]> Git Repo - J-linux.git/blob - kernel/fork.c
Merge tag 'riscv-for-linus-6.13-mw1' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;      /* Handle normal Linux uptimes. */
136 int nr_threads;                 /* The idle threads do not count.. */
137
138 static int max_threads;         /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143         NAMED_ARRAY_INDEX(MM_FILEPAGES),
144         NAMED_ARRAY_INDEX(MM_ANONPAGES),
145         NAMED_ARRAY_INDEX(MM_SWAPENTS),
146         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156         return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
161 int nr_processes(void)
162 {
163         int cpu;
164         int total = 0;
165
166         for_each_possible_cpu(cpu)
167                 total += per_cpu(process_counts, cpu);
168
169         return total;
170 }
171
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185         kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203         struct rcu_head rcu;
204         struct vm_struct *stack_vm_area;
205 };
206
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209         unsigned int i;
210
211         for (i = 0; i < NR_CACHED_STACKS; i++) {
212                 struct vm_struct *tmp = NULL;
213
214                 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215                         return true;
216         }
217         return false;
218 }
219
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225                 return;
226
227         vfree(vm_stack);
228 }
229
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232         struct vm_stack *vm_stack = tsk->stack;
233
234         vm_stack->stack_vm_area = tsk->stack_vm_area;
235         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241         int i;
242
243         for (i = 0; i < NR_CACHED_STACKS; i++) {
244                 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246                 if (!vm_stack)
247                         continue;
248
249                 vfree(vm_stack->addr);
250                 cached_vm_stacks[i] = NULL;
251         }
252
253         return 0;
254 }
255
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258         int i;
259         int ret;
260         int nr_charged = 0;
261
262         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266                 if (ret)
267                         goto err;
268                 nr_charged++;
269         }
270         return 0;
271 err:
272         for (i = 0; i < nr_charged; i++)
273                 memcg_kmem_uncharge_page(vm->pages[i], 0);
274         return ret;
275 }
276
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279         struct vm_struct *vm;
280         void *stack;
281         int i;
282
283         for (i = 0; i < NR_CACHED_STACKS; i++) {
284                 struct vm_struct *s;
285
286                 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288                 if (!s)
289                         continue;
290
291                 /* Reset stack metadata. */
292                 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294                 stack = kasan_reset_tag(s->addr);
295
296                 /* Clear stale pointers from reused stack. */
297                 memset(stack, 0, THREAD_SIZE);
298
299                 if (memcg_charge_kernel_stack(s)) {
300                         vfree(s->addr);
301                         return -ENOMEM;
302                 }
303
304                 tsk->stack_vm_area = s;
305                 tsk->stack = stack;
306                 return 0;
307         }
308
309         /*
310          * Allocated stacks are cached and later reused by new threads,
311          * so memcg accounting is performed manually on assigning/releasing
312          * stacks to tasks. Drop __GFP_ACCOUNT.
313          */
314         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315                                      VMALLOC_START, VMALLOC_END,
316                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
317                                      PAGE_KERNEL,
318                                      0, node, __builtin_return_address(0));
319         if (!stack)
320                 return -ENOMEM;
321
322         vm = find_vm_area(stack);
323         if (memcg_charge_kernel_stack(vm)) {
324                 vfree(stack);
325                 return -ENOMEM;
326         }
327         /*
328          * We can't call find_vm_area() in interrupt context, and
329          * free_thread_stack() can be called in interrupt context,
330          * so cache the vm_struct.
331          */
332         tsk->stack_vm_area = vm;
333         stack = kasan_reset_tag(stack);
334         tsk->stack = stack;
335         return 0;
336 }
337
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341                 thread_stack_delayed_free(tsk);
342
343         tsk->stack = NULL;
344         tsk->stack_vm_area = NULL;
345 }
346
347 #  else /* !CONFIG_VMAP_STACK */
348
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356         struct rcu_head *rh = tsk->stack;
357
358         call_rcu(rh, thread_stack_free_rcu);
359 }
360
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364                                              THREAD_SIZE_ORDER);
365
366         if (likely(page)) {
367                 tsk->stack = kasan_reset_tag(page_address(page));
368                 return 0;
369         }
370         return -ENOMEM;
371 }
372
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375         thread_stack_delayed_free(tsk);
376         tsk->stack = NULL;
377 }
378
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381
382 static struct kmem_cache *thread_stack_cache;
383
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386         kmem_cache_free(thread_stack_cache, rh);
387 }
388
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391         struct rcu_head *rh = tsk->stack;
392
393         call_rcu(rh, thread_stack_free_rcu);
394 }
395
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398         unsigned long *stack;
399         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400         stack = kasan_reset_tag(stack);
401         tsk->stack = stack;
402         return stack ? 0 : -ENOMEM;
403 }
404
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407         thread_stack_delayed_free(tsk);
408         tsk->stack = NULL;
409 }
410
411 void thread_stack_cache_init(void)
412 {
413         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
415                                         THREAD_SIZE, NULL);
416         BUG_ON(thread_stack_cache == NULL);
417 }
418
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438
439 #ifdef CONFIG_PER_VMA_LOCK
440
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447         if (!vma->vm_lock)
448                 return false;
449
450         init_rwsem(&vma->vm_lock->lock);
451         vma->vm_lock_seq = -1;
452
453         return true;
454 }
455
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460
461 #else /* CONFIG_PER_VMA_LOCK */
462
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465
466 #endif /* CONFIG_PER_VMA_LOCK */
467
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470         struct vm_area_struct *vma;
471
472         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473         if (!vma)
474                 return NULL;
475
476         vma_init(vma, mm);
477         if (!vma_lock_alloc(vma)) {
478                 kmem_cache_free(vm_area_cachep, vma);
479                 return NULL;
480         }
481
482         return vma;
483 }
484
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488
489         if (!new)
490                 return NULL;
491
492         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494         /*
495          * orig->shared.rb may be modified concurrently, but the clone
496          * will be reinitialized.
497          */
498         data_race(memcpy(new, orig, sizeof(*new)));
499         if (!vma_lock_alloc(new)) {
500                 kmem_cache_free(vm_area_cachep, new);
501                 return NULL;
502         }
503         INIT_LIST_HEAD(&new->anon_vma_chain);
504         vma_numab_state_init(new);
505         dup_anon_vma_name(orig, new);
506
507         return new;
508 }
509
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512         vma_numab_state_free(vma);
513         free_anon_vma_name(vma);
514         vma_lock_free(vma);
515         kmem_cache_free(vm_area_cachep, vma);
516 }
517
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522                                                   vm_rcu);
523
524         /* The vma should not be locked while being destroyed. */
525         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526         __vm_area_free(vma);
527 }
528 #endif
529
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535         __vm_area_free(vma);
536 #endif
537 }
538
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542                 struct vm_struct *vm = task_stack_vm_area(tsk);
543                 int i;
544
545                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547                                               account * (PAGE_SIZE / 1024));
548         } else {
549                 void *stack = task_stack_page(tsk);
550
551                 /* All stack pages are in the same node. */
552                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553                                       account * (THREAD_SIZE / 1024));
554         }
555 }
556
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559         account_kernel_stack(tsk, -1);
560
561         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562                 struct vm_struct *vm;
563                 int i;
564
565                 vm = task_stack_vm_area(tsk);
566                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567                         memcg_kmem_uncharge_page(vm->pages[i], 0);
568         }
569 }
570
571 static void release_task_stack(struct task_struct *tsk)
572 {
573         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574                 return;  /* Better to leak the stack than to free prematurely */
575
576         free_thread_stack(tsk);
577 }
578
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582         if (refcount_dec_and_test(&tsk->stack_refcount))
583                 release_task_stack(tsk);
584 }
585 #endif
586
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590         WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592         release_user_cpus_ptr(tsk);
593         scs_release(tsk);
594
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596         /*
597          * The task is finally done with both the stack and thread_info,
598          * so free both.
599          */
600         release_task_stack(tsk);
601 #else
602         /*
603          * If the task had a separate stack allocation, it should be gone
604          * by now.
605          */
606         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608         rt_mutex_debug_task_free(tsk);
609         ftrace_graph_exit_task(tsk);
610         arch_release_task_struct(tsk);
611         if (tsk->flags & PF_KTHREAD)
612                 free_kthread_struct(tsk);
613         bpf_task_storage_free(tsk);
614         free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620         struct file *exe_file;
621
622         exe_file = get_mm_exe_file(oldmm);
623         RCU_INIT_POINTER(mm->exe_file, exe_file);
624         /*
625          * We depend on the oldmm having properly denied write access to the
626          * exe_file already.
627          */
628         if (exe_file && deny_write_access(exe_file))
629                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
630 }
631
632 #ifdef CONFIG_MMU
633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634                                         struct mm_struct *oldmm)
635 {
636         struct vm_area_struct *mpnt, *tmp;
637         int retval;
638         unsigned long charge = 0;
639         LIST_HEAD(uf);
640         VMA_ITERATOR(vmi, mm, 0);
641
642         uprobe_start_dup_mmap();
643         if (mmap_write_lock_killable(oldmm)) {
644                 retval = -EINTR;
645                 goto fail_uprobe_end;
646         }
647         flush_cache_dup_mm(oldmm);
648         uprobe_dup_mmap(oldmm, mm);
649         /*
650          * Not linked in yet - no deadlock potential:
651          */
652         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
653
654         /* No ordering required: file already has been exposed. */
655         dup_mm_exe_file(mm, oldmm);
656
657         mm->total_vm = oldmm->total_vm;
658         mm->data_vm = oldmm->data_vm;
659         mm->exec_vm = oldmm->exec_vm;
660         mm->stack_vm = oldmm->stack_vm;
661
662         /* Use __mt_dup() to efficiently build an identical maple tree. */
663         retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664         if (unlikely(retval))
665                 goto out;
666
667         mt_clear_in_rcu(vmi.mas.tree);
668         for_each_vma(vmi, mpnt) {
669                 struct file *file;
670
671                 vma_start_write(mpnt);
672                 if (mpnt->vm_flags & VM_DONTCOPY) {
673                         retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674                                                     mpnt->vm_end, GFP_KERNEL);
675                         if (retval)
676                                 goto loop_out;
677
678                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679                         continue;
680                 }
681                 charge = 0;
682                 /*
683                  * Don't duplicate many vmas if we've been oom-killed (for
684                  * example)
685                  */
686                 if (fatal_signal_pending(current)) {
687                         retval = -EINTR;
688                         goto loop_out;
689                 }
690                 if (mpnt->vm_flags & VM_ACCOUNT) {
691                         unsigned long len = vma_pages(mpnt);
692
693                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694                                 goto fail_nomem;
695                         charge = len;
696                 }
697                 tmp = vm_area_dup(mpnt);
698                 if (!tmp)
699                         goto fail_nomem;
700                 retval = vma_dup_policy(mpnt, tmp);
701                 if (retval)
702                         goto fail_nomem_policy;
703                 tmp->vm_mm = mm;
704                 retval = dup_userfaultfd(tmp, &uf);
705                 if (retval)
706                         goto fail_nomem_anon_vma_fork;
707                 if (tmp->vm_flags & VM_WIPEONFORK) {
708                         /*
709                          * VM_WIPEONFORK gets a clean slate in the child.
710                          * Don't prepare anon_vma until fault since we don't
711                          * copy page for current vma.
712                          */
713                         tmp->anon_vma = NULL;
714                 } else if (anon_vma_fork(tmp, mpnt))
715                         goto fail_nomem_anon_vma_fork;
716                 vm_flags_clear(tmp, VM_LOCKED_MASK);
717                 /*
718                  * Copy/update hugetlb private vma information.
719                  */
720                 if (is_vm_hugetlb_page(tmp))
721                         hugetlb_dup_vma_private(tmp);
722
723                 /*
724                  * Link the vma into the MT. After using __mt_dup(), memory
725                  * allocation is not necessary here, so it cannot fail.
