1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
49 #define HVS_FIFO_LATENCY_PIX 6
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
54 static const struct debugfs_reg32 crtc_regs[] = {
55 VC4_REG32(PV_CONTROL),
56 VC4_REG32(PV_V_CONTROL),
57 VC4_REG32(PV_VSYNCD_EVEN),
62 VC4_REG32(PV_VERTA_EVEN),
63 VC4_REG32(PV_VERTB_EVEN),
65 VC4_REG32(PV_INTSTAT),
67 VC4_REG32(PV_HACT_ACT),
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
73 struct vc4_hvs *hvs = vc4->hvs;
74 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75 /* Top/base are supposed to be 4-pixel aligned, but the
76 * Raspberry Pi firmware fills the low bits (which are
77 * presumably ignored).
79 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
82 return top - base + 4;
85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
88 ktime_t *stime, ktime_t *etime,
89 const struct drm_display_mode *mode)
91 struct drm_device *dev = crtc->dev;
92 struct vc4_dev *vc4 = to_vc4_dev(dev);
93 struct vc4_hvs *hvs = vc4->hvs;
94 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96 unsigned int cob_size;
102 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
104 /* Get optional system timestamp before query. */
106 *stime = ktime_get();
109 * Read vertical scanline which is currently composed for our
110 * pixelvalve by the HVS, and also the scaler status.
112 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
114 /* Get optional system timestamp after query. */
116 *etime = ktime_get();
118 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
120 /* Vertical position of hvs composed scanline. */
121 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
124 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
127 /* Use hpos to correct for field offset in interlaced mode. */
128 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129 *hpos += mode->crtc_htotal / 2;
132 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133 /* This is the offset we need for translating hvs -> pv scanout pos. */
134 fifo_lines = cob_size / mode->crtc_hdisplay;
139 /* HVS more than fifo_lines into frame for compositing? */
140 if (*vpos > fifo_lines) {
142 * We are in active scanout and can get some meaningful results
143 * from HVS. The actual PV scanout can not trail behind more
144 * than fifo_lines as that is the fifo's capacity. Assume that
145 * in active scanout the HVS and PV work in lockstep wrt. HVS
146 * refilling the fifo and PV consuming from the fifo, ie.
147 * whenever the PV consumes and frees up a scanline in the
148 * fifo, the HVS will immediately refill it, therefore
149 * incrementing vpos. Therefore we choose HVS read position -
150 * fifo size in scanlines as a estimate of the real scanout
151 * position of the PV.
153 *vpos -= fifo_lines + 1;
159 * Less: This happens when we are in vblank and the HVS, after getting
160 * the VSTART restart signal from the PV, just started refilling its
161 * fifo with new lines from the top-most lines of the new framebuffers.
162 * The PV does not scan out in vblank, so does not remove lines from
163 * the fifo, so the fifo will be full quickly and the HVS has to pause.
164 * We can't get meaningful readings wrt. scanline position of the PV
165 * and need to make things up in a approximative but consistent way.
167 vblank_lines = mode->vtotal - mode->vdisplay;
171 * Assume the irq handler got called close to first
172 * line of vblank, so PV has about a full vblank
173 * scanlines to go, and as a base timestamp use the
174 * one taken at entry into vblank irq handler, so it
175 * is not affected by random delays due to lock
176 * contention on event_lock or vblank_time lock in
179 *vpos = -vblank_lines;
182 *stime = vc4_crtc->t_vblank;
184 *etime = vc4_crtc->t_vblank;
187 * If the HVS fifo is not yet full then we know for certain
188 * we are at the very beginning of vblank, as the hvs just
189 * started refilling, and the stime and etime timestamps
190 * truly correspond to start of vblank.
192 * Unfortunately there's no way to report this to upper levels
193 * and make it more useful.
197 * No clue where we are inside vblank. Return a vpos of zero,
198 * which will cause calling code to just return the etime
199 * timestamp uncorrected. At least this is no worse than the
208 void vc4_crtc_destroy(struct drm_crtc *crtc)
210 drm_crtc_cleanup(crtc);
213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
215 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218 u32 fifo_len_bytes = pv_data->fifo_depth;
221 * Pixels are pulled from the HVS if the number of bytes is
222 * lower than the FIFO full level.
