]> Git Repo - J-linux.git/blob - fs/btrfs/transaction.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[J-linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_START]]
60  * |
61  * | Will wait for previous running transaction to completely finish if there
62  * | is one
63  * |
64  * | Then one of the following happes:
65  * | - Wait for all other trans handle holders to release.
66  * |   The btrfs_commit_transaction() caller will do the commit work.
67  * | - Wait for current transaction to be committed by others.
68  * |   Other btrfs_commit_transaction() caller will do the commit work.
69  * |
70  * | At this stage, only btrfs_join_transaction*() variants can attach
71  * | to this running transaction.
72  * | All other variants will wait for current one to finish and attach to
73  * | transaction N+1.
74  * |
75  * | To next stage:
76  * |  Caller is chosen to commit transaction N, and all other trans handle
77  * |  haven been released.
78  * V
79  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80  * |
81  * | The heavy lifting transaction work is started.
82  * | From running delayed refs (modifying extent tree) to creating pending
83  * | snapshots, running qgroups.
84  * | In short, modify supporting trees to reflect modifications of subvolume
85  * | trees.
86  * |
87  * | At this stage, all start_transaction() calls will wait for this
88  * | transaction to finish and attach to transaction N+1.
89  * |
90  * | To next stage:
91  * |  Until all supporting trees are updated.
92  * V
93  * Transaction N [[TRANS_STATE_UNBLOCKED]]
94  * |                                                Transaction N+1
95  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
96  * | need to write them back to disk and update     |
97  * | super blocks.                                  |
98  * |                                                |
99  * | At this stage, new transaction is allowed to   |
100  * | start.                                         |
101  * | All new start_transaction() calls will be      |
102  * | attached to transid N+1.                       |
103  * |                                                |
104  * | To next stage:                                 |
105  * |  Until all tree blocks are super blocks are    |
106  * |  written to block devices                      |
107  * V                                                |
108  * Transaction N [[TRANS_STATE_COMPLETED]]          V
109  *   All tree blocks and super blocks are written.  Transaction N+1
110  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
111  *   data structures will be cleaned up.            | Life goes on
112  */
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114         [TRANS_STATE_RUNNING]           = 0U,
115         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
116         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOSTART),
120         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
121                                            __TRANS_ATTACH |
122                                            __TRANS_JOIN |
123                                            __TRANS_JOIN_NOLOCK |
124                                            __TRANS_JOIN_NOSTART),
125         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
126                                            __TRANS_ATTACH |
127                                            __TRANS_JOIN |
128                                            __TRANS_JOIN_NOLOCK |
129                                            __TRANS_JOIN_NOSTART),
130         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
131                                            __TRANS_ATTACH |
132                                            __TRANS_JOIN |
133                                            __TRANS_JOIN_NOLOCK |
134                                            __TRANS_JOIN_NOSTART),
135 };
136
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
138 {
139         WARN_ON(refcount_read(&transaction->use_count) == 0);
140         if (refcount_dec_and_test(&transaction->use_count)) {
141                 BUG_ON(!list_empty(&transaction->list));
142                 WARN_ON(!RB_EMPTY_ROOT(
143                                 &transaction->delayed_refs.href_root.rb_root));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.dirty_extent_root));
146                 if (transaction->delayed_refs.pending_csums)
147                         btrfs_err(transaction->fs_info,
148                                   "pending csums is %llu",
149                                   transaction->delayed_refs.pending_csums);
150                 /*
151                  * If any block groups are found in ->deleted_bgs then it's
152                  * because the transaction was aborted and a commit did not
153                  * happen (things failed before writing the new superblock
154                  * and calling btrfs_finish_extent_commit()), so we can not
155                  * discard the physical locations of the block groups.
156                  */
157                 while (!list_empty(&transaction->deleted_bgs)) {
158                         struct btrfs_block_group *cache;
159
160                         cache = list_first_entry(&transaction->deleted_bgs,
161                                                  struct btrfs_block_group,
162                                                  bg_list);
163                         list_del_init(&cache->bg_list);
164                         btrfs_unfreeze_block_group(cache);
165                         btrfs_put_block_group(cache);
166                 }
167                 WARN_ON(!list_empty(&transaction->dev_update_list));
168                 kfree(transaction);
169         }
170 }
171
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174         struct btrfs_transaction *cur_trans = trans->transaction;
175         struct btrfs_fs_info *fs_info = trans->fs_info;
176         struct btrfs_root *root, *tmp;
177
178         /*
179          * At this point no one can be using this transaction to modify any tree
180          * and no one can start another transaction to modify any tree either.
181          */
182         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184         down_write(&fs_info->commit_root_sem);
185
186         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187                 fs_info->last_reloc_trans = trans->transid;
188
189         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190                                  dirty_list) {
191                 list_del_init(&root->dirty_list);
192                 free_extent_buffer(root->commit_root);
193                 root->commit_root = btrfs_root_node(root);
194                 extent_io_tree_release(&root->dirty_log_pages);
195                 btrfs_qgroup_clean_swapped_blocks(root);
196         }
197
198         /* We can free old roots now. */
199         spin_lock(&cur_trans->dropped_roots_lock);
200         while (!list_empty(&cur_trans->dropped_roots)) {
201                 root = list_first_entry(&cur_trans->dropped_roots,
202                                         struct btrfs_root, root_list);
203                 list_del_init(&root->root_list);
204                 spin_unlock(&cur_trans->dropped_roots_lock);
205                 btrfs_free_log(trans, root);
206                 btrfs_drop_and_free_fs_root(fs_info, root);
207                 spin_lock(&cur_trans->dropped_roots_lock);
208         }
209         spin_unlock(&cur_trans->dropped_roots_lock);
210
211         up_write(&fs_info->commit_root_sem);
212 }
213
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215                                          unsigned int type)
216 {
217         if (type & TRANS_EXTWRITERS)
218                 atomic_inc(&trans->num_extwriters);
219 }
220
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222                                          unsigned int type)
223 {
224         if (type & TRANS_EXTWRITERS)
225                 atomic_dec(&trans->num_extwriters);
226 }
227
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229                                           unsigned int type)
230 {
231         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236         return atomic_read(&trans->num_extwriters);
237 }
238
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248         struct btrfs_fs_info *fs_info = trans->fs_info;
249
250         if (!trans->chunk_bytes_reserved)
251                 return;
252
253         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254                                 trans->chunk_bytes_reserved, NULL);
255         trans->chunk_bytes_reserved = 0;
256 }
257
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262                                      unsigned int type)
263 {
264         struct btrfs_transaction *cur_trans;
265
266         spin_lock(&fs_info->trans_lock);
267 loop:
268         /* The file system has been taken offline. No new transactions. */
269         if (BTRFS_FS_ERROR(fs_info)) {
270                 spin_unlock(&fs_info->trans_lock);
271                 return -EROFS;
272         }
273
274         cur_trans = fs_info->running_transaction;
275         if (cur_trans) {
276                 if (TRANS_ABORTED(cur_trans)) {
277                         spin_unlock(&fs_info->trans_lock);
278                         return cur_trans->aborted;
279                 }
280                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281                         spin_unlock(&fs_info->trans_lock);
282                         return -EBUSY;
283                 }
284                 refcount_inc(&cur_trans->use_count);
285                 atomic_inc(&cur_trans->num_writers);
286                 extwriter_counter_inc(cur_trans, type);
287                 spin_unlock(&fs_info->trans_lock);
288                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290                 return 0;
291         }
292         spin_unlock(&fs_info->trans_lock);
293
294         /*
295          * If we are ATTACH, we just want to catch the current transaction,
296          * and commit it. If there is no transaction, just return ENOENT.
297          */
298         if (type == TRANS_ATTACH)
299                 return -ENOENT;
300
301         /*
302          * JOIN_NOLOCK only happens during the transaction commit, so
303          * it is impossible that ->running_transaction is NULL
304          */
305         BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308         if (!cur_trans)
309                 return -ENOMEM;
310
311         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314         spin_lock(&fs_info->trans_lock);
315         if (fs_info->running_transaction) {
316                 /*
317                  * someone started a transaction after we unlocked.  Make sure
318                  * to redo the checks above
319                  */
320                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322                 kfree(cur_trans);
323                 goto loop;
324         } else if (BTRFS_FS_ERROR(fs_info)) {
325                 spin_unlock(&fs_info->trans_lock);
326                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328                 kfree(cur_trans);
329                 return -EROFS;
330         }
331
332         cur_trans->fs_info = fs_info;
333         atomic_set(&cur_trans->pending_ordered, 0);
334         init_waitqueue_head(&cur_trans->pending_wait);
335         atomic_set(&cur_trans->num_writers, 1);
336         extwriter_counter_init(cur_trans, type);
337         init_waitqueue_head(&cur_trans->writer_wait);
338         init_waitqueue_head(&cur_trans->commit_wait);
339         cur_trans->state = TRANS_STATE_RUNNING;
340         /*
341          * One for this trans handle, one so it will live on until we
342          * commit the transaction.
343          */
344         refcount_set(&cur_trans->use_count, 2);
345         cur_trans->flags = 0;
346         cur_trans->start_time = ktime_get_seconds();
347
348         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354         /*
355          * although the tree mod log is per file system and not per transaction,
356          * the log must never go across transaction boundaries.
357          */
358         smp_mb();
359         if (!list_empty(&fs_info->tree_mod_seq_list))
360                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363         atomic64_set(&fs_info->tree_mod_seq, 0);
364
365         spin_lock_init(&cur_trans->delayed_refs.lock);
366
367         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368         INIT_LIST_HEAD(&cur_trans->dev_update_list);
369         INIT_LIST_HEAD(&cur_trans->switch_commits);
370         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371         INIT_LIST_HEAD(&cur_trans->io_bgs);
372         INIT_LIST_HEAD(&cur_trans->dropped_roots);
373         mutex_init(&cur_trans->cache_write_mutex);
374         spin_lock_init(&cur_trans->dirty_bgs_lock);
375         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376         spin_lock_init(&cur_trans->dropped_roots_lock);
377         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378         spin_lock_init(&cur_trans->releasing_ebs_lock);
379         list_add_tail(&cur_trans->list, &fs_info->trans_list);
380         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381                         IO_TREE_TRANS_DIRTY_PAGES);
382         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383                         IO_TREE_FS_PINNED_EXTENTS);
384         fs_info->generation++;
385         cur_trans->transid = fs_info->generation;
386         fs_info->running_transaction = cur_trans;
387         cur_trans->aborted = 0;
388         spin_unlock(&fs_info->trans_lock);
389
390         return 0;
391 }
392
393 /*
394  * This does all the record keeping required to make sure that a shareable root
395  * is properly recorded in a given transaction.  This is required to make sure
396  * the old root from before we joined the transaction is deleted when the
397  * transaction commits.