726                  */
727                 vma_iter_bulk_store(&vmi, tmp);
728
729                 mm->map_count++;
730
731                 if (tmp->vm_ops && tmp->vm_ops->open)
732                         tmp->vm_ops->open(tmp);
733
734                 file = tmp->vm_file;
735                 if (file) {
736                         struct address_space *mapping = file->f_mapping;
737
738                         get_file(file);
739                         i_mmap_lock_write(mapping);
740                         if (vma_is_shared_maywrite(tmp))
741                                 mapping_allow_writable(mapping);
742                         flush_dcache_mmap_lock(mapping);
743                         /* insert tmp into the share list, just after mpnt */
744                         vma_interval_tree_insert_after(tmp, mpnt,
745                                         &mapping->i_mmap);
746                         flush_dcache_mmap_unlock(mapping);
747                         i_mmap_unlock_write(mapping);
748                 }
749
750                 if (!(tmp->vm_flags & VM_WIPEONFORK))
751                         retval = copy_page_range(tmp, mpnt);
752
753                 if (retval) {
754                         mpnt = vma_next(&vmi);
755                         goto loop_out;
756                 }
757         }
758         /* a new mm has just been created */
759         retval = arch_dup_mmap(oldmm, mm);
760 loop_out:
761         vma_iter_free(&vmi);
762         if (!retval) {
763                 mt_set_in_rcu(vmi.mas.tree);
764                 ksm_fork(mm, oldmm);
765                 khugepaged_fork(mm, oldmm);
766         } else if (mpnt) {
767                 /*
768                  * The entire maple tree has already been duplicated. If the
769                  * mmap duplication fails, mark the failure point with
770                  * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
771                  * stop releasing VMAs that have not been duplicated after this
772                  * point.
773                  */
774                 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
775                 mas_store(&vmi.mas, XA_ZERO_ENTRY);
776         }
777 out:
778         mmap_write_unlock(mm);
779         flush_tlb_mm(oldmm);
780         mmap_write_unlock(oldmm);
781         if (!retval)
782                 dup_userfaultfd_complete(&uf);
783         else
784                 dup_userfaultfd_fail(&uf);
785 fail_uprobe_end:
786         uprobe_end_dup_mmap();
787         return retval;
788
789 fail_nomem_anon_vma_fork:
790         mpol_put(vma_policy(tmp));
791 fail_nomem_policy:
792         vm_area_free(tmp);
793 fail_nomem:
794         retval = -ENOMEM;
795         vm_unacct_memory(charge);
796         goto loop_out;
797 }
798
799 static inline int mm_alloc_pgd(struct mm_struct *mm)
800 {
801         mm->pgd = pgd_alloc(mm);
802         if (unlikely(!mm->pgd))
803                 return -ENOMEM;
804         return 0;
805 }
806
807 static inline void mm_free_pgd(struct mm_struct *mm)
808 {
809         pgd_free(mm, mm->pgd);
810 }
811 #else
812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
813 {
814         mmap_write_lock(oldmm);
815         dup_mm_exe_file(mm, oldmm);
816         mmap_write_unlock(oldmm);
817         return 0;
818 }
819 #define mm_alloc_pgd(mm)        (0)
820 #define mm_free_pgd(mm)
821 #endif /* CONFIG_MMU */
822
823 static void check_mm(struct mm_struct *mm)
824 {
825         int i;
826
827         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
828                          "Please make sure 'struct resident_page_types[]' is updated as well");
829
830         for (i = 0; i < NR_MM_COUNTERS; i++) {
831                 long x = percpu_counter_sum(&mm->rss_stat[i]);
832
833                 if (unlikely(x))
834                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
835                                  mm, resident_page_types[i], x);
836         }
837
838         if (mm_pgtables_bytes(mm))
839                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
840                                 mm_pgtables_bytes(mm));
841
842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
843         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
844 #endif
845 }
846
847 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
848 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
849
850 static void do_check_lazy_tlb(void *arg)
851 {
852         struct mm_struct *mm = arg;
853
854         WARN_ON_ONCE(current->active_mm == mm);
855 }
856
857 static void do_shoot_lazy_tlb(void *arg)
858 {
859         struct mm_struct *mm = arg;
860
861         if (current->active_mm == mm) {
862                 WARN_ON_ONCE(current->mm);
863                 current->active_mm = &init_mm;
864                 switch_mm(mm, &init_mm, current);
865         }
866 }
867
868 static void cleanup_lazy_tlbs(struct mm_struct *mm)
869 {
870         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
871                 /*
872                  * In this case, lazy tlb mms are refounted and would not reach
873                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
874                  */
875                 return;
876         }
877
878         /*
879          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
880          * requires lazy mm users to switch to another mm when the refcount
881          * drops to zero, before the mm is freed. This requires IPIs here to
882          * switch kernel threads to init_mm.
883          *
884          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
885          * switch with the final userspace teardown TLB flush which leaves the
886          * mm lazy on this CPU but no others, reducing the need for additional
887          * IPIs here. There are cases where a final IPI is still required here,
888          * such as the final mmdrop being performed on a different CPU than the
889          * one exiting, or kernel threads using the mm when userspace exits.
890          *
891          * IPI overheads have not found to be expensive, but they could be
892          * reduced in a number of possible ways, for example (roughly
893          * increasing order of complexity):
894          * - The last lazy reference created by exit_mm() could instead switch
895          *   to init_mm, however it's probable this will run on the same CPU
896          *   immediately afterwards, so this may not reduce IPIs much.
897          * - A batch of mms requiring IPIs could be gathered and freed at once.
898          * - CPUs store active_mm where it can be remotely checked without a
899          *   lock, to filter out false-positives in the cpumask.
900          * - After mm_users or mm_count reaches zero, switching away from the
901          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
902          *   with some batching or delaying of the final IPIs.
903          * - A delayed freeing and RCU-like quiescing sequence based on mm
904          *   switching to avoid IPIs completely.
905          */
906         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
907         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
908                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
909 }
910
911 /*
912  * Called when the last reference to the mm
913  * is dropped: either by a lazy thread or by
914  * mmput. Free the page directory and the mm.
915  */
916 void __mmdrop(struct mm_struct *mm)
917 {
918         BUG_ON(mm == &init_mm);
919         WARN_ON_ONCE(mm == current->mm);
920
921         /* Ensure no CPUs are using this as their lazy tlb mm */
922         cleanup_lazy_tlbs(mm);
923
924         WARN_ON_ONCE(mm == current->active_mm);
925         mm_free_pgd(mm);
926         destroy_context(mm);
927         mmu_notifier_subscriptions_destroy(mm);
928         check_mm(mm);
929         put_user_ns(mm->user_ns);
930         mm_pasid_drop(mm);
931         mm_destroy_cid(mm);
932         percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
933
934         free_mm(mm);
935 }
936 EXPORT_SYMBOL_GPL(__mmdrop);
937
938 static void mmdrop_async_fn(struct work_struct *work)
939 {
940         struct mm_struct *mm;
941
942         mm = container_of(work, struct mm_struct, async_put_work);
943         __mmdrop(mm);
944 }
945
946 static void mmdrop_async(struct mm_struct *mm)
947 {
948         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
949                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
950                 schedule_work(&mm->async_put_work);
951         }
952 }
953
954 static inline void free_signal_struct(struct signal_struct *sig)
955 {
956         taskstats_tgid_free(sig);
957         sched_autogroup_exit(sig);
958         /*
959          * __mmdrop is not safe to call from softirq context on x86 due to
960          * pgd_dtor so postpone it to the async context
961          */
962         if (sig->oom_mm)
963                 mmdrop_async(sig->oom_mm);
964         kmem_cache_free(signal_cachep, sig);
965 }
966
967 static inline void put_signal_struct(struct signal_struct *sig)
968 {
969         if (refcount_dec_and_test(&sig->sigcnt))
970                 free_signal_struct(sig);
971 }
972
973 void __put_task_struct(struct task_struct *tsk)
974 {
975         WARN_ON(!tsk->exit_state);
976         WARN_ON(refcount_read(&tsk->usage));
977         WARN_ON(tsk == current);
978
979         sched_ext_free(tsk);
980         io_uring_free(tsk);
981         cgroup_free(tsk);
982         task_numa_free(tsk, true);
983         security_task_free(tsk);
984         exit_creds(tsk);
985         delayacct_tsk_free(tsk);
986         put_signal_struct(tsk->signal);
987         sched_core_free(tsk);
988         free_task(tsk);
989 }
990 EXPORT_SYMBOL_GPL(__put_task_struct);
991
992 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
993 {
994         struct task_struct *task = container_of(rhp, struct task_struct, rcu);
995
996         __put_task_struct(task);
997 }
998 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
999
1000 void __init __weak arch_task_cache_init(void) { }
1001
1002 /*
1003  * set_max_threads
1004  */
1005 static void __init set_max_threads(unsigned int max_threads_suggested)
1006 {
1007         u64 threads;
1008         unsigned long nr_pages = memblock_estimated_nr_free_pages();
1009
1010         /*
1011          * The number of threads shall be limited such that the thread
1012          * structures may only consume a small part of the available memory.
1013          */
1014         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1015                 threads = MAX_THREADS;
1016         else
1017                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1018                                     (u64) THREAD_SIZE * 8UL);
1019
1020         if (threads > max_threads_suggested)
1021                 threads = max_threads_suggested;
1022
1023         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1024 }
1025
1026 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1027 /* Initialized by the architecture: */
1028 int arch_task_struct_size __read_mostly;
1029 #endif
1030
1031 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1032 {
1033         /* Fetch thread_struct whitelist for the architecture. */
1034         arch_thread_struct_whitelist(offset, size);
1035
1036         /*
1037          * Handle zero-sized whitelist or empty thread_struct, otherwise
1038          * adjust offset to position of thread_struct in task_struct.
1039          */
1040         if (unlikely(*size == 0))
1041                 *offset = 0;
1042         else
1043                 *offset += offsetof(struct task_struct, thread);
1044 }
1045
1046 void __init fork_init(void)
1047 {
1048         int i;
1049 #ifndef ARCH_MIN_TASKALIGN
1050 #define ARCH_MIN_TASKALIGN      0
1051 #endif
1052         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1053         unsigned long useroffset, usersize;
1054
1055         /* create a slab on which task_structs can be allocated */
1056         task_struct_whitelist(&useroffset, &usersize);
1057         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1058                         arch_task_struct_size, align,
1059                         SLAB_PANIC|SLAB_ACCOUNT,
1060                         useroffset, usersize, NULL);
1061
1062         /* do the arch specific task caches init */
1063         arch_task_cache_init();
1064
1065         set_max_threads(MAX_THREADS);
1066
1067         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1068         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1069         init_task.signal->rlim[RLIMIT_SIGPENDING] =
1070                 init_task.signal->rlim[RLIMIT_NPROC];
1071
1072         for (i = 0; i < UCOUNT_COUNTS; i++)
1073                 init_user_ns.ucount_max[i] = max_threads/2;
1074
1075         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1076         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1077         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1078         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1079
1080 #ifdef CONFIG_VMAP_STACK
1081         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1082                           NULL, free_vm_stack_cache);
1083 #endif
1084
1085         scs_init();
1086
1087         lockdep_init_task(&init_task);
1088         uprobes_init();
1089 }
1090
1091 int __weak arch_dup_task_struct(struct task_struct *dst,
1092                                                struct task_struct *src)
1093 {
1094         *dst = *src;
1095         return 0;
1096 }
1097
1098 void set_task_stack_end_magic(struct task_struct *tsk)
1099 {
1100         unsigned long *stackend;
1101
1102         stackend = end_of_stack(tsk);
1103         *stackend = STACK_END_MAGIC;    /* for overflow detection */
1104 }
1105
1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1107 {
1108         struct task_struct *tsk;
1109         int err;
1110
1111         if (node == NUMA_NO_NODE)
1112                 node = tsk_fork_get_node(orig);
1113         tsk = alloc_task_struct_node(node);
1114         if (!tsk)
1115                 return NULL;
1116
1117         err = arch_dup_task_struct(tsk, orig);
1118         if (err)
1119                 goto free_tsk;
1120
1121         err = alloc_thread_stack_node(tsk, node);
1122         if (err)
1123                 goto free_tsk;
1124
1125 #ifdef CONFIG_THREAD_INFO_IN_TASK
1126         refcount_set(&tsk->stack_refcount, 1);
1127 #endif
1128         account_kernel_stack(tsk, 1);
1129
1130         err = scs_prepare(tsk, node);
1131         if (err)
1132                 goto free_stack;
1133
1134 #ifdef CONFIG_SECCOMP
1135         /*
1136          * We must handle setting up seccomp filters once we're under
1137          * the sighand lock in case orig has changed between now and
1138          * then. Until then, filter must be NULL to avoid messing up
1139          * the usage counts on the error path calling free_task.
