]> Git Repo - J-linux.git/blob - fs/btrfs/transaction.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |                                                Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update     |
98  * | super blocks.                                  |
99  * |                                                |
100  * | At this stage, new transaction is allowed to   |
101  * | start.                                         |
102  * | All new start_transaction() calls will be      |
103  * | attached to transid N+1.                       |
104  * |                                                |
105  * | To next stage:                                 |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices                      |
108  * V                                                |
109  * Transaction N [[TRANS_STATE_COMPLETED]]          V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.            | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115         [TRANS_STATE_RUNNING]           = 0U,
116         [TRANS_STATE_COMMIT_PREP]       = 0U,
117         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
118         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
119                                            __TRANS_ATTACH |
120                                            __TRANS_JOIN |
121                                            __TRANS_JOIN_NOSTART),
122         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
123                                            __TRANS_ATTACH |
124                                            __TRANS_JOIN |
125                                            __TRANS_JOIN_NOLOCK |
126                                            __TRANS_JOIN_NOSTART),
127         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
128                                            __TRANS_ATTACH |
129                                            __TRANS_JOIN |
130                                            __TRANS_JOIN_NOLOCK |
131                                            __TRANS_JOIN_NOSTART),
132         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
133                                            __TRANS_ATTACH |
134                                            __TRANS_JOIN |
135                                            __TRANS_JOIN_NOLOCK |
136                                            __TRANS_JOIN_NOSTART),
137 };
138
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141         WARN_ON(refcount_read(&transaction->use_count) == 0);
142         if (refcount_dec_and_test(&transaction->use_count)) {
143                 BUG_ON(!list_empty(&transaction->list));
144                 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145                 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146                 if (transaction->delayed_refs.pending_csums)
147                         btrfs_err(transaction->fs_info,
148                                   "pending csums is %llu",
149                                   transaction->delayed_refs.pending_csums);
150                 /*
151                  * If any block groups are found in ->deleted_bgs then it's
152                  * because the transaction was aborted and a commit did not
153                  * happen (things failed before writing the new superblock
154                  * and calling btrfs_finish_extent_commit()), so we can not
155                  * discard the physical locations of the block groups.
156                  */
157                 while (!list_empty(&transaction->deleted_bgs)) {
158                         struct btrfs_block_group *cache;
159
160                         cache = list_first_entry(&transaction->deleted_bgs,
161                                                  struct btrfs_block_group,
162                                                  bg_list);
163                         list_del_init(&cache->bg_list);
164                         btrfs_unfreeze_block_group(cache);
165                         btrfs_put_block_group(cache);
166                 }
167                 WARN_ON(!list_empty(&transaction->dev_update_list));
168                 kfree(transaction);
169         }
170 }
171
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174         struct btrfs_transaction *cur_trans = trans->transaction;
175         struct btrfs_fs_info *fs_info = trans->fs_info;
176         struct btrfs_root *root, *tmp;
177
178         /*
179          * At this point no one can be using this transaction to modify any tree
180          * and no one can start another transaction to modify any tree either.
181          */
182         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184         down_write(&fs_info->commit_root_sem);
185
186         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187                 fs_info->last_reloc_trans = trans->transid;
188
189         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190                                  dirty_list) {
191                 list_del_init(&root->dirty_list);
192                 free_extent_buffer(root->commit_root);
193                 root->commit_root = btrfs_root_node(root);
194                 extent_io_tree_release(&root->dirty_log_pages);
195                 btrfs_qgroup_clean_swapped_blocks(root);
196         }
197
198         /* We can free old roots now. */
199         spin_lock(&cur_trans->dropped_roots_lock);
200         while (!list_empty(&cur_trans->dropped_roots)) {
201                 root = list_first_entry(&cur_trans->dropped_roots,
202                                         struct btrfs_root, root_list);
203                 list_del_init(&root->root_list);
204                 spin_unlock(&cur_trans->dropped_roots_lock);
205                 btrfs_free_log(trans, root);
206                 btrfs_drop_and_free_fs_root(fs_info, root);
207                 spin_lock(&cur_trans->dropped_roots_lock);
208         }
209         spin_unlock(&cur_trans->dropped_roots_lock);
210
211         up_write(&fs_info->commit_root_sem);
212 }
213
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215                                          unsigned int type)
216 {
217         if (type & TRANS_EXTWRITERS)
218                 atomic_inc(&trans->num_extwriters);
219 }
220
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222                                          unsigned int type)
223 {
224         if (type & TRANS_EXTWRITERS)
225                 atomic_dec(&trans->num_extwriters);
226 }
227
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229                                           unsigned int type)
230 {
231         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236         return atomic_read(&trans->num_extwriters);
237 }
238
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248         struct btrfs_fs_info *fs_info = trans->fs_info;
249
250         if (!trans->chunk_bytes_reserved)
251                 return;
252
253         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254                                 trans->chunk_bytes_reserved, NULL);
255         trans->chunk_bytes_reserved = 0;
256 }
257
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262                                      unsigned int type)
263 {
264         struct btrfs_transaction *cur_trans;
265
266         spin_lock(&fs_info->trans_lock);
267 loop:
268         /* The file system has been taken offline. No new transactions. */
269         if (BTRFS_FS_ERROR(fs_info)) {
270                 spin_unlock(&fs_info->trans_lock);
271                 return -EROFS;
272         }
273
274         cur_trans = fs_info->running_transaction;
275         if (cur_trans) {
276                 if (TRANS_ABORTED(cur_trans)) {
277                         spin_unlock(&fs_info->trans_lock);
278                         return cur_trans->aborted;
279                 }
280                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281                         spin_unlock(&fs_info->trans_lock);
282                         return -EBUSY;
283                 }
284                 refcount_inc(&cur_trans->use_count);
285                 atomic_inc(&cur_trans->num_writers);
286                 extwriter_counter_inc(cur_trans, type);
287                 spin_unlock(&fs_info->trans_lock);
288                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290                 return 0;
291         }
292         spin_unlock(&fs_info->trans_lock);
293
294         /*
295          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
296          * current transaction, and commit it. If there is no transaction, just
297          * return ENOENT.
298          */
299         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
300                 return -ENOENT;
301
302         /*
303          * JOIN_NOLOCK only happens during the transaction commit, so
304          * it is impossible that ->running_transaction is NULL
305          */
306         BUG_ON(type == TRANS_JOIN_NOLOCK);
307
308         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
309         if (!cur_trans)
310                 return -ENOMEM;
311
312         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
313         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
314
315         spin_lock(&fs_info->trans_lock);
316         if (fs_info->running_transaction) {
317                 /*
318                  * someone started a transaction after we unlocked.  Make sure
319                  * to redo the checks above
320                  */
321                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
322                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
323                 kfree(cur_trans);
324                 goto loop;
325         } else if (BTRFS_FS_ERROR(fs_info)) {
326                 spin_unlock(&fs_info->trans_lock);
327                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329                 kfree(cur_trans);
330                 return -EROFS;
331         }
332
333         cur_trans->fs_info = fs_info;
334         atomic_set(&cur_trans->pending_ordered, 0);
335         init_waitqueue_head(&cur_trans->pending_wait);
336         atomic_set(&cur_trans->num_writers, 1);
337         extwriter_counter_init(cur_trans, type);
338         init_waitqueue_head(&cur_trans->writer_wait);
339         init_waitqueue_head(&cur_trans->commit_wait);
340         cur_trans->state = TRANS_STATE_RUNNING;
341         /*
342          * One for this trans handle, one so it will live on until we
343          * commit the transaction.
344          */
345         refcount_set(&cur_trans->use_count, 2);
346         cur_trans->flags = 0;
347         cur_trans->start_time = ktime_get_seconds();
348
349         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350
351         xa_init(&cur_trans->delayed_refs.head_refs);
352         xa_init(&cur_trans->delayed_refs.dirty_extents);
353
354         /*
355          * although the tree mod log is per file system and not per transaction,
356          * the log must never go across transaction boundaries.