398  */
399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400                                struct btrfs_root *root,
401                                int force)
402 {
403         struct btrfs_fs_info *fs_info = root->fs_info;
404         int ret = 0;
405
406         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407             root->last_trans < trans->transid) || force) {
408                 WARN_ON(!force && root->commit_root != root->node);
409
410                 /*
411                  * see below for IN_TRANS_SETUP usage rules
412                  * we have the reloc mutex held now, so there
413                  * is only one writer in this function
414                  */
415                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417                 /* make sure readers find IN_TRANS_SETUP before
418                  * they find our root->last_trans update
419                  */
420                 smp_wmb();
421
422                 spin_lock(&fs_info->fs_roots_radix_lock);
423                 if (root->last_trans == trans->transid && !force) {
424                         spin_unlock(&fs_info->fs_roots_radix_lock);
425                         return 0;
426                 }
427                 radix_tree_tag_set(&fs_info->fs_roots_radix,
428                                    (unsigned long)root->root_key.objectid,
429                                    BTRFS_ROOT_TRANS_TAG);
430                 spin_unlock(&fs_info->fs_roots_radix_lock);
431                 root->last_trans = trans->transid;
432
433                 /* this is pretty tricky.  We don't want to
434                  * take the relocation lock in btrfs_record_root_in_trans
435                  * unless we're really doing the first setup for this root in
436                  * this transaction.
437                  *
438                  * Normally we'd use root->last_trans as a flag to decide
439                  * if we want to take the expensive mutex.
440                  *
441                  * But, we have to set root->last_trans before we
442                  * init the relocation root, otherwise, we trip over warnings
443                  * in ctree.c.  The solution used here is to flag ourselves
444                  * with root IN_TRANS_SETUP.  When this is 1, we're still
445                  * fixing up the reloc trees and everyone must wait.
446                  *
447                  * When this is zero, they can trust root->last_trans and fly
448                  * through btrfs_record_root_in_trans without having to take the
449                  * lock.  smp_wmb() makes sure that all the writes above are
450                  * done before we pop in the zero below
451                  */
452                 ret = btrfs_init_reloc_root(trans, root);
453                 smp_mb__before_atomic();
454                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455         }
456         return ret;
457 }
458
459
460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461                             struct btrfs_root *root)
462 {
463         struct btrfs_fs_info *fs_info = root->fs_info;
464         struct btrfs_transaction *cur_trans = trans->transaction;
465
466         /* Add ourselves to the transaction dropped list */
467         spin_lock(&cur_trans->dropped_roots_lock);
468         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469         spin_unlock(&cur_trans->dropped_roots_lock);
470
471         /* Make sure we don't try to update the root at commit time */
472         spin_lock(&fs_info->fs_roots_radix_lock);
473         radix_tree_tag_clear(&fs_info->fs_roots_radix,
474                              (unsigned long)root->root_key.objectid,
475                              BTRFS_ROOT_TRANS_TAG);
476         spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478
479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480                                struct btrfs_root *root)
481 {
482         struct btrfs_fs_info *fs_info = root->fs_info;
483         int ret;
484
485         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486                 return 0;
487
488         /*
489          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490          * and barriers
491          */
492         smp_rmb();
493         if (root->last_trans == trans->transid &&
494             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495                 return 0;
496
497         mutex_lock(&fs_info->reloc_mutex);
498         ret = record_root_in_trans(trans, root, 0);
499         mutex_unlock(&fs_info->reloc_mutex);
500
501         return ret;
502 }
503
504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 {
506         return (trans->state >= TRANS_STATE_COMMIT_START &&
507                 trans->state < TRANS_STATE_UNBLOCKED &&
508                 !TRANS_ABORTED(trans));
509 }
510
511 /* wait for commit against the current transaction to become unblocked
512  * when this is done, it is safe to start a new transaction, but the current
513  * transaction might not be fully on disk.
514  */
515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 {
517         struct btrfs_transaction *cur_trans;
518
519         spin_lock(&fs_info->trans_lock);
520         cur_trans = fs_info->running_transaction;
521         if (cur_trans && is_transaction_blocked(cur_trans)) {
522                 refcount_inc(&cur_trans->use_count);
523                 spin_unlock(&fs_info->trans_lock);
524
525                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526                 wait_event(fs_info->transaction_wait,
527                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528                            TRANS_ABORTED(cur_trans));
529                 btrfs_put_transaction(cur_trans);
530         } else {
531                 spin_unlock(&fs_info->trans_lock);
532         }
533 }
534
535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538                 return 0;
539
540         if (type == TRANS_START)
541                 return 1;
542
543         return 0;
544 }
545
546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548         struct btrfs_fs_info *fs_info = root->fs_info;
549
550         if (!fs_info->reloc_ctl ||
551             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553             root->reloc_root)
554                 return false;
555
556         return true;
557 }
558
559 static struct btrfs_trans_handle *
560 start_transaction(struct btrfs_root *root, unsigned int num_items,
561                   unsigned int type, enum btrfs_reserve_flush_enum flush,
562                   bool enforce_qgroups)
563 {
564         struct btrfs_fs_info *fs_info = root->fs_info;
565         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566         struct btrfs_trans_handle *h;
567         struct btrfs_transaction *cur_trans;
568         u64 num_bytes = 0;
569         u64 qgroup_reserved = 0;
570         bool reloc_reserved = false;
571         bool do_chunk_alloc = false;
572         int ret;
573
574         if (BTRFS_FS_ERROR(fs_info))
575                 return ERR_PTR(-EROFS);
576
577         if (current->journal_info) {
578                 WARN_ON(type & TRANS_EXTWRITERS);
579                 h = current->journal_info;
580                 refcount_inc(&h->use_count);
581                 WARN_ON(refcount_read(&h->use_count) > 2);
582                 h->orig_rsv = h->block_rsv;
583                 h->block_rsv = NULL;
584                 goto got_it;
585         }
586
587         /*
588          * Do the reservation before we join the transaction so we can do all
589          * the appropriate flushing if need be.
590          */
591         if (num_items && root != fs_info->chunk_root) {
592                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593                 u64 delayed_refs_bytes = 0;
594
595                 qgroup_reserved = num_items * fs_info->nodesize;
596                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597                                 enforce_qgroups);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 /*
602                  * We want to reserve all the bytes we may need all at once, so
603                  * we only do 1 enospc flushing cycle per transaction start.  We
604                  * accomplish this by simply assuming we'll do num_items worth
605                  * of delayed refs updates in this trans handle, and refill that
606                  * amount for whatever is missing in the reserve.
607                  */
608                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610                     !btrfs_block_rsv_full(delayed_refs_rsv)) {
611                         delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
612                                                                           num_items);
613                         num_bytes += delayed_refs_bytes;
614                 }
615
616                 /*
617                  * Do the reservation for the relocation root creation
618                  */
619                 if (need_reserve_reloc_root(root)) {
620                         num_bytes += fs_info->nodesize;
621                         reloc_reserved = true;
622                 }
623
624                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
625                 if (ret)
626                         goto reserve_fail;
627                 if (delayed_refs_bytes) {
628                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629                                                           delayed_refs_bytes);
630                         num_bytes -= delayed_refs_bytes;
631                 }
632
633                 if (rsv->space_info->force_alloc)
634                         do_chunk_alloc = true;
635         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
636                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
637                 /*
638                  * Some people call with btrfs_start_transaction(root, 0)
639                  * because they can be throttled, but have some other mechanism
640                  * for reserving space.  We still want these guys to refill the
641                  * delayed block_rsv so just add 1 items worth of reservation
642                  * here.
643                  */
644                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
645                 if (ret)
646                         goto reserve_fail;
647         }
648 again:
649         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
650         if (!h) {
651                 ret = -ENOMEM;
652                 goto alloc_fail;
653         }
654
655         /*
656          * If we are JOIN_NOLOCK we're already committing a transaction and
657          * waiting on this guy, so we don't need to do the sb_start_intwrite
658          * because we're already holding a ref.  We need this because we could
659          * have raced in and did an fsync() on a file which can kick a commit
660          * and then we deadlock with somebody doing a freeze.
661          *
662          * If we are ATTACH, it means we just want to catch the current
663          * transaction and commit it, so we needn't do sb_start_intwrite(). 
664          */
665         if (type & __TRANS_FREEZABLE)
666                 sb_start_intwrite(fs_info->sb);
667
668         if (may_wait_transaction(fs_info, type))
669                 wait_current_trans(fs_info);
670
671         do {
672                 ret = join_transaction(fs_info, type);
673                 if (ret == -EBUSY) {
674                         wait_current_trans(fs_info);
675                         if (unlikely(type == TRANS_ATTACH ||
676                                      type == TRANS_JOIN_NOSTART))
677                                 ret = -ENOENT;
678                 }
679         } while (ret == -EBUSY);
680
681         if (ret < 0)
682                 goto join_fail;
683
684         cur_trans = fs_info->running_transaction;
685
686         h->transid = cur_trans->transid;
687         h->transaction = cur_trans;
688         refcount_set(&h->use_count, 1);
689         h->fs_info = root->fs_info;
690
691         h->type = type;
692         INIT_LIST_HEAD(&h->new_bgs);
693
694         smp_mb();
695         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
696             may_wait_transaction(fs_info, type)) {
697                 current->journal_info = h;
698                 btrfs_commit_transaction(h);
699                 goto again;
700         }
701
702         if (num_bytes) {
703                 trace_btrfs_space_reservation(fs_info, "transaction",
704                                               h->transid, num_bytes, 1);
705                 h->block_rsv = &fs_info->trans_block_rsv;
706                 h->bytes_reserved = num_bytes;
707                 h->reloc_reserved = reloc_reserved;
708         }
709
710 got_it:
711         if (!current->journal_info)
712                 current->journal_info = h;
713
714         /*
715          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
716          * ALLOC_FORCE the first run through, and then we won't allocate for
717          * anybody else who races in later.  We don't care about the return
718          * value here.