1140          */
1141         tsk->seccomp.filter = NULL;
1142 #endif
1143
1144         setup_thread_stack(tsk, orig);
1145         clear_user_return_notifier(tsk);
1146         clear_tsk_need_resched(tsk);
1147         set_task_stack_end_magic(tsk);
1148         clear_syscall_work_syscall_user_dispatch(tsk);
1149
1150 #ifdef CONFIG_STACKPROTECTOR
1151         tsk->stack_canary = get_random_canary();
1152 #endif
1153         if (orig->cpus_ptr == &orig->cpus_mask)
1154                 tsk->cpus_ptr = &tsk->cpus_mask;
1155         dup_user_cpus_ptr(tsk, orig, node);
1156
1157         /*
1158          * One for the user space visible state that goes away when reaped.
1159          * One for the scheduler.
1160          */
1161         refcount_set(&tsk->rcu_users, 2);
1162         /* One for the rcu users */
1163         refcount_set(&tsk->usage, 1);
1164 #ifdef CONFIG_BLK_DEV_IO_TRACE
1165         tsk->btrace_seq = 0;
1166 #endif
1167         tsk->splice_pipe = NULL;
1168         tsk->task_frag.page = NULL;
1169         tsk->wake_q.next = NULL;
1170         tsk->worker_private = NULL;
1171
1172         kcov_task_init(tsk);
1173         kmsan_task_create(tsk);
1174         kmap_local_fork(tsk);
1175
1176 #ifdef CONFIG_FAULT_INJECTION
1177         tsk->fail_nth = 0;
1178 #endif
1179
1180 #ifdef CONFIG_BLK_CGROUP
1181         tsk->throttle_disk = NULL;
1182         tsk->use_memdelay = 0;
1183 #endif
1184
1185 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1186         tsk->pasid_activated = 0;
1187 #endif
1188
1189 #ifdef CONFIG_MEMCG
1190         tsk->active_memcg = NULL;
1191 #endif
1192
1193 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1194         tsk->reported_split_lock = 0;
1195 #endif
1196
1197 #ifdef CONFIG_SCHED_MM_CID
1198         tsk->mm_cid = -1;
1199         tsk->last_mm_cid = -1;
1200         tsk->mm_cid_active = 0;
1201         tsk->migrate_from_cpu = -1;
1202 #endif
1203         return tsk;
1204
1205 free_stack:
1206         exit_task_stack_account(tsk);
1207         free_thread_stack(tsk);
1208 free_tsk:
1209         free_task_struct(tsk);
1210         return NULL;
1211 }
1212
1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1214
1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1216
1217 static int __init coredump_filter_setup(char *s)
1218 {
1219         default_dump_filter =
1220                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1221                 MMF_DUMP_FILTER_MASK;
1222         return 1;
1223 }
1224
1225 __setup("coredump_filter=", coredump_filter_setup);
1226
1227 #include <linux/init_task.h>
1228
1229 static void mm_init_aio(struct mm_struct *mm)
1230 {
1231 #ifdef CONFIG_AIO
1232         spin_lock_init(&mm->ioctx_lock);
1233         mm->ioctx_table = NULL;
1234 #endif
1235 }
1236
1237 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1238                                            struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241         if (mm->owner == p)
1242                 WRITE_ONCE(mm->owner, NULL);
1243 #endif
1244 }
1245
1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1247 {
1248 #ifdef CONFIG_MEMCG
1249         mm->owner = p;
1250 #endif
1251 }
1252
1253 static void mm_init_uprobes_state(struct mm_struct *mm)
1254 {
1255 #ifdef CONFIG_UPROBES
1256         mm->uprobes_state.xol_area = NULL;
1257 #endif
1258 }
1259
1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1261         struct user_namespace *user_ns)
1262 {
1263         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1264         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1265         atomic_set(&mm->mm_users, 1);
1266         atomic_set(&mm->mm_count, 1);
1267         seqcount_init(&mm->write_protect_seq);
1268         mmap_init_lock(mm);
1269         INIT_LIST_HEAD(&mm->mmlist);
1270 #ifdef CONFIG_PER_VMA_LOCK
1271         mm->mm_lock_seq = 0;
1272 #endif
1273         mm_pgtables_bytes_init(mm);
1274         mm->map_count = 0;
1275         mm->locked_vm = 0;
1276         atomic64_set(&mm->pinned_vm, 0);
1277         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1278         spin_lock_init(&mm->page_table_lock);
1279         spin_lock_init(&mm->arg_lock);
1280         mm_init_cpumask(mm);
1281         mm_init_aio(mm);
1282         mm_init_owner(mm, p);
1283         mm_pasid_init(mm);
1284         RCU_INIT_POINTER(mm->exe_file, NULL);
1285         mmu_notifier_subscriptions_init(mm);
1286         init_tlb_flush_pending(mm);
1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1288         mm->pmd_huge_pte = NULL;
1289 #endif
1290         mm_init_uprobes_state(mm);
1291         hugetlb_count_init(mm);
1292
1293         if (current->mm) {
1294                 mm->flags = mmf_init_flags(current->mm->flags);
1295                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1296         } else {
1297                 mm->flags = default_dump_filter;
1298                 mm->def_flags = 0;
1299         }
1300
1301         if (mm_alloc_pgd(mm))
1302                 goto fail_nopgd;
1303
1304         if (init_new_context(p, mm))
1305                 goto fail_nocontext;
1306
1307         if (mm_alloc_cid(mm, p))
1308                 goto fail_cid;
1309
1310         if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1311                                      NR_MM_COUNTERS))
1312                 goto fail_pcpu;
1313
1314         mm->user_ns = get_user_ns(user_ns);
1315         lru_gen_init_mm(mm);
1316         return mm;
1317
1318 fail_pcpu:
1319         mm_destroy_cid(mm);
1320 fail_cid:
1321         destroy_context(mm);
1322 fail_nocontext:
1323         mm_free_pgd(mm);
1324 fail_nopgd:
1325         free_mm(mm);
1326         return NULL;
1327 }
1328
1329 /*
1330  * Allocate and initialize an mm_struct.
1331  */
1332 struct mm_struct *mm_alloc(void)
1333 {
1334         struct mm_struct *mm;
1335
1336         mm = allocate_mm();
1337         if (!mm)
1338                 return NULL;
1339
1340         memset(mm, 0, sizeof(*mm));
1341         return mm_init(mm, current, current_user_ns());
1342 }
1343 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1344
1345 static inline void __mmput(struct mm_struct *mm)
1346 {
1347         VM_BUG_ON(atomic_read(&mm->mm_users));
1348
1349         uprobe_clear_state(mm);
1350         exit_aio(mm);
1351         ksm_exit(mm);
1352         khugepaged_exit(mm); /* must run before exit_mmap */
1353         exit_mmap(mm);
1354         mm_put_huge_zero_folio(mm);
1355         set_mm_exe_file(mm, NULL);
1356         if (!list_empty(&mm->mmlist)) {
1357                 spin_lock(&mmlist_lock);
1358                 list_del(&mm->mmlist);
1359                 spin_unlock(&mmlist_lock);
1360         }
1361         if (mm->binfmt)
1362                 module_put(mm->binfmt->module);
1363         lru_gen_del_mm(mm);
1364         mmdrop(mm);
1365 }
1366
1367 /*
1368  * Decrement the use count and release all resources for an mm.
1369  */
1370 void mmput(struct mm_struct *mm)
1371 {
1372         might_sleep();
1373
1374         if (atomic_dec_and_test(&mm->mm_users))
1375                 __mmput(mm);
1376 }
1377 EXPORT_SYMBOL_GPL(mmput);
1378
1379 #ifdef CONFIG_MMU
1380 static void mmput_async_fn(struct work_struct *work)
1381 {
1382         struct mm_struct *mm = container_of(work, struct mm_struct,
1383                                             async_put_work);
1384
1385         __mmput(mm);
1386 }
1387
1388 void mmput_async(struct mm_struct *mm)
1389 {
1390         if (atomic_dec_and_test(&mm->mm_users)) {
1391                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1392                 schedule_work(&mm->async_put_work);
1393         }
1394 }
1395 EXPORT_SYMBOL_GPL(mmput_async);
1396 #endif
1397
1398 /**
1399  * set_mm_exe_file - change a reference to the mm's executable file
1400  * @mm: The mm to change.
1401  * @new_exe_file: The new file to use.
1402  *
1403  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1404  *
1405  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1406  * invocations: in mmput() nobody alive left, in execve it happens before
1407  * the new mm is made visible to anyone.
1408  *
1409  * Can only fail if new_exe_file != NULL.
1410  */
1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1412 {
1413         struct file *old_exe_file;
1414
1415         /*
1416          * It is safe to dereference the exe_file without RCU as
1417          * this function is only called if nobody else can access
1418          * this mm -- see comment above for justification.
1419          */
1420         old_exe_file = rcu_dereference_raw(mm->exe_file);
1421
1422         if (new_exe_file) {
1423                 /*
1424                  * We expect the caller (i.e., sys_execve) to already denied
1425                  * write access, so this is unlikely to fail.
1426                  */
1427                 if (unlikely(deny_write_access(new_exe_file)))
1428                         return -EACCES;
1429                 get_file(new_exe_file);
1430         }
1431         rcu_assign_pointer(mm->exe_file, new_exe_file);
1432         if (old_exe_file) {
1433                 allow_write_access(old_exe_file);
1434                 fput(old_exe_file);
1435         }
1436         return 0;
1437 }
1438
1439 /**
1440  * replace_mm_exe_file - replace a reference to the mm's executable file
1441  * @mm: The mm to change.
1442  * @new_exe_file: The new file to use.
1443  *
1444  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1445  *
1446  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1447  */
1448 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1449 {
1450         struct vm_area_struct *vma;
1451         struct file *old_exe_file;
1452         int ret = 0;
1453
1454         /* Forbid mm->exe_file change if old file still mapped. */
1455         old_exe_file = get_mm_exe_file(mm);
1456         if (old_exe_file) {
1457                 VMA_ITERATOR(vmi, mm, 0);
1458                 mmap_read_lock(mm);
1459                 for_each_vma(vmi, vma) {
1460                         if (!vma->vm_file)
1461                                 continue;
1462                         if (path_equal(&vma->vm_file->f_path,
1463                                        &old_exe_file->f_path)) {
1464                                 ret = -EBUSY;
1465                                 break;
1466                         }
1467                 }
1468                 mmap_read_unlock(mm);
1469                 fput(old_exe_file);
1470                 if (ret)
1471                         return ret;
1472         }
1473
1474         ret = deny_write_access(new_exe_file);
1475         if (ret)
1476                 return -EACCES;
1477         get_file(new_exe_file);
1478
1479         /* set the new file */
1480         mmap_write_lock(mm);
1481         old_exe_file = rcu_dereference_raw(mm->exe_file);
1482         rcu_assign_pointer(mm->exe_file, new_exe_file);
1483         mmap_write_unlock(mm);
1484
1485         if (old_exe_file) {
1486                 allow_write_access(old_exe_file);
1487                 fput(old_exe_file);
1488         }
1489         return 0;
1490 }
1491
1492 /**
1493  * get_mm_exe_file - acquire a reference to the mm's executable file
1494  * @mm: The mm of interest.
1495  *
1496  * Returns %NULL if mm has no associated executable file.
1497  * User must release file via fput().
1498  */
1499 struct file *get_mm_exe_file(struct mm_struct *mm)
1500 {
1501         struct file *exe_file;
1502
1503         rcu_read_lock();
1504         exe_file = get_file_rcu(&mm->exe_file);
1505         rcu_read_unlock();
1506         return exe_file;
1507 }
1508
1509 /**
1510  * get_task_exe_file - acquire a reference to the task's executable file
1511  * @task: The task.
