]> Git Repo - J-linux.git/blob - kernel/fork.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;      /* Handle normal Linux uptimes. */
136 int nr_threads;                 /* The idle threads do not count.. */
137
138 static int max_threads;         /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143         NAMED_ARRAY_INDEX(MM_FILEPAGES),
144         NAMED_ARRAY_INDEX(MM_ANONPAGES),
145         NAMED_ARRAY_INDEX(MM_SWAPENTS),
146         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156         return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
161 int nr_processes(void)
162 {
163         int cpu;
164         int total = 0;
165
166         for_each_possible_cpu(cpu)
167                 total += per_cpu(process_counts, cpu);
168
169         return total;
170 }
171
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185         kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203         struct rcu_head rcu;
204         struct vm_struct *stack_vm_area;
205 };
206
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209         unsigned int i;
210
211         for (i = 0; i < NR_CACHED_STACKS; i++) {
212                 struct vm_struct *tmp = NULL;
213
214                 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215                         return true;
216         }
217         return false;
218 }
219
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225                 return;
226
227         vfree(vm_stack);
228 }
229
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232         struct vm_stack *vm_stack = tsk->stack;
233
234         vm_stack->stack_vm_area = tsk->stack_vm_area;
235         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241         int i;
242
243         for (i = 0; i < NR_CACHED_STACKS; i++) {
244                 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246                 if (!vm_stack)
247                         continue;
248
249                 vfree(vm_stack->addr);
250                 cached_vm_stacks[i] = NULL;
251         }
252
253         return 0;
254 }
255
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258         int i;
259         int ret;
260         int nr_charged = 0;
261
262         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266                 if (ret)
267                         goto err;
268                 nr_charged++;
269         }
270         return 0;
271 err:
272         for (i = 0; i < nr_charged; i++)
273                 memcg_kmem_uncharge_page(vm->pages[i], 0);
274         return ret;
275 }
276
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279         struct vm_struct *vm;
280         void *stack;
281         int i;
282
283         for (i = 0; i < NR_CACHED_STACKS; i++) {
284                 struct vm_struct *s;
285
286                 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288                 if (!s)
289                         continue;
290
291                 /* Reset stack metadata. */
292                 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294                 stack = kasan_reset_tag(s->addr);
295
296                 /* Clear stale pointers from reused stack. */
297                 memset(stack, 0, THREAD_SIZE);
298
299                 if (memcg_charge_kernel_stack(s)) {
300                         vfree(s->addr);
301                         return -ENOMEM;
302                 }
303
304                 tsk->stack_vm_area = s;
305                 tsk->stack = stack;
306                 return 0;
307         }
308
309         /*
310          * Allocated stacks are cached and later reused by new threads,
311          * so memcg accounting is performed manually on assigning/releasing
312          * stacks to tasks. Drop __GFP_ACCOUNT.
313          */
314         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315                                      VMALLOC_START, VMALLOC_END,
316                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
317                                      PAGE_KERNEL,
318                                      0, node, __builtin_return_address(0));
319         if (!stack)
320                 return -ENOMEM;
321
322         vm = find_vm_area(stack);
323         if (memcg_charge_kernel_stack(vm)) {
324                 vfree(stack);
325                 return -ENOMEM;
326         }
327         /*
328          * We can't call find_vm_area() in interrupt context, and
329          * free_thread_stack() can be called in interrupt context,
330          * so cache the vm_struct.
331          */
332         tsk->stack_vm_area = vm;
333         stack = kasan_reset_tag(stack);
334         tsk->stack = stack;
335         return 0;
336 }
337
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341                 thread_stack_delayed_free(tsk);
342
343         tsk->stack = NULL;
344         tsk->stack_vm_area = NULL;
345 }
346
347 #  else /* !CONFIG_VMAP_STACK */
348
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356         struct rcu_head *rh = tsk->stack;
357
358         call_rcu(rh, thread_stack_free_rcu);
359 }
360
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364                                              THREAD_SIZE_ORDER);
365
366         if (likely(page)) {
367                 tsk->stack = kasan_reset_tag(page_address(page));
368                 return 0;
369         }
370         return -ENOMEM;
371 }
372
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375         thread_stack_delayed_free(tsk);
376         tsk->stack = NULL;
377 }
378
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381
382 static struct kmem_cache *thread_stack_cache;
383
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386         kmem_cache_free(thread_stack_cache, rh);
387 }
388
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391         struct rcu_head *rh = tsk->stack;
392
393         call_rcu(rh, thread_stack_free_rcu);
394 }
395
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398         unsigned long *stack;
399         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400         stack = kasan_reset_tag(stack);
401         tsk->stack = stack;
402         return stack ? 0 : -ENOMEM;
403 }
404
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407         thread_stack_delayed_free(tsk);
408         tsk->stack = NULL;
409 }
410
411 void thread_stack_cache_init(void)
412 {
413         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
415                                         THREAD_SIZE, NULL);
416         BUG_ON(thread_stack_cache == NULL);
417 }
418
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438
439 #ifdef CONFIG_PER_VMA_LOCK
440
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447         if (!vma->vm_lock)
448                 return false;
449
450         init_rwsem(&vma->vm_lock->lock);
451         vma->vm_lock_seq = -1;
452
453         return true;
454 }
455
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460
461 #else /* CONFIG_PER_VMA_LOCK */
462
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465
466 #endif /* CONFIG_PER_VMA_LOCK */
467
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470         struct vm_area_struct *vma;
471
472         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473         if (!vma)
474                 return NULL;
475
476         vma_init(vma, mm);
477         if (!vma_lock_alloc(vma)) {
478                 kmem_cache_free(vm_area_cachep, vma);
479                 return NULL;
480         }
481
482         return vma;
483 }
484
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488
489         if (!new)
490                 return NULL;
491
492         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494         /*
495          * orig->shared.rb may be modified concurrently, but the clone
496          * will be reinitialized.
497          */
498         data_race(memcpy(new, orig, sizeof(*new)));
499         if (!vma_lock_alloc(new)) {
500                 kmem_cache_free(vm_area_cachep, new);
501                 return NULL;
502         }
503         INIT_LIST_HEAD(&new->anon_vma_chain);
504         vma_numab_state_init(new);
505         dup_anon_vma_name(orig, new);
506
507         return new;
508 }
509
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512         vma_numab_state_free(vma);
513         free_anon_vma_name(vma);
514         vma_lock_free(vma);
515         kmem_cache_free(vm_area_cachep, vma);
516 }
517
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522                                                   vm_rcu);
523
524         /* The vma should not be locked while being destroyed. */
525         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526         __vm_area_free(vma);
527 }
528 #endif
529
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535         __vm_area_free(vma);
536 #endif
537 }
538
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542                 struct vm_struct *vm = task_stack_vm_area(tsk);
543                 int i;
544
545                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547                                               account * (PAGE_SIZE / 1024));
548         } else {
549                 void *stack = task_stack_page(tsk);
550
551                 /* All stack pages are in the same node. */
552                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553                                       account * (THREAD_SIZE / 1024));
554         }
555 }
556
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559         account_kernel_stack(tsk, -1);
560
561         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562                 struct vm_struct *vm;
563                 int i;
564
565                 vm = task_stack_vm_area(tsk);
566                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567                         memcg_kmem_uncharge_page(vm->pages[i], 0);
568         }
569 }
570
571 static void release_task_stack(struct task_struct *tsk)
572 {
573         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574                 return;  /* Better to leak the stack than to free prematurely */
575
576         free_thread_stack(tsk);
577 }
578
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582         if (refcount_dec_and_test(&tsk->stack_refcount))
583                 release_task_stack(tsk);
584 }
585 #endif
586
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590         WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592         release_user_cpus_ptr(tsk);
593         scs_release(tsk);
594
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596         /*
597          * The task is finally done with both the stack and thread_info,
598          * so free both.
599          */
600         release_task_stack(tsk);
601 #else
602         /*
603          * If the task had a separate stack allocation, it should be gone
604          * by now.
605          */
606         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608         rt_mutex_debug_task_free(tsk);
609         ftrace_graph_exit_task(tsk);
610         arch_release_task_struct(tsk);
611         if (tsk->flags & PF_KTHREAD)
612                 free_kthread_struct(tsk);
613         bpf_task_storage_free(tsk);
614         free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620         struct file *exe_file;
621
622         exe_file = get_mm_exe_file(oldmm);
623         RCU_INIT_POINTER(mm->exe_file, exe_file);
624         /*
625          * We depend on the oldmm having properly denied write access to the
626          * exe_file already.
627          */
628         if (exe_file && deny_write_access(exe_file))
629                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
630 }
631
632 #ifdef CONFIG_MMU
633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634                                         struct mm_struct *oldmm)
635 {
636         struct vm_area_struct *mpnt, *tmp;
637         int retval;
638         unsigned long charge = 0;
639         LIST_HEAD(uf);
640         VMA_ITERATOR(vmi, mm, 0);
641
642         if (mmap_write_lock_killable(oldmm))
643                 return -EINTR;
644         flush_cache_dup_mm(oldmm);
645         uprobe_dup_mmap(oldmm, mm);
646         /*
647          * Not linked in yet - no deadlock potential:
648          */
649         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
650
651         /* No ordering required: file already has been exposed. */
652         dup_mm_exe_file(mm, oldmm);
653
654         mm->total_vm = oldmm->total_vm;
655         mm->data_vm = oldmm->data_vm;
656         mm->exec_vm = oldmm->exec_vm;
657         mm->stack_vm = oldmm->stack_vm;
658
659         /* Use __mt_dup() to efficiently build an identical maple tree. */
660         retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
661         if (unlikely(retval))
662                 goto out;
663
664         mt_clear_in_rcu(vmi.mas.tree);
665         for_each_vma(vmi, mpnt) {
666                 struct file *file;
667
668                 vma_start_write(mpnt);
669                 if (mpnt->vm_flags & VM_DONTCOPY) {
670                         retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
671                                                     mpnt->vm_end, GFP_KERNEL);
672                         if (retval)
673                                 goto loop_out;
674
675                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
676                         continue;
677                 }
678                 charge = 0;
679                 /*
680                  * Don't duplicate many vmas if we've been oom-killed (for
681                  * example)
682                  */
683                 if (fatal_signal_pending(current)) {
684                         retval = -EINTR;
685                         goto loop_out;
686                 }
687                 if (mpnt->vm_flags & VM_ACCOUNT) {
688                         unsigned long len = vma_pages(mpnt);
689
690                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
691                                 goto fail_nomem;
692                         charge = len;
693                 }
694                 tmp = vm_area_dup(mpnt);
695                 if (!tmp)
696                         goto fail_nomem;
697                 retval = vma_dup_policy(mpnt, tmp);
698                 if (retval)
699                         goto fail_nomem_policy;
700                 tmp->vm_mm = mm;
701                 retval = dup_userfaultfd(tmp, &uf);
702                 if (retval)
703                         goto fail_nomem_anon_vma_fork;
704                 if (tmp->vm_flags & VM_WIPEONFORK) {
705                         /*
706                          * VM_WIPEONFORK gets a clean slate in the child.
707                          * Don't prepare anon_vma until fault since we don't
708                          * copy page for current vma.
709                          */
710                         tmp->anon_vma = NULL;
711                 } else if (anon_vma_fork(tmp, mpnt))
712                         goto fail_nomem_anon_vma_fork;
713                 vm_flags_clear(tmp, VM_LOCKED_MASK);
714                 /*
715                  * Copy/update hugetlb private vma information.
716                  */
717                 if (is_vm_hugetlb_page(tmp))
718                         hugetlb_dup_vma_private(tmp);
719
720                 /*
721                  * Link the vma into the MT. After using __mt_dup(), memory
722                  * allocation is not necessary here, so it cannot fail.