719          */
720         if (do_chunk_alloc && num_bytes) {
721                 u64 flags = h->block_rsv->space_info->flags;
722
723                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
724                                   CHUNK_ALLOC_NO_FORCE);
725         }
726
727         /*
728          * btrfs_record_root_in_trans() needs to alloc new extents, and may
729          * call btrfs_join_transaction() while we're also starting a
730          * transaction.
731          *
732          * Thus it need to be called after current->journal_info initialized,
733          * or we can deadlock.
734          */
735         ret = btrfs_record_root_in_trans(h, root);
736         if (ret) {
737                 /*
738                  * The transaction handle is fully initialized and linked with
739                  * other structures so it needs to be ended in case of errors,
740                  * not just freed.
741                  */
742                 btrfs_end_transaction(h);
743                 return ERR_PTR(ret);
744         }
745
746         return h;
747
748 join_fail:
749         if (type & __TRANS_FREEZABLE)
750                 sb_end_intwrite(fs_info->sb);
751         kmem_cache_free(btrfs_trans_handle_cachep, h);
752 alloc_fail:
753         if (num_bytes)
754                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
755                                         num_bytes, NULL);
756 reserve_fail:
757         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
758         return ERR_PTR(ret);
759 }
760
761 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
762                                                    unsigned int num_items)
763 {
764         return start_transaction(root, num_items, TRANS_START,
765                                  BTRFS_RESERVE_FLUSH_ALL, true);
766 }
767
768 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
769                                         struct btrfs_root *root,
770                                         unsigned int num_items)
771 {
772         return start_transaction(root, num_items, TRANS_START,
773                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
774 }
775
776 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
777 {
778         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
779                                  true);
780 }
781
782 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
783 {
784         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
785                                  BTRFS_RESERVE_NO_FLUSH, true);
786 }
787
788 /*
789  * Similar to regular join but it never starts a transaction when none is
790  * running or after waiting for the current one to finish.
791  */
792 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
793 {
794         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
795                                  BTRFS_RESERVE_NO_FLUSH, true);
796 }
797
798 /*
799  * btrfs_attach_transaction() - catch the running transaction
800  *
801  * It is used when we want to commit the current the transaction, but
802  * don't want to start a new one.
803  *
804  * Note: If this function return -ENOENT, it just means there is no
805  * running transaction. But it is possible that the inactive transaction
806  * is still in the memory, not fully on disk. If you hope there is no
807  * inactive transaction in the fs when -ENOENT is returned, you should
808  * invoke
809  *     btrfs_attach_transaction_barrier()
810  */
811 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
812 {
813         return start_transaction(root, 0, TRANS_ATTACH,
814                                  BTRFS_RESERVE_NO_FLUSH, true);
815 }
816
817 /*
818  * btrfs_attach_transaction_barrier() - catch the running transaction
819  *
820  * It is similar to the above function, the difference is this one
821  * will wait for all the inactive transactions until they fully
822  * complete.
823  */
824 struct btrfs_trans_handle *
825 btrfs_attach_transaction_barrier(struct btrfs_root *root)
826 {
827         struct btrfs_trans_handle *trans;
828
829         trans = start_transaction(root, 0, TRANS_ATTACH,
830                                   BTRFS_RESERVE_NO_FLUSH, true);
831         if (trans == ERR_PTR(-ENOENT))
832                 btrfs_wait_for_commit(root->fs_info, 0);
833
834         return trans;
835 }
836
837 /* Wait for a transaction commit to reach at least the given state. */
838 static noinline void wait_for_commit(struct btrfs_transaction *commit,
839                                      const enum btrfs_trans_state min_state)
840 {
841         struct btrfs_fs_info *fs_info = commit->fs_info;
842         u64 transid = commit->transid;
843         bool put = false;
844
845         /*
846          * At the moment this function is called with min_state either being
847          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
848          */
849         if (min_state == TRANS_STATE_COMPLETED)
850                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
851         else
852                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
853
854         while (1) {
855                 wait_event(commit->commit_wait, commit->state >= min_state);
856                 if (put)
857                         btrfs_put_transaction(commit);
858
859                 if (min_state < TRANS_STATE_COMPLETED)
860                         break;
861
862                 /*
863                  * A transaction isn't really completed until all of the
864                  * previous transactions are completed, but with fsync we can
865                  * end up with SUPER_COMMITTED transactions before a COMPLETED
866                  * transaction. Wait for those.
867                  */
868
869                 spin_lock(&fs_info->trans_lock);
870                 commit = list_first_entry_or_null(&fs_info->trans_list,
871                                                   struct btrfs_transaction,
872                                                   list);
873                 if (!commit || commit->transid > transid) {
874                         spin_unlock(&fs_info->trans_lock);
875                         break;
876                 }
877                 refcount_inc(&commit->use_count);
878                 put = true;
879                 spin_unlock(&fs_info->trans_lock);
880         }
881 }
882
883 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
884 {
885         struct btrfs_transaction *cur_trans = NULL, *t;
886         int ret = 0;
887
888         if (transid) {
889                 if (transid <= fs_info->last_trans_committed)
890                         goto out;
891
892                 /* find specified transaction */
893                 spin_lock(&fs_info->trans_lock);
894                 list_for_each_entry(t, &fs_info->trans_list, list) {
895                         if (t->transid == transid) {
896                                 cur_trans = t;
897                                 refcount_inc(&cur_trans->use_count);
898                                 ret = 0;
899                                 break;
900                         }
901                         if (t->transid > transid) {
902                                 ret = 0;
903                                 break;
904                         }
905                 }
906                 spin_unlock(&fs_info->trans_lock);
907
908                 /*
909                  * The specified transaction doesn't exist, or we
910                  * raced with btrfs_commit_transaction
911                  */
912                 if (!cur_trans) {
913                         if (transid > fs_info->last_trans_committed)
914                                 ret = -EINVAL;
915                         goto out;
916                 }
917         } else {
918                 /* find newest transaction that is committing | committed */
919                 spin_lock(&fs_info->trans_lock);
920                 list_for_each_entry_reverse(t, &fs_info->trans_list,
921                                             list) {
922                         if (t->state >= TRANS_STATE_COMMIT_START) {
923                                 if (t->state == TRANS_STATE_COMPLETED)
924                                         break;
925                                 cur_trans = t;
926                                 refcount_inc(&cur_trans->use_count);
927                                 break;
928                         }
929                 }
930                 spin_unlock(&fs_info->trans_lock);
931                 if (!cur_trans)
932                         goto out;  /* nothing committing|committed */
933         }
934
935         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
936         btrfs_put_transaction(cur_trans);
937 out:
938         return ret;
939 }
940
941 void btrfs_throttle(struct btrfs_fs_info *fs_info)
942 {
943         wait_current_trans(fs_info);
944 }
945
946 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
947 {
948         struct btrfs_transaction *cur_trans = trans->transaction;
949
950         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
951             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
952                 return true;
953
954         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
955                 return true;
956
957         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
958 }
959
960 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
961
962 {
963         struct btrfs_fs_info *fs_info = trans->fs_info;
964
965         if (!trans->block_rsv) {
966                 ASSERT(!trans->bytes_reserved);
967                 return;
968         }
969
970         if (!trans->bytes_reserved)
971                 return;
972
973         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
974         trace_btrfs_space_reservation(fs_info, "transaction",
975                                       trans->transid, trans->bytes_reserved, 0);
976         btrfs_block_rsv_release(fs_info, trans->block_rsv,
977                                 trans->bytes_reserved, NULL);
978         trans->bytes_reserved = 0;
979 }
980
981 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
982                                    int throttle)
983 {
984         struct btrfs_fs_info *info = trans->fs_info;
985         struct btrfs_transaction *cur_trans = trans->transaction;
986         int err = 0;
987
988         if (refcount_read(&trans->use_count) > 1) {
989                 refcount_dec(&trans->use_count);
990                 trans->block_rsv = trans->orig_rsv;
991                 return 0;
992         }
993
994         btrfs_trans_release_metadata(trans);
995         trans->block_rsv = NULL;
996
997         btrfs_create_pending_block_groups(trans);
998
999         btrfs_trans_release_chunk_metadata(trans);
1000
1001         if (trans->type & __TRANS_FREEZABLE)
1002                 sb_end_intwrite(info->sb);
1003
1004         WARN_ON(cur_trans != info->running_transaction);
1005         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1006         atomic_dec(&cur_trans->num_writers);
1007         extwriter_counter_dec(cur_trans, trans->type);
1008
1009         cond_wake_up(&cur_trans->writer_wait);
1010
1011         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1012         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1013
1014         btrfs_put_transaction(cur_trans);
1015
1016         if (current->journal_info == trans)
1017                 current->journal_info = NULL;
1018
1019         if (throttle)
1020                 btrfs_run_delayed_iputs(info);
1021
1022         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1023                 wake_up_process(info->transaction_kthread);
1024                 if (TRANS_ABORTED(trans))
1025                         err = trans->aborted;
1026                 else
1027                         err = -EROFS;
1028         }
1029
1030         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1031         return err;
1032 }
1033
1034 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1035 {
1036         return __btrfs_end_transaction(trans, 0);
1037 }
1038
1039 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1040 {
1041         return __btrfs_end_transaction(trans, 1);
1042 }
1043
1044 /*
1045  * when btree blocks are allocated, they have some corresponding bits set for
1046  * them in one of two extent_io trees.  This is used to make sure all of
1047  * those extents are sent to disk but does not wait on them
1048  */
1049 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1050                                struct extent_io_tree *dirty_pages, int mark)
1051 {
1052         int err = 0;
1053         int werr = 0;
1054         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1055         struct extent_state *cached_state = NULL;
1056         u64 start = 0;
1057         u64 end;
1058
1059         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1060         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1061                                       mark, &cached_state)) {
1062                 bool wait_writeback = false;
1063
1064                 err = convert_extent_bit(dirty_pages, start, end,
1065                                          EXTENT_NEED_WAIT,
1066                                          mark, &cached_state);
1067                 /*
1068                  * convert_extent_bit can return -ENOMEM, which is most of the
1069                  * time a temporary error. So when it happens, ignore the error
1070                  * and wait for writeback of this range to finish - because we
1071                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1072                  * to __btrfs_wait_marked_extents() would not know that
1073                  * writeback for this range started and therefore wouldn't
1074                  * wait for it to finish - we don't want to commit a
1075                  * superblock that points to btree nodes/leafs for which
1076                  * writeback hasn't finished yet (and without errors).
