]> Git Repo - J-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'x86_cleanups_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48
49 #define HVS_FIFO_LATENCY_PIX    6
50
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53
54 static const struct debugfs_reg32 crtc_regs[] = {
55         VC4_REG32(PV_CONTROL),
56         VC4_REG32(PV_V_CONTROL),
57         VC4_REG32(PV_VSYNCD_EVEN),
58         VC4_REG32(PV_HORZA),
59         VC4_REG32(PV_HORZB),
60         VC4_REG32(PV_VERTA),
61         VC4_REG32(PV_VERTB),
62         VC4_REG32(PV_VERTA_EVEN),
63         VC4_REG32(PV_VERTB_EVEN),
64         VC4_REG32(PV_INTEN),
65         VC4_REG32(PV_INTSTAT),
66         VC4_REG32(PV_STAT),
67         VC4_REG32(PV_HACT_ACT),
68 };
69
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73         struct vc4_hvs *hvs = vc4->hvs;
74         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75         /* Top/base are supposed to be 4-pixel aligned, but the
76          * Raspberry Pi firmware fills the low bits (which are
77          * presumably ignored).
78          */
79         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81
82         return top - base + 4;
83 }
84
85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
86                                           bool in_vblank_irq,
87                                           int *vpos, int *hpos,
88                                           ktime_t *stime, ktime_t *etime,
89                                           const struct drm_display_mode *mode)
90 {
91         struct drm_device *dev = crtc->dev;
92         struct vc4_dev *vc4 = to_vc4_dev(dev);
93         struct vc4_hvs *hvs = vc4->hvs;
94         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96         unsigned int cob_size;
97         u32 val;
98         int fifo_lines;
99         int vblank_lines;
100         bool ret = false;
101
102         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103
104         /* Get optional system timestamp before query. */
105         if (stime)
106                 *stime = ktime_get();
107
108         /*
109          * Read vertical scanline which is currently composed for our
110          * pixelvalve by the HVS, and also the scaler status.
111          */
112         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
113
114         /* Get optional system timestamp after query. */
115         if (etime)
116                 *etime = ktime_get();
117
118         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119
120         /* Vertical position of hvs composed scanline. */
121         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
122         *hpos = 0;
123
124         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
125                 *vpos /= 2;
126
127                 /* Use hpos to correct for field offset in interlaced mode. */
128                 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129                         *hpos += mode->crtc_htotal / 2;
130         }
131
132         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133         /* This is the offset we need for translating hvs -> pv scanout pos. */
134         fifo_lines = cob_size / mode->crtc_hdisplay;
135
136         if (fifo_lines > 0)
137                 ret = true;
138
139         /* HVS more than fifo_lines into frame for compositing? */
140         if (*vpos > fifo_lines) {
141                 /*
142                  * We are in active scanout and can get some meaningful results
143                  * from HVS. The actual PV scanout can not trail behind more
144                  * than fifo_lines as that is the fifo's capacity. Assume that
145                  * in active scanout the HVS and PV work in lockstep wrt. HVS
146                  * refilling the fifo and PV consuming from the fifo, ie.
147                  * whenever the PV consumes and frees up a scanline in the
148                  * fifo, the HVS will immediately refill it, therefore
149                  * incrementing vpos. Therefore we choose HVS read position -
150                  * fifo size in scanlines as a estimate of the real scanout
151                  * position of the PV.
152                  */
153                 *vpos -= fifo_lines + 1;
154
155                 return ret;
156         }
157
158         /*
159          * Less: This happens when we are in vblank and the HVS, after getting
160          * the VSTART restart signal from the PV, just started refilling its
161          * fifo with new lines from the top-most lines of the new framebuffers.
162          * The PV does not scan out in vblank, so does not remove lines from
163          * the fifo, so the fifo will be full quickly and the HVS has to pause.
164          * We can't get meaningful readings wrt. scanline position of the PV
165          * and need to make things up in a approximative but consistent way.
166          */
167         vblank_lines = mode->vtotal - mode->vdisplay;
168
169         if (in_vblank_irq) {
170                 /*
171                  * Assume the irq handler got called close to first
172                  * line of vblank, so PV has about a full vblank
173                  * scanlines to go, and as a base timestamp use the
174                  * one taken at entry into vblank irq handler, so it
175                  * is not affected by random delays due to lock
176                  * contention on event_lock or vblank_time lock in
177                  * the core.
178                  */
179                 *vpos = -vblank_lines;
180
181                 if (stime)
182                         *stime = vc4_crtc->t_vblank;
183                 if (etime)
184                         *etime = vc4_crtc->t_vblank;
185
186                 /*
187                  * If the HVS fifo is not yet full then we know for certain
188                  * we are at the very beginning of vblank, as the hvs just
189                  * started refilling, and the stime and etime timestamps
190                  * truly correspond to start of vblank.
191                  *
192                  * Unfortunately there's no way to report this to upper levels
193                  * and make it more useful.