723                  */
724                 vma_iter_bulk_store(&vmi, tmp);
725
726                 mm->map_count++;
727
728                 if (tmp->vm_ops && tmp->vm_ops->open)
729                         tmp->vm_ops->open(tmp);
730
731                 file = tmp->vm_file;
732                 if (file) {
733                         struct address_space *mapping = file->f_mapping;
734
735                         get_file(file);
736                         i_mmap_lock_write(mapping);
737                         if (vma_is_shared_maywrite(tmp))
738                                 mapping_allow_writable(mapping);
739                         flush_dcache_mmap_lock(mapping);
740                         /* insert tmp into the share list, just after mpnt */
741                         vma_interval_tree_insert_after(tmp, mpnt,
742                                         &mapping->i_mmap);
743                         flush_dcache_mmap_unlock(mapping);
744                         i_mmap_unlock_write(mapping);
745                 }
746
747                 if (!(tmp->vm_flags & VM_WIPEONFORK))
748                         retval = copy_page_range(tmp, mpnt);
749
750                 if (retval) {
751                         mpnt = vma_next(&vmi);
752                         goto loop_out;
753                 }
754         }
755         /* a new mm has just been created */
756         retval = arch_dup_mmap(oldmm, mm);
757 loop_out:
758         vma_iter_free(&vmi);
759         if (!retval) {
760                 mt_set_in_rcu(vmi.mas.tree);
761                 ksm_fork(mm, oldmm);
762                 khugepaged_fork(mm, oldmm);
763         } else if (mpnt) {
764                 /*
765                  * The entire maple tree has already been duplicated. If the
766                  * mmap duplication fails, mark the failure point with
767                  * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768                  * stop releasing VMAs that have not been duplicated after this
769                  * point.
770                  */
771                 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772                 mas_store(&vmi.mas, XA_ZERO_ENTRY);
773         }
774 out:
775         mmap_write_unlock(mm);
776         flush_tlb_mm(oldmm);
777         mmap_write_unlock(oldmm);
778         if (!retval)
779                 dup_userfaultfd_complete(&uf);
780         else
781                 dup_userfaultfd_fail(&uf);
782         return retval;
783
784 fail_nomem_anon_vma_fork:
785         mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787         vm_area_free(tmp);
788 fail_nomem:
789         retval = -ENOMEM;
790         vm_unacct_memory(charge);
791         goto loop_out;
792 }
793
794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796         mm->pgd = pgd_alloc(mm);
797         if (unlikely(!mm->pgd))
798                 return -ENOMEM;
799         return 0;
800 }
801
802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804         pgd_free(mm, mm->pgd);
805 }
806 #else
807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809         mmap_write_lock(oldmm);
810         dup_mm_exe_file(mm, oldmm);
811         mmap_write_unlock(oldmm);
812         return 0;
813 }
814 #define mm_alloc_pgd(mm)        (0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817
818 static void check_mm(struct mm_struct *mm)
819 {
820         int i;
821
822         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823                          "Please make sure 'struct resident_page_types[]' is updated as well");
824
825         for (i = 0; i < NR_MM_COUNTERS; i++) {
826                 long x = percpu_counter_sum(&mm->rss_stat[i]);
827
828                 if (unlikely(x))
829                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830                                  mm, resident_page_types[i], x);
831         }
832
833         if (mm_pgtables_bytes(mm))
834                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835                                 mm_pgtables_bytes(mm));
836
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
838         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841
842 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
844
845 static void do_check_lazy_tlb(void *arg)
846 {
847         struct mm_struct *mm = arg;
848
849         WARN_ON_ONCE(current->active_mm == mm);
850 }
851
852 static void do_shoot_lazy_tlb(void *arg)
853 {
854         struct mm_struct *mm = arg;
855
856         if (current->active_mm == mm) {
857                 WARN_ON_ONCE(current->mm);
858                 current->active_mm = &init_mm;
859                 switch_mm(mm, &init_mm, current);
860         }
861 }
862
863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866                 /*
867                  * In this case, lazy tlb mms are refounted and would not reach
868                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
869                  */
870                 return;
871         }
872
873         /*
874          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875          * requires lazy mm users to switch to another mm when the refcount
876          * drops to zero, before the mm is freed. This requires IPIs here to
877          * switch kernel threads to init_mm.
878          *
879          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880          * switch with the final userspace teardown TLB flush which leaves the
881          * mm lazy on this CPU but no others, reducing the need for additional
882          * IPIs here. There are cases where a final IPI is still required here,
883          * such as the final mmdrop being performed on a different CPU than the
884          * one exiting, or kernel threads using the mm when userspace exits.
885          *
886          * IPI overheads have not found to be expensive, but they could be
887          * reduced in a number of possible ways, for example (roughly
888          * increasing order of complexity):
889          * - The last lazy reference created by exit_mm() could instead switch
890          *   to init_mm, however it's probable this will run on the same CPU
891          *   immediately afterwards, so this may not reduce IPIs much.
892          * - A batch of mms requiring IPIs could be gathered and freed at once.
893          * - CPUs store active_mm where it can be remotely checked without a
894          *   lock, to filter out false-positives in the cpumask.
895          * - After mm_users or mm_count reaches zero, switching away from the
896          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897          *   with some batching or delaying of the final IPIs.
898          * - A delayed freeing and RCU-like quiescing sequence based on mm
899          *   switching to avoid IPIs completely.
900          */
901         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
911 void __mmdrop(struct mm_struct *mm)
912 {
913         BUG_ON(mm == &init_mm);
914         WARN_ON_ONCE(mm == current->mm);
915
916         /* Ensure no CPUs are using this as their lazy tlb mm */
917         cleanup_lazy_tlbs(mm);
918
919         WARN_ON_ONCE(mm == current->active_mm);
920         mm_free_pgd(mm);
921         destroy_context(mm);
922         mmu_notifier_subscriptions_destroy(mm);
923         check_mm(mm);
924         put_user_ns(mm->user_ns);
925         mm_pasid_drop(mm);
926         mm_destroy_cid(mm);
927         percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928
929         free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932
933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935         struct mm_struct *mm;
936
937         mm = container_of(work, struct mm_struct, async_put_work);
938         __mmdrop(mm);
939 }
940
941 static void mmdrop_async(struct mm_struct *mm)
942 {
943         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945                 schedule_work(&mm->async_put_work);
946         }
947 }
948
949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951         taskstats_tgid_free(sig);
952         sched_autogroup_exit(sig);
953         /*
954          * __mmdrop is not safe to call from softirq context on x86 due to
955          * pgd_dtor so postpone it to the async context
956          */
957         if (sig->oom_mm)
958                 mmdrop_async(sig->oom_mm);
959         kmem_cache_free(signal_cachep, sig);
960 }
961
962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964         if (refcount_dec_and_test(&sig->sigcnt))
965                 free_signal_struct(sig);
966 }
967
968 void __put_task_struct(struct task_struct *tsk)
969 {
970         WARN_ON(!tsk->exit_state);
971         WARN_ON(refcount_read(&tsk->usage));
972         WARN_ON(tsk == current);
973
974         sched_ext_free(tsk);
975         io_uring_free(tsk);
976         cgroup_free(tsk);
977         task_numa_free(tsk, true);
978         security_task_free(tsk);
979         exit_creds(tsk);
980         delayacct_tsk_free(tsk);
981         put_signal_struct(tsk->signal);
982         sched_core_free(tsk);
983         free_task(tsk);
984 }
985 EXPORT_SYMBOL_GPL(__put_task_struct);
986
987 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988 {
989         struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990
991         __put_task_struct(task);
992 }
993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994
995 void __init __weak arch_task_cache_init(void) { }
996
997 /*
998  * set_max_threads
999  */
1000 static void __init set_max_threads(unsigned int max_threads_suggested)
1001 {
1002         u64 threads;
1003         unsigned long nr_pages = memblock_estimated_nr_free_pages();
1004
1005         /*
1006          * The number of threads shall be limited such that the thread
1007          * structures may only consume a small part of the available memory.
1008          */
1009         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1010                 threads = MAX_THREADS;
1011         else
1012                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1013                                     (u64) THREAD_SIZE * 8UL);
1014
1015         if (threads > max_threads_suggested)
1016                 threads = max_threads_suggested;
1017
1018         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1019 }
1020
1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1022 /* Initialized by the architecture: */
1023 int arch_task_struct_size __read_mostly;
1024 #endif
1025
1026 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028         /* Fetch thread_struct whitelist for the architecture. */
1029         arch_thread_struct_whitelist(offset, size);
1030
1031         /*
1032          * Handle zero-sized whitelist or empty thread_struct, otherwise
1033          * adjust offset to position of thread_struct in task_struct.
1034          */
1035         if (unlikely(*size == 0))
1036                 *offset = 0;
1037         else
1038                 *offset += offsetof(struct task_struct, thread);
1039 }
1040
1041 void __init fork_init(void)
1042 {
1043         int i;
1044 #ifndef ARCH_MIN_TASKALIGN
1045 #define ARCH_MIN_TASKALIGN      0
1046 #endif
1047         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1048         unsigned long useroffset, usersize;
1049
1050         /* create a slab on which task_structs can be allocated */
1051         task_struct_whitelist(&useroffset, &usersize);
1052         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1053                         arch_task_struct_size, align,
1054                         SLAB_PANIC|SLAB_ACCOUNT,
1055                         useroffset, usersize, NULL);
1056
1057         /* do the arch specific task caches init */
1058         arch_task_cache_init();
1059
1060         set_max_threads(MAX_THREADS);
1061
1062         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064         init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065                 init_task.signal->rlim[RLIMIT_NPROC];
1066
1067         for (i = 0; i < UCOUNT_COUNTS; i++)
1068                 init_user_ns.ucount_max[i] = max_threads/2;
1069
1070         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1071         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1072         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1074
1075 #ifdef CONFIG_VMAP_STACK
1076         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077                           NULL, free_vm_stack_cache);
1078 #endif
1079
1080         scs_init();
1081
1082         lockdep_init_task(&init_task);
1083         uprobes_init();
1084 }
1085
1086 int __weak arch_dup_task_struct(struct task_struct *dst,
1087                                                struct task_struct *src)
1088 {
1089         *dst = *src;
1090         return 0;
1091 }
1092
1093 void set_task_stack_end_magic(struct task_struct *tsk)
1094 {
1095         unsigned long *stackend;
1096
1097         stackend = end_of_stack(tsk);
1098         *stackend = STACK_END_MAGIC;    /* for overflow detection */
1099 }
1100
1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102 {
1103         struct task_struct *tsk;
1104         int err;
1105
1106         if (node == NUMA_NO_NODE)
1107                 node = tsk_fork_get_node(orig);
1108         tsk = alloc_task_struct_node(node);
1109         if (!tsk)
1110                 return NULL;
1111
1112         err = arch_dup_task_struct(tsk, orig);
1113         if (err)
1114                 goto free_tsk;
1115
1116         err = alloc_thread_stack_node(tsk, node);
1117         if (err)
1118                 goto free_tsk;
1119
1120 #ifdef CONFIG_THREAD_INFO_IN_TASK
1121         refcount_set(&tsk->stack_refcount, 1);
1122 #endif
1123         account_kernel_stack(tsk, 1);
1124
1125         err = scs_prepare(tsk, node);
1126         if (err)
1127                 goto free_stack;
1128
1129 #ifdef CONFIG_SECCOMP
1130         /*
1131          * We must handle setting up seccomp filters once we're under
1132          * the sighand lock in case orig has changed between now and
1133          * then. Until then, filter must be NULL to avoid messing up
1134          * the usage counts on the error path calling free_task.
1135          */
1136         tsk->seccomp.filter = NULL;
1137 #endif
1138
1139         setup_thread_stack(tsk, orig);
1140         clear_user_return_notifier(tsk);
1141         clear_tsk_need_resched(tsk);
1142         set_task_stack_end_magic(tsk);
1143         clear_syscall_work_syscall_user_dispatch(tsk);
1144
1145 #ifdef CONFIG_STACKPROTECTOR
1146         tsk->stack_canary = get_random_canary();
1147 #endif
1148         if (orig->cpus_ptr == &orig->cpus_mask)
1149                 tsk->cpus_ptr = &tsk->cpus_mask;
1150         dup_user_cpus_ptr(tsk, orig, node);
1151
1152         /*
1153          * One for the user space visible state that goes away when reaped.