1077                  * We cleanup any entries left in the io tree when committing
1078                  * the transaction (through extent_io_tree_release()).
1079                  */
1080                 if (err == -ENOMEM) {
1081                         err = 0;
1082                         wait_writeback = true;
1083                 }
1084                 if (!err)
1085                         err = filemap_fdatawrite_range(mapping, start, end);
1086                 if (err)
1087                         werr = err;
1088                 else if (wait_writeback)
1089                         werr = filemap_fdatawait_range(mapping, start, end);
1090                 free_extent_state(cached_state);
1091                 cached_state = NULL;
1092                 cond_resched();
1093                 start = end + 1;
1094         }
1095         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1096         return werr;
1097 }
1098
1099 /*
1100  * when btree blocks are allocated, they have some corresponding bits set for
1101  * them in one of two extent_io trees.  This is used to make sure all of
1102  * those extents are on disk for transaction or log commit.  We wait
1103  * on all the pages and clear them from the dirty pages state tree
1104  */
1105 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1106                                        struct extent_io_tree *dirty_pages)
1107 {
1108         int err = 0;
1109         int werr = 0;
1110         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1111         struct extent_state *cached_state = NULL;
1112         u64 start = 0;
1113         u64 end;
1114
1115         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1116                                       EXTENT_NEED_WAIT, &cached_state)) {
1117                 /*
1118                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1119                  * When committing the transaction, we'll remove any entries
1120                  * left in the io tree. For a log commit, we don't remove them
1121                  * after committing the log because the tree can be accessed
1122                  * concurrently - we do it only at transaction commit time when
1123                  * it's safe to do it (through extent_io_tree_release()).
1124                  */
1125                 err = clear_extent_bit(dirty_pages, start, end,
1126                                        EXTENT_NEED_WAIT, &cached_state);
1127                 if (err == -ENOMEM)
1128                         err = 0;
1129                 if (!err)
1130                         err = filemap_fdatawait_range(mapping, start, end);
1131                 if (err)
1132                         werr = err;
1133                 free_extent_state(cached_state);
1134                 cached_state = NULL;
1135                 cond_resched();
1136                 start = end + 1;
1137         }
1138         if (err)
1139                 werr = err;
1140         return werr;
1141 }
1142
1143 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1144                        struct extent_io_tree *dirty_pages)
1145 {
1146         bool errors = false;
1147         int err;
1148
1149         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1150         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1151                 errors = true;
1152
1153         if (errors && !err)
1154                 err = -EIO;
1155         return err;
1156 }
1157
1158 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1159 {
1160         struct btrfs_fs_info *fs_info = log_root->fs_info;
1161         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1162         bool errors = false;
1163         int err;
1164
1165         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1166
1167         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1168         if ((mark & EXTENT_DIRTY) &&
1169             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1170                 errors = true;
1171
1172         if ((mark & EXTENT_NEW) &&
1173             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1174                 errors = true;
1175
1176         if (errors && !err)
1177                 err = -EIO;
1178         return err;
1179 }
1180
1181 /*
1182  * When btree blocks are allocated the corresponding extents are marked dirty.
1183  * This function ensures such extents are persisted on disk for transaction or
1184  * log commit.
1185  *
1186  * @trans: transaction whose dirty pages we'd like to write
1187  */
1188 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1189 {
1190         int ret;
1191         int ret2;
1192         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1193         struct btrfs_fs_info *fs_info = trans->fs_info;
1194         struct blk_plug plug;
1195
1196         blk_start_plug(&plug);
1197         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1198         blk_finish_plug(&plug);
1199         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1200
1201         extent_io_tree_release(&trans->transaction->dirty_pages);
1202
1203         if (ret)
1204                 return ret;
1205         else if (ret2)
1206                 return ret2;
1207         else
1208                 return 0;
1209 }
1210
1211 /*
1212  * this is used to update the root pointer in the tree of tree roots.
1213  *
1214  * But, in the case of the extent allocation tree, updating the root
1215  * pointer may allocate blocks which may change the root of the extent
1216  * allocation tree.
1217  *
1218  * So, this loops and repeats and makes sure the cowonly root didn't
1219  * change while the root pointer was being updated in the metadata.
1220  */
1221 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1222                                struct btrfs_root *root)
1223 {
1224         int ret;
1225         u64 old_root_bytenr;
1226         u64 old_root_used;
1227         struct btrfs_fs_info *fs_info = root->fs_info;
1228         struct btrfs_root *tree_root = fs_info->tree_root;
1229
1230         old_root_used = btrfs_root_used(&root->root_item);
1231
1232         while (1) {
1233                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1234                 if (old_root_bytenr == root->node->start &&
1235                     old_root_used == btrfs_root_used(&root->root_item))
1236                         break;
1237
1238                 btrfs_set_root_node(&root->root_item, root->node);
1239                 ret = btrfs_update_root(trans, tree_root,
1240                                         &root->root_key,
1241                                         &root->root_item);
1242                 if (ret)
1243                         return ret;
1244
1245                 old_root_used = btrfs_root_used(&root->root_item);
1246         }
1247
1248         return 0;
1249 }
1250
1251 /*
1252  * update all the cowonly tree roots on disk
1253  *
1254  * The error handling in this function may not be obvious. Any of the
1255  * failures will cause the file system to go offline. We still need
1256  * to clean up the delayed refs.
1257  */
1258 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1259 {
1260         struct btrfs_fs_info *fs_info = trans->fs_info;
1261         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1262         struct list_head *io_bgs = &trans->transaction->io_bgs;
1263         struct list_head *next;
1264         struct extent_buffer *eb;
1265         int ret;
1266
1267         /*
1268          * At this point no one can be using this transaction to modify any tree
1269          * and no one can start another transaction to modify any tree either.
1270          */
1271         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1272
1273         eb = btrfs_lock_root_node(fs_info->tree_root);
1274         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1275                               0, &eb, BTRFS_NESTING_COW);
1276         btrfs_tree_unlock(eb);
1277         free_extent_buffer(eb);
1278
1279         if (ret)
1280                 return ret;
1281
1282         ret = btrfs_run_dev_stats(trans);
1283         if (ret)
1284                 return ret;
1285         ret = btrfs_run_dev_replace(trans);
1286         if (ret)
1287                 return ret;
1288         ret = btrfs_run_qgroups(trans);
1289         if (ret)
1290                 return ret;
1291
1292         ret = btrfs_setup_space_cache(trans);
1293         if (ret)
1294                 return ret;
1295
1296 again:
1297         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1298                 struct btrfs_root *root;
1299                 next = fs_info->dirty_cowonly_roots.next;
1300                 list_del_init(next);
1301                 root = list_entry(next, struct btrfs_root, dirty_list);
1302                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1303
1304                 list_add_tail(&root->dirty_list,
1305                               &trans->transaction->switch_commits);
1306                 ret = update_cowonly_root(trans, root);
1307                 if (ret)
1308                         return ret;
1309         }
1310
1311         /* Now flush any delayed refs generated by updating all of the roots */
1312         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1313         if (ret)
1314                 return ret;
1315
1316         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1317                 ret = btrfs_write_dirty_block_groups(trans);
1318                 if (ret)
1319                         return ret;
1320
1321                 /*
1322                  * We're writing the dirty block groups, which could generate
1323                  * delayed refs, which could generate more dirty block groups,
1324                  * so we want to keep this flushing in this loop to make sure
1325                  * everything gets run.
1326                  */
1327                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1328                 if (ret)
1329                         return ret;
1330         }
1331
1332         if (!list_empty(&fs_info->dirty_cowonly_roots))
1333                 goto again;
1334
1335         /* Update dev-replace pointer once everything is committed */
1336         fs_info->dev_replace.committed_cursor_left =
1337                 fs_info->dev_replace.cursor_left_last_write_of_item;
1338
1339         return 0;
1340 }
1341
1342 /*
1343  * If we had a pending drop we need to see if there are any others left in our
1344  * dead roots list, and if not clear our bit and wake any waiters.
1345  */
1346 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1347 {
1348         /*
1349          * We put the drop in progress roots at the front of the list, so if the
1350          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1351          * up.
1352          */
1353         spin_lock(&fs_info->trans_lock);
1354         if (!list_empty(&fs_info->dead_roots)) {
1355                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1356                                                            struct btrfs_root,
1357                                                            root_list);
1358                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1359                         spin_unlock(&fs_info->trans_lock);
1360                         return;
1361                 }
1362         }
1363         spin_unlock(&fs_info->trans_lock);
1364
1365         btrfs_wake_unfinished_drop(fs_info);
1366 }
1367
1368 /*
1369  * dead roots are old snapshots that need to be deleted.  This allocates
1370  * a dirty root struct and adds it into the list of dead roots that need to
1371  * be deleted
1372  */
1373 void btrfs_add_dead_root(struct btrfs_root *root)
1374 {
1375         struct btrfs_fs_info *fs_info = root->fs_info;
1376
1377         spin_lock(&fs_info->trans_lock);
1378         if (list_empty(&root->root_list)) {
1379                 btrfs_grab_root(root);
1380
1381                 /* We want to process the partially complete drops first. */
1382                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1383                         list_add(&root->root_list, &fs_info->dead_roots);
1384                 else
1385                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1386         }
1387         spin_unlock(&fs_info->trans_lock);
1388 }
1389
1390 /*
1391  * Update each subvolume root and its relocation root, if it exists, in the tree
1392  * of tree roots. Also free log roots if they exist.
1393  */
1394 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1395 {
1396         struct btrfs_fs_info *fs_info = trans->fs_info;
1397         struct btrfs_root *gang[8];
1398         int i;
1399         int ret;
1400
1401         /*
1402          * At this point no one can be using this transaction to modify any tree
1403          * and no one can start another transaction to modify any tree either.