194                  */
195         } else {
196                 /*
197                  * No clue where we are inside vblank. Return a vpos of zero,
198                  * which will cause calling code to just return the etime
199                  * timestamp uncorrected. At least this is no worse than the
200                  * standard fallback.
201                  */
202                 *vpos = 0;
203         }
204
205         return ret;
206 }
207
208 void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210         drm_crtc_cleanup(crtc);
211 }
212
213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
214 {
215         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218         u32 fifo_len_bytes = pv_data->fifo_depth;
219
220         /*
221          * Pixels are pulled from the HVS if the number of bytes is
222          * lower than the FIFO full level.
223          *
224          * The latency of the pixel fetch mechanism is 6 pixels, so we
225          * need to convert those 6 pixels in bytes, depending on the
226          * format, and then subtract that from the length of the FIFO
227          * to make sure we never end up in a situation where the FIFO
228          * is full.
229          */
230         switch (format) {
231         case PV_CONTROL_FORMAT_DSIV_16:
232         case PV_CONTROL_FORMAT_DSIC_16:
233                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234         case PV_CONTROL_FORMAT_DSIV_18:
235                 return fifo_len_bytes - 14;
236         case PV_CONTROL_FORMAT_24:
237         case PV_CONTROL_FORMAT_DSIV_24:
238         default:
239                 /*
240                  * For some reason, the pixelvalve4 doesn't work with
241                  * the usual formula and will only work with 32.
242                  */
243                 if (crtc_data->hvs_output == 5)
244                         return 32;
245
246                 /*
247                  * It looks like in some situations, we will overflow
248                  * the PixelValve FIFO (with the bit 10 of PV stat being
249                  * set) and stall the HVS / PV, eventually resulting in
250                  * a page flip timeout.
251                  *
252                  * Displaying the video overlay during a playback with
253                  * Kodi on an RPi3 seems to be a great solution with a
254                  * failure rate around 50%.
255                  *
256                  * Removing 1 from the FIFO full level however
257                  * seems to completely remove that issue.
258                  */
259                 if (!vc4->is_vc5)
260                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
261
262                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263         }
264 }
265
266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
267                                              u32 format)
268 {
269         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
270         u32 ret = 0;
271
272         ret |= VC4_SET_FIELD((level >> 6),
273                              PV5_CONTROL_FIFO_LEVEL_HIGH);
274
275         return ret | VC4_SET_FIELD(level & 0x3f,
276                                    PV_CONTROL_FIFO_LEVEL);
277 }
278
279 /*
280  * Returns the encoder attached to the CRTC.
281  *
282  * VC4 can only scan out to one encoder at a time, while the DRM core
283  * allows drivers to push pixels to more than one encoder from the
284  * same CRTC.
285  */
286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287                                          struct drm_crtc_state *state)
288 {
289         struct drm_encoder *encoder;
290
291         WARN_ON(hweight32(state->encoder_mask) > 1);
292
293         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
294                 return encoder;
295
296         return NULL;
297 }
298
299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302
303         /* The PV needs to be disabled before it can be flushed */
304         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307
308 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
309                                struct drm_atomic_state *state)
310 {
311         struct drm_device *dev = crtc->dev;
312         struct vc4_dev *vc4 = to_vc4_dev(dev);
313         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316         struct drm_crtc_state *crtc_state = crtc->state;
317         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
318         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
323         u8 ppc = pv_data->pixels_per_clock;
324         bool debug_dump_regs = false;
325
326         if (debug_dump_regs) {
327                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
328                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
329                          drm_crtc_index(crtc));
330                 drm_print_regset32(&p, &vc4_crtc->regset);
331         }
332
333         vc4_crtc_pixelvalve_reset(crtc);
334
335         CRTC_WRITE(PV_HORZA,
336                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
337                                  PV_HORZA_HBP) |
338                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
339                                  PV_HORZA_HSYNC));
340
341         CRTC_WRITE(PV_HORZB,
342                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
343                                  PV_HORZB_HFP) |
344                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
345                                  PV_HORZB_HACTIVE));
346
347         CRTC_WRITE(PV_VERTA,
348                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
349                                  PV_VERTA_VBP) |
350                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
351                                  PV_VERTA_VSYNC));
352         CRTC_WRITE(PV_VERTB,
353                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
354                                  PV_VERTB_VFP) |
355                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
356
357         if (interlace) {
358                 CRTC_WRITE(PV_VERTA_EVEN,
359                            VC4_SET_FIELD(mode->crtc_vtotal -
360                                          mode->crtc_vsync_end - 1,
361                                          PV_VERTA_VBP) |
362                            VC4_SET_FIELD(mode->crtc_vsync_end -
363                                          mode->crtc_vsync_start,
364                                          PV_VERTA_VSYNC));
365                 CRTC_WRITE(PV_VERTB_EVEN,
366                            VC4_SET_FIELD(mode->crtc_vsync_start -
367                                          mode->crtc_vdisplay,
368                                          PV_VERTB_VFP) |
369                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370
371                 /* We set up first field even mode for HDMI.  VEC's
372                  * NTSC mode would want first field odd instead, once
373                  * we support it (to do so, set ODD_FIRST and put the
374                  * delay in VSYNCD_EVEN instead).
