);
429 static void require_hvs_enabled(struct drm_device *dev)
431 struct vc4_dev *vc4 = to_vc4_dev(dev);
432 struct vc4_hvs *hvs = vc4->hvs;
434 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
435 SCALER_DISPCTRL_ENABLE);
438 static int vc4_crtc_disable(struct drm_crtc *crtc,
439 struct drm_encoder *encoder,
440 struct drm_atomic_state *state,
441 unsigned int channel)
443 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
444 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
445 struct drm_device *dev = crtc->dev;
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
449 if (!drm_dev_enter(dev, &idx))
452 CRTC_WRITE(PV_V_CONTROL,
453 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
454 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
455 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
458 * This delay is needed to avoid to get a pixel stuck in an
459 * unflushable FIFO between the pixelvalve and the HDMI
460 * controllers on the BCM2711.
462 * Timing is fairly sensitive here, so mdelay is the safest
465 * If it was to be reworked, the stuck pixel happens on a
466 * BCM2711 when changing mode with a good probability, so a
467 * script that changes mode on a regular basis should trigger
468 * the bug after less than 10 attempts. It manifests itself with
469 * every pixels being shifted by one to the right, and thus the
470 * last pixel of a line actually being displayed as the first
471 * pixel on the next line.
475 if (vc4_encoder && vc4_encoder->post_crtc_disable)
476 vc4_encoder->post_crtc_disable(encoder, state);
478 vc4_crtc_pixelvalve_reset(crtc);
479 vc4_hvs_stop_channel(vc4->hvs, channel);
481 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
482 vc4_encoder->post_crtc_powerdown(encoder, state);
489 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
490 enum vc4_encoder_type type)
492 struct drm_encoder *encoder;
494 drm_for_each_encoder(encoder, crtc->dev) {
495 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
497 if (vc4_encoder->type == type)
504 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
506 struct drm_device *drm = crtc->dev;
507 struct vc4_dev *vc4 = to_vc4_dev(drm);
508 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
509 enum vc4_encoder_type encoder_type;
510 const struct vc4_pv_data *pv_data;
511 struct drm_encoder *encoder;
512 struct vc4_hdmi *vc4_hdmi;
513 unsigned encoder_sel;
517 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
518 "brcm,bcm2711-pixelvalve2") ||
519 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
520 "brcm,bcm2711-pixelvalve4")))
523 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
526 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
529 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
533 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
534 if (WARN_ON(encoder_sel != 0))
537 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
538 encoder_type = pv_data->encoder_types[encoder_sel];
539 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
540 if (WARN_ON(!encoder))
543 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
544 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
548 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
553 * post_crtc_powerdown will have called pm_runtime_put, so we
554 * don't need it here otherwise we'll get the reference counting
561 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
563 struct drm_device *dev = crtc->dev;
566 if (!crtc->state || !crtc->state->event)
569 spin_lock_irqsave(&dev->event_lock, flags);
570 drm_crtc_send_vblank_event(crtc, crtc->state->event);
571 crtc->state->event = NULL;
572 spin_unlock_irqrestore(&dev->event_lock, flags);
575 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
576 struct drm_atomic_state *state)
578 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
580 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
581 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
582 struct drm_device *dev = crtc->dev;
584 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
585 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
587 require_hvs_enabled(dev);
589 /* Disable vblank irq handling before crtc is disabled. */
590 drm_crtc_vblank_off(crtc);
592 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
595 * Make sure we issue a vblank event after disabling the CRTC if
596 * someone was waiting it.
598 vc4_crtc_send_vblank(crtc);
601 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
602 struct drm_atomic_state *state)
604 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
606 struct drm_device *dev = crtc->dev;
607 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
608 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
609 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
612 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
613 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
615 if (!drm_dev_enter(dev, &idx))
618 require_hvs_enabled(dev);
620 /* Enable vblank irq handling before crtc is started otherwise
621 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
623 drm_crtc_vblank_on(crtc);
625 vc4_hvs_atomic_enable(crtc, state);
627 if (vc4_encoder->pre_crtc_configure)
628 vc4_encoder->pre_crtc_configure(encoder, state);
630 vc4_crtc_config_pv(crtc, encoder, state);
632 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
634 if (vc4_encoder->pre_crtc_enable)
635 vc4_encoder->pre_crtc_enable(encoder, state);
637 /* When feeding the transposer block the pixelvalve is unneeded and
638 * should not be enabled.