1404          */
1405         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1406
1407         spin_lock(&fs_info->fs_roots_radix_lock);
1408         while (1) {
1409                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1410                                                  (void **)gang, 0,
1411                                                  ARRAY_SIZE(gang),
1412                                                  BTRFS_ROOT_TRANS_TAG);
1413                 if (ret == 0)
1414                         break;
1415                 for (i = 0; i < ret; i++) {
1416                         struct btrfs_root *root = gang[i];
1417                         int ret2;
1418
1419                         /*
1420                          * At this point we can neither have tasks logging inodes
1421                          * from a root nor trying to commit a log tree.
1422                          */
1423                         ASSERT(atomic_read(&root->log_writers) == 0);
1424                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1425                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1426
1427                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1428                                         (unsigned long)root->root_key.objectid,
1429                                         BTRFS_ROOT_TRANS_TAG);
1430                         spin_unlock(&fs_info->fs_roots_radix_lock);
1431
1432                         btrfs_free_log(trans, root);
1433                         ret2 = btrfs_update_reloc_root(trans, root);
1434                         if (ret2)
1435                                 return ret2;
1436
1437                         /* see comments in should_cow_block() */
1438                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1439                         smp_mb__after_atomic();
1440
1441                         if (root->commit_root != root->node) {
1442                                 list_add_tail(&root->dirty_list,
1443                                         &trans->transaction->switch_commits);
1444                                 btrfs_set_root_node(&root->root_item,
1445                                                     root->node);
1446                         }
1447
1448                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1449                                                 &root->root_key,
1450                                                 &root->root_item);
1451                         if (ret2)
1452                                 return ret2;
1453                         spin_lock(&fs_info->fs_roots_radix_lock);
1454                         btrfs_qgroup_free_meta_all_pertrans(root);
1455                 }
1456         }
1457         spin_unlock(&fs_info->fs_roots_radix_lock);
1458         return 0;
1459 }
1460
1461 /*
1462  * defrag a given btree.
1463  * Every leaf in the btree is read and defragged.
1464  */
1465 int btrfs_defrag_root(struct btrfs_root *root)
1466 {
1467         struct btrfs_fs_info *info = root->fs_info;
1468         struct btrfs_trans_handle *trans;
1469         int ret;
1470
1471         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1472                 return 0;
1473
1474         while (1) {
1475                 trans = btrfs_start_transaction(root, 0);
1476                 if (IS_ERR(trans)) {
1477                         ret = PTR_ERR(trans);
1478                         break;
1479                 }
1480
1481                 ret = btrfs_defrag_leaves(trans, root);
1482
1483                 btrfs_end_transaction(trans);
1484                 btrfs_btree_balance_dirty(info);
1485                 cond_resched();
1486
1487                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1488                         break;
1489
1490                 if (btrfs_defrag_cancelled(info)) {
1491                         btrfs_debug(info, "defrag_root cancelled");
1492                         ret = -EAGAIN;
1493                         break;
1494                 }
1495         }
1496         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1497         return ret;
1498 }
1499
1500 /*
1501  * Do all special snapshot related qgroup dirty hack.
1502  *
1503  * Will do all needed qgroup inherit and dirty hack like switch commit
1504  * roots inside one transaction and write all btree into disk, to make
1505  * qgroup works.
1506  */
1507 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1508                                    struct btrfs_root *src,
1509                                    struct btrfs_root *parent,
1510                                    struct btrfs_qgroup_inherit *inherit,
1511                                    u64 dst_objectid)
1512 {
1513         struct btrfs_fs_info *fs_info = src->fs_info;
1514         int ret;
1515
1516         /*
1517          * Save some performance in the case that qgroups are not
1518          * enabled. If this check races with the ioctl, rescan will
1519          * kick in anyway.
1520          */
1521         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1522                 return 0;
1523
1524         /*
1525          * Ensure dirty @src will be committed.  Or, after coming
1526          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1527          * recorded root will never be updated again, causing an outdated root
1528          * item.
1529          */
1530         ret = record_root_in_trans(trans, src, 1);
1531         if (ret)
1532                 return ret;
1533
1534         /*
1535          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1536          * src root, so we must run the delayed refs here.
1537          *
1538          * However this isn't particularly fool proof, because there's no
1539          * synchronization keeping us from changing the tree after this point
1540          * before we do the qgroup_inherit, or even from making changes while
1541          * we're doing the qgroup_inherit.  But that's a problem for the future,
1542          * for now flush the delayed refs to narrow the race window where the
1543          * qgroup counters could end up wrong.
1544          */
1545         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1546         if (ret) {
1547                 btrfs_abort_transaction(trans, ret);
1548                 return ret;
1549         }
1550
1551         ret = commit_fs_roots(trans);
1552         if (ret)
1553                 goto out;
1554         ret = btrfs_qgroup_account_extents(trans);
1555         if (ret < 0)
1556                 goto out;
1557
1558         /* Now qgroup are all updated, we can inherit it to new qgroups */
1559         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1560                                    inherit);
1561         if (ret < 0)
1562                 goto out;
1563
1564         /*
1565          * Now we do a simplified commit transaction, which will:
1566          * 1) commit all subvolume and extent tree
1567          *    To ensure all subvolume and extent tree have a valid
1568          *    commit_root to accounting later insert_dir_item()
1569          * 2) write all btree blocks onto disk
1570          *    This is to make sure later btree modification will be cowed
1571          *    Or commit_root can be populated and cause wrong qgroup numbers
1572          * In this simplified commit, we don't really care about other trees
1573          * like chunk and root tree, as they won't affect qgroup.
1574          * And we don't write super to avoid half committed status.
1575          */
1576         ret = commit_cowonly_roots(trans);
1577         if (ret)
1578                 goto out;
1579         switch_commit_roots(trans);
1580         ret = btrfs_write_and_wait_transaction(trans);
1581         if (ret)
1582                 btrfs_handle_fs_error(fs_info, ret,
1583                         "Error while writing out transaction for qgroup");
1584
1585 out:
1586         /*
1587          * Force parent root to be updated, as we recorded it before so its
1588          * last_trans == cur_transid.
1589          * Or it won't be committed again onto disk after later
1590          * insert_dir_item()
1591          */
1592         if (!ret)
1593                 ret = record_root_in_trans(trans, parent, 1);
1594         return ret;
1595 }
1596
1597 /*
1598  * new snapshots need to be created at a very specific time in the
1599  * transaction commit.  This does the actual creation.
1600  *
1601  * Note:
1602  * If the error which may affect the commitment of the current transaction
1603  * happens, we should return the error number. If the error which just affect
1604  * the creation of the pending snapshots, just return 0.
1605  */
1606 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1607                                    struct btrfs_pending_snapshot *pending)
1608 {
1609
1610         struct btrfs_fs_info *fs_info = trans->fs_info;
1611         struct btrfs_key key;
1612         struct btrfs_root_item *new_root_item;
1613         struct btrfs_root *tree_root = fs_info->tree_root;
1614         struct btrfs_root *root = pending->root;
1615         struct btrfs_root *parent_root;
1616         struct btrfs_block_rsv *rsv;
1617         struct inode *parent_inode = pending->dir;
1618         struct btrfs_path *path;
1619         struct btrfs_dir_item *dir_item;
1620         struct extent_buffer *tmp;
1621         struct extent_buffer *old;
1622         struct timespec64 cur_time;
1623         int ret = 0;
1624         u64 to_reserve = 0;
1625         u64 index = 0;
1626         u64 objectid;
1627         u64 root_flags;
1628         unsigned int nofs_flags;
1629         struct fscrypt_name fname;
1630
1631         ASSERT(pending->path);
1632         path = pending->path;
1633
1634         ASSERT(pending->root_item);
1635         new_root_item = pending->root_item;
1636
1637         /*
1638          * We're inside a transaction and must make sure that any potential
1639          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1640          * filesystem.
1641          */
1642         nofs_flags = memalloc_nofs_save();
1643         pending->error = fscrypt_setup_filename(parent_inode,
1644                                                 &pending->dentry->d_name, 0,
1645                                                 &fname);
1646         memalloc_nofs_restore(nofs_flags);
1647         if (pending->error)
1648                 goto free_pending;
1649
1650         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1651         if (pending->error)
1652                 goto free_fname;
1653
1654         /*
1655          * Make qgroup to skip current new snapshot's qgroupid, as it is
1656          * accounted by later btrfs_qgroup_inherit().