1512  *
1513  * Returns %NULL if task's mm (if any) has no associated executable file or
1514  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1515  * User must release file via fput().
1516  */
1517 struct file *get_task_exe_file(struct task_struct *task)
1518 {
1519         struct file *exe_file = NULL;
1520         struct mm_struct *mm;
1521
1522         task_lock(task);
1523         mm = task->mm;
1524         if (mm) {
1525                 if (!(task->flags & PF_KTHREAD))
1526                         exe_file = get_mm_exe_file(mm);
1527         }
1528         task_unlock(task);
1529         return exe_file;
1530 }
1531
1532 /**
1533  * get_task_mm - acquire a reference to the task's mm
1534  * @task: The task.
1535  *
1536  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1537  * this kernel workthread has transiently adopted a user mm with use_mm,
1538  * to do its AIO) is not set and if so returns a reference to it, after
1539  * bumping up the use count.  User must release the mm via mmput()
1540  * after use.  Typically used by /proc and ptrace.
1541  */
1542 struct mm_struct *get_task_mm(struct task_struct *task)
1543 {
1544         struct mm_struct *mm;
1545
1546         if (task->flags & PF_KTHREAD)
1547                 return NULL;
1548
1549         task_lock(task);
1550         mm = task->mm;
1551         if (mm)
1552                 mmget(mm);
1553         task_unlock(task);
1554         return mm;
1555 }
1556 EXPORT_SYMBOL_GPL(get_task_mm);
1557
1558 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1559 {
1560         struct mm_struct *mm;
1561         int err;
1562
1563         err =  down_read_killable(&task->signal->exec_update_lock);
1564         if (err)
1565                 return ERR_PTR(err);
1566
1567         mm = get_task_mm(task);
1568         if (!mm) {
1569                 mm = ERR_PTR(-ESRCH);
1570         } else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1571                 mmput(mm);
1572                 mm = ERR_PTR(-EACCES);
1573         }
1574         up_read(&task->signal->exec_update_lock);
1575
1576         return mm;
1577 }
1578
1579 static void complete_vfork_done(struct task_struct *tsk)
1580 {
1581         struct completion *vfork;
1582
1583         task_lock(tsk);
1584         vfork = tsk->vfork_done;
1585         if (likely(vfork)) {
1586                 tsk->vfork_done = NULL;
1587                 complete(vfork);
1588         }
1589         task_unlock(tsk);
1590 }
1591
1592 static int wait_for_vfork_done(struct task_struct *child,
1593                                 struct completion *vfork)
1594 {
1595         unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1596         int killed;
1597
1598         cgroup_enter_frozen();
1599         killed = wait_for_completion_state(vfork, state);
1600         cgroup_leave_frozen(false);
1601
1602         if (killed) {
1603                 task_lock(child);
1604                 child->vfork_done = NULL;
1605                 task_unlock(child);
1606         }
1607
1608         put_task_struct(child);
1609         return killed;
1610 }
1611
1612 /* Please note the differences between mmput and mm_release.
1613  * mmput is called whenever we stop holding onto a mm_struct,
1614  * error success whatever.
1615  *
1616  * mm_release is called after a mm_struct has been removed
1617  * from the current process.
1618  *
1619  * This difference is important for error handling, when we
1620  * only half set up a mm_struct for a new process and need to restore
1621  * the old one.  Because we mmput the new mm_struct before
1622  * restoring the old one. . .
1623  * Eric Biederman 10 January 1998
1624  */
1625 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1626 {
1627         uprobe_free_utask(tsk);
1628
1629         /* Get rid of any cached register state */
1630         deactivate_mm(tsk, mm);
1631
1632         /*
1633          * Signal userspace if we're not exiting with a core dump
1634          * because we want to leave the value intact for debugging
1635          * purposes.
1636          */
1637         if (tsk->clear_child_tid) {
1638                 if (atomic_read(&mm->mm_users) > 1) {
1639                         /*
1640                          * We don't check the error code - if userspace has
1641                          * not set up a proper pointer then tough luck.
1642                          */
1643                         put_user(0, tsk->clear_child_tid);
1644                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1645                                         1, NULL, NULL, 0, 0);
1646                 }
1647                 tsk->clear_child_tid = NULL;
1648         }
1649
1650         /*
1651          * All done, finally we can wake up parent and return this mm to him.
1652          * Also kthread_stop() uses this completion for synchronization.
1653          */
1654         if (tsk->vfork_done)
1655                 complete_vfork_done(tsk);
1656 }
1657
1658 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1659 {
1660         futex_exit_release(tsk);
1661         mm_release(tsk, mm);
1662 }
1663
1664 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665 {
1666         futex_exec_release(tsk);
1667         mm_release(tsk, mm);
1668 }
1669
1670 /**
1671  * dup_mm() - duplicates an existing mm structure
1672  * @tsk: the task_struct with which the new mm will be associated.
1673  * @oldmm: the mm to duplicate.
1674  *
1675  * Allocates a new mm structure and duplicates the provided @oldmm structure
1676  * content into it.
1677  *
1678  * Return: the duplicated mm or NULL on failure.
1679  */
1680 static struct mm_struct *dup_mm(struct task_struct *tsk,
1681                                 struct mm_struct *oldmm)
1682 {
1683         struct mm_struct *mm;
1684         int err;
1685
1686         mm = allocate_mm();
1687         if (!mm)
1688                 goto fail_nomem;
1689
1690         memcpy(mm, oldmm, sizeof(*mm));
1691
1692         if (!mm_init(mm, tsk, mm->user_ns))
1693                 goto fail_nomem;
1694
1695         err = dup_mmap(mm, oldmm);
1696         if (err)
1697                 goto free_pt;
1698
1699         mm->hiwater_rss = get_mm_rss(mm);
1700         mm->hiwater_vm = mm->total_vm;
1701
1702         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1703                 goto free_pt;
1704
1705         return mm;
1706
1707 free_pt:
1708         /* don't put binfmt in mmput, we haven't got module yet */
1709         mm->binfmt = NULL;
1710         mm_init_owner(mm, NULL);
1711         mmput(mm);
1712
1713 fail_nomem:
1714         return NULL;
1715 }
1716
1717 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1718 {
1719         struct mm_struct *mm, *oldmm;
1720
1721         tsk->min_flt = tsk->maj_flt = 0;
1722         tsk->nvcsw = tsk->nivcsw = 0;
1723 #ifdef CONFIG_DETECT_HUNG_TASK
1724         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1725         tsk->last_switch_time = 0;
1726 #endif
1727
1728         tsk->mm = NULL;
1729         tsk->active_mm = NULL;
1730
1731         /*
1732          * Are we cloning a kernel thread?
1733          *
1734          * We need to steal a active VM for that..
1735          */
1736         oldmm = current->mm;
1737         if (!oldmm)
1738                 return 0;
1739
1740         if (clone_flags & CLONE_VM) {
1741                 mmget(oldmm);
1742                 mm = oldmm;
1743         } else {
1744                 mm = dup_mm(tsk, current->mm);
1745                 if (!mm)
1746                         return -ENOMEM;
1747         }
1748
1749         tsk->mm = mm;
1750         tsk->active_mm = mm;
1751         sched_mm_cid_fork(tsk);
1752         return 0;
1753 }
1754
1755 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1756 {
1757         struct fs_struct *fs = current->fs;
1758         if (clone_flags & CLONE_FS) {
1759                 /* tsk->fs is already what we want */
1760                 spin_lock(&fs->lock);
1761                 /* "users" and "in_exec" locked for check_unsafe_exec() */
1762                 if (fs->in_exec) {
1763                         spin_unlock(&fs->lock);
1764                         return -EAGAIN;
1765                 }
1766                 fs->users++;
1767                 spin_unlock(&fs->lock);
1768                 return 0;
1769         }
1770         tsk->fs = copy_fs_struct(fs);
1771         if (!tsk->fs)
1772                 return -ENOMEM;
1773         return 0;
1774 }
1775
1776 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1777                       int no_files)
1778 {
1779         struct files_struct *oldf, *newf;
1780
1781         /*
1782          * A background process may not have any files ...
1783          */
1784         oldf = current->files;
1785         if (!oldf)
1786                 return 0;
1787
1788         if (no_files) {
1789                 tsk->files = NULL;
1790                 return 0;
1791         }
1792
1793         if (clone_flags & CLONE_FILES) {
1794                 atomic_inc(&oldf->count);
1795                 return 0;
1796         }
1797
1798         newf = dup_fd(oldf, NULL);
1799         if (IS_ERR(newf))
1800                 return PTR_ERR(newf);
1801
1802         tsk->files = newf;
1803         return 0;
1804 }
1805
1806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1807 {
1808         struct sighand_struct *sig;
1809
1810         if (clone_flags & CLONE_SIGHAND) {
1811                 refcount_inc(&current->sighand->count);
1812                 return 0;
1813         }
1814         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1815         RCU_INIT_POINTER(tsk->sighand, sig);
1816         if (!sig)
1817                 return -ENOMEM;
1818
1819         refcount_set(&sig->count, 1);
1820         spin_lock_irq(&current->sighand->siglock);
1821         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1822         spin_unlock_irq(&current->sighand->siglock);
1823
1824         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1825         if (clone_flags & CLONE_CLEAR_SIGHAND)
1826                 flush_signal_handlers(tsk, 0);
1827
1828         return 0;
1829 }
1830
1831 void __cleanup_sighand(struct sighand_struct *sighand)
1832 {
1833         if (refcount_dec_and_test(&sighand->count)) {
1834                 signalfd_cleanup(sighand);
1835                 /*
1836                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1837                  * without an RCU grace period, see __lock_task_sighand().
1838                  */
1839                 kmem_cache_free(sighand_cachep, sighand);
1840         }
1841 }
1842
1843 /*
1844  * Initialize POSIX timer handling for a thread group.
1845  */
1846 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1847 {
1848         struct posix_cputimers *pct = &sig->posix_cputimers;
1849         unsigned long cpu_limit;
1850
1851         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1852         posix_cputimers_group_init(pct, cpu_limit);
1853 }
1854
1855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1856 {
1857         struct signal_struct *sig;
1858
1859         if (clone_flags & CLONE_THREAD)
1860                 return 0;
1861
1862         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1863         tsk->signal = sig;
1864         if (!sig)
1865                 return -ENOMEM;
1866
1867         sig->nr_threads = 1;
1868         sig->quick_threads = 1;
1869         atomic_set(&sig->live, 1);
1870         refcount_set(&sig->sigcnt, 1);
1871
1872         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1873         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1874         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1875
1876         init_waitqueue_head(&sig->wait_chldexit);
1877         sig->curr_target = tsk;
1878         init_sigpending(&sig->shared_pending);
1879         INIT_HLIST_HEAD(&sig->multiprocess);
1880         seqlock_init(&sig->stats_lock);
1881         prev_cputime_init(&sig->prev_cputime);
1882
1883 #ifdef CONFIG_POSIX_TIMERS
1884         INIT_HLIST_HEAD(&sig->posix_timers);
1885         INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1886         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1887         sig->real_timer.function = it_real_fn;
1888 #endif
1889
1890         task_lock(current->group_leader);
1891         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1892         task_unlock(current->group_leader);
1893
1894         posix_cpu_timers_init_group(sig);
1895
1896         tty_audit_fork(sig);
1897         sched_autogroup_fork(sig);
1898
1899         sig->oom_score_adj = current->signal->oom_score_adj;
1900         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1901
1902         mutex_init(&sig->cred_guard_mutex);
1903         init_rwsem(&sig->exec_update_lock);
1904
1905         return 0;
1906 }
1907
1908 static void copy_seccomp(struct task_struct *p)
1909 {
1910 #ifdef CONFIG_SECCOMP
1911         /*
1912          * Must be called with sighand->lock held, which is common to
1913          * all threads in the group. Holding cred_guard_mutex is not
1914          * needed because this new task is not yet running and cannot
1915          * be racing exec.