357          */
358         smp_mb();
359         if (!list_empty(&fs_info->tree_mod_seq_list))
360                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363         atomic64_set(&fs_info->tree_mod_seq, 0);
364
365         spin_lock_init(&cur_trans->delayed_refs.lock);
366
367         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368         INIT_LIST_HEAD(&cur_trans->dev_update_list);
369         INIT_LIST_HEAD(&cur_trans->switch_commits);
370         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371         INIT_LIST_HEAD(&cur_trans->io_bgs);
372         INIT_LIST_HEAD(&cur_trans->dropped_roots);
373         mutex_init(&cur_trans->cache_write_mutex);
374         spin_lock_init(&cur_trans->dirty_bgs_lock);
375         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376         spin_lock_init(&cur_trans->dropped_roots_lock);
377         list_add_tail(&cur_trans->list, &fs_info->trans_list);
378         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
379                         IO_TREE_TRANS_DIRTY_PAGES);
380         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
381                         IO_TREE_FS_PINNED_EXTENTS);
382         btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
383         cur_trans->transid = fs_info->generation;
384         fs_info->running_transaction = cur_trans;
385         cur_trans->aborted = 0;
386         spin_unlock(&fs_info->trans_lock);
387
388         return 0;
389 }
390
391 /*
392  * This does all the record keeping required to make sure that a shareable root
393  * is properly recorded in a given transaction.  This is required to make sure
394  * the old root from before we joined the transaction is deleted when the
395  * transaction commits.
396  */
397 static int record_root_in_trans(struct btrfs_trans_handle *trans,
398                                struct btrfs_root *root,
399                                int force)
400 {
401         struct btrfs_fs_info *fs_info = root->fs_info;
402         int ret = 0;
403
404         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405             btrfs_get_root_last_trans(root) < trans->transid) || force) {
406                 WARN_ON(!force && root->commit_root != root->node);
407
408                 /*
409                  * see below for IN_TRANS_SETUP usage rules
410                  * we have the reloc mutex held now, so there
411                  * is only one writer in this function
412                  */
413                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
414
415                 /* make sure readers find IN_TRANS_SETUP before
416                  * they find our root->last_trans update
417                  */
418                 smp_wmb();
419
420                 spin_lock(&fs_info->fs_roots_radix_lock);
421                 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
422                         spin_unlock(&fs_info->fs_roots_radix_lock);
423                         return 0;
424                 }
425                 radix_tree_tag_set(&fs_info->fs_roots_radix,
426                                    (unsigned long)btrfs_root_id(root),
427                                    BTRFS_ROOT_TRANS_TAG);
428                 spin_unlock(&fs_info->fs_roots_radix_lock);
429                 btrfs_set_root_last_trans(root, trans->transid);
430
431                 /* this is pretty tricky.  We don't want to
432                  * take the relocation lock in btrfs_record_root_in_trans
433                  * unless we're really doing the first setup for this root in
434                  * this transaction.
435                  *
436                  * Normally we'd use root->last_trans as a flag to decide
437                  * if we want to take the expensive mutex.
438                  *
439                  * But, we have to set root->last_trans before we
440                  * init the relocation root, otherwise, we trip over warnings
441                  * in ctree.c.  The solution used here is to flag ourselves
442                  * with root IN_TRANS_SETUP.  When this is 1, we're still
443                  * fixing up the reloc trees and everyone must wait.
444                  *
445                  * When this is zero, they can trust root->last_trans and fly
446                  * through btrfs_record_root_in_trans without having to take the
447                  * lock.  smp_wmb() makes sure that all the writes above are
448                  * done before we pop in the zero below
449                  */
450                 ret = btrfs_init_reloc_root(trans, root);
451                 smp_mb__before_atomic();
452                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
453         }
454         return ret;
455 }
456
457
458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459                             struct btrfs_root *root)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_transaction *cur_trans = trans->transaction;
463
464         /* Add ourselves to the transaction dropped list */
465         spin_lock(&cur_trans->dropped_roots_lock);
466         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467         spin_unlock(&cur_trans->dropped_roots_lock);
468
469         /* Make sure we don't try to update the root at commit time */
470         spin_lock(&fs_info->fs_roots_radix_lock);
471         radix_tree_tag_clear(&fs_info->fs_roots_radix,
472                              (unsigned long)btrfs_root_id(root),
473                              BTRFS_ROOT_TRANS_TAG);
474         spin_unlock(&fs_info->fs_roots_radix_lock);
475 }
476
477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478                                struct btrfs_root *root)
479 {
480         struct btrfs_fs_info *fs_info = root->fs_info;
481         int ret;
482
483         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
484                 return 0;
485
486         /*
487          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
488          * and barriers
489          */
490         smp_rmb();
491         if (btrfs_get_root_last_trans(root) == trans->transid &&
492             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
493                 return 0;
494
495         mutex_lock(&fs_info->reloc_mutex);
496         ret = record_root_in_trans(trans, root, 0);
497         mutex_unlock(&fs_info->reloc_mutex);
498
499         return ret;
500 }
501
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503 {
504         return (trans->state >= TRANS_STATE_COMMIT_START &&
505                 trans->state < TRANS_STATE_UNBLOCKED &&
506                 !TRANS_ABORTED(trans));
507 }
508
509 /* wait for commit against the current transaction to become unblocked
510  * when this is done, it is safe to start a new transaction, but the current
511  * transaction might not be fully on disk.
512  */
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
514 {
515         struct btrfs_transaction *cur_trans;
516
517         spin_lock(&fs_info->trans_lock);
518         cur_trans = fs_info->running_transaction;
519         if (cur_trans && is_transaction_blocked(cur_trans)) {
520                 refcount_inc(&cur_trans->use_count);
521                 spin_unlock(&fs_info->trans_lock);
522
523                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
524                 wait_event(fs_info->transaction_wait,
525                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526                            TRANS_ABORTED(cur_trans));
527                 btrfs_put_transaction(cur_trans);
528         } else {
529                 spin_unlock(&fs_info->trans_lock);
530         }
531 }
532
533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 {
535         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
536                 return 0;
537
538         if (type == TRANS_START)
539                 return 1;
540
541         return 0;
542 }
543
544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 {
546         struct btrfs_fs_info *fs_info = root->fs_info;
547
548         if (!fs_info->reloc_ctl ||
549             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550             btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
551             root->reloc_root)
552                 return false;
553
554         return true;
555 }
556
557 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
558                                         enum btrfs_reserve_flush_enum flush,
559                                         u64 num_bytes,
560                                         u64 *delayed_refs_bytes)
561 {
562         struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
563         u64 bytes = num_bytes + *delayed_refs_bytes;
564         int ret;
565
566         /*
567          * We want to reserve all the bytes we may need all at once, so we only
568          * do 1 enospc flushing cycle per transaction start.
569          */
570         ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
571
572         /*
573          * If we are an emergency flush, which can steal from the global block
574          * reserve, then attempt to not reserve space for the delayed refs, as
575          * we will consume space for them from the global block reserve.
576          */
577         if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
578                 bytes -= *delayed_refs_bytes;
579                 *delayed_refs_bytes = 0;
580                 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
581         }
582
583         return ret;
584 }
585
586 static struct btrfs_trans_handle *
587 start_transaction(struct btrfs_root *root, unsigned int num_items,
588                   unsigned int type, enum btrfs_reserve_flush_enum flush,
589                   bool enforce_qgroups)
590 {
591         struct btrfs_fs_info *fs_info = root->fs_info;
592         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
593         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
594         struct btrfs_trans_handle *h;
595         struct btrfs_transaction *cur_trans;
596         u64 num_bytes = 0;
597         u64 qgroup_reserved = 0;
598         u64 delayed_refs_bytes = 0;
599         bool reloc_reserved = false;
600         bool do_chunk_alloc = false;
601         int ret;
602
603         if (BTRFS_FS_ERROR(fs_info))
604                 return ERR_PTR(-EROFS);
605
606         if (current->journal_info) {
607                 WARN_ON(type & TRANS_EXTWRITERS);
608                 h = current->journal_info;
609                 refcount_inc(&h->use_count);
610                 WARN_ON(refcount_read(&h->use_count) > 2);
611                 h->orig_rsv = h->block_rsv;
612                 h->block_rsv = NULL;
613                 goto got_it;
614         }
615
616         /*
617          * Do the reservation before we join the transaction so we can do all
618          * the appropriate flushing if need be.
619          */
620         if (num_items && root != fs_info->chunk_root) {
621                 qgroup_reserved = num_items * fs_info->nodesize;
622                 /*
623                  * Use prealloc for now, as there might be a currently running
624                  * transaction that could free this reserved space prematurely
625                  * by committing.
626                  */
627                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
628                                                          enforce_qgroups, false);
629                 if (ret)
630                         return ERR_PTR(ret);
631
632                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
633                 /*
634                  * If we plan to insert/update/delete "num_items" from a btree,
635                  * we will also generate delayed refs for extent buffers in the
636                  * respective btree paths, so reserve space for the delayed refs
637                  * that will be generated by the caller as it modifies btrees.
638                  * Try to reserve them to avoid excessive use of the global
639                  * block reserve.