1657          */
1658         btrfs_set_skip_qgroup(trans, objectid);
1659
1660         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1661
1662         if (to_reserve > 0) {
1663                 pending->error = btrfs_block_rsv_add(fs_info,
1664                                                      &pending->block_rsv,
1665                                                      to_reserve,
1666                                                      BTRFS_RESERVE_NO_FLUSH);
1667                 if (pending->error)
1668                         goto clear_skip_qgroup;
1669         }
1670
1671         key.objectid = objectid;
1672         key.offset = (u64)-1;
1673         key.type = BTRFS_ROOT_ITEM_KEY;
1674
1675         rsv = trans->block_rsv;
1676         trans->block_rsv = &pending->block_rsv;
1677         trans->bytes_reserved = trans->block_rsv->reserved;
1678         trace_btrfs_space_reservation(fs_info, "transaction",
1679                                       trans->transid,
1680                                       trans->bytes_reserved, 1);
1681         parent_root = BTRFS_I(parent_inode)->root;
1682         ret = record_root_in_trans(trans, parent_root, 0);
1683         if (ret)
1684                 goto fail;
1685         cur_time = current_time(parent_inode);
1686
1687         /*
1688          * insert the directory item
1689          */
1690         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1691         BUG_ON(ret); /* -ENOMEM */
1692
1693         /* check if there is a file/dir which has the same name. */
1694         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1695                                          btrfs_ino(BTRFS_I(parent_inode)),
1696                                          &fname.disk_name, 0);
1697         if (dir_item != NULL && !IS_ERR(dir_item)) {
1698                 pending->error = -EEXIST;
1699                 goto dir_item_existed;
1700         } else if (IS_ERR(dir_item)) {
1701                 ret = PTR_ERR(dir_item);
1702                 btrfs_abort_transaction(trans, ret);
1703                 goto fail;
1704         }
1705         btrfs_release_path(path);
1706
1707         /*
1708          * pull in the delayed directory update
1709          * and the delayed inode item
1710          * otherwise we corrupt the FS during
1711          * snapshot
1712          */
1713         ret = btrfs_run_delayed_items(trans);
1714         if (ret) {      /* Transaction aborted */
1715                 btrfs_abort_transaction(trans, ret);
1716                 goto fail;
1717         }
1718
1719         ret = record_root_in_trans(trans, root, 0);
1720         if (ret) {
1721                 btrfs_abort_transaction(trans, ret);
1722                 goto fail;
1723         }
1724         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1725         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1726         btrfs_check_and_init_root_item(new_root_item);
1727
1728         root_flags = btrfs_root_flags(new_root_item);
1729         if (pending->readonly)
1730                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1731         else
1732                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1733         btrfs_set_root_flags(new_root_item, root_flags);
1734
1735         btrfs_set_root_generation_v2(new_root_item,
1736                         trans->transid);
1737         generate_random_guid(new_root_item->uuid);
1738         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1739                         BTRFS_UUID_SIZE);
1740         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1741                 memset(new_root_item->received_uuid, 0,
1742                        sizeof(new_root_item->received_uuid));
1743                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1744                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1745                 btrfs_set_root_stransid(new_root_item, 0);
1746                 btrfs_set_root_rtransid(new_root_item, 0);
1747         }
1748         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1749         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1750         btrfs_set_root_otransid(new_root_item, trans->transid);
1751
1752         old = btrfs_lock_root_node(root);
1753         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1754                               BTRFS_NESTING_COW);
1755         if (ret) {
1756                 btrfs_tree_unlock(old);
1757                 free_extent_buffer(old);
1758                 btrfs_abort_transaction(trans, ret);
1759                 goto fail;
1760         }
1761
1762         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1763         /* clean up in any case */
1764         btrfs_tree_unlock(old);
1765         free_extent_buffer(old);
1766         if (ret) {
1767                 btrfs_abort_transaction(trans, ret);
1768                 goto fail;
1769         }
1770         /* see comments in should_cow_block() */
1771         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1772         smp_wmb();
1773
1774         btrfs_set_root_node(new_root_item, tmp);
1775         /* record when the snapshot was created in key.offset */
1776         key.offset = trans->transid;
1777         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1778         btrfs_tree_unlock(tmp);
1779         free_extent_buffer(tmp);
1780         if (ret) {
1781                 btrfs_abort_transaction(trans, ret);
1782                 goto fail;
1783         }
1784
1785         /*
1786          * insert root back/forward references
1787          */
1788         ret = btrfs_add_root_ref(trans, objectid,
1789                                  parent_root->root_key.objectid,
1790                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1791                                  &fname.disk_name);
1792         if (ret) {
1793                 btrfs_abort_transaction(trans, ret);
1794                 goto fail;
1795         }
1796
1797         key.offset = (u64)-1;
1798         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1799         if (IS_ERR(pending->snap)) {
1800                 ret = PTR_ERR(pending->snap);
1801                 pending->snap = NULL;
1802                 btrfs_abort_transaction(trans, ret);
1803                 goto fail;
1804         }
1805
1806         ret = btrfs_reloc_post_snapshot(trans, pending);
1807         if (ret) {
1808                 btrfs_abort_transaction(trans, ret);
1809                 goto fail;
1810         }
1811
1812         /*
1813          * Do special qgroup accounting for snapshot, as we do some qgroup
1814          * snapshot hack to do fast snapshot.
1815          * To co-operate with that hack, we do hack again.
1816          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1817          */
1818         ret = qgroup_account_snapshot(trans, root, parent_root,
1819                                       pending->inherit, objectid);
1820         if (ret < 0)
1821                 goto fail;
1822
1823         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1824                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1825                                     index);
1826         /* We have check then name at the beginning, so it is impossible. */
1827         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1828         if (ret) {
1829                 btrfs_abort_transaction(trans, ret);
1830                 goto fail;
1831         }
1832
1833         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1834                                                   fname.disk_name.len * 2);
1835         parent_inode->i_mtime = current_time(parent_inode);
1836         parent_inode->i_ctime = parent_inode->i_mtime;
1837         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1838         if (ret) {
1839                 btrfs_abort_transaction(trans, ret);
1840                 goto fail;
1841         }
1842         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1843                                   BTRFS_UUID_KEY_SUBVOL,
1844                                   objectid);
1845         if (ret) {
1846                 btrfs_abort_transaction(trans, ret);
1847                 goto fail;
1848         }
1849         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1850                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1851                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1852                                           objectid);
1853                 if (ret && ret != -EEXIST) {
1854                         btrfs_abort_transaction(trans, ret);
1855                         goto fail;
1856                 }
1857         }
1858
1859 fail:
1860         pending->error = ret;
1861 dir_item_existed:
1862         trans->block_rsv = rsv;
1863         trans->bytes_reserved = 0;
1864 clear_skip_qgroup:
1865         btrfs_clear_skip_qgroup(trans);
1866 free_fname:
1867         fscrypt_free_filename(&fname);
1868 free_pending:
1869         kfree(new_root_item);
1870         pending->root_item = NULL;
1871         btrfs_free_path(path);
1872         pending->path = NULL;
1873
1874         return ret;
1875 }
1876
1877 /*
1878  * create all the snapshots we've scheduled for creation
1879  */
1880 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1881 {
1882         struct btrfs_pending_snapshot *pending, *next;
1883         struct list_head *head = &trans->transaction->pending_snapshots;
1884         int ret = 0;
1885
1886         list_for_each_entry_safe(pending, next, head, list) {
1887                 list_del(&pending->list);
1888                 ret = create_pending_snapshot(trans, pending);
1889                 if (ret)
1890                         break;
1891         }
1892         return ret;
1893 }
1894
1895 static void update_super_roots(struct btrfs_fs_info *fs_info)
1896 {
1897         struct btrfs_root_item *root_item;
1898         struct btrfs_super_block *super;
1899
1900         super = fs_info->super_copy;
1901
1902         root_item = &fs_info->chunk_root->root_item;
1903         super->chunk_root = root_item->bytenr;
1904         super->chunk_root_generation = root_item->generation;
1905         super->chunk_root_level = root_item->level;
1906
1907         root_item = &fs_info->tree_root->root_item;
1908         super->root = root_item->bytenr;
1909         super->generation = root_item->generation;
1910         super->root_level = root_item->level;
1911         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1912                 super->cache_generation = root_item->generation;
1913         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1914                 super->cache_generation = 0;
1915         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1916                 super->uuid_tree_generation = root_item->generation;
1917 }
1918
1919 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1920 {
1921         struct btrfs_transaction *trans;
1922         int ret = 0;
1923
1924         spin_lock(&info->trans_lock);
1925         trans = info->running_transaction;
1926         if (trans)
1927                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1928         spin_unlock(&info->trans_lock);
1929         return ret;
1930 }
1931
1932 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1933 {
1934         struct btrfs_transaction *trans;
1935         int ret = 0;
1936
1937         spin_lock(&info->trans_lock);
1938         trans = info->running_transaction;
1939         if (trans)
1940                 ret = is_transaction_blocked(trans);
1941         spin_unlock(&info->trans_lock);
1942         return ret;
1943 }
1944
1945 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1946 {
1947         struct btrfs_fs_info *fs_info = trans->fs_info;
1948         struct btrfs_transaction *cur_trans;
1949
1950         /* Kick the transaction kthread. */
1951         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1952         wake_up_process(fs_info->transaction_kthread);
1953
1954         /* take transaction reference */
1955         cur_trans = trans->transaction;
1956         refcount_inc(&cur_trans->use_count);
1957
1958         btrfs_end_transaction(trans);
1959
1960         /*
1961          * Wait for the current transaction commit to start and block
1962          * subsequent transaction joins
1963          */
1964         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1965         wait_event(fs_info->transaction_blocked_wait,
1966                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1967                    TRANS_ABORTED(cur_trans));
1968         btrfs_put_transaction(cur_trans);
1969 }
1970
1971 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1972 {
1973         struct btrfs_fs_info *fs_info = trans->fs_info;
1974         struct btrfs_transaction *cur_trans = trans->transaction;
1975
1976         WARN_ON(refcount_read(&trans->use_count) > 1);
1977
1978         btrfs_abort_transaction(trans, err);
1979
1980         spin_lock(&fs_info->trans_lock);
1981
1982         /*
1983          * If the transaction is removed from the list, it means this
1984          * transaction has been committed successfully, so it is impossible
1985          * to call the cleanup function.
1986          */
1987         BUG_ON(list_empty(&cur_trans->list));
1988
1989         if (cur_trans == fs_info->running_transaction) {
1990                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1991                 spin_unlock(&fs_info->trans_lock);
1992
1993                 /*
1994                  * The thread has already released the lockdep map as reader
1995                  * already in btrfs_commit_transaction().
1996                  */
1997                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1998                 wait_event(cur_trans->writer_wait,
1999                            atomic_read(&cur_trans->num_writers) == 1);
2000
2001                 spin_lock(&fs_info->trans_lock);
2002         }
2003
2004         /*
2005          * Now that we know no one else is still using the transaction we can
2006          * remove the transaction from the list of transactions. This avoids
2007          * the transaction kthread from cleaning up the transaction while some
2008          * other task is still using it, which could result in a use-after-free
2009          * on things like log trees, as it forces the transaction kthread to
2010          * wait for this transaction to be cleaned up by us.
2011          */
2012         list_del_init(&cur_trans->list);
2013
2014         spin_unlock(&fs_info->trans_lock);
2015
2016         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2017
2018         spin_lock(&fs_info->trans_lock);
2019         if (cur_trans == fs_info->running_transaction)
2020                 fs_info->running_transaction = NULL;
2021         spin_unlock(&fs_info->trans_lock);
2022
2023         if (trans->type & __TRANS_FREEZABLE)
2024                 sb_end_intwrite(fs_info->sb);
2025         btrfs_put_transaction(cur_trans);
2026         btrfs_put_transaction(cur_trans);
2027
2028         trace_btrfs_transaction_commit(fs_info);
2029
2030         if (current->journal_info == trans)
2031                 current->journal_info = NULL;
2032
2033         /*
2034          * If relocation is running, we can't cancel scrub because that will
2035          * result in a deadlock. Before relocating a block group, relocation
2036          * pauses scrub, then starts and commits a transaction before unpausing
2037          * scrub. If the transaction commit is being done by the relocation
2038          * task or triggered by another task and the relocation task is waiting
2039          * for the commit, and we end up here due to an error in the commit
2040          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2041          * asking for scrub to stop while having it asked to be paused higher
2042          * above in relocation code.