375                  */
376                 CRTC_WRITE(PV_V_CONTROL,
377                            PV_VCONTROL_CONTINUOUS |
378                            (is_dsi ? PV_VCONTROL_DSI : 0) |
379                            PV_VCONTROL_INTERLACE |
380                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
381                                          PV_VCONTROL_ODD_DELAY));
382                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
383         } else {
384                 CRTC_WRITE(PV_V_CONTROL,
385                            PV_VCONTROL_CONTINUOUS |
386                            (is_dsi ? PV_VCONTROL_DSI : 0));
387         }
388
389         if (is_dsi)
390                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
391
392         if (vc4->is_vc5)
393                 CRTC_WRITE(PV_MUX_CFG,
394                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
395                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
396
397         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
398                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
399                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
400                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
401                    PV_CONTROL_CLR_AT_START |
402                    PV_CONTROL_TRIGGER_UNDERFLOW |
403                    PV_CONTROL_WAIT_HSTART |
404                    VC4_SET_FIELD(vc4_encoder->clock_select,
405                                  PV_CONTROL_CLK_SELECT));
406
407         if (debug_dump_regs) {
408                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
409                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
410                          drm_crtc_index(crtc));
411                 drm_print_regset32(&p, &vc4_crtc->regset);
412         }
413 }
414
415 static void require_hvs_enabled(struct drm_device *dev)
416 {
417         struct vc4_dev *vc4 = to_vc4_dev(dev);
418         struct vc4_hvs *hvs = vc4->hvs;
419
420         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
421                      SCALER_DISPCTRL_ENABLE);
422 }
423
424 static int vc4_crtc_disable(struct drm_crtc *crtc,
425                             struct drm_encoder *encoder,
426                             struct drm_atomic_state *state,
427                             unsigned int channel)
428 {
429         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
430         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431         struct drm_device *dev = crtc->dev;
432         struct vc4_dev *vc4 = to_vc4_dev(dev);
433         int ret;
434
435         CRTC_WRITE(PV_V_CONTROL,
436                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
437         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
438         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
439
440         /*
441          * This delay is needed to avoid to get a pixel stuck in an
442          * unflushable FIFO between the pixelvalve and the HDMI
443          * controllers on the BCM2711.
444          *
445          * Timing is fairly sensitive here, so mdelay is the safest
446          * approach.
447          *
448          * If it was to be reworked, the stuck pixel happens on a
449          * BCM2711 when changing mode with a good probability, so a
450          * script that changes mode on a regular basis should trigger
451          * the bug after less than 10 attempts. It manifests itself with
452          * every pixels being shifted by one to the right, and thus the
453          * last pixel of a line actually being displayed as the first
454          * pixel on the next line.
455          */
456         mdelay(20);
457
458         if (vc4_encoder && vc4_encoder->post_crtc_disable)
459                 vc4_encoder->post_crtc_disable(encoder, state);
460
461         vc4_crtc_pixelvalve_reset(crtc);
462         vc4_hvs_stop_channel(vc4->hvs, channel);
463
464         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
465                 vc4_encoder->post_crtc_powerdown(encoder, state);
466
467         return 0;
468 }
469
470 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
471                                                         enum vc4_encoder_type type)
472 {
473         struct drm_encoder *encoder;
474
475         drm_for_each_encoder(encoder, crtc->dev) {
476                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
477
478                 if (vc4_encoder->type == type)
479                         return encoder;
480         }
481
482         return NULL;
483 }
484
485 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
486 {
487         struct drm_device *drm = crtc->dev;
488         struct vc4_dev *vc4 = to_vc4_dev(drm);
489         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490         enum vc4_encoder_type encoder_type;
491         const struct vc4_pv_data *pv_data;
492         struct drm_encoder *encoder;
493         struct vc4_hdmi *vc4_hdmi;
494         unsigned encoder_sel;
495         int channel;
496         int ret;
497
498         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
499                                       "brcm,bcm2711-pixelvalve2") ||
500               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
501                                       "brcm,bcm2711-pixelvalve4")))
502                 return 0;
503
504         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
505                 return 0;
506
507         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
508                 return 0;
509
510         channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
511         if (channel < 0)
512                 return 0;
513
514         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
515         if (WARN_ON(encoder_sel != 0))
516                 return 0;
517
518         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
519         encoder_type = pv_data->encoder_types[encoder_sel];
520         encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
521         if (WARN_ON(!encoder))
522                 return 0;
523
524         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
525         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
526         if (ret)
527                 return ret;
528
529         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
530         if (ret)
531                 return ret;
532
533         /*
534          * post_crtc_powerdown will have called pm_runtime_put, so we
535          * don't need it here otherwise we'll get the reference counting
536          * wrong.