1916          */
1917         assert_spin_locked(&current->sighand->siglock);
1918
1919         /* Ref-count the new filter user, and assign it. */
1920         get_seccomp_filter(current);
1921         p->seccomp = current->seccomp;
1922
1923         /*
1924          * Explicitly enable no_new_privs here in case it got set
1925          * between the task_struct being duplicated and holding the
1926          * sighand lock. The seccomp state and nnp must be in sync.
1927          */
1928         if (task_no_new_privs(current))
1929                 task_set_no_new_privs(p);
1930
1931         /*
1932          * If the parent gained a seccomp mode after copying thread
1933          * flags and between before we held the sighand lock, we have
1934          * to manually enable the seccomp thread flag here.
1935          */
1936         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1937                 set_task_syscall_work(p, SECCOMP);
1938 #endif
1939 }
1940
1941 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1942 {
1943         current->clear_child_tid = tidptr;
1944
1945         return task_pid_vnr(current);
1946 }
1947
1948 static void rt_mutex_init_task(struct task_struct *p)
1949 {
1950         raw_spin_lock_init(&p->pi_lock);
1951 #ifdef CONFIG_RT_MUTEXES
1952         p->pi_waiters = RB_ROOT_CACHED;
1953         p->pi_top_task = NULL;
1954         p->pi_blocked_on = NULL;
1955 #endif
1956 }
1957
1958 static inline void init_task_pid_links(struct task_struct *task)
1959 {
1960         enum pid_type type;
1961
1962         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1963                 INIT_HLIST_NODE(&task->pid_links[type]);
1964 }
1965
1966 static inline void
1967 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1968 {
1969         if (type == PIDTYPE_PID)
1970                 task->thread_pid = pid;
1971         else
1972                 task->signal->pids[type] = pid;
1973 }
1974
1975 static inline void rcu_copy_process(struct task_struct *p)
1976 {
1977 #ifdef CONFIG_PREEMPT_RCU
1978         p->rcu_read_lock_nesting = 0;
1979         p->rcu_read_unlock_special.s = 0;
1980         p->rcu_blocked_node = NULL;
1981         INIT_LIST_HEAD(&p->rcu_node_entry);
1982 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1983 #ifdef CONFIG_TASKS_RCU
1984         p->rcu_tasks_holdout = false;
1985         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1986         p->rcu_tasks_idle_cpu = -1;
1987         INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1988 #endif /* #ifdef CONFIG_TASKS_RCU */
1989 #ifdef CONFIG_TASKS_TRACE_RCU
1990         p->trc_reader_nesting = 0;
1991         p->trc_reader_special.s = 0;
1992         INIT_LIST_HEAD(&p->trc_holdout_list);
1993         INIT_LIST_HEAD(&p->trc_blkd_node);
1994 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1995 }
1996
1997 /**
1998  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1999  * @pid:   the struct pid for which to create a pidfd
2000  * @flags: flags of the new @pidfd
2001  * @ret: Where to return the file for the pidfd.
2002  *
2003  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2004  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2005  *
2006  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2007  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2008  * pidfd file are prepared.
2009  *
2010  * If this function returns successfully the caller is responsible to either
2011  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2012  * order to install the pidfd into its file descriptor table or they must use
2013  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2014  * respectively.
2015  *
2016  * This function is useful when a pidfd must already be reserved but there
2017  * might still be points of failure afterwards and the caller wants to ensure
2018  * that no pidfd is leaked into its file descriptor table.
2019  *
2020  * Return: On success, a reserved pidfd is returned from the function and a new
2021  *         pidfd file is returned in the last argument to the function. On
2022  *         error, a negative error code is returned from the function and the
2023  *         last argument remains unchanged.
2024  */
2025 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2026 {
2027         int pidfd;
2028         struct file *pidfd_file;
2029
2030         pidfd = get_unused_fd_flags(O_CLOEXEC);
2031         if (pidfd < 0)
2032                 return pidfd;
2033
2034         pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2035         if (IS_ERR(pidfd_file)) {
2036                 put_unused_fd(pidfd);
2037                 return PTR_ERR(pidfd_file);
2038         }
2039         /*
2040          * anon_inode_getfile() ignores everything outside of the
2041          * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2042          */
2043         pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2044         *ret = pidfd_file;
2045         return pidfd;
2046 }
2047
2048 /**
2049  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2050  * @pid:   the struct pid for which to create a pidfd
2051  * @flags: flags of the new @pidfd
2052  * @ret: Where to return the pidfd.
2053  *
2054  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2055  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2056  *
2057  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2058  * task identified by @pid must be a thread-group leader.
2059  *
2060  * If this function returns successfully the caller is responsible to either
2061  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2062  * order to install the pidfd into its file descriptor table or they must use
2063  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2064  * respectively.
2065  *
2066  * This function is useful when a pidfd must already be reserved but there
2067  * might still be points of failure afterwards and the caller wants to ensure
2068  * that no pidfd is leaked into its file descriptor table.
2069  *
2070  * Return: On success, a reserved pidfd is returned from the function and a new
2071  *         pidfd file is returned in the last argument to the function. On
2072  *         error, a negative error code is returned from the function and the
2073  *         last argument remains unchanged.
2074  */
2075 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2076 {
2077         bool thread = flags & PIDFD_THREAD;
2078
2079         if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2080                 return -EINVAL;
2081
2082         return __pidfd_prepare(pid, flags, ret);
2083 }
2084
2085 static void __delayed_free_task(struct rcu_head *rhp)
2086 {
2087         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2088
2089         free_task(tsk);
2090 }
2091
2092 static __always_inline void delayed_free_task(struct task_struct *tsk)
2093 {
2094         if (IS_ENABLED(CONFIG_MEMCG))
2095                 call_rcu(&tsk->rcu, __delayed_free_task);
2096         else
2097                 free_task(tsk);
2098 }
2099
2100 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2101 {
2102         /* Skip if kernel thread */
2103         if (!tsk->mm)
2104                 return;
2105
2106         /* Skip if spawning a thread or using vfork */
2107         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2108                 return;
2109
2110         /* We need to synchronize with __set_oom_adj */
2111         mutex_lock(&oom_adj_mutex);
2112         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2113         /* Update the values in case they were changed after copy_signal */
2114         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2115         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2116         mutex_unlock(&oom_adj_mutex);
2117 }
2118
2119 #ifdef CONFIG_RV
2120 static void rv_task_fork(struct task_struct *p)
2121 {
2122         int i;
2123
2124         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2125                 p->rv[i].da_mon.monitoring = false;
2126 }
2127 #else
2128 #define rv_task_fork(p) do {} while (0)
2129 #endif
2130
2131 /*
2132  * This creates a new process as a copy of the old one,
2133  * but does not actually start it yet.
2134  *
2135  * It copies the registers, and all the appropriate
2136  * parts of the process environment (as per the clone
2137  * flags). The actual kick-off is left to the caller.
2138  */
2139 __latent_entropy struct task_struct *copy_process(
2140                                         struct pid *pid,
2141                                         int trace,
2142                                         int node,
2143                                         struct kernel_clone_args *args)
2144 {
2145         int pidfd = -1, retval;
2146         struct task_struct *p;
2147         struct multiprocess_signals delayed;
2148         struct file *pidfile = NULL;
2149         const u64 clone_flags = args->flags;
2150         struct nsproxy *nsp = current->nsproxy;
2151
2152         /*
2153          * Don't allow sharing the root directory with processes in a different
2154          * namespace
2155          */
2156         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2157                 return ERR_PTR(-EINVAL);
2158
2159         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2160                 return ERR_PTR(-EINVAL);
2161
2162         /*
2163          * Thread groups must share signals as well, and detached threads
2164          * can only be started up within the thread group.
2165          */
2166         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2167                 return ERR_PTR(-EINVAL);
2168
2169         /*
2170          * Shared signal handlers imply shared VM. By way of the above,
2171          * thread groups also imply shared VM. Blocking this case allows
2172          * for various simplifications in other code.
2173          */
2174         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2175                 return ERR_PTR(-EINVAL);
2176
2177         /*
2178          * Siblings of global init remain as zombies on exit since they are
2179          * not reaped by their parent (swapper). To solve this and to avoid
2180          * multi-rooted process trees, prevent global and container-inits
2181          * from creating siblings.
2182          */
2183         if ((clone_flags & CLONE_PARENT) &&
2184                                 current->signal->flags & SIGNAL_UNKILLABLE)
2185                 return ERR_PTR(-EINVAL);
2186
2187         /*
2188          * If the new process will be in a different pid or user namespace
2189          * do not allow it to share a thread group with the forking task.
2190          */
2191         if (clone_flags & CLONE_THREAD) {
2192                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2193                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2194                         return ERR_PTR(-EINVAL);
2195         }
2196
2197         if (clone_flags & CLONE_PIDFD) {
2198                 /*
2199                  * - CLONE_DETACHED is blocked so that we can potentially
2200                  *   reuse it later for CLONE_PIDFD.
2201                  */
2202                 if (clone_flags & CLONE_DETACHED)
2203                         return ERR_PTR(-EINVAL);
2204         }
2205
2206         /*
2207          * Force any signals received before this point to be delivered
2208          * before the fork happens.  Collect up signals sent to multiple
2209          * processes that happen during the fork and delay them so that
2210          * they appear to happen after the fork.
2211          */
2212         sigemptyset(&delayed.signal);
2213         INIT_HLIST_NODE(&delayed.node);
2214
2215         spin_lock_irq(&current->sighand->siglock);
2216         if (!(clone_flags & CLONE_THREAD))
2217                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2218         recalc_sigpending();
2219         spin_unlock_irq(&current->sighand->siglock);
2220         retval = -ERESTARTNOINTR;
2221         if (task_sigpending(current))
2222                 goto fork_out;
2223
2224         retval = -ENOMEM;
2225         p = dup_task_struct(current, node);
2226         if (!p)
2227                 goto fork_out;
2228         p->flags &= ~PF_KTHREAD;
2229         if (args->kthread)
2230                 p->flags |= PF_KTHREAD;
2231         if (args->user_worker) {
2232                 /*
2233                  * Mark us a user worker, and block any signal that isn't
2234                  * fatal or STOP
2235                  */
2236                 p->flags |= PF_USER_WORKER;
2237                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2238         }
2239         if (args->io_thread)
2240                 p->flags |= PF_IO_WORKER;
2241
2242         if (args->name)
2243                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2244
2245         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2246         /*
2247          * Clear TID on mm_release()?
2248          */
2249         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2250
2251         ftrace_graph_init_task(p);
2252
2253         rt_mutex_init_task(p);
2254
2255         lockdep_assert_irqs_enabled();
2256 #ifdef CONFIG_PROVE_LOCKING
2257         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2258 #endif
2259         retval = copy_creds(p, clone_flags);
2260         if (retval < 0)
2261                 goto bad_fork_free;
2262
2263         retval = -EAGAIN;
2264         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2265                 if (p->real_cred->user != INIT_USER &&
2266                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2267                         goto bad_fork_cleanup_count;
2268         }
2269         current->flags &= ~PF_NPROC_EXCEEDED;
2270
2271         /*
2272          * If multiple threads are within copy_process(), then this check
2273          * triggers too late. This doesn't hurt, the check is only there
2274          * to stop root fork bombs.