2043          */
2044         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2045                 btrfs_scrub_cancel(fs_info);
2046
2047         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2048 }
2049
2050 /*
2051  * Release reserved delayed ref space of all pending block groups of the
2052  * transaction and remove them from the list
2053  */
2054 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2055 {
2056        struct btrfs_fs_info *fs_info = trans->fs_info;
2057        struct btrfs_block_group *block_group, *tmp;
2058
2059        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2060                btrfs_delayed_refs_rsv_release(fs_info, 1);
2061                list_del_init(&block_group->bg_list);
2062        }
2063 }
2064
2065 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2066 {
2067         /*
2068          * We use try_to_writeback_inodes_sb() here because if we used
2069          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2070          * Currently are holding the fs freeze lock, if we do an async flush
2071          * we'll do btrfs_join_transaction() and deadlock because we need to
2072          * wait for the fs freeze lock.  Using the direct flushing we benefit
2073          * from already being in a transaction and our join_transaction doesn't
2074          * have to re-take the fs freeze lock.
2075          *
2076          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2077          * if it can read lock sb->s_umount. It will always be able to lock it,
2078          * except when the filesystem is being unmounted or being frozen, but in
2079          * those cases sync_filesystem() is called, which results in calling
2080          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2081          * Note that we don't call writeback_inodes_sb() directly, because it
2082          * will emit a warning if sb->s_umount is not locked.
2083          */
2084         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2086         return 0;
2087 }
2088
2089 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2090 {
2091         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2092                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2093 }
2094
2095 /*
2096  * Add a pending snapshot associated with the given transaction handle to the
2097  * respective handle. This must be called after the transaction commit started
2098  * and while holding fs_info->trans_lock.
2099  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2100  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2101  * returns an error.
2102  */
2103 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2104 {
2105         struct btrfs_transaction *cur_trans = trans->transaction;
2106
2107         if (!trans->pending_snapshot)
2108                 return;
2109
2110         lockdep_assert_held(&trans->fs_info->trans_lock);
2111         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2112
2113         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2114 }
2115
2116 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2117 {
2118         fs_info->commit_stats.commit_count++;
2119         fs_info->commit_stats.last_commit_dur = interval;
2120         fs_info->commit_stats.max_commit_dur =
2121                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2122         fs_info->commit_stats.total_commit_dur += interval;
2123 }
2124
2125 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2126 {
2127         struct btrfs_fs_info *fs_info = trans->fs_info;
2128         struct btrfs_transaction *cur_trans = trans->transaction;
2129         struct btrfs_transaction *prev_trans = NULL;
2130         int ret;
2131         ktime_t start_time;
2132         ktime_t interval;
2133
2134         ASSERT(refcount_read(&trans->use_count) == 1);
2135         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2136
2137         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2138
2139         /* Stop the commit early if ->aborted is set */
2140         if (TRANS_ABORTED(cur_trans)) {
2141                 ret = cur_trans->aborted;
2142                 goto lockdep_trans_commit_start_release;
2143         }
2144
2145         btrfs_trans_release_metadata(trans);
2146         trans->block_rsv = NULL;
2147
2148         /*
2149          * We only want one transaction commit doing the flushing so we do not
2150          * waste a bunch of time on lock contention on the extent root node.
2151          */
2152         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2153                               &cur_trans->delayed_refs.flags)) {
2154                 /*
2155                  * Make a pass through all the delayed refs we have so far.
2156                  * Any running threads may add more while we are here.
2157                  */
2158                 ret = btrfs_run_delayed_refs(trans, 0);
2159                 if (ret)
2160                         goto lockdep_trans_commit_start_release;
2161         }
2162
2163         btrfs_create_pending_block_groups(trans);
2164
2165         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2166                 int run_it = 0;
2167
2168                 /* this mutex is also taken before trying to set
2169                  * block groups readonly.  We need to make sure
2170                  * that nobody has set a block group readonly
2171                  * after a extents from that block group have been
2172                  * allocated for cache files.  btrfs_set_block_group_ro
2173                  * will wait for the transaction to commit if it
2174                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2175                  *
2176                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2177                  * only one process starts all the block group IO.  It wouldn't
2178                  * hurt to have more than one go through, but there's no
2179                  * real advantage to it either.
2180                  */
2181                 mutex_lock(&fs_info->ro_block_group_mutex);
2182                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2183                                       &cur_trans->flags))
2184                         run_it = 1;
2185                 mutex_unlock(&fs_info->ro_block_group_mutex);
2186
2187                 if (run_it) {
2188                         ret = btrfs_start_dirty_block_groups(trans);
2189                         if (ret)
2190                                 goto lockdep_trans_commit_start_release;
2191                 }
2192         }
2193
2194         spin_lock(&fs_info->trans_lock);
2195         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2196                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2197
2198                 add_pending_snapshot(trans);
2199
2200                 spin_unlock(&fs_info->trans_lock);
2201                 refcount_inc(&cur_trans->use_count);
2202
2203                 if (trans->in_fsync)
2204                         want_state = TRANS_STATE_SUPER_COMMITTED;
2205
2206                 btrfs_trans_state_lockdep_release(fs_info,
2207                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2208                 ret = btrfs_end_transaction(trans);
2209                 wait_for_commit(cur_trans, want_state);
2210
2211                 if (TRANS_ABORTED(cur_trans))
2212                         ret = cur_trans->aborted;
2213
2214                 btrfs_put_transaction(cur_trans);
2215
2216                 return ret;
2217         }
2218
2219         cur_trans->state = TRANS_STATE_COMMIT_START;
2220         wake_up(&fs_info->transaction_blocked_wait);
2221         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2222
2223         if (cur_trans->list.prev != &fs_info->trans_list) {
2224                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2225
2226                 if (trans->in_fsync)
2227                         want_state = TRANS_STATE_SUPER_COMMITTED;
2228
2229                 prev_trans = list_entry(cur_trans->list.prev,
2230                                         struct btrfs_transaction, list);
2231                 if (prev_trans->state < want_state) {
2232                         refcount_inc(&prev_trans->use_count);
2233                         spin_unlock(&fs_info->trans_lock);
2234
2235                         wait_for_commit(prev_trans, want_state);
2236
2237                         ret = READ_ONCE(prev_trans->aborted);
2238
2239                         btrfs_put_transaction(prev_trans);
2240                         if (ret)
2241                                 goto lockdep_release;
2242                 } else {
2243                         spin_unlock(&fs_info->trans_lock);
2244                 }
2245         } else {
2246                 spin_unlock(&fs_info->trans_lock);
2247                 /*
2248                  * The previous transaction was aborted and was already removed
2249                  * from the list of transactions at fs_info->trans_list. So we
2250                  * abort to prevent writing a new superblock that reflects a
2251                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2252                  */
2253                 if (BTRFS_FS_ERROR(fs_info)) {
2254                         ret = -EROFS;
2255                         goto lockdep_release;
2256                 }
2257         }
2258
2259         /*
2260          * Get the time spent on the work done by the commit thread and not
2261          * the time spent waiting on a previous commit
2262          */
2263         start_time = ktime_get_ns();
2264
2265         extwriter_counter_dec(cur_trans, trans->type);
2266
2267         ret = btrfs_start_delalloc_flush(fs_info);
2268         if (ret)
2269                 goto lockdep_release;
2270
2271         ret = btrfs_run_delayed_items(trans);
2272         if (ret)
2273                 goto lockdep_release;
2274
2275         /*
2276          * The thread has started/joined the transaction thus it holds the
2277          * lockdep map as a reader. It has to release it before acquiring the
2278          * lockdep map as a writer.
2279          */
2280         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2281         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2282         wait_event(cur_trans->writer_wait,
2283                    extwriter_counter_read(cur_trans) == 0);
2284
2285         /* some pending stuffs might be added after the previous flush. */
2286         ret = btrfs_run_delayed_items(trans);
2287         if (ret) {
2288                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2289                 goto cleanup_transaction;
2290         }
2291
2292         btrfs_wait_delalloc_flush(fs_info);
2293
2294         /*
2295          * Wait for all ordered extents started by a fast fsync that joined this
2296          * transaction. Otherwise if this transaction commits before the ordered
2297          * extents complete we lose logged data after a power failure.
2298          */
2299         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2300         wait_event(cur_trans->pending_wait,
2301                    atomic_read(&cur_trans->pending_ordered) == 0);
2302
2303         btrfs_scrub_pause(fs_info);
2304         /*
2305          * Ok now we need to make sure to block out any other joins while we
2306          * commit the transaction.  We could have started a join before setting
2307          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2308          */
2309         spin_lock(&fs_info->trans_lock);
2310         add_pending_snapshot(trans);
2311         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2312         spin_unlock(&fs_info->trans_lock);
2313
2314         /*
2315          * The thread has started/joined the transaction thus it holds the
2316          * lockdep map as a reader. It has to release it before acquiring the
2317          * lockdep map as a writer.
2318          */
2319         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2320         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2321         wait_event(cur_trans->writer_wait,
2322                    atomic_read(&cur_trans->num_writers) == 1);
2323
2324         /*
2325          * Make lockdep happy by acquiring the state locks after
2326          * btrfs_trans_num_writers is released. If we acquired the state locks
2327          * before releasing the btrfs_trans_num_writers lock then lockdep would
2328          * complain because we did not follow the reverse order unlocking rule.
2329          */
2330         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2331         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2332         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2333
2334         /*
2335          * We've started the commit, clear the flag in case we were triggered to
2336          * do an async commit but somebody else started before the transaction
2337          * kthread could do the work.
2338          */
2339         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2340
2341         if (TRANS_ABORTED(cur_trans)) {
2342                 ret = cur_trans->aborted;
2343                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2344                 goto scrub_continue;
2345         }
2346         /*
2347          * the reloc mutex makes sure that we stop
2348          * the balancing code from coming in and moving
2349          * extents around in the middle of the commit
2350          */
2351         mutex_lock(&fs_info->reloc_mutex);
2352
2353         /*
2354          * We needn't worry about the delayed items because we will
2355          * deal with them in create_pending_snapshot(), which is the
2356          * core function of the snapshot creation.