224 * The latency of the pixel fetch mechanism is 6 pixels, so we
225 * need to convert those 6 pixels in bytes, depending on the
226 * format, and then subtract that from the length of the FIFO
227 * to make sure we never end up in a situation where the FIFO
231 case PV_CONTROL_FORMAT_DSIV_16:
232 case PV_CONTROL_FORMAT_DSIC_16:
233 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234 case PV_CONTROL_FORMAT_DSIV_18:
235 return fifo_len_bytes - 14;
236 case PV_CONTROL_FORMAT_24:
237 case PV_CONTROL_FORMAT_DSIV_24:
240 * For some reason, the pixelvalve4 doesn't work with
241 * the usual formula and will only work with 32.
243 if (crtc_data->hvs_output == 5)
247 * It looks like in some situations, we will overflow
248 * the PixelValve FIFO (with the bit 10 of PV stat being
249 * set) and stall the HVS / PV, eventually resulting in
250 * a page flip timeout.
252 * Displaying the video overlay during a playback with
253 * Kodi on an RPi3 seems to be a great solution with a
254 * failure rate around 50%.
256 * Removing 1 from the FIFO full level however
257 * seems to completely remove that issue.
260 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
262 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
269 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
272 ret |= VC4_SET_FIELD((level >> 6),
273 PV5_CONTROL_FIFO_LEVEL_HIGH);
275 return ret | VC4_SET_FIELD(level & 0x3f,
276 PV_CONTROL_FIFO_LEVEL);
280 * Returns the encoder attached to the CRTC.
282 * VC4 can only scan out to one encoder at a time, while the DRM core
283 * allows drivers to push pixels to more than one encoder from the
286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287 struct drm_crtc_state *state)
289 struct drm_encoder *encoder;
291 WARN_ON(hweight32(state->encoder_mask) > 1);
293 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
301 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
303 /* The PV needs to be disabled before it can be flushed */
304 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
308 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
309 struct drm_atomic_state *state)
311 struct drm_device *dev = crtc->dev;
312 struct vc4_dev *vc4 = to_vc4_dev(dev);
313 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 struct drm_crtc_state *crtc_state = crtc->state;
317 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
318 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
323 u8 ppc = pv_data->pixels_per_clock;
324 bool debug_dump_regs = false;
326 if (debug_dump_regs) {
327 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
328 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
329 drm_crtc_index(crtc));
330 drm_print_regset32(&p, &vc4_crtc->regset);
333 vc4_crtc_pixelvalve_reset(crtc);
336 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
338 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
342 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
344 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
348 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
350 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
353 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
355 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
358 CRTC_WRITE(PV_VERTA_EVEN,
359 VC4_SET_FIELD(mode->crtc_vtotal -
360 mode->crtc_vsync_end - 1,
362 VC4_SET_FIELD(mode->crtc_vsync_end -
363 mode->crtc_vsync_start,
365 CRTC_WRITE(PV_VERTB_EVEN,
366 VC4_SET_FIELD(mode->crtc_vsync_start -
369 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
371 /* We set up first field even mode for HDMI. VEC's
372 * NTSC mode would want first field odd instead, once
373 * we support it (to do so, set ODD_FIRST and put the
374 * delay in VSYNCD_EVEN instead).
376 CRTC_WRITE(PV_V_CONTROL,
377 PV_VCONTROL_CONTINUOUS |
378 (is_dsi ? PV_VCONTROL_DSI : 0) |
379 PV_VCONTROL_INTERLACE |
380 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
381 PV_VCONTROL_ODD_DELAY));
382 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
384 CRTC_WRITE(PV_V_CONTROL,
385 PV_VCONTROL_CONTINUOUS |
386 (is_dsi ? PV_VCONTROL_DSI : 0));
390 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
393 CRTC_WRITE(PV_MUX_CFG,
394 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
395 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
397 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
398 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
399 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
400 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
401 PV_CONTROL_CLR_AT_START |
402 PV_CONTROL_TRIGGER_UNDERFLOW |
403 PV_CONTROL_WAIT_HSTART |
404 VC4_SET_FIELD(vc4_encoder->clock_select,
405 PV_CONTROL_CLK_SELECT));
407 if (debug_dump_regs) {
408 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
409 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
410 drm_crtc_index(crtc));
411 drm_print_regset32(&p, &vc4_crtc->regset);
415 static void require_hvs_enabled(struct drm_device *dev)
417 struct vc4_dev *vc4 = to_vc4_dev(dev);
418 struct vc4_hvs *hvs = vc4->hvs;
420 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
421 SCALER_DISPCTRL_ENABLE);
424 static int vc4_crtc_disable(struct drm_crtc *crtc,
425 struct drm_encoder *encoder,
426 struct drm_atomic_state *state,
427 unsigned int channel)
429 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
430 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431 struct drm_device *dev = crtc->dev;
432 struct vc4_dev *vc4 = to_vc4_dev(dev);
435 CRTC_WRITE(PV_V_CONTROL,
436 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
437 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
438 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
441 * This delay is needed to avoid to get a pixel stuck in an
442 * unflushable FIFO between the pixelvalve and the HDMI
443 * controllers on the BCM2711.