2275          */
2276         retval = -EAGAIN;
2277         if (data_race(nr_threads >= max_threads))
2278                 goto bad_fork_cleanup_count;
2279
2280         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2281         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2282         p->flags |= PF_FORKNOEXEC;
2283         INIT_LIST_HEAD(&p->children);
2284         INIT_LIST_HEAD(&p->sibling);
2285         rcu_copy_process(p);
2286         p->vfork_done = NULL;
2287         spin_lock_init(&p->alloc_lock);
2288
2289         init_sigpending(&p->pending);
2290
2291         p->utime = p->stime = p->gtime = 0;
2292 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2293         p->utimescaled = p->stimescaled = 0;
2294 #endif
2295         prev_cputime_init(&p->prev_cputime);
2296
2297 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2298         seqcount_init(&p->vtime.seqcount);
2299         p->vtime.starttime = 0;
2300         p->vtime.state = VTIME_INACTIVE;
2301 #endif
2302
2303 #ifdef CONFIG_IO_URING
2304         p->io_uring = NULL;
2305 #endif
2306
2307         p->default_timer_slack_ns = current->timer_slack_ns;
2308
2309 #ifdef CONFIG_PSI
2310         p->psi_flags = 0;
2311 #endif
2312
2313         task_io_accounting_init(&p->ioac);
2314         acct_clear_integrals(p);
2315
2316         posix_cputimers_init(&p->posix_cputimers);
2317         tick_dep_init_task(p);
2318
2319         p->io_context = NULL;
2320         audit_set_context(p, NULL);
2321         cgroup_fork(p);
2322         if (args->kthread) {
2323                 if (!set_kthread_struct(p))
2324                         goto bad_fork_cleanup_delayacct;
2325         }
2326 #ifdef CONFIG_NUMA
2327         p->mempolicy = mpol_dup(p->mempolicy);
2328         if (IS_ERR(p->mempolicy)) {
2329                 retval = PTR_ERR(p->mempolicy);
2330                 p->mempolicy = NULL;
2331                 goto bad_fork_cleanup_delayacct;
2332         }
2333 #endif
2334 #ifdef CONFIG_CPUSETS
2335         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2336         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2337 #endif
2338 #ifdef CONFIG_TRACE_IRQFLAGS
2339         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2340         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2341         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2342         p->softirqs_enabled             = 1;
2343         p->softirq_context              = 0;
2344 #endif
2345
2346         p->pagefault_disabled = 0;
2347
2348 #ifdef CONFIG_LOCKDEP
2349         lockdep_init_task(p);
2350 #endif
2351
2352 #ifdef CONFIG_DEBUG_MUTEXES
2353         p->blocked_on = NULL; /* not blocked yet */
2354 #endif
2355 #ifdef CONFIG_BCACHE
2356         p->sequential_io        = 0;
2357         p->sequential_io_avg    = 0;
2358 #endif
2359 #ifdef CONFIG_BPF_SYSCALL
2360         RCU_INIT_POINTER(p->bpf_storage, NULL);
2361         p->bpf_ctx = NULL;
2362 #endif
2363
2364         /* Perform scheduler related setup. Assign this task to a CPU. */
2365         retval = sched_fork(clone_flags, p);
2366         if (retval)
2367                 goto bad_fork_cleanup_policy;
2368
2369         retval = perf_event_init_task(p, clone_flags);
2370         if (retval)
2371                 goto bad_fork_sched_cancel_fork;
2372         retval = audit_alloc(p);
2373         if (retval)
2374                 goto bad_fork_cleanup_perf;
2375         /* copy all the process information */
2376         shm_init_task(p);
2377         retval = security_task_alloc(p, clone_flags);
2378         if (retval)
2379                 goto bad_fork_cleanup_audit;
2380         retval = copy_semundo(clone_flags, p);
2381         if (retval)
2382                 goto bad_fork_cleanup_security;
2383         retval = copy_files(clone_flags, p, args->no_files);
2384         if (retval)
2385                 goto bad_fork_cleanup_semundo;
2386         retval = copy_fs(clone_flags, p);
2387         if (retval)
2388                 goto bad_fork_cleanup_files;
2389         retval = copy_sighand(clone_flags, p);
2390         if (retval)
2391                 goto bad_fork_cleanup_fs;
2392         retval = copy_signal(clone_flags, p);
2393         if (retval)
2394                 goto bad_fork_cleanup_sighand;
2395         retval = copy_mm(clone_flags, p);
2396         if (retval)
2397                 goto bad_fork_cleanup_signal;
2398         retval = copy_namespaces(clone_flags, p);
2399         if (retval)
2400                 goto bad_fork_cleanup_mm;
2401         retval = copy_io(clone_flags, p);
2402         if (retval)
2403                 goto bad_fork_cleanup_namespaces;
2404         retval = copy_thread(p, args);
2405         if (retval)
2406                 goto bad_fork_cleanup_io;
2407
2408         stackleak_task_init(p);
2409
2410         if (pid != &init_struct_pid) {
2411                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2412                                 args->set_tid_size);
2413                 if (IS_ERR(pid)) {
2414                         retval = PTR_ERR(pid);
2415                         goto bad_fork_cleanup_thread;
2416                 }
2417         }
2418
2419         /*
2420          * This has to happen after we've potentially unshared the file
2421          * descriptor table (so that the pidfd doesn't leak into the child
2422          * if the fd table isn't shared).
2423          */
2424         if (clone_flags & CLONE_PIDFD) {
2425                 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2426
2427                 /* Note that no task has been attached to @pid yet. */
2428                 retval = __pidfd_prepare(pid, flags, &pidfile);
2429                 if (retval < 0)
2430                         goto bad_fork_free_pid;
2431                 pidfd = retval;
2432
2433                 retval = put_user(pidfd, args->pidfd);
2434                 if (retval)
2435                         goto bad_fork_put_pidfd;
2436         }
2437
2438 #ifdef CONFIG_BLOCK
2439         p->plug = NULL;
2440 #endif
2441         futex_init_task(p);
2442
2443         /*
2444          * sigaltstack should be cleared when sharing the same VM
2445          */
2446         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2447                 sas_ss_reset(p);
2448
2449         /*
2450          * Syscall tracing and stepping should be turned off in the
2451          * child regardless of CLONE_PTRACE.
2452          */
2453         user_disable_single_step(p);
2454         clear_task_syscall_work(p, SYSCALL_TRACE);
2455 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2456         clear_task_syscall_work(p, SYSCALL_EMU);
2457 #endif
2458         clear_tsk_latency_tracing(p);
2459
2460         /* ok, now we should be set up.. */
2461         p->pid = pid_nr(pid);
2462         if (clone_flags & CLONE_THREAD) {
2463                 p->group_leader = current->group_leader;
2464                 p->tgid = current->tgid;
2465         } else {
2466                 p->group_leader = p;
2467                 p->tgid = p->pid;
2468         }
2469
2470         p->nr_dirtied = 0;
2471         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2472         p->dirty_paused_when = 0;
2473
2474         p->pdeath_signal = 0;
2475         p->task_works = NULL;
2476         clear_posix_cputimers_work(p);
2477
2478 #ifdef CONFIG_KRETPROBES
2479         p->kretprobe_instances.first = NULL;
2480 #endif
2481 #ifdef CONFIG_RETHOOK
2482         p->rethooks.first = NULL;
2483 #endif
2484
2485         /*
2486          * Ensure that the cgroup subsystem policies allow the new process to be
2487          * forked. It should be noted that the new process's css_set can be changed
2488          * between here and cgroup_post_fork() if an organisation operation is in
2489          * progress.
2490          */
2491         retval = cgroup_can_fork(p, args);
2492         if (retval)
2493                 goto bad_fork_put_pidfd;
2494
2495         /*
2496          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2497          * the new task on the correct runqueue. All this *before* the task
2498          * becomes visible.
2499          *
2500          * This isn't part of ->can_fork() because while the re-cloning is
2501          * cgroup specific, it unconditionally needs to place the task on a
2502          * runqueue.
2503          */
2504         retval = sched_cgroup_fork(p, args);
2505         if (retval)
2506                 goto bad_fork_cancel_cgroup;
2507
2508         /*
2509          * From this point on we must avoid any synchronous user-space
2510          * communication until we take the tasklist-lock. In particular, we do
2511          * not want user-space to be able to predict the process start-time by
2512          * stalling fork(2) after we recorded the start_time but before it is
2513          * visible to the system.
2514          */
2515
2516         p->start_time = ktime_get_ns();
2517         p->start_boottime = ktime_get_boottime_ns();
2518
2519         /*
2520          * Make it visible to the rest of the system, but dont wake it up yet.
2521          * Need tasklist lock for parent etc handling!
2522          */
2523         write_lock_irq(&tasklist_lock);
2524
2525         /* CLONE_PARENT re-uses the old parent */
2526         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2527                 p->real_parent = current->real_parent;
2528                 p->parent_exec_id = current->parent_exec_id;
2529                 if (clone_flags & CLONE_THREAD)
2530                         p->exit_signal = -1;
2531                 else
2532                         p->exit_signal = current->group_leader->exit_signal;
2533         } else {
2534                 p->real_parent = current;
2535                 p->parent_exec_id = current->self_exec_id;
2536                 p->exit_signal = args->exit_signal;
2537         }
2538
2539         klp_copy_process(p);
2540
2541         sched_core_fork(p);
2542
2543         spin_lock(&current->sighand->siglock);
2544
2545         rv_task_fork(p);
2546
2547         rseq_fork(p, clone_flags);
2548
2549         /* Don't start children in a dying pid namespace */
2550         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2551                 retval = -ENOMEM;
2552                 goto bad_fork_core_free;
2553         }
2554
2555         /* Let kill terminate clone/fork in the middle */
2556         if (fatal_signal_pending(current)) {
2557                 retval = -EINTR;
2558                 goto bad_fork_core_free;
2559         }
2560
2561         /* No more failure paths after this point. */
2562
2563         /*
2564          * Copy seccomp details explicitly here, in case they were changed
2565          * before holding sighand lock.
2566          */
2567         copy_seccomp(p);
2568
2569         init_task_pid_links(p);
2570         if (likely(p->pid)) {
2571                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2572
2573                 init_task_pid(p, PIDTYPE_PID, pid);
2574                 if (thread_group_leader(p)) {
2575                         init_task_pid(p, PIDTYPE_TGID, pid);
2576                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2577                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2578
2579                         if (is_child_reaper(pid)) {
2580                                 ns_of_pid(pid)->child_reaper = p;
2581                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2582                         }
2583                         p->signal->shared_pending.signal = delayed.signal;
2584                         p->signal->tty = tty_kref_get(current->signal->tty);
2585                         /*
2586                          * Inherit has_child_subreaper flag under the same
2587                          * tasklist_lock with adding child to the process tree
2588                          * for propagate_has_child_subreaper optimization.