640                  */
641                 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
642
643                 /*
644                  * Do the reservation for the relocation root creation
645                  */
646                 if (need_reserve_reloc_root(root)) {
647                         num_bytes += fs_info->nodesize;
648                         reloc_reserved = true;
649                 }
650
651                 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
652                                                    &delayed_refs_bytes);
653                 if (ret)
654                         goto reserve_fail;
655
656                 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
657
658                 if (trans_rsv->space_info->force_alloc)
659                         do_chunk_alloc = true;
660         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
661                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
662                 /*
663                  * Some people call with btrfs_start_transaction(root, 0)
664                  * because they can be throttled, but have some other mechanism
665                  * for reserving space.  We still want these guys to refill the
666                  * delayed block_rsv so just add 1 items worth of reservation
667                  * here.
668                  */
669                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
670                 if (ret)
671                         goto reserve_fail;
672         }
673 again:
674         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
675         if (!h) {
676                 ret = -ENOMEM;
677                 goto alloc_fail;
678         }
679
680         /*
681          * If we are JOIN_NOLOCK we're already committing a transaction and
682          * waiting on this guy, so we don't need to do the sb_start_intwrite
683          * because we're already holding a ref.  We need this because we could
684          * have raced in and did an fsync() on a file which can kick a commit
685          * and then we deadlock with somebody doing a freeze.
686          *
687          * If we are ATTACH, it means we just want to catch the current
688          * transaction and commit it, so we needn't do sb_start_intwrite(). 
689          */
690         if (type & __TRANS_FREEZABLE)
691                 sb_start_intwrite(fs_info->sb);
692
693         if (may_wait_transaction(fs_info, type))
694                 wait_current_trans(fs_info);
695
696         do {
697                 ret = join_transaction(fs_info, type);
698                 if (ret == -EBUSY) {
699                         wait_current_trans(fs_info);
700                         if (unlikely(type == TRANS_ATTACH ||
701                                      type == TRANS_JOIN_NOSTART))
702                                 ret = -ENOENT;
703                 }
704         } while (ret == -EBUSY);
705
706         if (ret < 0)
707                 goto join_fail;
708
709         cur_trans = fs_info->running_transaction;
710
711         h->transid = cur_trans->transid;
712         h->transaction = cur_trans;
713         refcount_set(&h->use_count, 1);
714         h->fs_info = root->fs_info;
715
716         h->type = type;
717         INIT_LIST_HEAD(&h->new_bgs);
718         btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
719
720         smp_mb();
721         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
722             may_wait_transaction(fs_info, type)) {
723                 current->journal_info = h;
724                 btrfs_commit_transaction(h);
725                 goto again;
726         }
727
728         if (num_bytes) {
729                 trace_btrfs_space_reservation(fs_info, "transaction",
730                                               h->transid, num_bytes, 1);
731                 h->block_rsv = trans_rsv;
732                 h->bytes_reserved = num_bytes;
733                 if (delayed_refs_bytes > 0) {
734                         trace_btrfs_space_reservation(fs_info,
735                                                       "local_delayed_refs_rsv",
736                                                       h->transid,
737                                                       delayed_refs_bytes, 1);
738                         h->delayed_refs_bytes_reserved = delayed_refs_bytes;
739                         btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
740                         delayed_refs_bytes = 0;
741                 }
742                 h->reloc_reserved = reloc_reserved;
743         }
744
745 got_it:
746         if (!current->journal_info)
747                 current->journal_info = h;
748
749         /*
750          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
751          * ALLOC_FORCE the first run through, and then we won't allocate for
752          * anybody else who races in later.  We don't care about the return
753          * value here.
754          */
755         if (do_chunk_alloc && num_bytes) {
756                 u64 flags = h->block_rsv->space_info->flags;
757
758                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
759                                   CHUNK_ALLOC_NO_FORCE);
760         }
761
762         /*
763          * btrfs_record_root_in_trans() needs to alloc new extents, and may
764          * call btrfs_join_transaction() while we're also starting a
765          * transaction.
766          *
767          * Thus it need to be called after current->journal_info initialized,
768          * or we can deadlock.
769          */
770         ret = btrfs_record_root_in_trans(h, root);
771         if (ret) {
772                 /*
773                  * The transaction handle is fully initialized and linked with
774                  * other structures so it needs to be ended in case of errors,
775                  * not just freed.
776                  */
777                 btrfs_end_transaction(h);
778                 goto reserve_fail;
779         }
780         /*
781          * Now that we have found a transaction to be a part of, convert the
782          * qgroup reservation from prealloc to pertrans. A different transaction
783          * can't race in and free our pertrans out from under us.
784          */
785         if (qgroup_reserved)
786                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
787
788         return h;
789
790 join_fail:
791         if (type & __TRANS_FREEZABLE)
792                 sb_end_intwrite(fs_info->sb);
793         kmem_cache_free(btrfs_trans_handle_cachep, h);
794 alloc_fail:
795         if (num_bytes)
796                 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
797         if (delayed_refs_bytes)
798                 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
799                                                     delayed_refs_bytes);
800 reserve_fail:
801         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
802         return ERR_PTR(ret);
803 }
804
805 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
806                                                    unsigned int num_items)
807 {
808         return start_transaction(root, num_items, TRANS_START,
809                                  BTRFS_RESERVE_FLUSH_ALL, true);
810 }
811
812 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
813                                         struct btrfs_root *root,
814                                         unsigned int num_items)
815 {
816         return start_transaction(root, num_items, TRANS_START,
817                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
818 }
819
820 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
821 {
822         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
823                                  true);
824 }
825
826 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
827 {
828         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
829                                  BTRFS_RESERVE_NO_FLUSH, true);
830 }
831
832 /*
833  * Similar to regular join but it never starts a transaction when none is
834  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
835  * This is similar to btrfs_attach_transaction() but it allows the join to
836  * happen if the transaction commit already started but it's not yet in the
837  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
838  */
839 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
840 {
841         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
842                                  BTRFS_RESERVE_NO_FLUSH, true);
843 }
844
845 /*
846  * Catch the running transaction.
847  *
848  * It is used when we want to commit the current the transaction, but
849  * don't want to start a new one.
850  *
851  * Note: If this function return -ENOENT, it just means there is no
852  * running transaction. But it is possible that the inactive transaction
853  * is still in the memory, not fully on disk. If you hope there is no
854  * inactive transaction in the fs when -ENOENT is returned, you should
855  * invoke
856  *     btrfs_attach_transaction_barrier()
857  */
858 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
859 {
860         return start_transaction(root, 0, TRANS_ATTACH,
861                                  BTRFS_RESERVE_NO_FLUSH, true);
862 }
863
864 /*
865  * Catch the running transaction.
866  *
867  * It is similar to the above function, the difference is this one
868  * will wait for all the inactive transactions until they fully
869  * complete.
870  */
871 struct btrfs_trans_handle *
872 btrfs_attach_transaction_barrier(struct btrfs_root *root)
873 {
874         struct btrfs_trans_handle *trans;
875
876         trans = start_transaction(root, 0, TRANS_ATTACH,
877                                   BTRFS_RESERVE_NO_FLUSH, true);
878         if (trans == ERR_PTR(-ENOENT)) {
879                 int ret;
880
881                 ret = btrfs_wait_for_commit(root->fs_info, 0);
882                 if (ret)
883                         return ERR_PTR(ret);
884         }
885
886         return trans;
887 }
888
889 /* Wait for a transaction commit to reach at least the given state. */
890 static noinline void wait_for_commit(struct btrfs_transaction *commit,
891                                      const enum btrfs_trans_state min_state)
892 {
893         struct btrfs_fs_info *fs_info = commit->fs_info;
894         u64 transid = commit->transid;
895         bool put = false;
896
897         /*
898          * At the moment this function is called with min_state either being
899          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
900          */
901         if (min_state == TRANS_STATE_COMPLETED)
902                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
903         else
904                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
905
906         while (1) {
907                 wait_event(commit->commit_wait, commit->state >= min_state);
908                 if (put)
909                         btrfs_put_transaction(commit);
910
911                 if (min_state < TRANS_STATE_COMPLETED)
912                         break;
913
914                 /*
915                  * A transaction isn't really completed until all of the
916                  * previous transactions are completed, but with fsync we can
917                  * end up with SUPER_COMMITTED transactions before a COMPLETED
918                  * transaction. Wait for those.