445 * Timing is fairly sensitive here, so mdelay is the safest
448 * If it was to be reworked, the stuck pixel happens on a
449 * BCM2711 when changing mode with a good probability, so a
450 * script that changes mode on a regular basis should trigger
451 * the bug after less than 10 attempts. It manifests itself with
452 * every pixels being shifted by one to the right, and thus the
453 * last pixel of a line actually being displayed as the first
454 * pixel on the next line.
458 if (vc4_encoder && vc4_encoder->post_crtc_disable)
459 vc4_encoder->post_crtc_disable(encoder, state);
461 vc4_crtc_pixelvalve_reset(crtc);
462 vc4_hvs_stop_channel(vc4->hvs, channel);
464 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
465 vc4_encoder->post_crtc_powerdown(encoder, state);
470 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
471 enum vc4_encoder_type type)
473 struct drm_encoder *encoder;
475 drm_for_each_encoder(encoder, crtc->dev) {
476 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
478 if (vc4_encoder->type == type)
485 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
487 struct drm_device *drm = crtc->dev;
488 struct vc4_dev *vc4 = to_vc4_dev(drm);
489 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490 enum vc4_encoder_type encoder_type;
491 const struct vc4_pv_data *pv_data;
492 struct drm_encoder *encoder;
493 struct vc4_hdmi *vc4_hdmi;
494 unsigned encoder_sel;
498 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
499 "brcm,bcm2711-pixelvalve2") ||
500 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
501 "brcm,bcm2711-pixelvalve4")))
504 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
507 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
510 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
514 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
515 if (WARN_ON(encoder_sel != 0))
518 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
519 encoder_type = pv_data->encoder_types[encoder_sel];
520 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
521 if (WARN_ON(!encoder))
524 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
525 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
529 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
534 * post_crtc_powerdown will have called pm_runtime_put, so we
535 * don't need it here otherwise we'll get the reference counting
542 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
543 struct drm_atomic_state *state)
545 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
547 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
548 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
549 struct drm_device *dev = crtc->dev;
551 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
552 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
554 require_hvs_enabled(dev);
556 /* Disable vblank irq handling before crtc is disabled. */
557 drm_crtc_vblank_off(crtc);
559 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
562 * Make sure we issue a vblank event after disabling the CRTC if
563 * someone was waiting it.
565 if (crtc->state->event) {
568 spin_lock_irqsave(&dev->event_lock, flags);
569 drm_crtc_send_vblank_event(crtc, crtc->state->event);
570 crtc->state->event = NULL;
571 spin_unlock_irqrestore(&dev->event_lock, flags);
575 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
576 struct drm_atomic_state *state)
578 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
580 struct drm_device *dev = crtc->dev;
581 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
582 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
583 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
585 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
586 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
588 require_hvs_enabled(dev);
590 /* Enable vblank irq handling before crtc is started otherwise
591 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
593 drm_crtc_vblank_on(crtc);
595 vc4_hvs_atomic_enable(crtc, state);
597 if (vc4_encoder->pre_crtc_configure)
598 vc4_encoder->pre_crtc_configure(encoder, state);
600 vc4_crtc_config_pv(crtc, encoder, state);
602 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
604 if (vc4_encoder->pre_crtc_enable)
605 vc4_encoder->pre_crtc_enable(encoder, state);
607 /* When feeding the transposer block the pixelvalve is unneeded and
608 * should not be enabled.