2589                          */
2590                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2591                                                          p->real_parent->signal->is_child_subreaper;
2592                         list_add_tail(&p->sibling, &p->real_parent->children);
2593                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2594                         attach_pid(p, PIDTYPE_TGID);
2595                         attach_pid(p, PIDTYPE_PGID);
2596                         attach_pid(p, PIDTYPE_SID);
2597                         __this_cpu_inc(process_counts);
2598                 } else {
2599                         current->signal->nr_threads++;
2600                         current->signal->quick_threads++;
2601                         atomic_inc(&current->signal->live);
2602                         refcount_inc(&current->signal->sigcnt);
2603                         task_join_group_stop(p);
2604                         list_add_tail_rcu(&p->thread_node,
2605                                           &p->signal->thread_head);
2606                 }
2607                 attach_pid(p, PIDTYPE_PID);
2608                 nr_threads++;
2609         }
2610         total_forks++;
2611         hlist_del_init(&delayed.node);
2612         spin_unlock(&current->sighand->siglock);
2613         syscall_tracepoint_update(p);
2614         write_unlock_irq(&tasklist_lock);
2615
2616         if (pidfile)
2617                 fd_install(pidfd, pidfile);
2618
2619         proc_fork_connector(p);
2620         sched_post_fork(p);
2621         cgroup_post_fork(p, args);
2622         perf_event_fork(p);
2623
2624         trace_task_newtask(p, clone_flags);
2625         uprobe_copy_process(p, clone_flags);
2626         user_events_fork(p, clone_flags);
2627
2628         copy_oom_score_adj(clone_flags, p);
2629
2630         return p;
2631
2632 bad_fork_core_free:
2633         sched_core_free(p);
2634         spin_unlock(&current->sighand->siglock);
2635         write_unlock_irq(&tasklist_lock);
2636 bad_fork_cancel_cgroup:
2637         cgroup_cancel_fork(p, args);
2638 bad_fork_put_pidfd:
2639         if (clone_flags & CLONE_PIDFD) {
2640                 fput(pidfile);
2641                 put_unused_fd(pidfd);
2642         }
2643 bad_fork_free_pid:
2644         if (pid != &init_struct_pid)
2645                 free_pid(pid);
2646 bad_fork_cleanup_thread:
2647         exit_thread(p);
2648 bad_fork_cleanup_io:
2649         if (p->io_context)
2650                 exit_io_context(p);
2651 bad_fork_cleanup_namespaces:
2652         exit_task_namespaces(p);
2653 bad_fork_cleanup_mm:
2654         if (p->mm) {
2655                 mm_clear_owner(p->mm, p);
2656                 mmput(p->mm);
2657         }
2658 bad_fork_cleanup_signal:
2659         if (!(clone_flags & CLONE_THREAD))
2660                 free_signal_struct(p->signal);
2661 bad_fork_cleanup_sighand:
2662         __cleanup_sighand(p->sighand);
2663 bad_fork_cleanup_fs:
2664         exit_fs(p); /* blocking */
2665 bad_fork_cleanup_files:
2666         exit_files(p); /* blocking */
2667 bad_fork_cleanup_semundo:
2668         exit_sem(p);
2669 bad_fork_cleanup_security:
2670         security_task_free(p);
2671 bad_fork_cleanup_audit:
2672         audit_free(p);
2673 bad_fork_cleanup_perf:
2674         perf_event_free_task(p);
2675 bad_fork_sched_cancel_fork:
2676         sched_cancel_fork(p);
2677 bad_fork_cleanup_policy:
2678         lockdep_free_task(p);
2679 #ifdef CONFIG_NUMA
2680         mpol_put(p->mempolicy);
2681 #endif
2682 bad_fork_cleanup_delayacct:
2683         delayacct_tsk_free(p);
2684 bad_fork_cleanup_count:
2685         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2686         exit_creds(p);
2687 bad_fork_free:
2688         WRITE_ONCE(p->__state, TASK_DEAD);
2689         exit_task_stack_account(p);
2690         put_task_stack(p);
2691         delayed_free_task(p);
2692 fork_out:
2693         spin_lock_irq(&current->sighand->siglock);
2694         hlist_del_init(&delayed.node);
2695         spin_unlock_irq(&current->sighand->siglock);
2696         return ERR_PTR(retval);
2697 }
2698
2699 static inline void init_idle_pids(struct task_struct *idle)
2700 {
2701         enum pid_type type;
2702
2703         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2704                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2705                 init_task_pid(idle, type, &init_struct_pid);
2706         }
2707 }
2708
2709 static int idle_dummy(void *dummy)
2710 {
2711         /* This function is never called */
2712         return 0;
2713 }
2714
2715 struct task_struct * __init fork_idle(int cpu)
2716 {
2717         struct task_struct *task;
2718         struct kernel_clone_args args = {
2719                 .flags          = CLONE_VM,
2720                 .fn             = &idle_dummy,
2721                 .fn_arg         = NULL,
2722                 .kthread        = 1,
2723                 .idle           = 1,
2724         };
2725
2726         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2727         if (!IS_ERR(task)) {
2728                 init_idle_pids(task);
2729                 init_idle(task, cpu);
2730         }
2731
2732         return task;
2733 }
2734
2735 /*
2736  * This is like kernel_clone(), but shaved down and tailored to just
2737  * creating io_uring workers. It returns a created task, or an error pointer.
2738  * The returned task is inactive, and the caller must fire it up through
2739  * wake_up_new_task(p). All signals are blocked in the created task.
2740  */
2741 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2742 {
2743         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2744                                 CLONE_IO;
2745         struct kernel_clone_args args = {
2746                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2747                                     CLONE_UNTRACED) & ~CSIGNAL),
2748                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2749                 .fn             = fn,
2750                 .fn_arg         = arg,
2751                 .io_thread      = 1,
2752                 .user_worker    = 1,
2753         };
2754
2755         return copy_process(NULL, 0, node, &args);
2756 }
2757
2758 /*
2759  *  Ok, this is the main fork-routine.
2760  *
2761  * It copies the process, and if successful kick-starts
2762  * it and waits for it to finish using the VM if required.
2763  *
2764  * args->exit_signal is expected to be checked for sanity by the caller.
2765  */
2766 pid_t kernel_clone(struct kernel_clone_args *args)
2767 {
2768         u64 clone_flags = args->flags;
2769         struct completion vfork;
2770         struct pid *pid;
2771         struct task_struct *p;
2772         int trace = 0;
2773         pid_t nr;
2774
2775         /*
2776          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2777          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2778          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2779          * field in struct clone_args and it still doesn't make sense to have
2780          * them both point at the same memory location. Performing this check
2781          * here has the advantage that we don't need to have a separate helper
2782          * to check for legacy clone().
2783          */
2784         if ((clone_flags & CLONE_PIDFD) &&
2785             (clone_flags & CLONE_PARENT_SETTID) &&
2786             (args->pidfd == args->parent_tid))
2787                 return -EINVAL;
2788
2789         /*
2790          * Determine whether and which event to report to ptracer.  When
2791          * called from kernel_thread or CLONE_UNTRACED is explicitly
2792          * requested, no event is reported; otherwise, report if the event
2793          * for the type of forking is enabled.
2794          */
2795         if (!(clone_flags & CLONE_UNTRACED)) {
2796                 if (clone_flags & CLONE_VFORK)
2797                         trace = PTRACE_EVENT_VFORK;
2798                 else if (args->exit_signal != SIGCHLD)
2799                         trace = PTRACE_EVENT_CLONE;
2800                 else
2801                         trace = PTRACE_EVENT_FORK;
2802
2803                 if (likely(!ptrace_event_enabled(current, trace)))
2804                         trace = 0;
2805         }
2806
2807         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2808         add_latent_entropy();
2809
2810         if (IS_ERR(p))
2811                 return PTR_ERR(p);
2812
2813         /*
2814          * Do this prior waking up the new thread - the thread pointer
2815          * might get invalid after that point, if the thread exits quickly.
2816          */
2817         trace_sched_process_fork(current, p);
2818
2819         pid = get_task_pid(p, PIDTYPE_PID);
2820         nr = pid_vnr(pid);
2821
2822         if (clone_flags & CLONE_PARENT_SETTID)
2823                 put_user(nr, args->parent_tid);
2824
2825         if (clone_flags & CLONE_VFORK) {
2826                 p->vfork_done = &vfork;
2827                 init_completion(&vfork);
2828                 get_task_struct(p);
2829         }
2830
2831         if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2832                 /* lock the task to synchronize with memcg migration */
2833                 task_lock(p);
2834                 lru_gen_add_mm(p->mm);
2835                 task_unlock(p);
2836         }
2837
2838         wake_up_new_task(p);
2839
2840         /* forking complete and child started to run, tell ptracer */
2841         if (unlikely(trace))
2842                 ptrace_event_pid(trace, pid);
2843
2844         if (clone_flags & CLONE_VFORK) {
2845                 if (!wait_for_vfork_done(p, &vfork))
2846                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2847         }
2848
2849         put_pid(pid);
2850         return nr;
2851 }
2852
2853 /*
2854  * Create a kernel thread.
2855  */
2856 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2857                     unsigned long flags)
2858 {
2859         struct kernel_clone_args args = {
2860                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2861                                     CLONE_UNTRACED) & ~CSIGNAL),
2862                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2863                 .fn             = fn,
2864                 .fn_arg         = arg,
2865                 .name           = name,
2866                 .kthread        = 1,
2867         };
2868
2869         return kernel_clone(&args);
2870 }
2871
2872 /*
2873  * Create a user mode thread.
2874  */
2875 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2876 {
2877         struct kernel_clone_args args = {
2878                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2879                                     CLONE_UNTRACED) & ~CSIGNAL),
2880                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2881                 .fn             = fn,
2882                 .fn_arg         = arg,
2883         };
2884
2885         return kernel_clone(&args);
2886 }
2887
2888 #ifdef __ARCH_WANT_SYS_FORK
2889 SYSCALL_DEFINE0(fork)
2890 {
2891 #ifdef CONFIG_MMU
2892         struct kernel_clone_args args = {
2893                 .exit_signal = SIGCHLD,
2894         };
2895
2896         return kernel_clone(&args);
2897 #else
2898         /* can not support in nommu mode */
2899         return -EINVAL;
2900 #endif
2901 }
2902 #endif
2903
2904 #ifdef __ARCH_WANT_SYS_VFORK
2905 SYSCALL_DEFINE0(vfork)
2906 {
2907         struct kernel_clone_args args = {
2908                 .flags          = CLONE_VFORK | CLONE_VM,
2909                 .exit_signal    = SIGCHLD,
2910         };
2911
2912         return kernel_clone(&args);
2913 }
2914 #endif
2915
2916 #ifdef __ARCH_WANT_SYS_CLONE
2917 #ifdef CONFIG_CLONE_BACKWARDS
2918 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2919                  int __user *, parent_tidptr,
2920                  unsigned long, tls,
2921                  int __user *, child_tidptr)
2922 #elif defined(CONFIG_CLONE_BACKWARDS2)
2923 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2924                  int __user *, parent_tidptr,
2925                  int __user *, child_tidptr,
2926                  unsigned long, tls)
2927 #elif defined(CONFIG_CLONE_BACKWARDS3)
2928 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2929                 int, stack_size,
2930                 int __user *, parent_tidptr,
2931                 int __user *, child_tidptr,
2932                 unsigned long, tls)
2933 #else
2934 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2935                  int __user *, parent_tidptr,
2936                  int __user *, child_tidptr,
2937                  unsigned long, tls)
2938 #endif
2939 {
2940         struct kernel_clone_args args = {
2941                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2942                 .pidfd          = parent_tidptr,
2943                 .child_tid      = child_tidptr,
2944                 .parent_tid     = parent_tidptr,
2945                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2946                 .stack          = newsp,
2947                 .tls            = tls,
2948         };
2949
2950         return kernel_clone(&args);
2951 }
2952 #endif
2953
2954 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2955                                               struct clone_args __user *uargs,
2956                                               size_t usize)
2957 {
2958         int err;
2959         struct clone_args args;
2960         pid_t *kset_tid = kargs->set_tid;
2961
2962         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2963                      CLONE_ARGS_SIZE_VER0);
2964         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2965                      CLONE_ARGS_SIZE_VER1);
2966         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2967                      CLONE_ARGS_SIZE_VER2);
2968         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2969
2970         if (unlikely(usize > PAGE_SIZE))
2971                 return -E2BIG;
2972         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2973                 return -EINVAL;
2974
2975         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2976         if (err)
2977                 return err;
2978
2979         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2980                 return -EINVAL;
2981
2982         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2983                 return -EINVAL;
2984
2985         if (unlikely(args.set_tid && args.set_tid_size == 0))
2986                 return -EINVAL;
2987
2988         /*
2989          * Verify that higher 32bits of exit_signal are unset and that
2990          * it is a valid signal
2991          */
2992         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2993                      !valid_signal(args.exit_signal)))
2994                 return -EINVAL;
2995
2996         if ((args.flags & CLONE_INTO_CGROUP) &&
2997             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2998                 return -EINVAL;
2999
3000         *kargs = (struct kernel_clone_args){
3001                 .flags          = args.flags,
3002                 .pidfd          = u64_to_user_ptr(args.pidfd),
3003                 .child_tid      = u64_to_user_ptr(args.child_tid),
3004                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
3005                 .exit_signal    = args.exit_signal,
3006                 .stack          = args.stack,
3007                 .stack_size     = args.stack_size,
3008                 .tls            = args.tls,
3009                 .set_tid_size   = args.set_tid_size,
3010                 .cgroup         = args.cgroup,
3011         };
3012
3013         if (args.set_tid &&
3014                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3015                         (kargs->set_tid_size * sizeof(pid_t))))
3016                 return -EFAULT;
3017
3018         kargs->set_tid = kset_tid;
3019
3020         return 0;
3021 }
3022
3023 /**
3024  * clone3_stack_valid - check and prepare stack
3025  * @kargs: kernel clone args
3026  *
3027  * Verify that the stack arguments userspace gave us are sane.
3028  * In addition, set the stack direction for userspace since it's easy for us to
3029  * determine.