919                  */
920
921                 spin_lock(&fs_info->trans_lock);
922                 commit = list_first_entry_or_null(&fs_info->trans_list,
923                                                   struct btrfs_transaction,
924                                                   list);
925                 if (!commit || commit->transid > transid) {
926                         spin_unlock(&fs_info->trans_lock);
927                         break;
928                 }
929                 refcount_inc(&commit->use_count);
930                 put = true;
931                 spin_unlock(&fs_info->trans_lock);
932         }
933 }
934
935 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
936 {
937         struct btrfs_transaction *cur_trans = NULL, *t;
938         int ret = 0;
939
940         if (transid) {
941                 if (transid <= btrfs_get_last_trans_committed(fs_info))
942                         goto out;
943
944                 /* find specified transaction */
945                 spin_lock(&fs_info->trans_lock);
946                 list_for_each_entry(t, &fs_info->trans_list, list) {
947                         if (t->transid == transid) {
948                                 cur_trans = t;
949                                 refcount_inc(&cur_trans->use_count);
950                                 ret = 0;
951                                 break;
952                         }
953                         if (t->transid > transid) {
954                                 ret = 0;
955                                 break;
956                         }
957                 }
958                 spin_unlock(&fs_info->trans_lock);
959
960                 /*
961                  * The specified transaction doesn't exist, or we
962                  * raced with btrfs_commit_transaction
963                  */
964                 if (!cur_trans) {
965                         if (transid > btrfs_get_last_trans_committed(fs_info))
966                                 ret = -EINVAL;
967                         goto out;
968                 }
969         } else {
970                 /* find newest transaction that is committing | committed */
971                 spin_lock(&fs_info->trans_lock);
972                 list_for_each_entry_reverse(t, &fs_info->trans_list,
973                                             list) {
974                         if (t->state >= TRANS_STATE_COMMIT_START) {
975                                 if (t->state == TRANS_STATE_COMPLETED)
976                                         break;
977                                 cur_trans = t;
978                                 refcount_inc(&cur_trans->use_count);
979                                 break;
980                         }
981                 }
982                 spin_unlock(&fs_info->trans_lock);
983                 if (!cur_trans)
984                         goto out;  /* nothing committing|committed */
985         }
986
987         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
988         ret = cur_trans->aborted;
989         btrfs_put_transaction(cur_trans);
990 out:
991         return ret;
992 }
993
994 void btrfs_throttle(struct btrfs_fs_info *fs_info)
995 {
996         wait_current_trans(fs_info);
997 }
998
999 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1000 {
1001         struct btrfs_transaction *cur_trans = trans->transaction;
1002
1003         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1004             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1005                 return true;
1006
1007         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1008                 return true;
1009
1010         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1011 }
1012
1013 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1014
1015 {
1016         struct btrfs_fs_info *fs_info = trans->fs_info;
1017
1018         if (!trans->block_rsv) {
1019                 ASSERT(!trans->bytes_reserved);
1020                 ASSERT(!trans->delayed_refs_bytes_reserved);
1021                 return;
1022         }
1023
1024         if (!trans->bytes_reserved) {
1025                 ASSERT(!trans->delayed_refs_bytes_reserved);
1026                 return;
1027         }
1028
1029         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1030         trace_btrfs_space_reservation(fs_info, "transaction",
1031                                       trans->transid, trans->bytes_reserved, 0);
1032         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1033                                 trans->bytes_reserved, NULL);
1034         trans->bytes_reserved = 0;
1035
1036         if (!trans->delayed_refs_bytes_reserved)
1037                 return;
1038
1039         trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1040                                       trans->transid,
1041                                       trans->delayed_refs_bytes_reserved, 0);
1042         btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1043                                 trans->delayed_refs_bytes_reserved, NULL);
1044         trans->delayed_refs_bytes_reserved = 0;
1045 }
1046
1047 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1048                                    int throttle)
1049 {
1050         struct btrfs_fs_info *info = trans->fs_info;
1051         struct btrfs_transaction *cur_trans = trans->transaction;
1052         int ret = 0;
1053
1054         if (refcount_read(&trans->use_count) > 1) {
1055                 refcount_dec(&trans->use_count);
1056                 trans->block_rsv = trans->orig_rsv;
1057                 return 0;
1058         }
1059
1060         btrfs_trans_release_metadata(trans);
1061         trans->block_rsv = NULL;
1062
1063         btrfs_create_pending_block_groups(trans);
1064
1065         btrfs_trans_release_chunk_metadata(trans);
1066
1067         if (trans->type & __TRANS_FREEZABLE)
1068                 sb_end_intwrite(info->sb);
1069
1070         WARN_ON(cur_trans != info->running_transaction);
1071         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1072         atomic_dec(&cur_trans->num_writers);
1073         extwriter_counter_dec(cur_trans, trans->type);
1074
1075         cond_wake_up(&cur_trans->writer_wait);
1076
1077         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1078         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1079
1080         btrfs_put_transaction(cur_trans);
1081
1082         if (current->journal_info == trans)
1083                 current->journal_info = NULL;
1084
1085         if (throttle)
1086                 btrfs_run_delayed_iputs(info);
1087
1088         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1089                 wake_up_process(info->transaction_kthread);
1090                 if (TRANS_ABORTED(trans))
1091                         ret = trans->aborted;
1092                 else
1093                         ret = -EROFS;
1094         }
1095
1096         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1097         return ret;
1098 }
1099
1100 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1101 {
1102         return __btrfs_end_transaction(trans, 0);
1103 }
1104
1105 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1106 {
1107         return __btrfs_end_transaction(trans, 1);
1108 }
1109
1110 /*
1111  * when btree blocks are allocated, they have some corresponding bits set for
1112  * them in one of two extent_io trees.  This is used to make sure all of
1113  * those extents are sent to disk but does not wait on them
1114  */
1115 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1116                                struct extent_io_tree *dirty_pages, int mark)
1117 {
1118         int ret = 0;
1119         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1120         struct extent_state *cached_state = NULL;
1121         u64 start = 0;
1122         u64 end;
1123
1124         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1125                                      mark, &cached_state)) {
1126                 bool wait_writeback = false;
1127
1128                 ret = convert_extent_bit(dirty_pages, start, end,
1129                                          EXTENT_NEED_WAIT,
1130                                          mark, &cached_state);
1131                 /*
1132                  * convert_extent_bit can return -ENOMEM, which is most of the
1133                  * time a temporary error. So when it happens, ignore the error
1134                  * and wait for writeback of this range to finish - because we
1135                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1136                  * to __btrfs_wait_marked_extents() would not know that
1137                  * writeback for this range started and therefore wouldn't
1138                  * wait for it to finish - we don't want to commit a
1139                  * superblock that points to btree nodes/leafs for which
1140                  * writeback hasn't finished yet (and without errors).
1141                  * We cleanup any entries left in the io tree when committing
1142                  * the transaction (through extent_io_tree_release()).
1143                  */
1144                 if (ret == -ENOMEM) {
1145                         ret = 0;
1146                         wait_writeback = true;
1147                 }
1148                 if (!ret)
1149                         ret = filemap_fdatawrite_range(mapping, start, end);
1150                 if (!ret && wait_writeback)
1151                         ret = filemap_fdatawait_range(mapping, start, end);
1152                 free_extent_state(cached_state);
1153                 if (ret)
1154                         break;
1155                 cached_state = NULL;
1156                 cond_resched();
1157                 start = end + 1;
1158         }
1159         return ret;
1160 }
1161
1162 /*
1163  * when btree blocks are allocated, they have some corresponding bits set for
1164  * them in one of two extent_io trees.  This is used to make sure all of
1165  * those extents are on disk for transaction or log commit.  We wait
1166  * on all the pages and clear them from the dirty pages state tree
1167  */
1168 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1169                                        struct extent_io_tree *dirty_pages)
1170 {
1171         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1172         struct extent_state *cached_state = NULL;
1173         u64 start = 0;
1174         u64 end;
1175         int ret = 0;
1176
1177         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1178                                      EXTENT_NEED_WAIT, &cached_state)) {
1179                 /*
1180                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1181                  * When committing the transaction, we'll remove any entries
1182                  * left in the io tree. For a log commit, we don't remove them
1183                  * after committing the log because the tree can be accessed
1184                  * concurrently - we do it only at transaction commit time when
1185                  * it's safe to do it (through extent_io_tree_release()).