1154          * One for the scheduler.
1155          */
1156         refcount_set(&tsk->rcu_users, 2);
1157         /* One for the rcu users */
1158         refcount_set(&tsk->usage, 1);
1159 #ifdef CONFIG_BLK_DEV_IO_TRACE
1160         tsk->btrace_seq = 0;
1161 #endif
1162         tsk->splice_pipe = NULL;
1163         tsk->task_frag.page = NULL;
1164         tsk->wake_q.next = NULL;
1165         tsk->worker_private = NULL;
1166
1167         kcov_task_init(tsk);
1168         kmsan_task_create(tsk);
1169         kmap_local_fork(tsk);
1170
1171 #ifdef CONFIG_FAULT_INJECTION
1172         tsk->fail_nth = 0;
1173 #endif
1174
1175 #ifdef CONFIG_BLK_CGROUP
1176         tsk->throttle_disk = NULL;
1177         tsk->use_memdelay = 0;
1178 #endif
1179
1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1181         tsk->pasid_activated = 0;
1182 #endif
1183
1184 #ifdef CONFIG_MEMCG
1185         tsk->active_memcg = NULL;
1186 #endif
1187
1188 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1189         tsk->reported_split_lock = 0;
1190 #endif
1191
1192 #ifdef CONFIG_SCHED_MM_CID
1193         tsk->mm_cid = -1;
1194         tsk->last_mm_cid = -1;
1195         tsk->mm_cid_active = 0;
1196         tsk->migrate_from_cpu = -1;
1197 #endif
1198         return tsk;
1199
1200 free_stack:
1201         exit_task_stack_account(tsk);
1202         free_thread_stack(tsk);
1203 free_tsk:
1204         free_task_struct(tsk);
1205         return NULL;
1206 }
1207
1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209
1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211
1212 static int __init coredump_filter_setup(char *s)
1213 {
1214         default_dump_filter =
1215                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216                 MMF_DUMP_FILTER_MASK;
1217         return 1;
1218 }
1219
1220 __setup("coredump_filter=", coredump_filter_setup);
1221
1222 #include <linux/init_task.h>
1223
1224 static void mm_init_aio(struct mm_struct *mm)
1225 {
1226 #ifdef CONFIG_AIO
1227         spin_lock_init(&mm->ioctx_lock);
1228         mm->ioctx_table = NULL;
1229 #endif
1230 }
1231
1232 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233                                            struct task_struct *p)
1234 {
1235 #ifdef CONFIG_MEMCG
1236         if (mm->owner == p)
1237                 WRITE_ONCE(mm->owner, NULL);
1238 #endif
1239 }
1240
1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244         mm->owner = p;
1245 #endif
1246 }
1247
1248 static void mm_init_uprobes_state(struct mm_struct *mm)
1249 {
1250 #ifdef CONFIG_UPROBES
1251         mm->uprobes_state.xol_area = NULL;
1252 #endif
1253 }
1254
1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256         struct user_namespace *user_ns)
1257 {
1258         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1259         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1260         atomic_set(&mm->mm_users, 1);
1261         atomic_set(&mm->mm_count, 1);
1262         seqcount_init(&mm->write_protect_seq);
1263         mmap_init_lock(mm);
1264         INIT_LIST_HEAD(&mm->mmlist);
1265 #ifdef CONFIG_PER_VMA_LOCK
1266         mm->mm_lock_seq = 0;
1267 #endif
1268         mm_pgtables_bytes_init(mm);
1269         mm->map_count = 0;
1270         mm->locked_vm = 0;
1271         atomic64_set(&mm->pinned_vm, 0);
1272         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1273         spin_lock_init(&mm->page_table_lock);
1274         spin_lock_init(&mm->arg_lock);
1275         mm_init_cpumask(mm);
1276         mm_init_aio(mm);
1277         mm_init_owner(mm, p);
1278         mm_pasid_init(mm);
1279         RCU_INIT_POINTER(mm->exe_file, NULL);
1280         mmu_notifier_subscriptions_init(mm);
1281         init_tlb_flush_pending(mm);
1282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1283         mm->pmd_huge_pte = NULL;
1284 #endif
1285         mm_init_uprobes_state(mm);
1286         hugetlb_count_init(mm);
1287
1288         if (current->mm) {
1289                 mm->flags = mmf_init_flags(current->mm->flags);
1290                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291         } else {
1292                 mm->flags = default_dump_filter;
1293                 mm->def_flags = 0;
1294         }
1295
1296         if (mm_alloc_pgd(mm))
1297                 goto fail_nopgd;
1298
1299         if (init_new_context(p, mm))
1300                 goto fail_nocontext;
1301
1302         if (mm_alloc_cid(mm, p))
1303                 goto fail_cid;
1304
1305         if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306                                      NR_MM_COUNTERS))
1307                 goto fail_pcpu;
1308
1309         mm->user_ns = get_user_ns(user_ns);
1310         lru_gen_init_mm(mm);
1311         return mm;
1312
1313 fail_pcpu:
1314         mm_destroy_cid(mm);
1315 fail_cid:
1316         destroy_context(mm);
1317 fail_nocontext:
1318         mm_free_pgd(mm);
1319 fail_nopgd:
1320         free_mm(mm);
1321         return NULL;
1322 }
1323
1324 /*
1325  * Allocate and initialize an mm_struct.
1326  */
1327 struct mm_struct *mm_alloc(void)
1328 {
1329         struct mm_struct *mm;
1330
1331         mm = allocate_mm();
1332         if (!mm)
1333                 return NULL;
1334
1335         memset(mm, 0, sizeof(*mm));
1336         return mm_init(mm, current, current_user_ns());
1337 }
1338 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339
1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342         VM_BUG_ON(atomic_read(&mm->mm_users));
1343
1344         uprobe_clear_state(mm);
1345         exit_aio(mm);
1346         ksm_exit(mm);
1347         khugepaged_exit(mm); /* must run before exit_mmap */
1348         exit_mmap(mm);
1349         mm_put_huge_zero_folio(mm);
1350         set_mm_exe_file(mm, NULL);
1351         if (!list_empty(&mm->mmlist)) {
1352                 spin_lock(&mmlist_lock);
1353                 list_del(&mm->mmlist);
1354                 spin_unlock(&mmlist_lock);
1355         }
1356         if (mm->binfmt)
1357                 module_put(mm->binfmt->module);
1358         lru_gen_del_mm(mm);
1359         mmdrop(mm);
1360 }
1361
1362 /*
1363  * Decrement the use count and release all resources for an mm.
1364  */
1365 void mmput(struct mm_struct *mm)
1366 {
1367         might_sleep();
1368
1369         if (atomic_dec_and_test(&mm->mm_users))
1370                 __mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373
1374 #ifdef CONFIG_MMU
1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377         struct mm_struct *mm = container_of(work, struct mm_struct,
1378                                             async_put_work);
1379
1380         __mmput(mm);
1381 }
1382
1383 void mmput_async(struct mm_struct *mm)
1384 {
1385         if (atomic_dec_and_test(&mm->mm_users)) {
1386                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387                 schedule_work(&mm->async_put_work);
1388         }
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392
1393 /**
1394  * set_mm_exe_file - change a reference to the mm's executable file
1395  * @mm: The mm to change.
1396  * @new_exe_file: The new file to use.
1397  *
1398  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399  *
1400  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401  * invocations: in mmput() nobody alive left, in execve it happens before
1402  * the new mm is made visible to anyone.
1403  *
1404  * Can only fail if new_exe_file != NULL.
1405  */
1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408         struct file *old_exe_file;
1409
1410         /*
1411          * It is safe to dereference the exe_file without RCU as
1412          * this function is only called if nobody else can access
1413          * this mm -- see comment above for justification.
1414          */
1415         old_exe_file = rcu_dereference_raw(mm->exe_file);
1416
1417         if (new_exe_file) {
1418                 /*
1419                  * We expect the caller (i.e., sys_execve) to already denied
1420                  * write access, so this is unlikely to fail.
1421                  */
1422                 if (unlikely(deny_write_access(new_exe_file)))
1423                         return -EACCES;
1424                 get_file(new_exe_file);
1425         }
1426         rcu_assign_pointer(mm->exe_file, new_exe_file);
1427         if (old_exe_file) {
1428                 allow_write_access(old_exe_file);
1429                 fput(old_exe_file);
1430         }
1431         return 0;
1432 }
1433
1434 /**
1435  * replace_mm_exe_file - replace a reference to the mm's executable file
1436  * @mm: The mm to change.
1437  * @new_exe_file: The new file to use.
1438  *
1439  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1440  *
1441  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1442  */
1443 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1444 {
1445         struct vm_area_struct *vma;
1446         struct file *old_exe_file;
1447         int ret = 0;
1448
1449         /* Forbid mm->exe_file change if old file still mapped. */
1450         old_exe_file = get_mm_exe_file(mm);
1451         if (old_exe_file) {
1452                 VMA_ITERATOR(vmi, mm, 0);
1453                 mmap_read_lock(mm);
1454                 for_each_vma(vmi, vma) {
1455                         if (!vma->vm_file)
1456                                 continue;
1457                         if (path_equal(&vma->vm_file->f_path,
1458                                        &old_exe_file->f_path)) {
1459                                 ret = -EBUSY;
1460                                 break;
1461                         }
1462                 }
1463                 mmap_read_unlock(mm);
1464                 fput(old_exe_file);
1465                 if (ret)
1466                         return ret;
1467         }
1468
1469         ret = deny_write_access(new_exe_file);
1470         if (ret)
1471                 return -EACCES;
1472         get_file(new_exe_file);
1473
1474         /* set the new file */
1475         mmap_write_lock(mm);
1476         old_exe_file = rcu_dereference_raw(mm->exe_file);
1477         rcu_assign_pointer(mm->exe_file, new_exe_file);
1478         mmap_write_unlock(mm);
1479
1480         if (old_exe_file) {
1481                 allow_write_access(old_exe_file);
1482                 fput(old_exe_file);
1483         }
1484         return 0;
1485 }
1486
1487 /**
1488  * get_mm_exe_file - acquire a reference to the mm's executable file
1489  * @mm: The mm of interest.
1490  *
1491  * Returns %NULL if mm has no associated executable file.
1492  * User must release file via fput().
1493  */
1494 struct file *get_mm_exe_file(struct mm_struct *mm)
1495 {
1496         struct file *exe_file;
1497
1498         rcu_read_lock();
1499         exe_file = get_file_rcu(&mm->exe_file);
1500         rcu_read_unlock();
1501         return exe_file;
1502 }
1503
1504 /**
1505  * get_task_exe_file - acquire a reference to the task's executable file
1506  * @task: The task.
1507  *
1508  * Returns %NULL if task's mm (if any) has no associated executable file or
1509  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1510  * User must release file via fput().
1511  */
1512 struct file *get_task_exe_file(struct task_struct *task)
1513 {
1514         struct file *exe_file = NULL;
1515         struct mm_struct *mm;
1516
1517         task_lock(task);
1518         mm = task->mm;
1519         if (mm) {
1520                 if (!(task->flags & PF_KTHREAD))
1521                         exe_file = get_mm_exe_file(mm);
1522         }
1523         task_unlock(task);
1524         return exe_file;
1525 }
1526
1527 /**
1528  * get_task_mm - acquire a reference to the task's mm
1529  * @task: The task.
1530  *
1531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1532  * this kernel workthread has transiently adopted a user mm with use_mm,
1533  * to do its AIO) is not set and if so returns a reference to it, after
1534  * bumping up the use count.  User must release the mm via mmput()
1535  * after use.  Typically used by /proc and ptrace.