610 CRTC_WRITE(PV_V_CONTROL,
611 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
613 if (vc4_encoder->post_crtc_enable)
614 vc4_encoder->post_crtc_enable(encoder, state);
617 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
618 const struct drm_display_mode *mode)
620 /* Do not allow doublescan modes from user space */
621 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
622 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
624 return MODE_NO_DBLESCAN;
630 void vc4_crtc_get_margins(struct drm_crtc_state *state,
631 unsigned int *left, unsigned int *right,
632 unsigned int *top, unsigned int *bottom)
634 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
635 struct drm_connector_state *conn_state;
636 struct drm_connector *conn;
639 *left = vc4_state->margins.left;
640 *right = vc4_state->margins.right;
641 *top = vc4_state->margins.top;
642 *bottom = vc4_state->margins.bottom;
644 /* We have to interate over all new connector states because
645 * vc4_crtc_get_margins() might be called before
646 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
649 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
650 if (conn_state->crtc != state->crtc)
653 *left = conn_state->tv.margins.left;
654 *right = conn_state->tv.margins.right;
655 *top = conn_state->tv.margins.top;
656 *bottom = conn_state->tv.margins.bottom;
661 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
662 struct drm_atomic_state *state)
664 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
666 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
667 struct drm_connector *conn;
668 struct drm_connector_state *conn_state;
669 struct drm_encoder *encoder;
672 ret = vc4_hvs_atomic_check(crtc, state);
676 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
678 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
679 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
681 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
682 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
683 mode->clock * 9 / 10) * 1000;
685 vc4_state->hvs_load = mode->clock * 1000;
689 for_each_new_connector_in_state(state, conn, conn_state,
691 if (conn_state->crtc != crtc)
694 vc4_state->margins.left = conn_state->tv.margins.left;
695 vc4_state->margins.right = conn_state->tv.margins.right;
696 vc4_state->margins.top = conn_state->tv.margins.top;
697 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
704 static int vc4_enable_vblank(struct drm_crtc *crtc)
706 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
708 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
713 static void vc4_disable_vblank(struct drm_crtc *crtc)
715 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
717 CRTC_WRITE(PV_INTEN, 0);
720 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
722 struct drm_crtc *crtc = &vc4_crtc->base;
723 struct drm_device *dev = crtc->dev;
724 struct vc4_dev *vc4 = to_vc4_dev(dev);
725 struct vc4_hvs *hvs = vc4->hvs;
726 u32 chan = vc4_crtc->current_hvs_channel;
729 spin_lock_irqsave(&dev->event_lock, flags);
730 spin_lock(&vc4_crtc->irq_lock);
731 if (vc4_crtc->event &&
732 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
733 vc4_crtc->feeds_txp)) {
734 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
735 vc4_crtc->event = NULL;
736 drm_crtc_vblank_put(crtc);
738 /* Wait for the page flip to unmask the underrun to ensure that
739 * the display list was updated by the hardware. Before that
740 * happens, the HVS will be using the previous display list with
741 * the CRTC and encoder already reconfigured, leading to
742 * underruns. This can be seen when reconfiguring the CRTC.
744 vc4_hvs_unmask_underrun(hvs, chan);
746 spin_unlock(&vc4_crtc->irq_lock);
747 spin_unlock_irqrestore(&dev->event_lock, flags);
750 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
752 crtc->t_vblank = ktime_get();
753 drm_crtc_handle_vblank(&crtc->base);
754 vc4_crtc_handle_page_flip(crtc);
757 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
759 struct vc4_crtc *vc4_crtc = data;
760 u32 stat = CRTC_READ(PV_INTSTAT);
761 irqreturn_t ret = IRQ_NONE;
763 if (stat & PV_INT_VFP_START) {
764 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
765 vc4_crtc_handle_vblank(vc4_crtc);
772 struct vc4_async_flip_state {
773 struct drm_crtc *crtc;
774 struct drm_framebuffer *fb;
775 struct drm_framebuffer *old_fb;
776 struct drm_pending_vblank_event *event;
779 struct dma_fence_cb fence;
780 struct vc4_seqno_cb seqno;
784 /* Called when the V3D execution for the BO being flipped to is done, so that
785 * we can actually update the plane's address to point to it.