1186                  */
1187                 ret = clear_extent_bit(dirty_pages, start, end,
1188                                        EXTENT_NEED_WAIT, &cached_state);
1189                 if (ret == -ENOMEM)
1190                         ret = 0;
1191                 if (!ret)
1192                         ret = filemap_fdatawait_range(mapping, start, end);
1193                 free_extent_state(cached_state);
1194                 if (ret)
1195                         break;
1196                 cached_state = NULL;
1197                 cond_resched();
1198                 start = end + 1;
1199         }
1200         return ret;
1201 }
1202
1203 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1204                        struct extent_io_tree *dirty_pages)
1205 {
1206         bool errors = false;
1207         int err;
1208
1209         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1210         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1211                 errors = true;
1212
1213         if (errors && !err)
1214                 err = -EIO;
1215         return err;
1216 }
1217
1218 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1219 {
1220         struct btrfs_fs_info *fs_info = log_root->fs_info;
1221         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1222         bool errors = false;
1223         int err;
1224
1225         ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1226
1227         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1228         if ((mark & EXTENT_DIRTY) &&
1229             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1230                 errors = true;
1231
1232         if ((mark & EXTENT_NEW) &&
1233             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1234                 errors = true;
1235
1236         if (errors && !err)
1237                 err = -EIO;
1238         return err;
1239 }
1240
1241 /*
1242  * When btree blocks are allocated the corresponding extents are marked dirty.
1243  * This function ensures such extents are persisted on disk for transaction or
1244  * log commit.
1245  *
1246  * @trans: transaction whose dirty pages we'd like to write
1247  */
1248 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1249 {
1250         int ret;
1251         int ret2;
1252         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1253         struct btrfs_fs_info *fs_info = trans->fs_info;
1254         struct blk_plug plug;
1255
1256         blk_start_plug(&plug);
1257         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1258         blk_finish_plug(&plug);
1259         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1260
1261         extent_io_tree_release(&trans->transaction->dirty_pages);
1262
1263         if (ret)
1264                 return ret;
1265         else if (ret2)
1266                 return ret2;
1267         else
1268                 return 0;
1269 }
1270
1271 /*
1272  * this is used to update the root pointer in the tree of tree roots.
1273  *
1274  * But, in the case of the extent allocation tree, updating the root
1275  * pointer may allocate blocks which may change the root of the extent
1276  * allocation tree.
1277  *
1278  * So, this loops and repeats and makes sure the cowonly root didn't
1279  * change while the root pointer was being updated in the metadata.
1280  */
1281 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1282                                struct btrfs_root *root)
1283 {
1284         int ret;
1285         u64 old_root_bytenr;
1286         u64 old_root_used;
1287         struct btrfs_fs_info *fs_info = root->fs_info;
1288         struct btrfs_root *tree_root = fs_info->tree_root;
1289
1290         old_root_used = btrfs_root_used(&root->root_item);
1291
1292         while (1) {
1293                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1294                 if (old_root_bytenr == root->node->start &&
1295                     old_root_used == btrfs_root_used(&root->root_item))
1296                         break;
1297
1298                 btrfs_set_root_node(&root->root_item, root->node);
1299                 ret = btrfs_update_root(trans, tree_root,
1300                                         &root->root_key,
1301                                         &root->root_item);
1302                 if (ret)
1303                         return ret;
1304
1305                 old_root_used = btrfs_root_used(&root->root_item);
1306         }
1307
1308         return 0;
1309 }
1310
1311 /*
1312  * update all the cowonly tree roots on disk
1313  *
1314  * The error handling in this function may not be obvious. Any of the
1315  * failures will cause the file system to go offline. We still need
1316  * to clean up the delayed refs.
1317  */
1318 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1319 {
1320         struct btrfs_fs_info *fs_info = trans->fs_info;
1321         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1322         struct list_head *io_bgs = &trans->transaction->io_bgs;
1323         struct list_head *next;
1324         struct extent_buffer *eb;
1325         int ret;
1326
1327         /*
1328          * At this point no one can be using this transaction to modify any tree
1329          * and no one can start another transaction to modify any tree either.
1330          */
1331         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1332
1333         eb = btrfs_lock_root_node(fs_info->tree_root);
1334         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1335                               0, &eb, BTRFS_NESTING_COW);
1336         btrfs_tree_unlock(eb);
1337         free_extent_buffer(eb);
1338
1339         if (ret)
1340                 return ret;
1341
1342         ret = btrfs_run_dev_stats(trans);
1343         if (ret)
1344                 return ret;
1345         ret = btrfs_run_dev_replace(trans);
1346         if (ret)
1347                 return ret;
1348         ret = btrfs_run_qgroups(trans);
1349         if (ret)
1350                 return ret;
1351
1352         ret = btrfs_setup_space_cache(trans);
1353         if (ret)
1354                 return ret;
1355
1356 again:
1357         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1358                 struct btrfs_root *root;
1359                 next = fs_info->dirty_cowonly_roots.next;
1360                 list_del_init(next);
1361                 root = list_entry(next, struct btrfs_root, dirty_list);
1362                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1363
1364                 list_add_tail(&root->dirty_list,
1365                               &trans->transaction->switch_commits);
1366                 ret = update_cowonly_root(trans, root);
1367                 if (ret)
1368                         return ret;
1369         }
1370
1371         /* Now flush any delayed refs generated by updating all of the roots */
1372         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1373         if (ret)
1374                 return ret;
1375
1376         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1377                 ret = btrfs_write_dirty_block_groups(trans);
1378                 if (ret)
1379                         return ret;
1380
1381                 /*
1382                  * We're writing the dirty block groups, which could generate
1383                  * delayed refs, which could generate more dirty block groups,
1384                  * so we want to keep this flushing in this loop to make sure
1385                  * everything gets run.
1386                  */
1387                 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1388                 if (ret)
1389                         return ret;
1390         }
1391
1392         if (!list_empty(&fs_info->dirty_cowonly_roots))
1393                 goto again;
1394
1395         /* Update dev-replace pointer once everything is committed */
1396         fs_info->dev_replace.committed_cursor_left =
1397                 fs_info->dev_replace.cursor_left_last_write_of_item;
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * If we had a pending drop we need to see if there are any others left in our
1404  * dead roots list, and if not clear our bit and wake any waiters.
1405  */
1406 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1407 {
1408         /*
1409          * We put the drop in progress roots at the front of the list, so if the
1410          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1411          * up.
1412          */
1413         spin_lock(&fs_info->trans_lock);
1414         if (!list_empty(&fs_info->dead_roots)) {
1415                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1416                                                            struct btrfs_root,
1417                                                            root_list);
1418                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1419                         spin_unlock(&fs_info->trans_lock);
1420                         return;
1421                 }
1422         }
1423         spin_unlock(&fs_info->trans_lock);
1424
1425         btrfs_wake_unfinished_drop(fs_info);
1426 }
1427
1428 /*
1429  * dead roots are old snapshots that need to be deleted.  This allocates
1430  * a dirty root struct and adds it into the list of dead roots that need to
1431  * be deleted
1432  */
1433 void btrfs_add_dead_root(struct btrfs_root *root)
1434 {
1435         struct btrfs_fs_info *fs_info = root->fs_info;
1436
1437         spin_lock(&fs_info->trans_lock);
1438         if (list_empty(&root->root_list)) {
1439                 btrfs_grab_root(root);
1440
1441                 /* We want to process the partially complete drops first. */
1442                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1443                         list_add(&root->root_list, &fs_info->dead_roots);
1444                 else
1445                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1446         }
1447         spin_unlock(&fs_info->trans_lock);
1448 }
1449
1450 /*
1451  * Update each subvolume root and its relocation root, if it exists, in the tree
1452  * of tree roots. Also free log roots if they exist.
1453  */
1454 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1455 {
1456         struct btrfs_fs_info *fs_info = trans->fs_info;
1457         struct btrfs_root *gang[8];
1458         int i;
1459         int ret;
1460
1461         /*
1462          * At this point no one can be using this transaction to modify any tree
1463          * and no one can start another transaction to modify any tree either.
1464          */
1465         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1466
1467         spin_lock(&fs_info->fs_roots_radix_lock);
1468         while (1) {
1469                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1470                                                  (void **)gang, 0,
1471                                                  ARRAY_SIZE(gang),
1472                                                  BTRFS_ROOT_TRANS_TAG);
1473                 if (ret == 0)
1474                         break;
1475                 for (i = 0; i < ret; i++) {
1476                         struct btrfs_root *root = gang[i];
1477                         int ret2;
1478
1479                         /*
1480                          * At this point we can neither have tasks logging inodes
1481                          * from a root nor trying to commit a log tree.