1536  */
1537 struct mm_struct *get_task_mm(struct task_struct *task)
1538 {
1539         struct mm_struct *mm;
1540
1541         if (task->flags & PF_KTHREAD)
1542                 return NULL;
1543
1544         task_lock(task);
1545         mm = task->mm;
1546         if (mm)
1547                 mmget(mm);
1548         task_unlock(task);
1549         return mm;
1550 }
1551 EXPORT_SYMBOL_GPL(get_task_mm);
1552
1553 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1554 {
1555         struct mm_struct *mm;
1556         int err;
1557
1558         err =  down_read_killable(&task->signal->exec_update_lock);
1559         if (err)
1560                 return ERR_PTR(err);
1561
1562         mm = get_task_mm(task);
1563         if (!mm) {
1564                 mm = ERR_PTR(-ESRCH);
1565         } else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1566                 mmput(mm);
1567                 mm = ERR_PTR(-EACCES);
1568         }
1569         up_read(&task->signal->exec_update_lock);
1570
1571         return mm;
1572 }
1573
1574 static void complete_vfork_done(struct task_struct *tsk)
1575 {
1576         struct completion *vfork;
1577
1578         task_lock(tsk);
1579         vfork = tsk->vfork_done;
1580         if (likely(vfork)) {
1581                 tsk->vfork_done = NULL;
1582                 complete(vfork);
1583         }
1584         task_unlock(tsk);
1585 }
1586
1587 static int wait_for_vfork_done(struct task_struct *child,
1588                                 struct completion *vfork)
1589 {
1590         unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1591         int killed;
1592
1593         cgroup_enter_frozen();
1594         killed = wait_for_completion_state(vfork, state);
1595         cgroup_leave_frozen(false);
1596
1597         if (killed) {
1598                 task_lock(child);
1599                 child->vfork_done = NULL;
1600                 task_unlock(child);
1601         }
1602
1603         put_task_struct(child);
1604         return killed;
1605 }
1606
1607 /* Please note the differences between mmput and mm_release.
1608  * mmput is called whenever we stop holding onto a mm_struct,
1609  * error success whatever.
1610  *
1611  * mm_release is called after a mm_struct has been removed
1612  * from the current process.
1613  *
1614  * This difference is important for error handling, when we
1615  * only half set up a mm_struct for a new process and need to restore
1616  * the old one.  Because we mmput the new mm_struct before
1617  * restoring the old one. . .
1618  * Eric Biederman 10 January 1998
1619  */
1620 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1621 {
1622         uprobe_free_utask(tsk);
1623
1624         /* Get rid of any cached register state */
1625         deactivate_mm(tsk, mm);
1626
1627         /*
1628          * Signal userspace if we're not exiting with a core dump
1629          * because we want to leave the value intact for debugging
1630          * purposes.
1631          */
1632         if (tsk->clear_child_tid) {
1633                 if (atomic_read(&mm->mm_users) > 1) {
1634                         /*
1635                          * We don't check the error code - if userspace has
1636                          * not set up a proper pointer then tough luck.
1637                          */
1638                         put_user(0, tsk->clear_child_tid);
1639                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1640                                         1, NULL, NULL, 0, 0);
1641                 }
1642                 tsk->clear_child_tid = NULL;
1643         }
1644
1645         /*
1646          * All done, finally we can wake up parent and return this mm to him.
1647          * Also kthread_stop() uses this completion for synchronization.
1648          */
1649         if (tsk->vfork_done)
1650                 complete_vfork_done(tsk);
1651 }
1652
1653 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 {
1655         futex_exit_release(tsk);
1656         mm_release(tsk, mm);
1657 }
1658
1659 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1660 {
1661         futex_exec_release(tsk);
1662         mm_release(tsk, mm);
1663 }
1664
1665 /**
1666  * dup_mm() - duplicates an existing mm structure
1667  * @tsk: the task_struct with which the new mm will be associated.
1668  * @oldmm: the mm to duplicate.
1669  *
1670  * Allocates a new mm structure and duplicates the provided @oldmm structure
1671  * content into it.
1672  *
1673  * Return: the duplicated mm or NULL on failure.
1674  */
1675 static struct mm_struct *dup_mm(struct task_struct *tsk,
1676                                 struct mm_struct *oldmm)
1677 {
1678         struct mm_struct *mm;
1679         int err;
1680
1681         mm = allocate_mm();
1682         if (!mm)
1683                 goto fail_nomem;
1684
1685         memcpy(mm, oldmm, sizeof(*mm));
1686
1687         if (!mm_init(mm, tsk, mm->user_ns))
1688                 goto fail_nomem;
1689
1690         uprobe_start_dup_mmap();
1691         err = dup_mmap(mm, oldmm);
1692         if (err)
1693                 goto free_pt;
1694         uprobe_end_dup_mmap();
1695
1696         mm->hiwater_rss = get_mm_rss(mm);
1697         mm->hiwater_vm = mm->total_vm;
1698
1699         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700                 goto free_pt;
1701
1702         return mm;
1703
1704 free_pt:
1705         /* don't put binfmt in mmput, we haven't got module yet */
1706         mm->binfmt = NULL;
1707         mm_init_owner(mm, NULL);
1708         mmput(mm);
1709         if (err)
1710                 uprobe_end_dup_mmap();
1711
1712 fail_nomem:
1713         return NULL;
1714 }
1715
1716 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1717 {
1718         struct mm_struct *mm, *oldmm;
1719
1720         tsk->min_flt = tsk->maj_flt = 0;
1721         tsk->nvcsw = tsk->nivcsw = 0;
1722 #ifdef CONFIG_DETECT_HUNG_TASK
1723         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1724         tsk->last_switch_time = 0;
1725 #endif
1726
1727         tsk->mm = NULL;
1728         tsk->active_mm = NULL;
1729
1730         /*
1731          * Are we cloning a kernel thread?
1732          *
1733          * We need to steal a active VM for that..
1734          */
1735         oldmm = current->mm;
1736         if (!oldmm)
1737                 return 0;
1738
1739         if (clone_flags & CLONE_VM) {
1740                 mmget(oldmm);
1741                 mm = oldmm;
1742         } else {
1743                 mm = dup_mm(tsk, current->mm);
1744                 if (!mm)
1745                         return -ENOMEM;
1746         }
1747
1748         tsk->mm = mm;
1749         tsk->active_mm = mm;
1750         sched_mm_cid_fork(tsk);
1751         return 0;
1752 }
1753
1754 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1755 {
1756         struct fs_struct *fs = current->fs;
1757         if (clone_flags & CLONE_FS) {
1758                 /* tsk->fs is already what we want */
1759                 spin_lock(&fs->lock);
1760                 /* "users" and "in_exec" locked for check_unsafe_exec() */
1761                 if (fs->in_exec) {
1762                         spin_unlock(&fs->lock);
1763                         return -EAGAIN;
1764                 }
1765                 fs->users++;
1766                 spin_unlock(&fs->lock);
1767                 return 0;
1768         }
1769         tsk->fs = copy_fs_struct(fs);
1770         if (!tsk->fs)
1771                 return -ENOMEM;
1772         return 0;
1773 }
1774
1775 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1776                       int no_files)
1777 {
1778         struct files_struct *oldf, *newf;
1779
1780         /*
1781          * A background process may not have any files ...
1782          */
1783         oldf = current->files;
1784         if (!oldf)
1785                 return 0;
1786
1787         if (no_files) {
1788                 tsk->files = NULL;
1789                 return 0;
1790         }
1791
1792         if (clone_flags & CLONE_FILES) {
1793                 atomic_inc(&oldf->count);
1794                 return 0;
1795         }
1796
1797         newf = dup_fd(oldf, NULL);
1798         if (IS_ERR(newf))
1799                 return PTR_ERR(newf);
1800
1801         tsk->files = newf;
1802         return 0;
1803 }
1804
1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1806 {
1807         struct sighand_struct *sig;
1808
1809         if (clone_flags & CLONE_SIGHAND) {
1810                 refcount_inc(&current->sighand->count);
1811                 return 0;
1812         }
1813         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1814         RCU_INIT_POINTER(tsk->sighand, sig);
1815         if (!sig)
1816                 return -ENOMEM;
1817
1818         refcount_set(&sig->count, 1);
1819         spin_lock_irq(&current->sighand->siglock);
1820         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1821         spin_unlock_irq(&current->sighand->siglock);
1822
1823         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1824         if (clone_flags & CLONE_CLEAR_SIGHAND)
1825                 flush_signal_handlers(tsk, 0);
1826
1827         return 0;
1828 }
1829
1830 void __cleanup_sighand(struct sighand_struct *sighand)
1831 {
1832         if (refcount_dec_and_test(&sighand->count)) {
1833                 signalfd_cleanup(sighand);
1834                 /*
1835                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1836                  * without an RCU grace period, see __lock_task_sighand().
1837                  */
1838                 kmem_cache_free(sighand_cachep, sighand);
1839         }
1840 }
1841
1842 /*
1843  * Initialize POSIX timer handling for a thread group.
1844  */
1845 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1846 {
1847         struct posix_cputimers *pct = &sig->posix_cputimers;
1848         unsigned long cpu_limit;
1849
1850         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1851         posix_cputimers_group_init(pct, cpu_limit);
1852 }
1853
1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1855 {
1856         struct signal_struct *sig;
1857
1858         if (clone_flags & CLONE_THREAD)
1859                 return 0;
1860
1861         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1862         tsk->signal = sig;
1863         if (!sig)
1864                 return -ENOMEM;
1865
1866         sig->nr_threads = 1;
1867         sig->quick_threads = 1;
1868         atomic_set(&sig->live, 1);
1869         refcount_set(&sig->sigcnt, 1);
1870
1871         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1872         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1873         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1874
1875         init_waitqueue_head(&sig->wait_chldexit);
1876         sig->curr_target = tsk;
1877         init_sigpending(&sig->shared_pending);
1878         INIT_HLIST_HEAD(&sig->multiprocess);
1879         seqlock_init(&sig->stats_lock);
1880         prev_cputime_init(&sig->prev_cputime);
1881
1882 #ifdef CONFIG_POSIX_TIMERS
1883         INIT_HLIST_HEAD(&sig->posix_timers);
1884         INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1885         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1886         sig->real_timer.function = it_real_fn;
1887 #endif
1888
1889         task_lock(current->group_leader);
1890         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1891         task_unlock(current->group_leader);
1892
1893         posix_cpu_timers_init_group(sig);
1894
1895         tty_audit_fork(sig);
1896         sched_autogroup_fork(sig);
1897
1898         sig->oom_score_adj = current->signal->oom_score_adj;
1899         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1900
1901         mutex_init(&sig->cred_guard_mutex);
1902         init_rwsem(&sig->exec_update_lock);
1903
1904         return 0;
1905 }
1906
1907 static void copy_seccomp(struct task_struct *p)
1908 {
1909 #ifdef CONFIG_SECCOMP
1910         /*
1911          * Must be called with sighand->lock held, which is common to
1912          * all threads in the group. Holding cred_guard_mutex is not
1913          * needed because this new task is not yet running and cannot
1914          * be racing exec.
1915          */
1916         assert_spin_locked(&current->sighand->siglock);
1917
1918         /* Ref-count the new filter user, and assign it. */
1919         get_seccomp_filter(current);
1920         p->seccomp = current->seccomp;
1921
1922         /*
1923          * Explicitly enable no_new_privs here in case it got set
1924          * between the task_struct being duplicated and holding the
1925          * sighand lock. The seccomp state and nnp must be in sync.
1926          */
1927         if (task_no_new_privs(current))
1928                 task_set_no_new_privs(p);
1929
1930         /*
1931          * If the parent gained a seccomp mode after copying thread
1932          * flags and between before we held the sighand lock, we have
1933          * to manually enable the seccomp thread flag here.