3030  */
3031 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3032 {
3033         if (kargs->stack == 0) {
3034                 if (kargs->stack_size > 0)
3035                         return false;
3036         } else {
3037                 if (kargs->stack_size == 0)
3038                         return false;
3039
3040                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3041                         return false;
3042
3043 #if !defined(CONFIG_STACK_GROWSUP)
3044                 kargs->stack += kargs->stack_size;
3045 #endif
3046         }
3047
3048         return true;
3049 }
3050
3051 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3052 {
3053         /* Verify that no unknown flags are passed along. */
3054         if (kargs->flags &
3055             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3056                 return false;
3057
3058         /*
3059          * - make the CLONE_DETACHED bit reusable for clone3
3060          * - make the CSIGNAL bits reusable for clone3
3061          */
3062         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3063                 return false;
3064
3065         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3066             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3067                 return false;
3068
3069         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3070             kargs->exit_signal)
3071                 return false;
3072
3073         if (!clone3_stack_valid(kargs))
3074                 return false;
3075
3076         return true;
3077 }
3078
3079 /**
3080  * sys_clone3 - create a new process with specific properties
3081  * @uargs: argument structure
3082  * @size:  size of @uargs
3083  *
3084  * clone3() is the extensible successor to clone()/clone2().
3085  * It takes a struct as argument that is versioned by its size.
3086  *
3087  * Return: On success, a positive PID for the child process.
3088  *         On error, a negative errno number.
3089  */
3090 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3091 {
3092         int err;
3093
3094         struct kernel_clone_args kargs;
3095         pid_t set_tid[MAX_PID_NS_LEVEL];
3096
3097 #ifdef __ARCH_BROKEN_SYS_CLONE3
3098 #warning clone3() entry point is missing, please fix
3099         return -ENOSYS;
3100 #endif
3101
3102         kargs.set_tid = set_tid;
3103
3104         err = copy_clone_args_from_user(&kargs, uargs, size);
3105         if (err)
3106                 return err;
3107
3108         if (!clone3_args_valid(&kargs))
3109                 return -EINVAL;
3110
3111         return kernel_clone(&kargs);
3112 }
3113
3114 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3115 {
3116         struct task_struct *leader, *parent, *child;
3117         int res;
3118
3119         read_lock(&tasklist_lock);
3120         leader = top = top->group_leader;
3121 down:
3122         for_each_thread(leader, parent) {
3123                 list_for_each_entry(child, &parent->children, sibling) {
3124                         res = visitor(child, data);
3125                         if (res) {
3126                                 if (res < 0)
3127                                         goto out;
3128                                 leader = child;
3129                                 goto down;
3130                         }
3131 up:
3132                         ;
3133                 }
3134         }
3135
3136         if (leader != top) {
3137                 child = leader;
3138                 parent = child->real_parent;
3139                 leader = parent->group_leader;
3140                 goto up;
3141         }
3142 out:
3143         read_unlock(&tasklist_lock);
3144 }
3145
3146 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3147 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3148 #endif
3149
3150 static void sighand_ctor(void *data)
3151 {
3152         struct sighand_struct *sighand = data;
3153
3154         spin_lock_init(&sighand->siglock);
3155         init_waitqueue_head(&sighand->signalfd_wqh);
3156 }
3157
3158 void __init mm_cache_init(void)
3159 {
3160         unsigned int mm_size;
3161
3162         /*
3163          * The mm_cpumask is located at the end of mm_struct, and is
3164          * dynamically sized based on the maximum CPU number this system
3165          * can have, taking hotplug into account (nr_cpu_ids).
3166          */
3167         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3168
3169         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3170                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3171                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3172                         offsetof(struct mm_struct, saved_auxv),
3173                         sizeof_field(struct mm_struct, saved_auxv),
3174                         NULL);
3175 }
3176
3177 void __init proc_caches_init(void)
3178 {
3179         sighand_cachep = kmem_cache_create("sighand_cache",
3180                         sizeof(struct sighand_struct), 0,
3181                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3182                         SLAB_ACCOUNT, sighand_ctor);
3183         signal_cachep = kmem_cache_create("signal_cache",
3184                         sizeof(struct signal_struct), 0,
3185                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3186                         NULL);
3187         files_cachep = kmem_cache_create("files_cache",
3188                         sizeof(struct files_struct), 0,
3189                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3190                         NULL);
3191         fs_cachep = kmem_cache_create("fs_cache",
3192                         sizeof(struct fs_struct), 0,
3193                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3194                         NULL);
3195
3196         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3197 #ifdef CONFIG_PER_VMA_LOCK
3198         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3199 #endif
3200         mmap_init();
3201         nsproxy_cache_init();
3202 }
3203
3204 /*
3205  * Check constraints on flags passed to the unshare system call.
3206  */
3207 static int check_unshare_flags(unsigned long unshare_flags)
3208 {
3209         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3210                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3211                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3212                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3213                                 CLONE_NEWTIME))
3214                 return -EINVAL;
3215         /*
3216          * Not implemented, but pretend it works if there is nothing
3217          * to unshare.  Note that unsharing the address space or the
3218          * signal handlers also need to unshare the signal queues (aka
3219          * CLONE_THREAD).
3220          */
3221         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3222                 if (!thread_group_empty(current))
3223                         return -EINVAL;
3224         }
3225         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3226                 if (refcount_read(&current->sighand->count) > 1)
3227                         return -EINVAL;
3228         }
3229         if (unshare_flags & CLONE_VM) {
3230                 if (!current_is_single_threaded())
3231                         return -EINVAL;
3232         }
3233
3234         return 0;
3235 }
3236
3237 /*
3238  * Unshare the filesystem structure if it is being shared
3239  */
3240 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3241 {
3242         struct fs_struct *fs = current->fs;
3243
3244         if (!(unshare_flags & CLONE_FS) || !fs)
3245                 return 0;
3246
3247         /* don't need lock here; in the worst case we'll do useless copy */
3248         if (fs->users == 1)
3249                 return 0;
3250
3251         *new_fsp = copy_fs_struct(fs);
3252         if (!*new_fsp)
3253                 return -ENOMEM;
3254
3255         return 0;
3256 }
3257
3258 /*
3259  * Unshare file descriptor table if it is being shared
3260  */
3261 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3262 {
3263         struct files_struct *fd = current->files;
3264
3265         if ((unshare_flags & CLONE_FILES) &&
3266             (fd && atomic_read(&fd->count) > 1)) {
3267                 fd = dup_fd(fd, NULL);
3268                 if (IS_ERR(fd))
3269                         return PTR_ERR(fd);
3270                 *new_fdp = fd;
3271         }
3272
3273         return 0;
3274 }
3275
3276 /*
3277  * unshare allows a process to 'unshare' part of the process
3278  * context which was originally shared using clone.  copy_*
3279  * functions used by kernel_clone() cannot be used here directly
3280  * because they modify an inactive task_struct that is being
3281  * constructed. Here we are modifying the current, active,
3282  * task_struct.
3283  */
3284 int ksys_unshare(unsigned long unshare_flags)
3285 {
3286         struct fs_struct *fs, *new_fs = NULL;
3287         struct files_struct *new_fd = NULL;
3288         struct cred *new_cred = NULL;
3289         struct nsproxy *new_nsproxy = NULL;
3290         int do_sysvsem = 0;
3291         int err;
3292
3293         /*
3294          * If unsharing a user namespace must also unshare the thread group
3295          * and unshare the filesystem root and working directories.
3296          */
3297         if (unshare_flags & CLONE_NEWUSER)
3298                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3299         /*
3300          * If unsharing vm, must also unshare signal handlers.
3301          */
3302         if (unshare_flags & CLONE_VM)
3303                 unshare_flags |= CLONE_SIGHAND;
3304         /*
3305          * If unsharing a signal handlers, must also unshare the signal queues.
3306          */
3307         if (unshare_flags & CLONE_SIGHAND)
3308                 unshare_flags |= CLONE_THREAD;
3309         /*
3310          * If unsharing namespace, must also unshare filesystem information.
3311          */
3312         if (unshare_flags & CLONE_NEWNS)
3313                 unshare_flags |= CLONE_FS;
3314
3315         err = check_unshare_flags(unshare_flags);
3316         if (err)
3317                 goto bad_unshare_out;
3318         /*
3319          * CLONE_NEWIPC must also detach from the undolist: after switching
3320          * to a new ipc namespace, the semaphore arrays from the old
3321          * namespace are unreachable.
3322          */
3323         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3324                 do_sysvsem = 1;
3325         err = unshare_fs(unshare_flags, &new_fs);
3326         if (err)
3327                 goto bad_unshare_out;
3328         err = unshare_fd(unshare_flags, &new_fd);
3329         if (err)
3330                 goto bad_unshare_cleanup_fs;
3331         err = unshare_userns(unshare_flags, &new_cred);
3332         if (err)
3333                 goto bad_unshare_cleanup_fd;
3334         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3335                                          new_cred, new_fs);
3336         if (err)
3337                 goto bad_unshare_cleanup_cred;
3338
3339         if (new_cred) {
3340                 err = set_cred_ucounts(new_cred);
3341                 if (err)
3342                         goto bad_unshare_cleanup_cred;
3343         }
3344
3345         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3346                 if (do_sysvsem) {
3347                         /*
3348                          * CLONE_SYSVSEM is equivalent to sys_exit().
3349                          */
3350                         exit_sem(current);
3351                 }
3352                 if (unshare_flags & CLONE_NEWIPC) {
3353                         /* Orphan segments in old ns (see sem above). */
3354                         exit_shm(current);
3355                         shm_init_task(current);
3356                 }
3357
3358                 if (new_nsproxy)
3359                         switch_task_namespaces(current, new_nsproxy);
3360
3361                 task_lock(current);
3362
3363                 if (new_fs) {
3364                         fs = current->fs;
3365                         spin_lock(&fs->lock);
3366                         current->fs = new_fs;
3367                         if (--fs->users)
3368                                 new_fs = NULL;
3369                         else
3370                                 new_fs = fs;
3371                         spin_unlock(&fs->lock);
3372                 }
3373
3374                 if (new_fd)
3375                         swap(current->files, new_fd);
3376
3377                 task_unlock(current);
3378
3379                 if (new_cred) {
3380                         /* Install the new user namespace */
3381                         commit_creds(new_cred);
3382                         new_cred = NULL;
3383                 }
3384         }
3385
3386         perf_event_namespaces(current);
3387
3388 bad_unshare_cleanup_cred:
3389         if (new_cred)
3390                 put_cred(new_cred);
3391 bad_unshare_cleanup_fd:
3392         if (new_fd)
3393                 put_files_struct(new_fd);
3394
3395 bad_unshare_cleanup_fs:
3396         if (new_fs)
3397                 free_fs_struct(new_fs);
3398
3399 bad_unshare_out:
3400         return err;
3401 }
3402
3403 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3404 {
3405         return ksys_unshare(unshare_flags);
3406 }
3407
3408 /*
3409  *      Helper to unshare the files of the current task.
3410  *      We don't want to expose copy_files internals to
3411  *      the exec layer of the kernel.
3412  */
3413
3414 int unshare_files(void)
3415 {
3416         struct task_struct *task = current;
3417         struct files_struct *old, *copy = NULL;
3418         int error;
3419
3420         error = unshare_fd(CLONE_FILES, &copy);
3421         if (error || !copy)
3422                 return error;
3423
3424         old = task->files;
3425         task_lock(task);
3426         task->files = copy;
3427         task_unlock(task);
3428         put_files_struct(old);
3429         return 0;
3430 }
3431
3432 int sysctl_max_threads(const struct ctl_table *table, int write,
3433                        void *buffer, size_t *lenp, loff_t *ppos)
3434 {
3435         struct ctl_table t;
3436         int ret;
3437         int threads = max_threads;
3438         int min = 1;
3439         int max = MAX_THREADS;
3440
3441         t = *table;
3442         t.data = &threads;
3443         t.extra1 = &min;
3444         t.extra2 = &max;
3445
3446         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3447         if (ret || !write)
3448                 return ret;
3449
3450         max_threads = threads;
3451
3452         return 0;
3453 }
This page took 0.226357 seconds and 4 git commands to generate.