1482                          */
1483                         ASSERT(atomic_read(&root->log_writers) == 0);
1484                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1485                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1486
1487                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1488                                         (unsigned long)btrfs_root_id(root),
1489                                         BTRFS_ROOT_TRANS_TAG);
1490                         btrfs_qgroup_free_meta_all_pertrans(root);
1491                         spin_unlock(&fs_info->fs_roots_radix_lock);
1492
1493                         btrfs_free_log(trans, root);
1494                         ret2 = btrfs_update_reloc_root(trans, root);
1495                         if (ret2)
1496                                 return ret2;
1497
1498                         /* see comments in should_cow_block() */
1499                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1500                         smp_mb__after_atomic();
1501
1502                         if (root->commit_root != root->node) {
1503                                 list_add_tail(&root->dirty_list,
1504                                         &trans->transaction->switch_commits);
1505                                 btrfs_set_root_node(&root->root_item,
1506                                                     root->node);
1507                         }
1508
1509                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1510                                                 &root->root_key,
1511                                                 &root->root_item);
1512                         if (ret2)
1513                                 return ret2;
1514                         spin_lock(&fs_info->fs_roots_radix_lock);
1515                 }
1516         }
1517         spin_unlock(&fs_info->fs_roots_radix_lock);
1518         return 0;
1519 }
1520
1521 /*
1522  * Do all special snapshot related qgroup dirty hack.
1523  *
1524  * Will do all needed qgroup inherit and dirty hack like switch commit
1525  * roots inside one transaction and write all btree into disk, to make
1526  * qgroup works.
1527  */
1528 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1529                                    struct btrfs_root *src,
1530                                    struct btrfs_root *parent,
1531                                    struct btrfs_qgroup_inherit *inherit,
1532                                    u64 dst_objectid)
1533 {
1534         struct btrfs_fs_info *fs_info = src->fs_info;
1535         int ret;
1536
1537         /*
1538          * Save some performance in the case that qgroups are not enabled. If
1539          * this check races with the ioctl, rescan will kick in anyway.
1540          */
1541         if (!btrfs_qgroup_full_accounting(fs_info))
1542                 return 0;
1543
1544         /*
1545          * Ensure dirty @src will be committed.  Or, after coming
1546          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1547          * recorded root will never be updated again, causing an outdated root
1548          * item.
1549          */
1550         ret = record_root_in_trans(trans, src, 1);
1551         if (ret)
1552                 return ret;
1553
1554         /*
1555          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1556          * src root, so we must run the delayed refs here.
1557          *
1558          * However this isn't particularly fool proof, because there's no
1559          * synchronization keeping us from changing the tree after this point
1560          * before we do the qgroup_inherit, or even from making changes while
1561          * we're doing the qgroup_inherit.  But that's a problem for the future,
1562          * for now flush the delayed refs to narrow the race window where the
1563          * qgroup counters could end up wrong.
1564          */
1565         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1566         if (ret) {
1567                 btrfs_abort_transaction(trans, ret);
1568                 return ret;
1569         }
1570
1571         ret = commit_fs_roots(trans);
1572         if (ret)
1573                 goto out;
1574         ret = btrfs_qgroup_account_extents(trans);
1575         if (ret < 0)
1576                 goto out;
1577
1578         /* Now qgroup are all updated, we can inherit it to new qgroups */
1579         ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1580                                    btrfs_root_id(parent), inherit);
1581         if (ret < 0)
1582                 goto out;
1583
1584         /*
1585          * Now we do a simplified commit transaction, which will:
1586          * 1) commit all subvolume and extent tree
1587          *    To ensure all subvolume and extent tree have a valid
1588          *    commit_root to accounting later insert_dir_item()
1589          * 2) write all btree blocks onto disk
1590          *    This is to make sure later btree modification will be cowed
1591          *    Or commit_root can be populated and cause wrong qgroup numbers
1592          * In this simplified commit, we don't really care about other trees
1593          * like chunk and root tree, as they won't affect qgroup.
1594          * And we don't write super to avoid half committed status.
1595          */
1596         ret = commit_cowonly_roots(trans);
1597         if (ret)
1598                 goto out;
1599         switch_commit_roots(trans);
1600         ret = btrfs_write_and_wait_transaction(trans);
1601         if (ret)
1602                 btrfs_handle_fs_error(fs_info, ret,
1603                         "Error while writing out transaction for qgroup");
1604
1605 out:
1606         /*
1607          * Force parent root to be updated, as we recorded it before so its
1608          * last_trans == cur_transid.
1609          * Or it won't be committed again onto disk after later
1610          * insert_dir_item()
1611          */
1612         if (!ret)
1613                 ret = record_root_in_trans(trans, parent, 1);
1614         return ret;
1615 }
1616
1617 /*
1618  * new snapshots need to be created at a very specific time in the
1619  * transaction commit.  This does the actual creation.
1620  *
1621  * Note:
1622  * If the error which may affect the commitment of the current transaction
1623  * happens, we should return the error number. If the error which just affect
1624  * the creation of the pending snapshots, just return 0.
1625  */
1626 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1627                                    struct btrfs_pending_snapshot *pending)
1628 {
1629
1630         struct btrfs_fs_info *fs_info = trans->fs_info;
1631         struct btrfs_key key;
1632         struct btrfs_root_item *new_root_item;
1633         struct btrfs_root *tree_root = fs_info->tree_root;
1634         struct btrfs_root *root = pending->root;
1635         struct btrfs_root *parent_root;
1636         struct btrfs_block_rsv *rsv;
1637         struct inode *parent_inode = &pending->dir->vfs_inode;
1638         struct btrfs_path *path;
1639         struct btrfs_dir_item *dir_item;
1640         struct extent_buffer *tmp;
1641         struct extent_buffer *old;
1642         struct timespec64 cur_time;
1643         int ret = 0;
1644         u64 to_reserve = 0;
1645         u64 index = 0;
1646         u64 objectid;
1647         u64 root_flags;
1648         unsigned int nofs_flags;
1649         struct fscrypt_name fname;
1650
1651         ASSERT(pending->path);
1652         path = pending->path;
1653
1654         ASSERT(pending->root_item);
1655         new_root_item = pending->root_item;
1656
1657         /*
1658          * We're inside a transaction and must make sure that any potential
1659          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1660          * filesystem.
1661          */
1662         nofs_flags = memalloc_nofs_save();
1663         pending->error = fscrypt_setup_filename(parent_inode,
1664                                                 &pending->dentry->d_name, 0,
1665                                                 &fname);
1666         memalloc_nofs_restore(nofs_flags);
1667         if (pending->error)
1668                 goto free_pending;
1669
1670         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1671         if (pending->error)
1672                 goto free_fname;
1673
1674         /*
1675          * Make qgroup to skip current new snapshot's qgroupid, as it is
1676          * accounted by later btrfs_qgroup_inherit().