788 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
790 struct drm_crtc *crtc = flip_state->crtc;
791 struct drm_device *dev = crtc->dev;
792 struct drm_plane *plane = crtc->primary;
794 vc4_plane_async_set_fb(plane, flip_state->fb);
795 if (flip_state->event) {
798 spin_lock_irqsave(&dev->event_lock, flags);
799 drm_crtc_send_vblank_event(crtc, flip_state->event);
800 spin_unlock_irqrestore(&dev->event_lock, flags);
803 drm_crtc_vblank_put(crtc);
804 drm_framebuffer_put(flip_state->fb);
806 if (flip_state->old_fb)
807 drm_framebuffer_put(flip_state->old_fb);
812 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
814 struct vc4_async_flip_state *flip_state =
815 container_of(cb, struct vc4_async_flip_state, cb.seqno);
816 struct vc4_bo *bo = NULL;
818 if (flip_state->old_fb) {
819 struct drm_gem_cma_object *cma_bo =
820 drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
821 bo = to_vc4_bo(&cma_bo->base);
824 vc4_async_page_flip_complete(flip_state);
827 * Decrement the BO usecnt in order to keep the inc/dec
828 * calls balanced when the planes are updated through
829 * the async update path.
831 * FIXME: we should move to generic async-page-flip when
832 * it's available, so that we can get rid of this
833 * hand-made cleanup_fb() logic.
836 vc4_bo_dec_usecnt(bo);
839 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
840 struct dma_fence_cb *cb)
842 struct vc4_async_flip_state *flip_state =
843 container_of(cb, struct vc4_async_flip_state, cb.fence);
845 vc4_async_page_flip_complete(flip_state);
846 dma_fence_put(fence);
849 static int vc4_async_set_fence_cb(struct drm_device *dev,
850 struct vc4_async_flip_state *flip_state)
852 struct drm_framebuffer *fb = flip_state->fb;
853 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
854 struct vc4_dev *vc4 = to_vc4_dev(dev);
855 struct dma_fence *fence;
859 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
861 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
862 vc4_async_page_flip_seqno_complete);
865 ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
869 /* If there's no fence, complete the page flip immediately */
871 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
875 /* If the fence has already been completed, complete the page flip */
876 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
877 vc4_async_page_flip_fence_complete))
878 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
884 vc4_async_page_flip_common(struct drm_crtc *crtc,
885 struct drm_framebuffer *fb,
886 struct drm_pending_vblank_event *event,
889 struct drm_device *dev = crtc->dev;
890 struct drm_plane *plane = crtc->primary;
891 struct vc4_async_flip_state *flip_state;
893 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
897 drm_framebuffer_get(fb);
899 flip_state->crtc = crtc;
900 flip_state->event = event;
902 /* Save the current FB before it's replaced by the new one in
903 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
904 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
906 * FIXME: we should move to generic async-page-flip when it's
907 * available, so that we can get rid of this hand-made cleanup_fb()
910 flip_state->old_fb = plane->state->fb;
911 if (flip_state->old_fb)
912 drm_framebuffer_get(flip_state->old_fb);
914 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
916 /* Immediately update the plane's legacy fb pointer, so that later
917 * modeset prep sees the state that will be present when the semaphore
920 drm_atomic_set_fb_for_plane(plane->state, fb);
922 vc4_async_set_fence_cb(dev, flip_state);
924 /* Driver takes ownership of state on successful async commit. */
928 /* Implements async (non-vblank-synced) page flips.
930 * The page flip ioctl needs to return immediately, so we grab the
931 * modeset semaphore on the pipe, and queue the address update for
932 * when V3D is done with the BO being flipped to.
934 static int vc4_async_page_flip(struct drm_crtc *crtc,
935 struct drm_framebuffer *fb,
936 struct drm_pending_vblank_event *event,
939 struct drm_device *dev = crtc->dev;
940 struct vc4_dev *vc4 = to_vc4_dev(dev);
941 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
942 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
945 if (WARN_ON_ONCE(vc4->is_vc5))
949 * Increment the BO usecnt here, so that we never end up with an
950 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
951 * plane is later updated through the non-async path.
953 * FIXME: we should move to generic async-page-flip when
954 * it's available, so that we can get rid of this
955 * hand-made prepare_fb() logic.