537          */
538
539         return 0;
540 }
541
542 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
543                                     struct drm_atomic_state *state)
544 {
545         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
546                                                                          crtc);
547         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
548         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
549         struct drm_device *dev = crtc->dev;
550
551         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
552                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
553
554         require_hvs_enabled(dev);
555
556         /* Disable vblank irq handling before crtc is disabled. */
557         drm_crtc_vblank_off(crtc);
558
559         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
560
561         /*
562          * Make sure we issue a vblank event after disabling the CRTC if
563          * someone was waiting it.
564          */
565         if (crtc->state->event) {
566                 unsigned long flags;
567
568                 spin_lock_irqsave(&dev->event_lock, flags);
569                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
570                 crtc->state->event = NULL;
571                 spin_unlock_irqrestore(&dev->event_lock, flags);
572         }
573 }
574
575 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
576                                    struct drm_atomic_state *state)
577 {
578         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
579                                                                          crtc);
580         struct drm_device *dev = crtc->dev;
581         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
582         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
583         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
584
585         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
586                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
587
588         require_hvs_enabled(dev);
589
590         /* Enable vblank irq handling before crtc is started otherwise
591          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
592          */
593         drm_crtc_vblank_on(crtc);
594
595         vc4_hvs_atomic_enable(crtc, state);
596
597         if (vc4_encoder->pre_crtc_configure)
598                 vc4_encoder->pre_crtc_configure(encoder, state);
599
600         vc4_crtc_config_pv(crtc, encoder, state);
601
602         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
603
604         if (vc4_encoder->pre_crtc_enable)
605                 vc4_encoder->pre_crtc_enable(encoder, state);
606
607         /* When feeding the transposer block the pixelvalve is unneeded and
608          * should not be enabled.
609          */
610         CRTC_WRITE(PV_V_CONTROL,
611                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
612
613         if (vc4_encoder->post_crtc_enable)
614                 vc4_encoder->post_crtc_enable(encoder, state);
615 }
616
617 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
618                                                 const struct drm_display_mode *mode)
619 {
620         /* Do not allow doublescan modes from user space */
621         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
622                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
623                               crtc->base.id);
624                 return MODE_NO_DBLESCAN;
625         }
626
627         return MODE_OK;
628 }
629
630 void vc4_crtc_get_margins(struct drm_crtc_state *state,
631                           unsigned int *left, unsigned int *right,
632                           unsigned int *top, unsigned int *bottom)
633 {
634         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
635         struct drm_connector_state *conn_state;
636         struct drm_connector *conn;
637         int i;
638
639         *left = vc4_state->margins.left;
640         *right = vc4_state->margins.right;
641         *top = vc4_state->margins.top;
642         *bottom = vc4_state->margins.bottom;
643
644         /* We have to interate over all new connector states because
645          * vc4_crtc_get_margins() might be called before
646          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
647          * might be outdated.
648          */
649         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
650                 if (conn_state->crtc != state->crtc)
651                         continue;
652
653                 *left = conn_state->tv.margins.left;
654                 *right = conn_state->tv.margins.right;
655                 *top = conn_state->tv.margins.top;
656                 *bottom = conn_state->tv.margins.bottom;
657                 break;
658         }
659 }
660
661 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
662                                  struct drm_atomic_state *state)
663 {
664         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
665                                                                           crtc);
666         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
667         struct drm_connector *conn;
668         struct drm_connector_state *conn_state;
669         struct drm_encoder *encoder;
670         int ret, i;
671
672         ret = vc4_hvs_atomic_check(crtc, state);
673         if (ret)
674                 return ret;
675
676         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
677         if (encoder) {
678                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
679                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
680
681                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
682                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
683                                                   mode->clock * 9 / 10) * 1000;
684                 } else {
685                         vc4_state->hvs_load = mode->clock * 1000;
686                 }
687         }
688
689         for_each_new_connector_in_state(state, conn, conn_state,
690                                         i) {
691                 if (conn_state->crtc != crtc)
692                         continue;
693
694                 vc4_state->margins.left = conn_state->tv.margins.left;
695                 vc4_state->margins.right = conn_state->tv.margins.right;
696                 vc4_state->margins.top = conn_state->tv.margins.top;
697                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
698                 break;
699         }
700
701         return 0;
702 }
703
704 static int vc4_enable_vblank(struct drm_crtc *crtc)
705 {
706         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
707
708         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
709
710         return 0;
711 }
712
713 static void vc4_disable_vblank(struct drm_crtc *crtc)
714 {
715         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
716
717         CRTC_WRITE(PV_INTEN, 0);
718 }
719
720 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
721 {
722         struct drm_crtc *crtc = &vc4_crtc->base;
723         struct drm_device *dev = crtc->dev;
724         struct vc4_dev *vc4 = to_vc4_dev(dev);
725         struct vc4_hvs *hvs = vc4->hvs;
726         u32 chan = vc4_crtc->current_hvs_channel;
727         unsigned long flags;
728
729         spin_lock_irqsave(&dev->event_lock, flags);
730         spin_lock(&vc4_crtc->irq_lock);
731         if (vc4_crtc->event &&
732             (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
733              vc4_crtc->feeds_txp)) {
734                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
735                 vc4_crtc->event = NULL;
736                 drm_crtc_vblank_put(crtc);
737
738                 /* Wait for the page flip to unmask the underrun to ensure that
739                  * the display list was updated by the hardware. Before that
740                  * happens, the HVS will be using the previous display list with
741                  * the CRTC and encoder already reconfigured, leading to
742                  * underruns. This can be seen when reconfiguring the CRTC.