2357          */
2358         ret = create_pending_snapshots(trans);
2359         if (ret)
2360                 goto unlock_reloc;
2361
2362         /*
2363          * We insert the dir indexes of the snapshots and update the inode
2364          * of the snapshots' parents after the snapshot creation, so there
2365          * are some delayed items which are not dealt with. Now deal with
2366          * them.
2367          *
2368          * We needn't worry that this operation will corrupt the snapshots,
2369          * because all the tree which are snapshoted will be forced to COW
2370          * the nodes and leaves.
2371          */
2372         ret = btrfs_run_delayed_items(trans);
2373         if (ret)
2374                 goto unlock_reloc;
2375
2376         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2377         if (ret)
2378                 goto unlock_reloc;
2379
2380         /*
2381          * make sure none of the code above managed to slip in a
2382          * delayed item
2383          */
2384         btrfs_assert_delayed_root_empty(fs_info);
2385
2386         WARN_ON(cur_trans != trans->transaction);
2387
2388         ret = commit_fs_roots(trans);
2389         if (ret)
2390                 goto unlock_reloc;
2391
2392         /* commit_fs_roots gets rid of all the tree log roots, it is now
2393          * safe to free the root of tree log roots
2394          */
2395         btrfs_free_log_root_tree(trans, fs_info);
2396
2397         /*
2398          * Since fs roots are all committed, we can get a quite accurate
2399          * new_roots. So let's do quota accounting.
2400          */
2401         ret = btrfs_qgroup_account_extents(trans);
2402         if (ret < 0)
2403                 goto unlock_reloc;
2404
2405         ret = commit_cowonly_roots(trans);
2406         if (ret)
2407                 goto unlock_reloc;
2408
2409         /*
2410          * The tasks which save the space cache and inode cache may also
2411          * update ->aborted, check it.
2412          */
2413         if (TRANS_ABORTED(cur_trans)) {
2414                 ret = cur_trans->aborted;
2415                 goto unlock_reloc;
2416         }
2417
2418         cur_trans = fs_info->running_transaction;
2419
2420         btrfs_set_root_node(&fs_info->tree_root->root_item,
2421                             fs_info->tree_root->node);
2422         list_add_tail(&fs_info->tree_root->dirty_list,
2423                       &cur_trans->switch_commits);
2424
2425         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2426                             fs_info->chunk_root->node);
2427         list_add_tail(&fs_info->chunk_root->dirty_list,
2428                       &cur_trans->switch_commits);
2429
2430         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2431                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2432                                     fs_info->block_group_root->node);
2433                 list_add_tail(&fs_info->block_group_root->dirty_list,
2434                               &cur_trans->switch_commits);
2435         }
2436
2437         switch_commit_roots(trans);
2438
2439         ASSERT(list_empty(&cur_trans->dirty_bgs));
2440         ASSERT(list_empty(&cur_trans->io_bgs));
2441         update_super_roots(fs_info);
2442
2443         btrfs_set_super_log_root(fs_info->super_copy, 0);
2444         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2445         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2446                sizeof(*fs_info->super_copy));
2447
2448         btrfs_commit_device_sizes(cur_trans);
2449
2450         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2451         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2452
2453         btrfs_trans_release_chunk_metadata(trans);
2454
2455         /*
2456          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2457          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2458          * make sure that before we commit our superblock, no other task can
2459          * start a new transaction and commit a log tree before we commit our
2460          * superblock. Anyone trying to commit a log tree locks this mutex before
2461          * writing its superblock.
2462          */
2463         mutex_lock(&fs_info->tree_log_mutex);
2464
2465         spin_lock(&fs_info->trans_lock);
2466         cur_trans->state = TRANS_STATE_UNBLOCKED;
2467         fs_info->running_transaction = NULL;
2468         spin_unlock(&fs_info->trans_lock);
2469         mutex_unlock(&fs_info->reloc_mutex);
2470
2471         wake_up(&fs_info->transaction_wait);
2472         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2473
2474         /* If we have features changed, wake up the cleaner to update sysfs. */
2475         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2476             fs_info->cleaner_kthread)
2477                 wake_up_process(fs_info->cleaner_kthread);
2478
2479         ret = btrfs_write_and_wait_transaction(trans);
2480         if (ret) {
2481                 btrfs_handle_fs_error(fs_info, ret,
2482                                       "Error while writing out transaction");
2483                 mutex_unlock(&fs_info->tree_log_mutex);
2484                 goto scrub_continue;
2485         }
2486
2487         /*
2488          * At this point, we should have written all the tree blocks allocated
2489          * in this transaction. So it's now safe to free the redirtyied extent
2490          * buffers.
2491          */
2492         btrfs_free_redirty_list(cur_trans);
2493
2494         ret = write_all_supers(fs_info, 0);
2495         /*
2496          * the super is written, we can safely allow the tree-loggers
2497          * to go about their business
2498          */
2499         mutex_unlock(&fs_info->tree_log_mutex);
2500         if (ret)
2501                 goto scrub_continue;
2502
2503         /*
2504          * We needn't acquire the lock here because there is no other task
2505          * which can change it.
2506          */
2507         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2508         wake_up(&cur_trans->commit_wait);
2509         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2510
2511         btrfs_finish_extent_commit(trans);
2512
2513         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2514                 btrfs_clear_space_info_full(fs_info);
2515
2516         fs_info->last_trans_committed = cur_trans->transid;
2517         /*
2518          * We needn't acquire the lock here because there is no other task
2519          * which can change it.
2520          */
2521         cur_trans->state = TRANS_STATE_COMPLETED;
2522         wake_up(&cur_trans->commit_wait);
2523         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2524
2525         spin_lock(&fs_info->trans_lock);
2526         list_del_init(&cur_trans->list);
2527         spin_unlock(&fs_info->trans_lock);
2528
2529         btrfs_put_transaction(cur_trans);
2530         btrfs_put_transaction(cur_trans);
2531
2532         if (trans->type & __TRANS_FREEZABLE)
2533                 sb_end_intwrite(fs_info->sb);
2534
2535         trace_btrfs_transaction_commit(fs_info);
2536
2537         interval = ktime_get_ns() - start_time;
2538
2539         btrfs_scrub_continue(fs_info);
2540
2541         if (current->journal_info == trans)
2542                 current->journal_info = NULL;
2543
2544         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2545
2546         update_commit_stats(fs_info, interval);
2547
2548         return ret;
2549
2550 unlock_reloc:
2551         mutex_unlock(&fs_info->reloc_mutex);
2552         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2553 scrub_continue:
2554         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2555         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2556         btrfs_scrub_continue(fs_info);
2557 cleanup_transaction:
2558         btrfs_trans_release_metadata(trans);
2559         btrfs_cleanup_pending_block_groups(trans);
2560         btrfs_trans_release_chunk_metadata(trans);
2561         trans->block_rsv = NULL;
2562         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2563         if (current->journal_info == trans)
2564                 current->journal_info = NULL;
2565         cleanup_transaction(trans, ret);
2566
2567         return ret;
2568
2569 lockdep_release:
2570         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2571         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2572         goto cleanup_transaction;
2573
2574 lockdep_trans_commit_start_release:
2575         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2576         btrfs_end_transaction(trans);
2577         return ret;
2578 }
2579
2580 /*
2581  * return < 0 if error
2582  * 0 if there are no more dead_roots at the time of call
2583  * 1 there are more to be processed, call me again
2584  *
2585  * The return value indicates there are certainly more snapshots to delete, but
2586  * if there comes a new one during processing, it may return 0. We don't mind,
2587  * because btrfs_commit_super will poke cleaner thread and it will process it a
2588  * few seconds later.
2589  */
2590 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2591 {
2592         struct btrfs_root *root;
2593         int ret;
2594
2595         spin_lock(&fs_info->trans_lock);
2596         if (list_empty(&fs_info->dead_roots)) {
2597                 spin_unlock(&fs_info->trans_lock);
2598                 return 0;
2599         }
2600         root = list_first_entry(&fs_info->dead_roots,
2601                         struct btrfs_root, root_list);
2602         list_del_init(&root->root_list);
2603         spin_unlock(&fs_info->trans_lock);
2604
2605         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2606
2607         btrfs_kill_all_delayed_nodes(root);
2608
2609         if (btrfs_header_backref_rev(root->node) <
2610                         BTRFS_MIXED_BACKREF_REV)
2611                 ret = btrfs_drop_snapshot(root, 0, 0);
2612         else
2613                 ret = btrfs_drop_snapshot(root, 1, 0);
2614
2615         btrfs_put_root(root);
2616         return (ret < 0) ? 0 : 1;
2617 }
2618
2619 /*
2620  * We only mark the transaction aborted and then set the file system read-only.
2621  * This will prevent new transactions from starting or trying to join this
2622  * one.
2623  *
2624  * This means that error recovery at the call site is limited to freeing
2625  * any local memory allocations and passing the error code up without
2626  * further cleanup. The transaction should complete as it normally would
2627  * in the call path but will return -EIO.
2628  *
2629  * We'll complete the cleanup in btrfs_end_transaction and
2630  * btrfs_commit_transaction.
2631  */
2632 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2633                                       const char *function,
2634                                       unsigned int line, int errno, bool first_hit)
2635 {
2636         struct btrfs_fs_info *fs_info = trans->fs_info;
2637
2638         WRITE_ONCE(trans->aborted, errno);
2639         WRITE_ONCE(trans->transaction->aborted, errno);
2640         if (first_hit && errno == -ENOSPC)
2641                 btrfs_dump_space_info_for_trans_abort(fs_info);
2642         /* Wake up anybody who may be waiting on this transaction */
2643         wake_up(&fs_info->transaction_wait);
2644         wake_up(&fs_info->transaction_blocked_wait);
2645         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2646 }
2647
2648 int __init btrfs_transaction_init(void)
2649 {
2650         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2651                         sizeof(struct btrfs_trans_handle), 0,
2652                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2653         if (!btrfs_trans_handle_cachep)
2654                 return -ENOMEM;
2655         return 0;
2656 }
2657
2658 void __cold btrfs_transaction_exit(void)
2659 {
2660         kmem_cache_destroy(btrfs_trans_handle_cachep);
2661 }
This page took 0.192851 seconds and 4 git commands to generate.