1677          */
1678         btrfs_set_skip_qgroup(trans, objectid);
1679
1680         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1681
1682         if (to_reserve > 0) {
1683                 pending->error = btrfs_block_rsv_add(fs_info,
1684                                                      &pending->block_rsv,
1685                                                      to_reserve,
1686                                                      BTRFS_RESERVE_NO_FLUSH);
1687                 if (pending->error)
1688                         goto clear_skip_qgroup;
1689         }
1690
1691         key.objectid = objectid;
1692         key.offset = (u64)-1;
1693         key.type = BTRFS_ROOT_ITEM_KEY;
1694
1695         rsv = trans->block_rsv;
1696         trans->block_rsv = &pending->block_rsv;
1697         trans->bytes_reserved = trans->block_rsv->reserved;
1698         trace_btrfs_space_reservation(fs_info, "transaction",
1699                                       trans->transid,
1700                                       trans->bytes_reserved, 1);
1701         parent_root = BTRFS_I(parent_inode)->root;
1702         ret = record_root_in_trans(trans, parent_root, 0);
1703         if (ret)
1704                 goto fail;
1705         cur_time = current_time(parent_inode);
1706
1707         /*
1708          * insert the directory item
1709          */
1710         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1711         if (ret) {
1712                 btrfs_abort_transaction(trans, ret);
1713                 goto fail;
1714         }
1715
1716         /* check if there is a file/dir which has the same name. */
1717         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1718                                          btrfs_ino(BTRFS_I(parent_inode)),
1719                                          &fname.disk_name, 0);
1720         if (dir_item != NULL && !IS_ERR(dir_item)) {
1721                 pending->error = -EEXIST;
1722                 goto dir_item_existed;
1723         } else if (IS_ERR(dir_item)) {
1724                 ret = PTR_ERR(dir_item);
1725                 btrfs_abort_transaction(trans, ret);
1726                 goto fail;
1727         }
1728         btrfs_release_path(path);
1729
1730         ret = btrfs_create_qgroup(trans, objectid);
1731         if (ret && ret != -EEXIST) {
1732                 btrfs_abort_transaction(trans, ret);
1733                 goto fail;
1734         }
1735
1736         /*
1737          * pull in the delayed directory update
1738          * and the delayed inode item
1739          * otherwise we corrupt the FS during
1740          * snapshot
1741          */
1742         ret = btrfs_run_delayed_items(trans);
1743         if (ret) {      /* Transaction aborted */
1744                 btrfs_abort_transaction(trans, ret);
1745                 goto fail;
1746         }
1747
1748         ret = record_root_in_trans(trans, root, 0);
1749         if (ret) {
1750                 btrfs_abort_transaction(trans, ret);
1751                 goto fail;
1752         }
1753         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1754         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1755         btrfs_check_and_init_root_item(new_root_item);
1756
1757         root_flags = btrfs_root_flags(new_root_item);
1758         if (pending->readonly)
1759                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1760         else
1761                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1762         btrfs_set_root_flags(new_root_item, root_flags);
1763
1764         btrfs_set_root_generation_v2(new_root_item,
1765                         trans->transid);
1766         generate_random_guid(new_root_item->uuid);
1767         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1768                         BTRFS_UUID_SIZE);
1769         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1770                 memset(new_root_item->received_uuid, 0,
1771                        sizeof(new_root_item->received_uuid));
1772                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1773                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1774                 btrfs_set_root_stransid(new_root_item, 0);
1775                 btrfs_set_root_rtransid(new_root_item, 0);
1776         }
1777         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1778         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1779         btrfs_set_root_otransid(new_root_item, trans->transid);
1780
1781         old = btrfs_lock_root_node(root);
1782         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1783                               BTRFS_NESTING_COW);
1784         if (ret) {
1785                 btrfs_tree_unlock(old);
1786                 free_extent_buffer(old);
1787                 btrfs_abort_transaction(trans, ret);
1788                 goto fail;
1789         }
1790
1791         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1792         /* clean up in any case */
1793         btrfs_tree_unlock(old);
1794         free_extent_buffer(old);
1795         if (ret) {
1796                 btrfs_abort_transaction(trans, ret);
1797                 goto fail;
1798         }
1799         /* see comments in should_cow_block() */
1800         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1801         smp_wmb();
1802
1803         btrfs_set_root_node(new_root_item, tmp);
1804         /* record when the snapshot was created in key.offset */
1805         key.offset = trans->transid;
1806         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1807         btrfs_tree_unlock(tmp);
1808         free_extent_buffer(tmp);
1809         if (ret) {
1810                 btrfs_abort_transaction(trans, ret);
1811                 goto fail;
1812         }
1813
1814         /*
1815          * insert root back/forward references
1816          */
1817         ret = btrfs_add_root_ref(trans, objectid,
1818                                  btrfs_root_id(parent_root),
1819                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1820                                  &fname.disk_name);
1821         if (ret) {
1822                 btrfs_abort_transaction(trans, ret);
1823                 goto fail;
1824         }
1825
1826         key.offset = (u64)-1;
1827         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1828         if (IS_ERR(pending->snap)) {
1829                 ret = PTR_ERR(pending->snap);
1830                 pending->snap = NULL;
1831                 btrfs_abort_transaction(trans, ret);
1832                 goto fail;
1833         }
1834
1835         ret = btrfs_reloc_post_snapshot(trans, pending);
1836         if (ret) {
1837                 btrfs_abort_transaction(trans, ret);
1838                 goto fail;
1839         }
1840
1841         /*
1842          * Do special qgroup accounting for snapshot, as we do some qgroup
1843          * snapshot hack to do fast snapshot.
1844          * To co-operate with that hack, we do hack again.
1845          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1846          */
1847         if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1848                 ret = qgroup_account_snapshot(trans, root, parent_root,
1849                                               pending->inherit, objectid);
1850         else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1851                 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1852                                            btrfs_root_id(parent_root), pending->inherit);
1853         if (ret < 0)
1854                 goto fail;
1855
1856         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1857                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1858                                     index);
1859         if (ret) {
1860                 btrfs_abort_transaction(trans, ret);
1861                 goto fail;
1862         }
1863
1864         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1865                                                   fname.disk_name.len * 2);
1866         inode_set_mtime_to_ts(parent_inode,
1867                               inode_set_ctime_current(parent_inode));
1868         ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1869         if (ret) {
1870                 btrfs_abort_transaction(trans, ret);
1871                 goto fail;
1872         }
1873         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1874                                   BTRFS_UUID_KEY_SUBVOL,
1875                                   objectid);
1876         if (ret) {
1877                 btrfs_abort_transaction(trans, ret);
1878                 goto fail;
1879         }
1880         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1881                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1882                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1883                                           objectid);
1884                 if (ret && ret != -EEXIST) {
1885                         btrfs_abort_transaction(trans, ret);
1886                         goto fail;
1887                 }
1888         }
1889
1890 fail:
1891         pending->error = ret;
1892 dir_item_existed:
1893         trans->block_rsv = rsv;
1894         trans->bytes_reserved = 0;
1895 clear_skip_qgroup:
1896         btrfs_clear_skip_qgroup(trans);
1897 free_fname:
1898         fscrypt_free_filename(&fname);
1899 free_pending:
1900         kfree(new_root_item);
1901         pending->root_item = NULL;
1902         btrfs_free_path(path);
1903         pending->path = NULL;
1904
1905         return ret;
1906 }
1907
1908 /*
1909  * create all the snapshots we've scheduled for creation
1910  */
1911 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1912 {
1913         struct btrfs_pending_snapshot *pending, *next;
1914         struct list_head *head = &trans->transaction->pending_snapshots;
1915         int ret = 0;
1916
1917         list_for_each_entry_safe(pending, next, head, list) {
1918                 list_del(&pending->list);
1919                 ret = create_pending_snapshot(trans, pending);
1920                 if (ret)
1921                         break;
1922         }
1923         return ret;
1924 }
1925
1926 static void update_super_roots(struct btrfs_fs_info *fs_info)
1927 {
1928         struct btrfs_root_item *root_item;
1929         struct btrfs_super_block *super;
1930
1931         super = fs_info->super_copy;
1932
1933         root_item = &fs_info->chunk_root->root_item;
1934         super->chunk_root = root_item->bytenr;
1935         super->chunk_root_generation = root_item->generation;
1936         super->chunk_root_level = root_item->level;
1937
1938         root_item = &fs_info->tree_root->root_item;
1939         super->root = root_item->bytenr;
1940         super->generation = root_item->generation;
1941         super->root_level = root_item->level;
1942         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1943                 super->cache_generation = root_item->generation;
1944         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1945                 super->cache_generation = 0;
1946         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1947                 super->uuid_tree_generation = root_item->generation;
1948 }
1949
1950 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1951 {
1952         struct btrfs_transaction *trans;
1953         int ret = 0;
1954
1955         spin_lock(&info->trans_lock);
1956         trans = info->running_transaction;
1957         if (trans)
1958                 ret = is_transaction_blocked(trans);
1959         spin_unlock(&info->trans_lock);
1960         return ret;
1961 }
1962
1963 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1964 {
1965         struct btrfs_fs_info *fs_info = trans->fs_info;
1966         struct btrfs_transaction *cur_trans;
1967
1968         /* Kick the transaction kthread. */
1969         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1970         wake_up_process(fs_info->transaction_kthread);
1971
1972         /* take transaction reference */
1973         cur_trans = trans->transaction;
1974         refcount_inc(&cur_trans->use_count);
1975
1976         btrfs_end_transaction(trans);
1977
1978         /*
1979          * Wait for the current transaction commit to start and block
1980          * subsequent transaction joins
1981          */
1982         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1983         wait_event(fs_info->transaction_blocked_wait,
1984                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1985                    TRANS_ABORTED(cur_trans));
1986         btrfs_put_transaction(cur_trans);
1987 }
1988
1989 /*
1990  * If there is a running transaction commit it or if it's already committing,
1991  * wait for its commit to complete. Does not start and commit a new transaction
1992  * if there isn't any running.