743                  */
744                 vc4_hvs_unmask_underrun(hvs, chan);
745         }
746         spin_unlock(&vc4_crtc->irq_lock);
747         spin_unlock_irqrestore(&dev->event_lock, flags);
748 }
749
750 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
751 {
752         crtc->t_vblank = ktime_get();
753         drm_crtc_handle_vblank(&crtc->base);
754         vc4_crtc_handle_page_flip(crtc);
755 }
756
757 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
758 {
759         struct vc4_crtc *vc4_crtc = data;
760         u32 stat = CRTC_READ(PV_INTSTAT);
761         irqreturn_t ret = IRQ_NONE;
762
763         if (stat & PV_INT_VFP_START) {
764                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
765                 vc4_crtc_handle_vblank(vc4_crtc);
766                 ret = IRQ_HANDLED;
767         }
768
769         return ret;
770 }
771
772 struct vc4_async_flip_state {
773         struct drm_crtc *crtc;
774         struct drm_framebuffer *fb;
775         struct drm_framebuffer *old_fb;
776         struct drm_pending_vblank_event *event;
777
778         union {
779                 struct dma_fence_cb fence;
780                 struct vc4_seqno_cb seqno;
781         } cb;
782 };
783
784 /* Called when the V3D execution for the BO being flipped to is done, so that
785  * we can actually update the plane's address to point to it.
786  */
787 static void
788 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
789 {
790         struct drm_crtc *crtc = flip_state->crtc;
791         struct drm_device *dev = crtc->dev;
792         struct drm_plane *plane = crtc->primary;
793
794         vc4_plane_async_set_fb(plane, flip_state->fb);
795         if (flip_state->event) {
796                 unsigned long flags;
797
798                 spin_lock_irqsave(&dev->event_lock, flags);
799                 drm_crtc_send_vblank_event(crtc, flip_state->event);
800                 spin_unlock_irqrestore(&dev->event_lock, flags);
801         }
802
803         drm_crtc_vblank_put(crtc);
804         drm_framebuffer_put(flip_state->fb);
805
806         if (flip_state->old_fb)
807                 drm_framebuffer_put(flip_state->old_fb);
808
809         kfree(flip_state);
810 }
811
812 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
813 {
814         struct vc4_async_flip_state *flip_state =
815                 container_of(cb, struct vc4_async_flip_state, cb.seqno);
816         struct vc4_bo *bo = NULL;
817
818         if (flip_state->old_fb) {
819                 struct drm_gem_cma_object *cma_bo =
820                         drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
821                 bo = to_vc4_bo(&cma_bo->base);
822         }
823
824         vc4_async_page_flip_complete(flip_state);
825
826         /*
827          * Decrement the BO usecnt in order to keep the inc/dec
828          * calls balanced when the planes are updated through
829          * the async update path.
830          *
831          * FIXME: we should move to generic async-page-flip when
832          * it's available, so that we can get rid of this
833          * hand-made cleanup_fb() logic.
834          */
835         if (bo)
836                 vc4_bo_dec_usecnt(bo);
837 }
838
839 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
840                                                struct dma_fence_cb *cb)
841 {
842         struct vc4_async_flip_state *flip_state =
843                 container_of(cb, struct vc4_async_flip_state, cb.fence);
844
845         vc4_async_page_flip_complete(flip_state);
846         dma_fence_put(fence);
847 }
848
849 static int vc4_async_set_fence_cb(struct drm_device *dev,
850                                   struct vc4_async_flip_state *flip_state)
851 {
852         struct drm_framebuffer *fb = flip_state->fb;
853         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
854         struct vc4_dev *vc4 = to_vc4_dev(dev);
855         struct dma_fence *fence;
856         int ret;
857
858         if (!vc4->is_vc5) {
859                 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
860
861                 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
862                                           vc4_async_page_flip_seqno_complete);
863         }
864
865         ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
866         if (ret)
867                 return ret;
868
869         /* If there's no fence, complete the page flip immediately */
870         if (!fence) {
871                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
872                 return 0;
873         }
874
875         /* If the fence has already been completed, complete the page flip */
876         if (dma_fence_add_callback(fence, &flip_state->cb.fence,
877                                    vc4_async_page_flip_fence_complete))
878                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
879
880         return 0;
881 }
882
883 static int
884 vc4_async_page_flip_common(struct drm_crtc *crtc,
885                            struct drm_framebuffer *fb,
886                            struct drm_pending_vblank_event *event,
887                            uint32_t flags)
888 {
889         struct drm_device *dev = crtc->dev;
890         struct drm_plane *plane = crtc->primary;
891         struct vc4_async_flip_state *flip_state;
892
893         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
894         if (!flip_state)
895                 return -ENOMEM;
896
897         drm_framebuffer_get(fb);
898         flip_state->fb = fb;
899         flip_state->crtc = crtc;
900         flip_state->event = event;
901
902         /* Save the current FB before it's replaced by the new one in
903          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
904          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
905          * it consistent.