1934          */
1935         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1936                 set_task_syscall_work(p, SECCOMP);
1937 #endif
1938 }
1939
1940 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1941 {
1942         current->clear_child_tid = tidptr;
1943
1944         return task_pid_vnr(current);
1945 }
1946
1947 static void rt_mutex_init_task(struct task_struct *p)
1948 {
1949         raw_spin_lock_init(&p->pi_lock);
1950 #ifdef CONFIG_RT_MUTEXES
1951         p->pi_waiters = RB_ROOT_CACHED;
1952         p->pi_top_task = NULL;
1953         p->pi_blocked_on = NULL;
1954 #endif
1955 }
1956
1957 static inline void init_task_pid_links(struct task_struct *task)
1958 {
1959         enum pid_type type;
1960
1961         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1962                 INIT_HLIST_NODE(&task->pid_links[type]);
1963 }
1964
1965 static inline void
1966 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1967 {
1968         if (type == PIDTYPE_PID)
1969                 task->thread_pid = pid;
1970         else
1971                 task->signal->pids[type] = pid;
1972 }
1973
1974 static inline void rcu_copy_process(struct task_struct *p)
1975 {
1976 #ifdef CONFIG_PREEMPT_RCU
1977         p->rcu_read_lock_nesting = 0;
1978         p->rcu_read_unlock_special.s = 0;
1979         p->rcu_blocked_node = NULL;
1980         INIT_LIST_HEAD(&p->rcu_node_entry);
1981 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1982 #ifdef CONFIG_TASKS_RCU
1983         p->rcu_tasks_holdout = false;
1984         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1985         p->rcu_tasks_idle_cpu = -1;
1986         INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1987 #endif /* #ifdef CONFIG_TASKS_RCU */
1988 #ifdef CONFIG_TASKS_TRACE_RCU
1989         p->trc_reader_nesting = 0;
1990         p->trc_reader_special.s = 0;
1991         INIT_LIST_HEAD(&p->trc_holdout_list);
1992         INIT_LIST_HEAD(&p->trc_blkd_node);
1993 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1994 }
1995
1996 /**
1997  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1998  * @pid:   the struct pid for which to create a pidfd
1999  * @flags: flags of the new @pidfd
2000  * @ret: Where to return the file for the pidfd.
2001  *
2002  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2003  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2004  *
2005  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2006  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2007  * pidfd file are prepared.
2008  *
2009  * If this function returns successfully the caller is responsible to either
2010  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2011  * order to install the pidfd into its file descriptor table or they must use
2012  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2013  * respectively.
2014  *
2015  * This function is useful when a pidfd must already be reserved but there
2016  * might still be points of failure afterwards and the caller wants to ensure
2017  * that no pidfd is leaked into its file descriptor table.
2018  *
2019  * Return: On success, a reserved pidfd is returned from the function and a new
2020  *         pidfd file is returned in the last argument to the function. On
2021  *         error, a negative error code is returned from the function and the
2022  *         last argument remains unchanged.
2023  */
2024 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2025 {
2026         int pidfd;
2027         struct file *pidfd_file;
2028
2029         pidfd = get_unused_fd_flags(O_CLOEXEC);
2030         if (pidfd < 0)
2031                 return pidfd;
2032
2033         pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2034         if (IS_ERR(pidfd_file)) {
2035                 put_unused_fd(pidfd);
2036                 return PTR_ERR(pidfd_file);
2037         }
2038         /*
2039          * anon_inode_getfile() ignores everything outside of the
2040          * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2041          */
2042         pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2043         *ret = pidfd_file;
2044         return pidfd;
2045 }
2046
2047 /**
2048  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2049  * @pid:   the struct pid for which to create a pidfd
2050  * @flags: flags of the new @pidfd
2051  * @ret: Where to return the pidfd.
2052  *
2053  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2054  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2055  *
2056  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2057  * task identified by @pid must be a thread-group leader.
2058  *
2059  * If this function returns successfully the caller is responsible to either
2060  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2061  * order to install the pidfd into its file descriptor table or they must use
2062  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2063  * respectively.
2064  *
2065  * This function is useful when a pidfd must already be reserved but there
2066  * might still be points of failure afterwards and the caller wants to ensure
2067  * that no pidfd is leaked into its file descriptor table.
2068  *
2069  * Return: On success, a reserved pidfd is returned from the function and a new
2070  *         pidfd file is returned in the last argument to the function. On
2071  *         error, a negative error code is returned from the function and the
2072  *         last argument remains unchanged.
2073  */
2074 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2075 {
2076         bool thread = flags & PIDFD_THREAD;
2077
2078         if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2079                 return -EINVAL;
2080
2081         return __pidfd_prepare(pid, flags, ret);
2082 }
2083
2084 static void __delayed_free_task(struct rcu_head *rhp)
2085 {
2086         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2087
2088         free_task(tsk);
2089 }
2090
2091 static __always_inline void delayed_free_task(struct task_struct *tsk)
2092 {
2093         if (IS_ENABLED(CONFIG_MEMCG))
2094                 call_rcu(&tsk->rcu, __delayed_free_task);
2095         else
2096                 free_task(tsk);
2097 }
2098
2099 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2100 {
2101         /* Skip if kernel thread */
2102         if (!tsk->mm)
2103                 return;
2104
2105         /* Skip if spawning a thread or using vfork */
2106         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2107                 return;
2108
2109         /* We need to synchronize with __set_oom_adj */
2110         mutex_lock(&oom_adj_mutex);
2111         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2112         /* Update the values in case they were changed after copy_signal */
2113         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2114         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2115         mutex_unlock(&oom_adj_mutex);
2116 }
2117
2118 #ifdef CONFIG_RV
2119 static void rv_task_fork(struct task_struct *p)
2120 {
2121         int i;
2122
2123         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2124                 p->rv[i].da_mon.monitoring = false;
2125 }
2126 #else
2127 #define rv_task_fork(p) do {} while (0)
2128 #endif
2129
2130 /*
2131  * This creates a new process as a copy of the old one,
2132  * but does not actually start it yet.
2133  *
2134  * It copies the registers, and all the appropriate
2135  * parts of the process environment (as per the clone
2136  * flags). The actual kick-off is left to the caller.
2137  */
2138 __latent_entropy struct task_struct *copy_process(
2139                                         struct pid *pid,
2140                                         int trace,
2141                                         int node,
2142                                         struct kernel_clone_args *args)
2143 {
2144         int pidfd = -1, retval;
2145         struct task_struct *p;
2146         struct multiprocess_signals delayed;
2147         struct file *pidfile = NULL;
2148         const u64 clone_flags = args->flags;
2149         struct nsproxy *nsp = current->nsproxy;
2150
2151         /*
2152          * Don't allow sharing the root directory with processes in a different
2153          * namespace
2154          */
2155         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2156                 return ERR_PTR(-EINVAL);
2157
2158         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2159                 return ERR_PTR(-EINVAL);
2160
2161         /*
2162          * Thread groups must share signals as well, and detached threads
2163          * can only be started up within the thread group.
2164          */
2165         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2166                 return ERR_PTR(-EINVAL);
2167
2168         /*
2169          * Shared signal handlers imply shared VM. By way of the above,
2170          * thread groups also imply shared VM. Blocking this case allows
2171          * for various simplifications in other code.
2172          */
2173         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2174                 return ERR_PTR(-EINVAL);
2175
2176         /*
2177          * Siblings of global init remain as zombies on exit since they are
2178          * not reaped by their parent (swapper). To solve this and to avoid
2179          * multi-rooted process trees, prevent global and container-inits
2180          * from creating siblings.
2181          */
2182         if ((clone_flags & CLONE_PARENT) &&
2183                                 current->signal->flags & SIGNAL_UNKILLABLE)
2184                 return ERR_PTR(-EINVAL);
2185
2186         /*
2187          * If the new process will be in a different pid or user namespace
2188          * do not allow it to share a thread group with the forking task.
2189          */
2190         if (clone_flags & CLONE_THREAD) {
2191                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2192                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2193                         return ERR_PTR(-EINVAL);
2194         }
2195
2196         if (clone_flags & CLONE_PIDFD) {
2197                 /*
2198                  * - CLONE_DETACHED is blocked so that we can potentially
2199                  *   reuse it later for CLONE_PIDFD.
2200                  */
2201                 if (clone_flags & CLONE_DETACHED)
2202                         return ERR_PTR(-EINVAL);
2203         }
2204
2205         /*
2206          * Force any signals received before this point to be delivered
2207          * before the fork happens.  Collect up signals sent to multiple
2208          * processes that happen during the fork and delay them so that
2209          * they appear to happen after the fork.
2210          */
2211         sigemptyset(&delayed.signal);
2212         INIT_HLIST_NODE(&delayed.node);
2213
2214         spin_lock_irq(&current->sighand->siglock);
2215         if (!(clone_flags & CLONE_THREAD))
2216                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2217         recalc_sigpending();
2218         spin_unlock_irq(&current->sighand->siglock);
2219         retval = -ERESTARTNOINTR;
2220         if (task_sigpending(current))
2221                 goto fork_out;
2222
2223         retval = -ENOMEM;
2224         p = dup_task_struct(current, node);
2225         if (!p)
2226                 goto fork_out;
2227         p->flags &= ~PF_KTHREAD;
2228         if (args->kthread)
2229                 p->flags |= PF_KTHREAD;
2230         if (args->user_worker) {
2231                 /*
2232                  * Mark us a user worker, and block any signal that isn't
2233                  * fatal or STOP
2234                  */
2235                 p->flags |= PF_USER_WORKER;
2236                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2237         }
2238         if (args->io_thread)
2239                 p->flags |= PF_IO_WORKER;
2240
2241         if (args->name)
2242                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2243
2244         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2245         /*
2246          * Clear TID on mm_release()?
2247          */
2248         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2249
2250         ftrace_graph_init_task(p);
2251
2252         rt_mutex_init_task(p);
2253
2254         lockdep_assert_irqs_enabled();
2255 #ifdef CONFIG_PROVE_LOCKING
2256         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2257 #endif
2258         retval = copy_creds(p, clone_flags);
2259         if (retval < 0)
2260                 goto bad_fork_free;
2261
2262         retval = -EAGAIN;
2263         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2264                 if (p->real_cred->user != INIT_USER &&
2265                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2266                         goto bad_fork_cleanup_count;
2267         }
2268         current->flags &= ~PF_NPROC_EXCEEDED;
2269
2270         /*
2271          * If multiple threads are within copy_process(), then this check
2272          * triggers too late. This doesn't hurt, the check is only there
2273          * to stop root fork bombs.