640 CRTC_WRITE(PV_V_CONTROL,
641 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
643 if (vc4_encoder->post_crtc_enable)
644 vc4_encoder->post_crtc_enable(encoder, state);
649 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
650 const struct drm_display_mode *mode)
652 /* Do not allow doublescan modes from user space */
653 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
654 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
656 return MODE_NO_DBLESCAN;
662 void vc4_crtc_get_margins(struct drm_crtc_state *state,
663 unsigned int *left, unsigned int *right,
664 unsigned int *top, unsigned int *bottom)
666 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
667 struct drm_connector_state *conn_state;
668 struct drm_connector *conn;
671 *left = vc4_state->margins.left;
672 *right = vc4_state->margins.right;
673 *top = vc4_state->margins.top;
674 *bottom = vc4_state->margins.bottom;
676 /* We have to interate over all new connector states because
677 * vc4_crtc_get_margins() might be called before
678 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
681 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
682 if (conn_state->crtc != state->crtc)
685 *left = conn_state->tv.margins.left;
686 *right = conn_state->tv.margins.right;
687 *top = conn_state->tv.margins.top;
688 *bottom = conn_state->tv.margins.bottom;
693 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
694 struct drm_atomic_state *state)
696 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
698 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
699 struct drm_connector *conn;
700 struct drm_connector_state *conn_state;
701 struct drm_encoder *encoder;
704 ret = vc4_hvs_atomic_check(crtc, state);
708 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
710 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
711 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
713 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
714 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
715 mode->clock * 9 / 10) * 1000;
717 vc4_state->hvs_load = mode->clock * 1000;
721 for_each_new_connector_in_state(state, conn, conn_state,
723 if (conn_state->crtc != crtc)
726 vc4_state->margins.left = conn_state->tv.margins.left;
727 vc4_state->margins.right = conn_state->tv.margins.right;
728 vc4_state->margins.top = conn_state->tv.margins.top;
729 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
736 static int vc4_enable_vblank(struct drm_crtc *crtc)
738 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
739 struct drm_device *dev = crtc->dev;
742 if (!drm_dev_enter(dev, &idx))
745 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
752 static void vc4_disable_vblank(struct drm_crtc *crtc)
754 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
755 struct drm_device *dev = crtc->dev;
758 if (!drm_dev_enter(dev, &idx))
761 CRTC_WRITE(PV_INTEN, 0);
766 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
768 struct drm_crtc *crtc = &vc4_crtc->base;
769 struct drm_device *dev = crtc->dev;
770 struct vc4_dev *vc4 = to_vc4_dev(dev);
771 struct vc4_hvs *hvs = vc4->hvs;
772 u32 chan = vc4_crtc->current_hvs_channel;
775 spin_lock_irqsave(&dev->event_lock, flags);
776 spin_lock(&vc4_crtc->irq_lock);
777 if (vc4_crtc->event &&
778 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
779 vc4_crtc->feeds_txp)) {
780 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
781 vc4_crtc->event = NULL;
782 drm_crtc_vblank_put(crtc);
784 /* Wait for the page flip to unmask the underrun to ensure that
785 * the display list was updated by the hardware. Before that
786 * happens, the HVS will be using the previous display list with
787 * the CRTC and encoder already reconfigured, leading to
788 * underruns. This can be seen when reconfiguring the CRTC.
790 vc4_hvs_unmask_underrun(hvs, chan);
792 spin_unlock(&vc4_crtc->irq_lock);
793 spin_unlock_irqrestore(&dev->event_lock, flags);
796 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
798 crtc->t_vblank = ktime_get();
799 drm_crtc_handle_vblank(&crtc->base);
800 vc4_crtc_handle_page_flip(crtc);
803 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
805 struct vc4_crtc *vc4_crtc = data;
806 u32 stat = CRTC_READ(PV_INTSTAT);
807 irqreturn_t ret = IRQ_NONE;
809 if (stat & PV_INT_VFP_START) {
810 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 vc4_crtc_handle_vblank(vc4_crtc);
818 struct vc4_async_flip_state {
819 struct drm_crtc *crtc;
820 struct drm_framebuffer *fb;
821 struct drm_framebuffer *old_fb;
822 struct drm_pending_vblank_event *event;
825 struct dma_fence_cb fence;
826 struct vc4_seqno_cb seqno;
830 /* Called when the V3D execution for the BO being flipped to is done, so that
831 * we can actually update the plane's address to point to it.