957 ret = vc4_bo_inc_usecnt(bo);
961 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
963 vc4_bo_dec_usecnt(bo);
970 static int vc5_async_page_flip(struct drm_crtc *crtc,
971 struct drm_framebuffer *fb,
972 struct drm_pending_vblank_event *event,
975 return vc4_async_page_flip_common(crtc, fb, event, flags);
978 int vc4_page_flip(struct drm_crtc *crtc,
979 struct drm_framebuffer *fb,
980 struct drm_pending_vblank_event *event,
982 struct drm_modeset_acquire_ctx *ctx)
984 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
985 struct drm_device *dev = crtc->dev;
986 struct vc4_dev *vc4 = to_vc4_dev(dev);
989 return vc5_async_page_flip(crtc, fb, event, flags);
991 return vc4_async_page_flip(crtc, fb, event, flags);
993 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
997 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
999 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1001 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1005 old_vc4_state = to_vc4_crtc_state(crtc->state);
1006 vc4_state->margins = old_vc4_state->margins;
1007 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1009 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1010 return &vc4_state->base;
1013 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1014 struct drm_crtc_state *state)
1016 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1017 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1019 if (drm_mm_node_allocated(&vc4_state->mm)) {
1020 unsigned long flags;
1022 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1023 drm_mm_remove_node(&vc4_state->mm);
1024 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1028 drm_atomic_helper_crtc_destroy_state(crtc, state);
1031 void vc4_crtc_reset(struct drm_crtc *crtc)
1033 struct vc4_crtc_state *vc4_crtc_state;
1036 vc4_crtc_destroy_state(crtc, crtc->state);
1038 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1039 if (!vc4_crtc_state) {
1044 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1045 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1048 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1049 .set_config = drm_atomic_helper_set_config,
1050 .destroy = vc4_crtc_destroy,
1051 .page_flip = vc4_page_flip,
1052 .set_property = NULL,
1053 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1054 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1055 .reset = vc4_crtc_reset,
1056 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1057 .atomic_destroy_state = vc4_crtc_destroy_state,
1058 .enable_vblank = vc4_enable_vblank,
1059 .disable_vblank = vc4_disable_vblank,
1060 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1063 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1064 .mode_valid = vc4_crtc_mode_valid,
1065 .atomic_check = vc4_crtc_atomic_check,
1066 .atomic_begin = vc4_hvs_atomic_begin,
1067 .atomic_flush = vc4_hvs_atomic_flush,
1068 .atomic_enable = vc4_crtc_atomic_enable,
1069 .atomic_disable = vc4_crtc_atomic_disable,
1070 .get_scanout_position = vc4_crtc_get_scanout_position,
1073 static const struct vc4_pv_data bcm2835_pv0_data = {
1075 .hvs_available_channels = BIT(0),
1078 .debugfs_name = "crtc0_regs",
1080 .pixels_per_clock = 1,
1082 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1083 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1087 static const struct vc4_pv_data bcm2835_pv1_data = {
1089 .hvs_available_channels = BIT(2),
1092 .debugfs_name = "crtc1_regs",
1094 .pixels_per_clock = 1,
1096 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1097 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1101 static const struct vc4_pv_data bcm2835_pv2_data = {
1103 .hvs_available_channels = BIT(1),
1106 .debugfs_name = "crtc2_regs",
1108 .pixels_per_clock = 1,
1110 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1111 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1115 static const struct vc4_pv_data bcm2711_pv0_data = {
1117 .hvs_available_channels = BIT(0),
1120 .debugfs_name = "crtc0_regs",
1122 .pixels_per_clock = 1,
1124 [0] = VC4_ENCODER_TYPE_DSI0,
1125 [1] = VC4_ENCODER_TYPE_DPI,
1129 static const struct vc4_pv_data bcm2711_pv1_data = {
1131 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1134 .debugfs_name = "crtc1_regs",
1136 .pixels_per_clock = 1,
1138 [0] = VC4_ENCODER_TYPE_DSI1,
1139 [1] = VC4_ENCODER_TYPE_SMI,
1143 static const struct vc4_pv_data bcm2711_pv2_data = {
1145 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1148 .debugfs_name = "crtc2_regs",
1150 .pixels_per_clock = 2,
1152 [0] = VC4_ENCODER_TYPE_HDMI0,
1156 static const struct vc4_pv_data bcm2711_pv3_data = {
1158 .hvs_available_channels = BIT(1),
1161 .debugfs_name = "crtc3_regs",
1163 .pixels_per_clock = 1,
1165 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1169 static const struct vc4_pv_data bcm2711_pv4_data = {
1171 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1174 .debugfs_name = "crtc4_regs",