2274          */
2275         retval = -EAGAIN;
2276         if (data_race(nr_threads >= max_threads))
2277                 goto bad_fork_cleanup_count;
2278
2279         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2280         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2281         p->flags |= PF_FORKNOEXEC;
2282         INIT_LIST_HEAD(&p->children);
2283         INIT_LIST_HEAD(&p->sibling);
2284         rcu_copy_process(p);
2285         p->vfork_done = NULL;
2286         spin_lock_init(&p->alloc_lock);
2287
2288         init_sigpending(&p->pending);
2289
2290         p->utime = p->stime = p->gtime = 0;
2291 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2292         p->utimescaled = p->stimescaled = 0;
2293 #endif
2294         prev_cputime_init(&p->prev_cputime);
2295
2296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2297         seqcount_init(&p->vtime.seqcount);
2298         p->vtime.starttime = 0;
2299         p->vtime.state = VTIME_INACTIVE;
2300 #endif
2301
2302 #ifdef CONFIG_IO_URING
2303         p->io_uring = NULL;
2304 #endif
2305
2306         p->default_timer_slack_ns = current->timer_slack_ns;
2307
2308 #ifdef CONFIG_PSI
2309         p->psi_flags = 0;
2310 #endif
2311
2312         task_io_accounting_init(&p->ioac);
2313         acct_clear_integrals(p);
2314
2315         posix_cputimers_init(&p->posix_cputimers);
2316         tick_dep_init_task(p);
2317
2318         p->io_context = NULL;
2319         audit_set_context(p, NULL);
2320         cgroup_fork(p);
2321         if (args->kthread) {
2322                 if (!set_kthread_struct(p))
2323                         goto bad_fork_cleanup_delayacct;
2324         }
2325 #ifdef CONFIG_NUMA
2326         p->mempolicy = mpol_dup(p->mempolicy);
2327         if (IS_ERR(p->mempolicy)) {
2328                 retval = PTR_ERR(p->mempolicy);
2329                 p->mempolicy = NULL;
2330                 goto bad_fork_cleanup_delayacct;
2331         }
2332 #endif
2333 #ifdef CONFIG_CPUSETS
2334         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2335         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2336 #endif
2337 #ifdef CONFIG_TRACE_IRQFLAGS
2338         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2339         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2340         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2341         p->softirqs_enabled             = 1;
2342         p->softirq_context              = 0;
2343 #endif
2344
2345         p->pagefault_disabled = 0;
2346
2347 #ifdef CONFIG_LOCKDEP
2348         lockdep_init_task(p);
2349 #endif
2350
2351 #ifdef CONFIG_DEBUG_MUTEXES
2352         p->blocked_on = NULL; /* not blocked yet */
2353 #endif
2354 #ifdef CONFIG_BCACHE
2355         p->sequential_io        = 0;
2356         p->sequential_io_avg    = 0;
2357 #endif
2358 #ifdef CONFIG_BPF_SYSCALL
2359         RCU_INIT_POINTER(p->bpf_storage, NULL);
2360         p->bpf_ctx = NULL;
2361 #endif
2362
2363         /* Perform scheduler related setup. Assign this task to a CPU. */
2364         retval = sched_fork(clone_flags, p);
2365         if (retval)
2366                 goto bad_fork_cleanup_policy;
2367
2368         retval = perf_event_init_task(p, clone_flags);
2369         if (retval)
2370                 goto bad_fork_sched_cancel_fork;
2371         retval = audit_alloc(p);
2372         if (retval)
2373                 goto bad_fork_cleanup_perf;
2374         /* copy all the process information */
2375         shm_init_task(p);
2376         retval = security_task_alloc(p, clone_flags);
2377         if (retval)
2378                 goto bad_fork_cleanup_audit;
2379         retval = copy_semundo(clone_flags, p);
2380         if (retval)
2381                 goto bad_fork_cleanup_security;
2382         retval = copy_files(clone_flags, p, args->no_files);
2383         if (retval)
2384                 goto bad_fork_cleanup_semundo;
2385         retval = copy_fs(clone_flags, p);
2386         if (retval)
2387                 goto bad_fork_cleanup_files;
2388         retval = copy_sighand(clone_flags, p);
2389         if (retval)
2390                 goto bad_fork_cleanup_fs;
2391         retval = copy_signal(clone_flags, p);
2392         if (retval)
2393                 goto bad_fork_cleanup_sighand;
2394         retval = copy_mm(clone_flags, p);
2395         if (retval)
2396                 goto bad_fork_cleanup_signal;
2397         retval = copy_namespaces(clone_flags, p);
2398         if (retval)
2399                 goto bad_fork_cleanup_mm;
2400         retval = copy_io(clone_flags, p);
2401         if (retval)
2402                 goto bad_fork_cleanup_namespaces;
2403         retval = copy_thread(p, args);
2404         if (retval)
2405                 goto bad_fork_cleanup_io;
2406
2407         stackleak_task_init(p);
2408
2409         if (pid != &init_struct_pid) {
2410                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2411                                 args->set_tid_size);
2412                 if (IS_ERR(pid)) {
2413                         retval = PTR_ERR(pid);
2414                         goto bad_fork_cleanup_thread;
2415                 }
2416         }
2417
2418         /*
2419          * This has to happen after we've potentially unshared the file
2420          * descriptor table (so that the pidfd doesn't leak into the child
2421          * if the fd table isn't shared).
2422          */
2423         if (clone_flags & CLONE_PIDFD) {
2424                 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2425
2426                 /* Note that no task has been attached to @pid yet. */
2427                 retval = __pidfd_prepare(pid, flags, &pidfile);
2428                 if (retval < 0)
2429                         goto bad_fork_free_pid;
2430                 pidfd = retval;
2431
2432                 retval = put_user(pidfd, args->pidfd);
2433                 if (retval)
2434                         goto bad_fork_put_pidfd;
2435         }
2436
2437 #ifdef CONFIG_BLOCK
2438         p->plug = NULL;
2439 #endif
2440         futex_init_task(p);
2441
2442         /*
2443          * sigaltstack should be cleared when sharing the same VM
2444          */
2445         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2446                 sas_ss_reset(p);
2447
2448         /*
2449          * Syscall tracing and stepping should be turned off in the
2450          * child regardless of CLONE_PTRACE.
2451          */
2452         user_disable_single_step(p);
2453         clear_task_syscall_work(p, SYSCALL_TRACE);
2454 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2455         clear_task_syscall_work(p, SYSCALL_EMU);
2456 #endif
2457         clear_tsk_latency_tracing(p);
2458
2459         /* ok, now we should be set up.. */
2460         p->pid = pid_nr(pid);
2461         if (clone_flags & CLONE_THREAD) {
2462                 p->group_leader = current->group_leader;
2463                 p->tgid = current->tgid;
2464         } else {
2465                 p->group_leader = p;
2466                 p->tgid = p->pid;
2467         }
2468
2469         p->nr_dirtied = 0;
2470         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2471         p->dirty_paused_when = 0;
2472
2473         p->pdeath_signal = 0;
2474         p->task_works = NULL;
2475         clear_posix_cputimers_work(p);
2476
2477 #ifdef CONFIG_KRETPROBES
2478         p->kretprobe_instances.first = NULL;
2479 #endif
2480 #ifdef CONFIG_RETHOOK
2481         p->rethooks.first = NULL;
2482 #endif
2483
2484         /*
2485          * Ensure that the cgroup subsystem policies allow the new process to be
2486          * forked. It should be noted that the new process's css_set can be changed
2487          * between here and cgroup_post_fork() if an organisation operation is in
2488          * progress.
2489          */
2490         retval = cgroup_can_fork(p, args);
2491         if (retval)
2492                 goto bad_fork_put_pidfd;
2493
2494         /*
2495          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2496          * the new task on the correct runqueue. All this *before* the task
2497          * becomes visible.
2498          *
2499          * This isn't part of ->can_fork() because while the re-cloning is
2500          * cgroup specific, it unconditionally needs to place the task on a
2501          * runqueue.
2502          */
2503         retval = sched_cgroup_fork(p, args);
2504         if (retval)
2505                 goto bad_fork_cancel_cgroup;
2506
2507         /*
2508          * From this point on we must avoid any synchronous user-space
2509          * communication until we take the tasklist-lock. In particular, we do
2510          * not want user-space to be able to predict the process start-time by
2511          * stalling fork(2) after we recorded the start_time but before it is
2512          * visible to the system.
2513          */
2514
2515         p->start_time = ktime_get_ns();
2516         p->start_boottime = ktime_get_boottime_ns();
2517
2518         /*
2519          * Make it visible to the rest of the system, but dont wake it up yet.
2520          * Need tasklist lock for parent etc handling!
2521          */
2522         write_lock_irq(&tasklist_lock);
2523
2524         /* CLONE_PARENT re-uses the old parent */
2525         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2526                 p->real_parent = current->real_parent;
2527                 p->parent_exec_id = current->parent_exec_id;
2528                 if (clone_flags & CLONE_THREAD)
2529                         p->exit_signal = -1;
2530                 else
2531                         p->exit_signal = current->group_leader->exit_signal;
2532         } else {
2533                 p->real_parent = current;
2534                 p->parent_exec_id = current->self_exec_id;
2535                 p->exit_signal = args->exit_signal;
2536         }
2537
2538         klp_copy_process(p);
2539
2540         sched_core_fork(p);
2541
2542         spin_lock(&current->sighand->siglock);
2543
2544         rv_task_fork(p);
2545
2546         rseq_fork(p, clone_flags);
2547
2548         /* Don't start children in a dying pid namespace */
2549         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2550                 retval = -ENOMEM;
2551                 goto bad_fork_core_free;
2552         }
2553
2554         /* Let kill terminate clone/fork in the middle */
2555         if (fatal_signal_pending(current)) {
2556                 retval = -EINTR;
2557                 goto bad_fork_core_free;
2558         }
2559
2560         /* No more failure paths after this point. */
2561
2562         /*
2563          * Copy seccomp details explicitly here, in case they were changed
2564          * before holding sighand lock.
2565          */
2566         copy_seccomp(p);
2567
2568         init_task_pid_links(p);
2569         if (likely(p->pid)) {
2570                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2571
2572                 init_task_pid(p, PIDTYPE_PID, pid);
2573                 if (thread_group_leader(p)) {
2574                         init_task_pid(p, PIDTYPE_TGID, pid);
2575                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2576                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2577
2578                         if (is_child_reaper(pid)) {
2579                                 ns_of_pid(pid)->child_reaper = p;
2580                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2581                         }
2582                         p->signal->shared_pending.signal = delayed.signal;
2583                         p->signal->tty = tty_kref_get(current->signal->tty);
2584                         /*
2585                          * Inherit has_child_subreaper flag under the same
2586                          * tasklist_lock with adding child to the process tree
2587                          * for propagate_has_child_subreaper optimization.