834 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
836 struct drm_crtc *crtc = flip_state->crtc;
837 struct drm_device *dev = crtc->dev;
838 struct drm_plane *plane = crtc->primary;
840 vc4_plane_async_set_fb(plane, flip_state->fb);
841 if (flip_state->event) {
844 spin_lock_irqsave(&dev->event_lock, flags);
845 drm_crtc_send_vblank_event(crtc, flip_state->event);
846 spin_unlock_irqrestore(&dev->event_lock, flags);
849 drm_crtc_vblank_put(crtc);
850 drm_framebuffer_put(flip_state->fb);
852 if (flip_state->old_fb)
853 drm_framebuffer_put(flip_state->old_fb);
858 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
860 struct vc4_async_flip_state *flip_state =
861 container_of(cb, struct vc4_async_flip_state, cb.seqno);
862 struct vc4_bo *bo = NULL;
864 if (flip_state->old_fb) {
865 struct drm_gem_dma_object *dma_bo =
866 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
867 bo = to_vc4_bo(&dma_bo->base);
870 vc4_async_page_flip_complete(flip_state);
873 * Decrement the BO usecnt in order to keep the inc/dec
874 * calls balanced when the planes are updated through
875 * the async update path.
877 * FIXME: we should move to generic async-page-flip when
878 * it's available, so that we can get rid of this
879 * hand-made cleanup_fb() logic.
882 vc4_bo_dec_usecnt(bo);
885 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
886 struct dma_fence_cb *cb)
888 struct vc4_async_flip_state *flip_state =
889 container_of(cb, struct vc4_async_flip_state, cb.fence);
891 vc4_async_page_flip_complete(flip_state);
892 dma_fence_put(fence);
895 static int vc4_async_set_fence_cb(struct drm_device *dev,
896 struct vc4_async_flip_state *flip_state)
898 struct drm_framebuffer *fb = flip_state->fb;
899 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
900 struct vc4_dev *vc4 = to_vc4_dev(dev);
901 struct dma_fence *fence;
905 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
907 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
908 vc4_async_page_flip_seqno_complete);
911 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
915 /* If there's no fence, complete the page flip immediately */
917 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
921 /* If the fence has already been completed, complete the page flip */
922 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
923 vc4_async_page_flip_fence_complete))
924 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
930 vc4_async_page_flip_common(struct drm_crtc *crtc,
931 struct drm_framebuffer *fb,
932 struct drm_pending_vblank_event *event,
935 struct drm_device *dev = crtc->dev;
936 struct drm_plane *plane = crtc->primary;
937 struct vc4_async_flip_state *flip_state;
939 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
943 drm_framebuffer_get(fb);
945 flip_state->crtc = crtc;
946 flip_state->event = event;
948 /* Save the current FB before it's replaced by the new one in
949 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
950 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
952 * FIXME: we should move to generic async-page-flip when it's
953 * available, so that we can get rid of this hand-made cleanup_fb()
956 flip_state->old_fb = plane->state->fb;
957 if (flip_state->old_fb)
958 drm_framebuffer_get(flip_state->old_fb);
960 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
962 /* Immediately update the plane's legacy fb pointer, so that later
963 * modeset prep sees the state that will be present when the semaphore
966 drm_atomic_set_fb_for_plane(plane->state, fb);
968 vc4_async_set_fence_cb(dev, flip_state);
970 /* Driver takes ownership of state on successful async commit. */
974 /* Implements async (non-vblank-synced) page flips.
976 * The page flip ioctl needs to return immediately, so we grab the
977 * modeset semaphore on the pipe, and queue the address update for
978 * when V3D is done with the BO being flipped to.
980 static int vc4_async_page_flip(struct drm_crtc *crtc,
981 struct drm_framebuffer *fb,
982 struct drm_pending_vblank_event *event,
985 struct drm_device *dev = crtc->dev;
986 struct vc4_dev *vc4 = to_vc4_dev(dev);
987 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
988 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
991 if (WARN_ON_ONCE(vc4->is_vc5))
995 * Increment the BO usecnt here, so that we never end up with an
996 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
997 * plane is later updated through the non-async path.
999 * FIXME: we should move to generic async-page-flip when
1000 * it's available, so that we can get rid of this
1001 * hand-made prepare_fb() logic.