906          * FIXME: we should move to generic async-page-flip when it's
907          * available, so that we can get rid of this hand-made cleanup_fb()
908          * logic.
909          */
910         flip_state->old_fb = plane->state->fb;
911         if (flip_state->old_fb)
912                 drm_framebuffer_get(flip_state->old_fb);
913
914         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
915
916         /* Immediately update the plane's legacy fb pointer, so that later
917          * modeset prep sees the state that will be present when the semaphore
918          * is released.
919          */
920         drm_atomic_set_fb_for_plane(plane->state, fb);
921
922         vc4_async_set_fence_cb(dev, flip_state);
923
924         /* Driver takes ownership of state on successful async commit. */
925         return 0;
926 }
927
928 /* Implements async (non-vblank-synced) page flips.
929  *
930  * The page flip ioctl needs to return immediately, so we grab the
931  * modeset semaphore on the pipe, and queue the address update for
932  * when V3D is done with the BO being flipped to.
933  */
934 static int vc4_async_page_flip(struct drm_crtc *crtc,
935                                struct drm_framebuffer *fb,
936                                struct drm_pending_vblank_event *event,
937                                uint32_t flags)
938 {
939         struct drm_device *dev = crtc->dev;
940         struct vc4_dev *vc4 = to_vc4_dev(dev);
941         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
942         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
943         int ret;
944
945         if (WARN_ON_ONCE(vc4->is_vc5))
946                 return -ENODEV;
947
948         /*
949          * Increment the BO usecnt here, so that we never end up with an
950          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
951          * plane is later updated through the non-async path.
952          *
953          * FIXME: we should move to generic async-page-flip when
954          * it's available, so that we can get rid of this
955          * hand-made prepare_fb() logic.
956          */
957         ret = vc4_bo_inc_usecnt(bo);
958         if (ret)
959                 return ret;
960
961         ret = vc4_async_page_flip_common(crtc, fb, event, flags);
962         if (ret) {
963                 vc4_bo_dec_usecnt(bo);
964                 return ret;
965         }
966
967         return 0;
968 }
969
970 static int vc5_async_page_flip(struct drm_crtc *crtc,
971                                struct drm_framebuffer *fb,
972                                struct drm_pending_vblank_event *event,
973                                uint32_t flags)
974 {
975         return vc4_async_page_flip_common(crtc, fb, event, flags);
976 }
977
978 int vc4_page_flip(struct drm_crtc *crtc,
979                   struct drm_framebuffer *fb,
980                   struct drm_pending_vblank_event *event,
981                   uint32_t flags,
982                   struct drm_modeset_acquire_ctx *ctx)
983 {
984         if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
985                 struct drm_device *dev = crtc->dev;
986                 struct vc4_dev *vc4 = to_vc4_dev(dev);
987
988                 if (vc4->is_vc5)
989                         return vc5_async_page_flip(crtc, fb, event, flags);
990                 else
991                         return vc4_async_page_flip(crtc, fb, event, flags);
992         } else {
993                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
994         }
995 }
996
997 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
998 {
999         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1000
1001         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1002         if (!vc4_state)
1003                 return NULL;
1004
1005         old_vc4_state = to_vc4_crtc_state(crtc->state);
1006         vc4_state->margins = old_vc4_state->margins;
1007         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1008
1009         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1010         return &vc4_state->base;
1011 }
1012
1013 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1014                             struct drm_crtc_state *state)
1015 {
1016         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1017         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1018
1019         if (drm_mm_node_allocated(&vc4_state->mm)) {
1020                 unsigned long flags;
1021
1022                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1023                 drm_mm_remove_node(&vc4_state->mm);
1024                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1025
1026         }
1027
1028         drm_atomic_helper_crtc_destroy_state(crtc, state);
1029 }
1030
1031 void vc4_crtc_reset(struct drm_crtc *crtc)
1032 {
1033         struct vc4_crtc_state *vc4_crtc_state;
1034
1035         if (crtc->state)
1036                 vc4_crtc_destroy_state(crtc, crtc->state);
1037
1038         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1039         if (!vc4_crtc_state) {
1040                 crtc->state = NULL;
1041                 return;
1042         }
1043
1044         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1045         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1046 }
1047
1048 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1049         .set_config = drm_atomic_helper_set_config,
1050         .destroy = vc4_crtc_destroy,
1051         .page_flip = vc4_page_flip,
1052         .set_property = NULL,
1053         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1054         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1055         .reset = vc4_crtc_reset,
1056         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1057         .atomic_destroy_state = vc4_crtc_destroy_state,
1058         .enable_vblank = vc4_enable_vblank,
1059         .disable_vblank = vc4_disable_vblank,
1060         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1061 };
1062
1063 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1064         .mode_valid = vc4_crtc_mode_valid,
1065         .atomic_check = vc4_crtc_atomic_check,
1066         .atomic_begin = vc4_hvs_atomic_begin,
1067         .atomic_flush = vc4_hvs_atomic_flush,