1176 .pixels_per_clock = 2,
1178 [0] = VC4_ENCODER_TYPE_HDMI1,
1182 static const struct of_device_id vc4_crtc_dt_match[] = {
1183 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1184 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1185 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1186 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1187 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1188 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1189 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1190 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1194 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1195 struct drm_crtc *crtc)
1197 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1198 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1199 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1200 struct drm_encoder *encoder;
1202 drm_for_each_encoder(encoder, drm) {
1203 struct vc4_encoder *vc4_encoder;
1206 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1209 vc4_encoder = to_vc4_encoder(encoder);
1210 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1211 if (vc4_encoder->type == encoder_types[i]) {
1212 vc4_encoder->clock_select = i;
1213 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1220 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1221 const struct drm_crtc_funcs *crtc_funcs,
1222 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1224 struct vc4_dev *vc4 = to_vc4_dev(drm);
1225 struct drm_crtc *crtc = &vc4_crtc->base;
1226 struct drm_plane *primary_plane;
1229 /* For now, we create just the primary and the legacy cursor
1230 * planes. We should be able to stack more planes on easily,
1231 * but to do that we would need to compute the bandwidth
1232 * requirement of the plane configuration, and reject ones
1233 * that will take too much.
1235 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1236 if (IS_ERR(primary_plane)) {
1237 dev_err(drm->dev, "failed to construct primary plane\n");
1238 return PTR_ERR(primary_plane);
1241 spin_lock_init(&vc4_crtc->irq_lock);
1242 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1244 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1247 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1249 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1251 /* We support CTM, but only for one CRTC at a time. It's therefore
1252 * implemented as private driver state in vc4_kms, not here.
1254 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1257 for (i = 0; i < crtc->gamma_size; i++) {
1258 vc4_crtc->lut_r[i] = i;
1259 vc4_crtc->lut_g[i] = i;
1260 vc4_crtc->lut_b[i] = i;
1266 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1268 struct platform_device *pdev = to_platform_device(dev);
1269 struct drm_device *drm = dev_get_drvdata(master);
1270 const struct vc4_pv_data *pv_data;
1271 struct vc4_crtc *vc4_crtc;
1272 struct drm_crtc *crtc;
1273 struct drm_plane *destroy_plane, *temp;
1276 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1279 crtc = &vc4_crtc->base;
1281 pv_data = of_device_get_match_data(dev);
1284 vc4_crtc->data = &pv_data->base;
1285 vc4_crtc->pdev = pdev;
1287 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1288 if (IS_ERR(vc4_crtc->regs))
1289 return PTR_ERR(vc4_crtc->regs);
1291 vc4_crtc->regset.base = vc4_crtc->regs;
1292 vc4_crtc->regset.regs = crtc_regs;
1293 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1295 ret = vc4_crtc_init(drm, vc4_crtc,
1296 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1299 vc4_set_crtc_possible_masks(drm, crtc);
1301 CRTC_WRITE(PV_INTEN, 0);
1302 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1303 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1304 vc4_crtc_irq_handler,
1306 "vc4 crtc", vc4_crtc);
1308 goto err_destroy_planes;
1310 platform_set_drvdata(pdev, vc4_crtc);
1312 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1318 list_for_each_entry_safe(destroy_plane, temp,
1319 &drm->mode_config.plane_list, head) {
1320 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1321 destroy_plane->funcs->destroy(destroy_plane);
1327 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1330 struct platform_device *pdev = to_platform_device(dev);
1331 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1333 vc4_crtc_destroy(&vc4_crtc->base);
1335 CRTC_WRITE(PV_INTEN, 0);
1337 platform_set_drvdata(pdev, NULL);
1340 static const struct component_ops vc4_crtc_ops = {
1341 .bind = vc4_crtc_bind,
1342 .unbind = vc4_crtc_unbind,
1345 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1347 return component_add(&pdev->dev, &vc4_crtc_ops);
1350 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1352 component_del(&pdev->dev, &vc4_crtc_ops);
1356 struct platform_driver vc4_crtc_driver = {
1357 .probe = vc4_crtc_dev_probe,
1358 .remove = vc4_crtc_dev_remove,
1361 .of_match_table = vc4_crtc_dt_match,