1003 ret = vc4_bo_inc_usecnt(bo);
1007 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1009 vc4_bo_dec_usecnt(bo);
1016 static int vc5_async_page_flip(struct drm_crtc *crtc,
1017 struct drm_framebuffer *fb,
1018 struct drm_pending_vblank_event *event,
1021 return vc4_async_page_flip_common(crtc, fb, event, flags);
1024 int vc4_page_flip(struct drm_crtc *crtc,
1025 struct drm_framebuffer *fb,
1026 struct drm_pending_vblank_event *event,
1028 struct drm_modeset_acquire_ctx *ctx)
1030 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1031 struct drm_device *dev = crtc->dev;
1032 struct vc4_dev *vc4 = to_vc4_dev(dev);
1035 return vc5_async_page_flip(crtc, fb, event, flags);
1037 return vc4_async_page_flip(crtc, fb, event, flags);
1039 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1043 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1045 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1047 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1051 old_vc4_state = to_vc4_crtc_state(crtc->state);
1052 vc4_state->margins = old_vc4_state->margins;
1053 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1055 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1056 return &vc4_state->base;
1059 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1060 struct drm_crtc_state *state)
1062 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1063 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1065 if (drm_mm_node_allocated(&vc4_state->mm)) {
1066 unsigned long flags;
1068 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1069 drm_mm_remove_node(&vc4_state->mm);
1070 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1074 drm_atomic_helper_crtc_destroy_state(crtc, state);
1077 void vc4_crtc_reset(struct drm_crtc *crtc)
1079 struct vc4_crtc_state *vc4_crtc_state;
1082 vc4_crtc_destroy_state(crtc, crtc->state);
1084 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1085 if (!vc4_crtc_state) {
1090 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1091 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1094 int vc4_crtc_late_register(struct drm_crtc *crtc)
1096 struct drm_device *drm = crtc->dev;
1097 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1098 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1101 ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name,
1109 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1110 .set_config = drm_atomic_helper_set_config,
1111 .page_flip = vc4_page_flip,
1112 .set_property = NULL,
1113 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1114 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1115 .reset = vc4_crtc_reset,
1116 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1117 .atomic_destroy_state = vc4_crtc_destroy_state,
1118 .enable_vblank = vc4_enable_vblank,
1119 .disable_vblank = vc4_disable_vblank,
1120 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1121 .late_register = vc4_crtc_late_register,
1124 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1125 .mode_valid = vc4_crtc_mode_valid,
1126 .atomic_check = vc4_crtc_atomic_check,
1127 .atomic_begin = vc4_hvs_atomic_begin,
1128 .atomic_flush = vc4_hvs_atomic_flush,
1129 .atomic_enable = vc4_crtc_atomic_enable,
1130 .atomic_disable = vc4_crtc_atomic_disable,
1131 .get_scanout_position = vc4_crtc_get_scanout_position,
1134 static const struct vc4_pv_data bcm2835_pv0_data = {
1136 .debugfs_name = "crtc0_regs",
1137 .hvs_available_channels = BIT(0),
1141 .pixels_per_clock = 1,
1143 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1144 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1148 static const struct vc4_pv_data bcm2835_pv1_data = {
1150 .debugfs_name = "crtc1_regs",
1151 .hvs_available_channels = BIT(2),
1155 .pixels_per_clock = 1,
1157 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1158 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1162 static const struct vc4_pv_data bcm2835_pv2_data = {
1164 .debugfs_name = "crtc2_regs",
1165 .hvs_available_channels = BIT(1),
1169 .pixels_per_clock = 1,
1171 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1172 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1176 static const struct vc4_pv_data bcm2711_pv0_data = {
1178 .debugfs_name = "crtc0_regs",
1179 .hvs_available_channels = BIT(0),
1183 .pixels_per_clock = 1,
1185 [0] = VC4_ENCODER_TYPE_DSI0,
1186 [1] = VC4_ENCODER_TYPE_DPI,
1190 static const struct vc4_pv_data bcm2711_pv1_data = {
1192 .debugfs_name = "crtc1_regs",
1193 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1197 .pixels_per_clock = 1,
1199 [0] = VC4_ENCODER_TYPE_DSI1,
1200 [1] = VC4_ENCODER_TYPE_SMI,
1204 static const struct vc4_pv_data bcm2711_pv2_data = {
1206 .debugfs_name = "crtc2_regs",
1207 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1211 .pixels_per_clock = 2,
1213 [0] = VC4_ENCODER_TYPE_HDMI0,