1068         .atomic_enable = vc4_crtc_atomic_enable,
1069         .atomic_disable = vc4_crtc_atomic_disable,
1070         .get_scanout_position = vc4_crtc_get_scanout_position,
1071 };
1072
1073 static const struct vc4_pv_data bcm2835_pv0_data = {
1074         .base = {
1075                 .hvs_available_channels = BIT(0),
1076                 .hvs_output = 0,
1077         },
1078         .debugfs_name = "crtc0_regs",
1079         .fifo_depth = 64,
1080         .pixels_per_clock = 1,
1081         .encoder_types = {
1082                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1083                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1084         },
1085 };
1086
1087 static const struct vc4_pv_data bcm2835_pv1_data = {
1088         .base = {
1089                 .hvs_available_channels = BIT(2),
1090                 .hvs_output = 2,
1091         },
1092         .debugfs_name = "crtc1_regs",
1093         .fifo_depth = 64,
1094         .pixels_per_clock = 1,
1095         .encoder_types = {
1096                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1097                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1098         },
1099 };
1100
1101 static const struct vc4_pv_data bcm2835_pv2_data = {
1102         .base = {
1103                 .hvs_available_channels = BIT(1),
1104                 .hvs_output = 1,
1105         },
1106         .debugfs_name = "crtc2_regs",
1107         .fifo_depth = 64,
1108         .pixels_per_clock = 1,
1109         .encoder_types = {
1110                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1111                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1112         },
1113 };
1114
1115 static const struct vc4_pv_data bcm2711_pv0_data = {
1116         .base = {
1117                 .hvs_available_channels = BIT(0),
1118                 .hvs_output = 0,
1119         },
1120         .debugfs_name = "crtc0_regs",
1121         .fifo_depth = 64,
1122         .pixels_per_clock = 1,
1123         .encoder_types = {
1124                 [0] = VC4_ENCODER_TYPE_DSI0,
1125                 [1] = VC4_ENCODER_TYPE_DPI,
1126         },
1127 };
1128
1129 static const struct vc4_pv_data bcm2711_pv1_data = {
1130         .base = {
1131                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1132                 .hvs_output = 3,
1133         },
1134         .debugfs_name = "crtc1_regs",
1135         .fifo_depth = 64,
1136         .pixels_per_clock = 1,
1137         .encoder_types = {
1138                 [0] = VC4_ENCODER_TYPE_DSI1,
1139                 [1] = VC4_ENCODER_TYPE_SMI,
1140         },
1141 };
1142
1143 static const struct vc4_pv_data bcm2711_pv2_data = {
1144         .base = {
1145                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1146                 .hvs_output = 4,
1147         },
1148         .debugfs_name = "crtc2_regs",
1149         .fifo_depth = 256,
1150         .pixels_per_clock = 2,
1151         .encoder_types = {
1152                 [0] = VC4_ENCODER_TYPE_HDMI0,
1153         },
1154 };
1155
1156 static const struct vc4_pv_data bcm2711_pv3_data = {
1157         .base = {
1158                 .hvs_available_channels = BIT(1),
1159                 .hvs_output = 1,
1160         },
1161         .debugfs_name = "crtc3_regs",
1162         .fifo_depth = 64,
1163         .pixels_per_clock = 1,
1164         .encoder_types = {
1165                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1166         },
1167 };
1168
1169 static const struct vc4_pv_data bcm2711_pv4_data = {
1170         .base = {
1171                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1172                 .hvs_output = 5,
1173         },
1174         .debugfs_name = "crtc4_regs",
1175         .fifo_depth = 64,
1176         .pixels_per_clock = 2,
1177         .encoder_types = {
1178                 [0] = VC4_ENCODER_TYPE_HDMI1,
1179         },
1180 };
1181
1182 static const struct of_device_id vc4_crtc_dt_match[] = {
1183         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1184         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1185         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1186         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1187         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1188         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1189         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1190         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1191         {}
1192 };
1193
1194 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1195                                         struct drm_crtc *crtc)
1196 {
1197         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1198         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1199         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1200         struct drm_encoder *encoder;
1201
1202         drm_for_each_encoder(encoder, drm) {
1203                 struct vc4_encoder *vc4_encoder;
1204                 int i;
1205
1206                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1207                         continue;
1208
1209                 vc4_encoder = to_vc4_encoder(encoder);
1210                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1211                         if (vc4_encoder->type == encoder_types[i]) {
1212                                 vc4_encoder->clock_select = i;
1213                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1214                                 break;
1215                         }
1216                 }
1217         }
1218 }
1219
1220 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1221                   const struct drm_crtc_funcs *crtc_funcs,
1222                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1223 {
1224         struct vc4_dev *vc4 = to_vc4_dev(drm);
1225         struct drm_crtc *crtc = &vc4_crtc->base;
1226         struct drm_plane *primary_plane;
1227         unsigned int i;
1228
1229         /* For now, we create just the primary and the legacy cursor
1230          * planes.  We should be able to stack more planes on easily,
1231          * but to do that we would need to compute the bandwidth
1232          * requirement of the plane configuration, and reject ones
1233          * that will take too much.