2588                          */
2589                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2590                                                          p->real_parent->signal->is_child_subreaper;
2591                         list_add_tail(&p->sibling, &p->real_parent->children);
2592                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2593                         attach_pid(p, PIDTYPE_TGID);
2594                         attach_pid(p, PIDTYPE_PGID);
2595                         attach_pid(p, PIDTYPE_SID);
2596                         __this_cpu_inc(process_counts);
2597                 } else {
2598                         current->signal->nr_threads++;
2599                         current->signal->quick_threads++;
2600                         atomic_inc(&current->signal->live);
2601                         refcount_inc(&current->signal->sigcnt);
2602                         task_join_group_stop(p);
2603                         list_add_tail_rcu(&p->thread_node,
2604                                           &p->signal->thread_head);
2605                 }
2606                 attach_pid(p, PIDTYPE_PID);
2607                 nr_threads++;
2608         }
2609         total_forks++;
2610         hlist_del_init(&delayed.node);
2611         spin_unlock(&current->sighand->siglock);
2612         syscall_tracepoint_update(p);
2613         write_unlock_irq(&tasklist_lock);
2614
2615         if (pidfile)
2616                 fd_install(pidfd, pidfile);
2617
2618         proc_fork_connector(p);
2619         sched_post_fork(p);
2620         cgroup_post_fork(p, args);
2621         perf_event_fork(p);
2622
2623         trace_task_newtask(p, clone_flags);
2624         uprobe_copy_process(p, clone_flags);
2625         user_events_fork(p, clone_flags);
2626
2627         copy_oom_score_adj(clone_flags, p);
2628
2629         return p;
2630
2631 bad_fork_core_free:
2632         sched_core_free(p);
2633         spin_unlock(&current->sighand->siglock);
2634         write_unlock_irq(&tasklist_lock);
2635 bad_fork_cancel_cgroup:
2636         cgroup_cancel_fork(p, args);
2637 bad_fork_put_pidfd:
2638         if (clone_flags & CLONE_PIDFD) {
2639                 fput(pidfile);
2640                 put_unused_fd(pidfd);
2641         }
2642 bad_fork_free_pid:
2643         if (pid != &init_struct_pid)
2644                 free_pid(pid);
2645 bad_fork_cleanup_thread:
2646         exit_thread(p);
2647 bad_fork_cleanup_io:
2648         if (p->io_context)
2649                 exit_io_context(p);
2650 bad_fork_cleanup_namespaces:
2651         exit_task_namespaces(p);
2652 bad_fork_cleanup_mm:
2653         if (p->mm) {
2654                 mm_clear_owner(p->mm, p);
2655                 mmput(p->mm);
2656         }
2657 bad_fork_cleanup_signal:
2658         if (!(clone_flags & CLONE_THREAD))
2659                 free_signal_struct(p->signal);
2660 bad_fork_cleanup_sighand:
2661         __cleanup_sighand(p->sighand);
2662 bad_fork_cleanup_fs:
2663         exit_fs(p); /* blocking */
2664 bad_fork_cleanup_files:
2665         exit_files(p); /* blocking */
2666 bad_fork_cleanup_semundo:
2667         exit_sem(p);
2668 bad_fork_cleanup_security:
2669         security_task_free(p);
2670 bad_fork_cleanup_audit:
2671         audit_free(p);
2672 bad_fork_cleanup_perf:
2673         perf_event_free_task(p);
2674 bad_fork_sched_cancel_fork:
2675         sched_cancel_fork(p);
2676 bad_fork_cleanup_policy:
2677         lockdep_free_task(p);
2678 #ifdef CONFIG_NUMA
2679         mpol_put(p->mempolicy);
2680 #endif
2681 bad_fork_cleanup_delayacct:
2682         delayacct_tsk_free(p);
2683 bad_fork_cleanup_count:
2684         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2685         exit_creds(p);
2686 bad_fork_free:
2687         WRITE_ONCE(p->__state, TASK_DEAD);
2688         exit_task_stack_account(p);
2689         put_task_stack(p);
2690         delayed_free_task(p);
2691 fork_out:
2692         spin_lock_irq(&current->sighand->siglock);
2693         hlist_del_init(&delayed.node);
2694         spin_unlock_irq(&current->sighand->siglock);
2695         return ERR_PTR(retval);
2696 }
2697
2698 static inline void init_idle_pids(struct task_struct *idle)
2699 {
2700         enum pid_type type;
2701
2702         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2703                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2704                 init_task_pid(idle, type, &init_struct_pid);
2705         }
2706 }
2707
2708 static int idle_dummy(void *dummy)
2709 {
2710         /* This function is never called */
2711         return 0;
2712 }
2713
2714 struct task_struct * __init fork_idle(int cpu)
2715 {
2716         struct task_struct *task;
2717         struct kernel_clone_args args = {
2718                 .flags          = CLONE_VM,
2719                 .fn             = &idle_dummy,
2720                 .fn_arg         = NULL,
2721                 .kthread        = 1,
2722                 .idle           = 1,
2723         };
2724
2725         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2726         if (!IS_ERR(task)) {
2727                 init_idle_pids(task);
2728                 init_idle(task, cpu);
2729         }
2730
2731         return task;
2732 }
2733
2734 /*
2735  * This is like kernel_clone(), but shaved down and tailored to just
2736  * creating io_uring workers. It returns a created task, or an error pointer.
2737  * The returned task is inactive, and the caller must fire it up through
2738  * wake_up_new_task(p). All signals are blocked in the created task.
2739  */
2740 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2741 {
2742         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2743                                 CLONE_IO;
2744         struct kernel_clone_args args = {
2745                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2746                                     CLONE_UNTRACED) & ~CSIGNAL),
2747                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2748                 .fn             = fn,
2749                 .fn_arg         = arg,
2750                 .io_thread      = 1,
2751                 .user_worker    = 1,
2752         };
2753
2754         return copy_process(NULL, 0, node, &args);
2755 }
2756
2757 /*
2758  *  Ok, this is the main fork-routine.
2759  *
2760  * It copies the process, and if successful kick-starts
2761  * it and waits for it to finish using the VM if required.
2762  *
2763  * args->exit_signal is expected to be checked for sanity by the caller.
2764  */
2765 pid_t kernel_clone(struct kernel_clone_args *args)
2766 {
2767         u64 clone_flags = args->flags;
2768         struct completion vfork;
2769         struct pid *pid;
2770         struct task_struct *p;
2771         int trace = 0;
2772         pid_t nr;
2773
2774         /*
2775          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2776          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2777          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2778          * field in struct clone_args and it still doesn't make sense to have
2779          * them both point at the same memory location. Performing this check
2780          * here has the advantage that we don't need to have a separate helper
2781          * to check for legacy clone().
2782          */
2783         if ((clone_flags & CLONE_PIDFD) &&
2784             (clone_flags & CLONE_PARENT_SETTID) &&
2785             (args->pidfd == args->parent_tid))
2786                 return -EINVAL;
2787
2788         /*
2789          * Determine whether and which event to report to ptracer.  When
2790          * called from kernel_thread or CLONE_UNTRACED is explicitly
2791          * requested, no event is reported; otherwise, report if the event
2792          * for the type of forking is enabled.
2793          */
2794         if (!(clone_flags & CLONE_UNTRACED)) {
2795                 if (clone_flags & CLONE_VFORK)
2796                         trace = PTRACE_EVENT_VFORK;
2797                 else if (args->exit_signal != SIGCHLD)
2798                         trace = PTRACE_EVENT_CLONE;
2799                 else
2800                         trace = PTRACE_EVENT_FORK;
2801
2802                 if (likely(!ptrace_event_enabled(current, trace)))
2803                         trace = 0;
2804         }
2805
2806         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2807         add_latent_entropy();
2808
2809         if (IS_ERR(p))
2810                 return PTR_ERR(p);
2811
2812         /*
2813          * Do this prior waking up the new thread - the thread pointer
2814          * might get invalid after that point, if the thread exits quickly.
2815          */
2816         trace_sched_process_fork(current, p);
2817
2818         pid = get_task_pid(p, PIDTYPE_PID);
2819         nr = pid_vnr(pid);
2820
2821         if (clone_flags & CLONE_PARENT_SETTID)
2822                 put_user(nr, args->parent_tid);
2823
2824         if (clone_flags & CLONE_VFORK) {
2825                 p->vfork_done = &vfork;
2826                 init_completion(&vfork);
2827                 get_task_struct(p);
2828         }
2829
2830         if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2831                 /* lock the task to synchronize with memcg migration */
2832                 task_lock(p);
2833                 lru_gen_add_mm(p->mm);
2834                 task_unlock(p);
2835         }
2836
2837         wake_up_new_task(p);
2838
2839         /* forking complete and child started to run, tell ptracer */
2840         if (unlikely(trace))
2841                 ptrace_event_pid(trace, pid);
2842
2843         if (clone_flags & CLONE_VFORK) {
2844                 if (!wait_for_vfork_done(p, &vfork))
2845                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2846         }
2847
2848         put_pid(pid);
2849         return nr;
2850 }
2851
2852 /*
2853  * Create a kernel thread.
2854  */
2855 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2856                     unsigned long flags)
2857 {
2858         struct kernel_clone_args args = {
2859                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2860                                     CLONE_UNTRACED) & ~CSIGNAL),
2861                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2862                 .fn             = fn,
2863                 .fn_arg         = arg,
2864                 .name           = name,
2865                 .kthread        = 1,
2866         };
2867
2868         return kernel_clone(&args);
2869 }
2870
2871 /*
2872  * Create a user mode thread.
2873  */
2874 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2875 {
2876         struct kernel_clone_args args = {
2877                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2878                                     CLONE_UNTRACED) & ~CSIGNAL),
2879                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2880                 .fn             = fn,
2881                 .fn_arg         = arg,
2882         };
2883
2884         return kernel_clone(&args);
2885 }
2886
2887 #ifdef __ARCH_WANT_SYS_FORK
2888 SYSCALL_DEFINE0(fork)
2889 {
2890 #ifdef CONFIG_MMU
2891         struct kernel_clone_args args = {
2892                 .exit_signal = SIGCHLD,
2893         };
2894
2895         return kernel_clone(&args);
2896 #else
2897         /* can not support in nommu mode */
2898         return -EINVAL;
2899 #endif
2900 }
2901 #endif
2902
2903 #ifdef __ARCH_WANT_SYS_VFORK
2904 SYSCALL_DEFINE0(vfork)
2905 {
2906         struct kernel_clone_args args = {
2907                 .flags          = CLONE_VFORK | CLONE_VM,
2908                 .exit_signal    = SIGCHLD,
2909         };
2910
2911         return kernel_clone(&args);
2912 }
2913 #endif
2914
2915 #ifdef __ARCH_WANT_SYS_CLONE
2916 #ifdef CONFIG_CLONE_BACKWARDS
2917 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2918                  int __user *, parent_tidptr,
2919                  unsigned long, tls,
2920                  int __user *, child_tidptr)
2921 #elif defined(CONFIG_CLONE_BACKWARDS2)
2922 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2923                  int __user *, parent_tidptr,
2924                  int __user *, child_tidptr,
2925                  unsigned long, tls)
2926 #elif defined(CONFIG_CLONE_BACKWARDS3)
2927 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2928                 int, stack_size,
2929                 int __user *, parent_tidptr,
2930                 int __user *, child_tidptr,
2931                 unsigned long, tls)
2932 #else
2933 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2934                  int __user *, parent_tidptr,
2935                  int __user *, child_tidptr,
2936                  unsigned long, tls)
2937 #endif
2938 {
2939         struct kernel_clone_args args = {
2940                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2941                 .pidfd          = parent_tidptr,
2942                 .child_tid      = child_tidptr,
2943                 .parent_tid     = parent_tidptr,
2944                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2945                 .stack          = newsp,
2946                 .tls            = tls,
2947         };
2948
2949         return kernel_clone(&args);
2950 }
2951 #endif
2952
2953 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2954                                               struct clone_args __user *uargs,
2955                                               size_t usize)
2956 {
2957         int err;
2958         struct clone_args args;
2959         pid_t *kset_tid = kargs->set_tid;
2960
2961         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2962                      CLONE_ARGS_SIZE_VER0);
2963         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2964                      CLONE_ARGS_SIZE_VER1);
2965         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2966                      CLONE_ARGS_SIZE_VER2);
2967         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2968
2969         if (unlikely(usize > PAGE_SIZE))
2970                 return -E2BIG;
2971         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2972                 return -EINVAL;
2973
2974         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2975         if (err)
2976                 return err;
2977
2978         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2979                 return -EINVAL;
2980
2981         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2982                 return -EINVAL;
2983
2984         if (unlikely(args.set_tid && args.set_tid_size == 0))
2985                 return -EINVAL;
2986
2987         /*
2988          * Verify that higher 32bits of exit_signal are unset and that
2989          * it is a valid signal
2990          */
2991         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2992                      !valid_signal(args.exit_signal)))
2993                 return -EINVAL;
2994
2995         if ((args.flags & CLONE_INTO_CGROUP) &&
2996             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2997                 return -EINVAL;
2998
2999         *kargs = (struct kernel_clone_args){
3000                 .flags          = args.flags,
3001                 .pidfd          = u64_to_user_ptr(args.pidfd),
3002                 .child_tid      = u64_to_user_ptr(args.child_tid),
3003                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
3004                 .exit_signal    = args.exit_signal,
3005                 .stack          = args.stack,
3006                 .stack_size     = args.stack_size,
3007                 .tls            = args.tls,
3008                 .set_tid_size   = args.set_tid_size,
3009                 .cgroup         = args.cgroup,
3010         };
3011
3012         if (args.set_tid &&
3013                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3014                         (kargs->set_tid_size * sizeof(pid_t))))
3015                 return -EFAULT;
3016
3017         kargs->set_tid = kset_tid;
3018
3019         return 0;
3020 }
3021
3022 /**
3023  * clone3_stack_valid - check and prepare stack
3024  * @kargs: kernel clone args
3025  *
3026  * Verify that the stack arguments userspace gave us are sane.
3027  * In addition, set the stack direction for userspace since it's easy for us to
3028  * determine.