1217 static const struct vc4_pv_data bcm2711_pv3_data = {
1219 .debugfs_name = "crtc3_regs",
1220 .hvs_available_channels = BIT(1),
1224 .pixels_per_clock = 1,
1226 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1230 static const struct vc4_pv_data bcm2711_pv4_data = {
1232 .debugfs_name = "crtc4_regs",
1233 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1237 .pixels_per_clock = 2,
1239 [0] = VC4_ENCODER_TYPE_HDMI1,
1243 static const struct of_device_id vc4_crtc_dt_match[] = {
1244 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1245 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1246 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1247 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1248 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1249 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1250 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1251 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1255 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1256 struct drm_crtc *crtc)
1258 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1259 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1260 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1261 struct drm_encoder *encoder;
1263 drm_for_each_encoder(encoder, drm) {
1264 struct vc4_encoder *vc4_encoder;
1267 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1270 vc4_encoder = to_vc4_encoder(encoder);
1271 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1272 if (vc4_encoder->type == encoder_types[i]) {
1273 vc4_encoder->clock_select = i;
1274 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1281 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1282 const struct drm_crtc_funcs *crtc_funcs,
1283 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1285 struct vc4_dev *vc4 = to_vc4_dev(drm);
1286 struct drm_crtc *crtc = &vc4_crtc->base;
1287 struct drm_plane *primary_plane;
1291 /* For now, we create just the primary and the legacy cursor
1292 * planes. We should be able to stack more planes on easily,
1293 * but to do that we would need to compute the bandwidth
1294 * requirement of the plane configuration, and reject ones
1295 * that will take too much.
1297 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1298 if (IS_ERR(primary_plane)) {
1299 dev_err(drm->dev, "failed to construct primary plane\n");
1300 return PTR_ERR(primary_plane);
1303 spin_lock_init(&vc4_crtc->irq_lock);
1304 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1309 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1312 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1314 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1316 /* We support CTM, but only for one CRTC at a time. It's therefore
1317 * implemented as private driver state in vc4_kms, not here.
1319 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1322 for (i = 0; i < crtc->gamma_size; i++) {
1323 vc4_crtc->lut_r[i] = i;
1324 vc4_crtc->lut_g[i] = i;
1325 vc4_crtc->lut_b[i] = i;
1331 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1333 struct platform_device *pdev = to_platform_device(dev);
1334 struct drm_device *drm = dev_get_drvdata(master);
1335 const struct vc4_pv_data *pv_data;
1336 struct vc4_crtc *vc4_crtc;
1337 struct drm_crtc *crtc;
1340 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1343 crtc = &vc4_crtc->base;
1345 pv_data = of_device_get_match_data(dev);
1348 vc4_crtc->data = &pv_data->base;
1349 vc4_crtc->pdev = pdev;
1351 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1352 if (IS_ERR(vc4_crtc->regs))
1353 return PTR_ERR(vc4_crtc->regs);
1355 vc4_crtc->regset.base = vc4_crtc->regs;
1356 vc4_crtc->regset.regs = crtc_regs;
1357 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1359 ret = vc4_crtc_init(drm, vc4_crtc,
1360 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1363 vc4_set_crtc_possible_masks(drm, crtc);
1365 CRTC_WRITE(PV_INTEN, 0);
1366 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1367 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1368 vc4_crtc_irq_handler,
1370 "vc4 crtc", vc4_crtc);
1374 platform_set_drvdata(pdev, vc4_crtc);
1379 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1382 struct platform_device *pdev = to_platform_device(dev);
1383 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1385 CRTC_WRITE(PV_INTEN, 0);
1387 platform_set_drvdata(pdev, NULL);
1390 static const struct component_ops vc4_crtc_ops = {
1391 .bind = vc4_crtc_bind,
1392 .unbind = vc4_crtc_unbind,
1395 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1397 return component_add(&pdev->dev, &vc4_crtc_ops);
1400 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1402 component_del(&pdev->dev, &vc4_crtc_ops);
1406 struct platform_driver vc4_crtc_driver = {
1407 .probe = vc4_crtc_dev_probe,
1408 .remove = vc4_crtc_dev_remove,
1411 .of_match_table = vc4_crtc_dt_match,