1234          */
1235         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1236         if (IS_ERR(primary_plane)) {
1237                 dev_err(drm->dev, "failed to construct primary plane\n");
1238                 return PTR_ERR(primary_plane);
1239         }
1240
1241         spin_lock_init(&vc4_crtc->irq_lock);
1242         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1243                                   crtc_funcs, NULL);
1244         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1245
1246         if (!vc4->is_vc5) {
1247                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1248
1249                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1250
1251                 /* We support CTM, but only for one CRTC at a time. It's therefore
1252                  * implemented as private driver state in vc4_kms, not here.
1253                  */
1254                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1255         }
1256
1257         for (i = 0; i < crtc->gamma_size; i++) {
1258                 vc4_crtc->lut_r[i] = i;
1259                 vc4_crtc->lut_g[i] = i;
1260                 vc4_crtc->lut_b[i] = i;
1261         }
1262
1263         return 0;
1264 }
1265
1266 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1267 {
1268         struct platform_device *pdev = to_platform_device(dev);
1269         struct drm_device *drm = dev_get_drvdata(master);
1270         const struct vc4_pv_data *pv_data;
1271         struct vc4_crtc *vc4_crtc;
1272         struct drm_crtc *crtc;
1273         struct drm_plane *destroy_plane, *temp;
1274         int ret;
1275
1276         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1277         if (!vc4_crtc)
1278                 return -ENOMEM;
1279         crtc = &vc4_crtc->base;
1280
1281         pv_data = of_device_get_match_data(dev);
1282         if (!pv_data)
1283                 return -ENODEV;
1284         vc4_crtc->data = &pv_data->base;
1285         vc4_crtc->pdev = pdev;
1286
1287         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1288         if (IS_ERR(vc4_crtc->regs))
1289                 return PTR_ERR(vc4_crtc->regs);
1290
1291         vc4_crtc->regset.base = vc4_crtc->regs;
1292         vc4_crtc->regset.regs = crtc_regs;
1293         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1294
1295         ret = vc4_crtc_init(drm, vc4_crtc,
1296                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1297         if (ret)
1298                 return ret;
1299         vc4_set_crtc_possible_masks(drm, crtc);
1300
1301         CRTC_WRITE(PV_INTEN, 0);
1302         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1303         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1304                                vc4_crtc_irq_handler,
1305                                IRQF_SHARED,
1306                                "vc4 crtc", vc4_crtc);
1307         if (ret)
1308                 goto err_destroy_planes;
1309
1310         platform_set_drvdata(pdev, vc4_crtc);
1311
1312         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1313                                  &vc4_crtc->regset);
1314
1315         return 0;
1316
1317 err_destroy_planes:
1318         list_for_each_entry_safe(destroy_plane, temp,
1319                                  &drm->mode_config.plane_list, head) {
1320                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1321                     destroy_plane->funcs->destroy(destroy_plane);
1322         }
1323
1324         return ret;
1325 }
1326
1327 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1328                             void *data)
1329 {
1330         struct platform_device *pdev = to_platform_device(dev);
1331         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1332
1333         vc4_crtc_destroy(&vc4_crtc->base);
1334
1335         CRTC_WRITE(PV_INTEN, 0);
1336
1337         platform_set_drvdata(pdev, NULL);
1338 }
1339
1340 static const struct component_ops vc4_crtc_ops = {
1341         .bind   = vc4_crtc_bind,
1342         .unbind = vc4_crtc_unbind,
1343 };
1344
1345 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1346 {
1347         return component_add(&pdev->dev, &vc4_crtc_ops);
1348 }
1349
1350 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1351 {
1352         component_del(&pdev->dev, &vc4_crtc_ops);
1353         return 0;
1354 }
1355
1356 struct platform_driver vc4_crtc_driver = {
1357         .probe = vc4_crtc_dev_probe,
1358         .remove = vc4_crtc_dev_remove,
1359         .driver = {
1360                 .name = "vc4_crtc",
1361                 .of_match_table = vc4_crtc_dt_match,
1362         },
1363 };
This page took 0.10955 seconds and 4 git commands to generate.