3029  */
3030 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3031 {
3032         if (kargs->stack == 0) {
3033                 if (kargs->stack_size > 0)
3034                         return false;
3035         } else {
3036                 if (kargs->stack_size == 0)
3037                         return false;
3038
3039                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3040                         return false;
3041
3042 #if !defined(CONFIG_STACK_GROWSUP)
3043                 kargs->stack += kargs->stack_size;
3044 #endif
3045         }
3046
3047         return true;
3048 }
3049
3050 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3051 {
3052         /* Verify that no unknown flags are passed along. */
3053         if (kargs->flags &
3054             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3055                 return false;
3056
3057         /*
3058          * - make the CLONE_DETACHED bit reusable for clone3
3059          * - make the CSIGNAL bits reusable for clone3
3060          */
3061         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3062                 return false;
3063
3064         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3065             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3066                 return false;
3067
3068         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3069             kargs->exit_signal)
3070                 return false;
3071
3072         if (!clone3_stack_valid(kargs))
3073                 return false;
3074
3075         return true;
3076 }
3077
3078 /**
3079  * sys_clone3 - create a new process with specific properties
3080  * @uargs: argument structure
3081  * @size:  size of @uargs
3082  *
3083  * clone3() is the extensible successor to clone()/clone2().
3084  * It takes a struct as argument that is versioned by its size.
3085  *
3086  * Return: On success, a positive PID for the child process.
3087  *         On error, a negative errno number.
3088  */
3089 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3090 {
3091         int err;
3092
3093         struct kernel_clone_args kargs;
3094         pid_t set_tid[MAX_PID_NS_LEVEL];
3095
3096 #ifdef __ARCH_BROKEN_SYS_CLONE3
3097 #warning clone3() entry point is missing, please fix
3098         return -ENOSYS;
3099 #endif
3100
3101         kargs.set_tid = set_tid;
3102
3103         err = copy_clone_args_from_user(&kargs, uargs, size);
3104         if (err)
3105                 return err;
3106
3107         if (!clone3_args_valid(&kargs))
3108                 return -EINVAL;
3109
3110         return kernel_clone(&kargs);
3111 }
3112
3113 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3114 {
3115         struct task_struct *leader, *parent, *child;
3116         int res;
3117
3118         read_lock(&tasklist_lock);
3119         leader = top = top->group_leader;
3120 down:
3121         for_each_thread(leader, parent) {
3122                 list_for_each_entry(child, &parent->children, sibling) {
3123                         res = visitor(child, data);
3124                         if (res) {
3125                                 if (res < 0)
3126                                         goto out;
3127                                 leader = child;
3128                                 goto down;
3129                         }
3130 up:
3131                         ;
3132                 }
3133         }
3134
3135         if (leader != top) {
3136                 child = leader;
3137                 parent = child->real_parent;
3138                 leader = parent->group_leader;
3139                 goto up;
3140         }
3141 out:
3142         read_unlock(&tasklist_lock);
3143 }
3144
3145 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3146 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3147 #endif
3148
3149 static void sighand_ctor(void *data)
3150 {
3151         struct sighand_struct *sighand = data;
3152
3153         spin_lock_init(&sighand->siglock);
3154         init_waitqueue_head(&sighand->signalfd_wqh);
3155 }
3156
3157 void __init mm_cache_init(void)
3158 {
3159         unsigned int mm_size;
3160
3161         /*
3162          * The mm_cpumask is located at the end of mm_struct, and is
3163          * dynamically sized based on the maximum CPU number this system
3164          * can have, taking hotplug into account (nr_cpu_ids).
3165          */
3166         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3167
3168         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3169                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3170                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171                         offsetof(struct mm_struct, saved_auxv),
3172                         sizeof_field(struct mm_struct, saved_auxv),
3173                         NULL);
3174 }
3175
3176 void __init proc_caches_init(void)
3177 {
3178         sighand_cachep = kmem_cache_create("sighand_cache",
3179                         sizeof(struct sighand_struct), 0,
3180                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3181                         SLAB_ACCOUNT, sighand_ctor);
3182         signal_cachep = kmem_cache_create("signal_cache",
3183                         sizeof(struct signal_struct), 0,
3184                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3185                         NULL);
3186         files_cachep = kmem_cache_create("files_cache",
3187                         sizeof(struct files_struct), 0,
3188                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3189                         NULL);
3190         fs_cachep = kmem_cache_create("fs_cache",
3191                         sizeof(struct fs_struct), 0,
3192                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3193                         NULL);
3194
3195         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3196 #ifdef CONFIG_PER_VMA_LOCK
3197         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3198 #endif
3199         mmap_init();
3200         nsproxy_cache_init();
3201 }
3202
3203 /*
3204  * Check constraints on flags passed to the unshare system call.
3205  */
3206 static int check_unshare_flags(unsigned long unshare_flags)
3207 {
3208         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3209                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3210                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3211                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3212                                 CLONE_NEWTIME))
3213                 return -EINVAL;
3214         /*
3215          * Not implemented, but pretend it works if there is nothing
3216          * to unshare.  Note that unsharing the address space or the
3217          * signal handlers also need to unshare the signal queues (aka
3218          * CLONE_THREAD).
3219          */
3220         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3221                 if (!thread_group_empty(current))
3222                         return -EINVAL;
3223         }
3224         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3225                 if (refcount_read(&current->sighand->count) > 1)
3226                         return -EINVAL;
3227         }
3228         if (unshare_flags & CLONE_VM) {
3229                 if (!current_is_single_threaded())
3230                         return -EINVAL;
3231         }
3232
3233         return 0;
3234 }
3235
3236 /*
3237  * Unshare the filesystem structure if it is being shared
3238  */
3239 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3240 {
3241         struct fs_struct *fs = current->fs;
3242
3243         if (!(unshare_flags & CLONE_FS) || !fs)
3244                 return 0;
3245
3246         /* don't need lock here; in the worst case we'll do useless copy */
3247         if (fs->users == 1)
3248                 return 0;
3249
3250         *new_fsp = copy_fs_struct(fs);
3251         if (!*new_fsp)
3252                 return -ENOMEM;
3253
3254         return 0;
3255 }
3256
3257 /*
3258  * Unshare file descriptor table if it is being shared
3259  */
3260 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3261 {
3262         struct files_struct *fd = current->files;
3263
3264         if ((unshare_flags & CLONE_FILES) &&
3265             (fd && atomic_read(&fd->count) > 1)) {
3266                 fd = dup_fd(fd, NULL);
3267                 if (IS_ERR(fd))
3268                         return PTR_ERR(fd);
3269                 *new_fdp = fd;
3270         }
3271
3272         return 0;
3273 }
3274
3275 /*
3276  * unshare allows a process to 'unshare' part of the process
3277  * context which was originally shared using clone.  copy_*
3278  * functions used by kernel_clone() cannot be used here directly
3279  * because they modify an inactive task_struct that is being
3280  * constructed. Here we are modifying the current, active,
3281  * task_struct.
3282  */
3283 int ksys_unshare(unsigned long unshare_flags)
3284 {
3285         struct fs_struct *fs, *new_fs = NULL;
3286         struct files_struct *new_fd = NULL;
3287         struct cred *new_cred = NULL;
3288         struct nsproxy *new_nsproxy = NULL;
3289         int do_sysvsem = 0;
3290         int err;
3291
3292         /*
3293          * If unsharing a user namespace must also unshare the thread group
3294          * and unshare the filesystem root and working directories.
3295          */
3296         if (unshare_flags & CLONE_NEWUSER)
3297                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3298         /*
3299          * If unsharing vm, must also unshare signal handlers.
3300          */
3301         if (unshare_flags & CLONE_VM)
3302                 unshare_flags |= CLONE_SIGHAND;
3303         /*
3304          * If unsharing a signal handlers, must also unshare the signal queues.
3305          */
3306         if (unshare_flags & CLONE_SIGHAND)
3307                 unshare_flags |= CLONE_THREAD;
3308         /*
3309          * If unsharing namespace, must also unshare filesystem information.
3310          */
3311         if (unshare_flags & CLONE_NEWNS)
3312                 unshare_flags |= CLONE_FS;
3313
3314         err = check_unshare_flags(unshare_flags);
3315         if (err)
3316                 goto bad_unshare_out;
3317         /*
3318          * CLONE_NEWIPC must also detach from the undolist: after switching
3319          * to a new ipc namespace, the semaphore arrays from the old
3320          * namespace are unreachable.
3321          */
3322         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3323                 do_sysvsem = 1;
3324         err = unshare_fs(unshare_flags, &new_fs);
3325         if (err)
3326                 goto bad_unshare_out;
3327         err = unshare_fd(unshare_flags, &new_fd);
3328         if (err)
3329                 goto bad_unshare_cleanup_fs;
3330         err = unshare_userns(unshare_flags, &new_cred);
3331         if (err)
3332                 goto bad_unshare_cleanup_fd;
3333         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3334                                          new_cred, new_fs);
3335         if (err)
3336                 goto bad_unshare_cleanup_cred;
3337
3338         if (new_cred) {
3339                 err = set_cred_ucounts(new_cred);
3340                 if (err)
3341                         goto bad_unshare_cleanup_cred;
3342         }
3343
3344         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3345                 if (do_sysvsem) {
3346                         /*
3347                          * CLONE_SYSVSEM is equivalent to sys_exit().
3348                          */
3349                         exit_sem(current);
3350                 }
3351                 if (unshare_flags & CLONE_NEWIPC) {
3352                         /* Orphan segments in old ns (see sem above). */
3353                         exit_shm(current);
3354                         shm_init_task(current);
3355                 }
3356
3357                 if (new_nsproxy)
3358                         switch_task_namespaces(current, new_nsproxy);
3359
3360                 task_lock(current);
3361
3362                 if (new_fs) {
3363                         fs = current->fs;
3364                         spin_lock(&fs->lock);
3365                         current->fs = new_fs;
3366                         if (--fs->users)
3367                                 new_fs = NULL;
3368                         else
3369                                 new_fs = fs;
3370                         spin_unlock(&fs->lock);
3371                 }
3372
3373                 if (new_fd)
3374                         swap(current->files, new_fd);
3375
3376                 task_unlock(current);
3377
3378                 if (new_cred) {
3379                         /* Install the new user namespace */
3380                         commit_creds(new_cred);
3381                         new_cred = NULL;
3382                 }
3383         }
3384
3385         perf_event_namespaces(current);
3386
3387 bad_unshare_cleanup_cred:
3388         if (new_cred)
3389                 put_cred(new_cred);
3390 bad_unshare_cleanup_fd:
3391         if (new_fd)
3392                 put_files_struct(new_fd);
3393
3394 bad_unshare_cleanup_fs:
3395         if (new_fs)
3396                 free_fs_struct(new_fs);
3397
3398 bad_unshare_out:
3399         return err;
3400 }
3401
3402 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3403 {
3404         return ksys_unshare(unshare_flags);
3405 }
3406
3407 /*
3408  *      Helper to unshare the files of the current task.
3409  *      We don't want to expose copy_files internals to
3410  *      the exec layer of the kernel.
3411  */
3412
3413 int unshare_files(void)
3414 {
3415         struct task_struct *task = current;
3416         struct files_struct *old, *copy = NULL;
3417         int error;
3418
3419         error = unshare_fd(CLONE_FILES, &copy);
3420         if (error || !copy)
3421                 return error;
3422
3423         old = task->files;
3424         task_lock(task);
3425         task->files = copy;
3426         task_unlock(task);
3427         put_files_struct(old);
3428         return 0;
3429 }
3430
3431 int sysctl_max_threads(const struct ctl_table *table, int write,
3432                        void *buffer, size_t *lenp, loff_t *ppos)
3433 {
3434         struct ctl_table t;
3435         int ret;
3436         int threads = max_threads;
3437         int min = 1;
3438         int max = MAX_THREADS;
3439
3440         t = *table;
3441         t.data = &threads;
3442         t.extra1 = &min;
3443         t.extra2 = &max;
3444
3445         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3446         if (ret || !write)
3447                 return ret;
3448
3449         max_threads = threads;
3450
3451         return 0;
3452 }
This page took 0.248864 seconds and 4 git commands to generate.