1993  */
1994 int btrfs_commit_current_transaction(struct btrfs_root *root)
1995 {
1996         struct btrfs_trans_handle *trans;
1997
1998         trans = btrfs_attach_transaction_barrier(root);
1999         if (IS_ERR(trans)) {
2000                 int ret = PTR_ERR(trans);
2001
2002                 return (ret == -ENOENT) ? 0 : ret;
2003         }
2004
2005         return btrfs_commit_transaction(trans);
2006 }
2007
2008 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2009 {
2010         struct btrfs_fs_info *fs_info = trans->fs_info;
2011         struct btrfs_transaction *cur_trans = trans->transaction;
2012
2013         WARN_ON(refcount_read(&trans->use_count) > 1);
2014
2015         btrfs_abort_transaction(trans, err);
2016
2017         spin_lock(&fs_info->trans_lock);
2018
2019         /*
2020          * If the transaction is removed from the list, it means this
2021          * transaction has been committed successfully, so it is impossible
2022          * to call the cleanup function.
2023          */
2024         BUG_ON(list_empty(&cur_trans->list));
2025
2026         if (cur_trans == fs_info->running_transaction) {
2027                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2028                 spin_unlock(&fs_info->trans_lock);
2029
2030                 /*
2031                  * The thread has already released the lockdep map as reader
2032                  * already in btrfs_commit_transaction().
2033                  */
2034                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2035                 wait_event(cur_trans->writer_wait,
2036                            atomic_read(&cur_trans->num_writers) == 1);
2037
2038                 spin_lock(&fs_info->trans_lock);
2039         }
2040
2041         /*
2042          * Now that we know no one else is still using the transaction we can
2043          * remove the transaction from the list of transactions. This avoids
2044          * the transaction kthread from cleaning up the transaction while some
2045          * other task is still using it, which could result in a use-after-free
2046          * on things like log trees, as it forces the transaction kthread to
2047          * wait for this transaction to be cleaned up by us.
2048          */
2049         list_del_init(&cur_trans->list);
2050
2051         spin_unlock(&fs_info->trans_lock);
2052
2053         btrfs_cleanup_one_transaction(trans->transaction);
2054
2055         spin_lock(&fs_info->trans_lock);
2056         if (cur_trans == fs_info->running_transaction)
2057                 fs_info->running_transaction = NULL;
2058         spin_unlock(&fs_info->trans_lock);
2059
2060         if (trans->type & __TRANS_FREEZABLE)
2061                 sb_end_intwrite(fs_info->sb);
2062         btrfs_put_transaction(cur_trans);
2063         btrfs_put_transaction(cur_trans);
2064
2065         trace_btrfs_transaction_commit(fs_info);
2066
2067         if (current->journal_info == trans)
2068                 current->journal_info = NULL;
2069
2070         /*
2071          * If relocation is running, we can't cancel scrub because that will
2072          * result in a deadlock. Before relocating a block group, relocation
2073          * pauses scrub, then starts and commits a transaction before unpausing
2074          * scrub. If the transaction commit is being done by the relocation
2075          * task or triggered by another task and the relocation task is waiting
2076          * for the commit, and we end up here due to an error in the commit
2077          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2078          * asking for scrub to stop while having it asked to be paused higher
2079          * above in relocation code.
2080          */
2081         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2082                 btrfs_scrub_cancel(fs_info);
2083
2084         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2085 }
2086
2087 /*
2088  * Release reserved delayed ref space of all pending block groups of the
2089  * transaction and remove them from the list
2090  */
2091 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2092 {
2093        struct btrfs_fs_info *fs_info = trans->fs_info;
2094        struct btrfs_block_group *block_group, *tmp;
2095
2096        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2097                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2098                list_del_init(&block_group->bg_list);
2099        }
2100 }
2101
2102 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2103 {
2104         /*
2105          * We use try_to_writeback_inodes_sb() here because if we used
2106          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2107          * Currently are holding the fs freeze lock, if we do an async flush
2108          * we'll do btrfs_join_transaction() and deadlock because we need to
2109          * wait for the fs freeze lock.  Using the direct flushing we benefit
2110          * from already being in a transaction and our join_transaction doesn't
2111          * have to re-take the fs freeze lock.
2112          *
2113          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2114          * if it can read lock sb->s_umount. It will always be able to lock it,
2115          * except when the filesystem is being unmounted or being frozen, but in
2116          * those cases sync_filesystem() is called, which results in calling
2117          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2118          * Note that we don't call writeback_inodes_sb() directly, because it
2119          * will emit a warning if sb->s_umount is not locked.
2120          */
2121         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2122                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2123         return 0;
2124 }
2125
2126 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2127 {
2128         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2129                 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2130 }
2131
2132 /*
2133  * Add a pending snapshot associated with the given transaction handle to the
2134  * respective handle. This must be called after the transaction commit started
2135  * and while holding fs_info->trans_lock.
2136  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2137  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2138  * returns an error.
2139  */
2140 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2141 {
2142         struct btrfs_transaction *cur_trans = trans->transaction;
2143
2144         if (!trans->pending_snapshot)
2145                 return;
2146
2147         lockdep_assert_held(&trans->fs_info->trans_lock);
2148         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2149
2150         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2151 }
2152
2153 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2154 {
2155         fs_info->commit_stats.commit_count++;
2156         fs_info->commit_stats.last_commit_dur = interval;
2157         fs_info->commit_stats.max_commit_dur =
2158                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2159         fs_info->commit_stats.total_commit_dur += interval;
2160 }
2161
2162 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2163 {
2164         struct btrfs_fs_info *fs_info = trans->fs_info;
2165         struct btrfs_transaction *cur_trans = trans->transaction;
2166         struct btrfs_transaction *prev_trans = NULL;
2167         int ret;
2168         ktime_t start_time;
2169         ktime_t interval;
2170
2171         ASSERT(refcount_read(&trans->use_count) == 1);
2172         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2173
2174         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2175
2176         /* Stop the commit early if ->aborted is set */
2177         if (TRANS_ABORTED(cur_trans)) {
2178                 ret = cur_trans->aborted;
2179                 goto lockdep_trans_commit_start_release;
2180         }
2181
2182         btrfs_trans_release_metadata(trans);
2183         trans->block_rsv = NULL;
2184
2185         /*
2186          * We only want one transaction commit doing the flushing so we do not
2187          * waste a bunch of time on lock contention on the extent root node.
2188          */
2189         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2190                               &cur_trans->delayed_refs.flags)) {
2191                 /*
2192                  * Make a pass through all the delayed refs we have so far.
2193                  * Any running threads may add more while we are here.
2194                  */
2195                 ret = btrfs_run_delayed_refs(trans, 0);
2196                 if (ret)
2197                         goto lockdep_trans_commit_start_release;
2198         }
2199
2200         btrfs_create_pending_block_groups(trans);
2201
2202         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2203                 int run_it = 0;
2204
2205                 /* this mutex is also taken before trying to set
2206                  * block groups readonly.  We need to make sure
2207                  * that nobody has set a block group readonly
2208                  * after a extents from that block group have been
2209                  * allocated for cache files.  btrfs_set_block_group_ro
2210                  * will wait for the transaction to commit if it
2211                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2212                  *
2213                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2214                  * only one process starts all the block group IO.  It wouldn't
2215                  * hurt to have more than one go through, but there's no
2216                  * real advantage to it either.
2217                  */
2218                 mutex_lock(&fs_info->ro_block_group_mutex);
2219                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2220                                       &cur_trans->flags))
2221                         run_it = 1;
2222                 mutex_unlock(&fs_info->ro_block_group_mutex);
2223
2224                 if (run_it) {
2225                         ret = btrfs_start_dirty_block_groups(trans);
2226                         if (ret)
2227                                 goto lockdep_trans_commit_start_release;
2228                 }
2229         }
2230
2231         spin_lock(&fs_info->trans_lock);
2232         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2233                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2234
2235                 add_pending_snapshot(trans);
2236
2237                 spin_unlock(&fs_info->trans_lock);
2238                 refcount_inc(&cur_trans->use_count);
2239
2240                 if (trans->in_fsync)
2241                         want_state = TRANS_STATE_SUPER_COMMITTED;
2242
2243                 btrfs_trans_state_lockdep_release(fs_info,
2244                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2245                 ret = btrfs_end_transaction(trans);
2246                 wait_for_commit(cur_trans, want_state);
2247
2248                 if (TRANS_ABORTED(cur_trans))
2249                         ret = cur_trans->aborted;
2250
2251                 btrfs_put_transaction(cur_trans);
2252
2253                 return ret;
2254         }
2255
2256         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2257         wake_up(&fs_info->transaction_blocked_wait);
2258         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2259
2260         if (cur_trans->list.prev != &fs_info->trans_list) {
2261                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2262
2263                 if (trans->in_fsync)
2264                         want_state = TRANS_STATE_SUPER_COMMITTED;
2265
2266                 prev_trans = list_entry(cur_trans->list.prev,
2267                                         struct btrfs_transaction, list);
2268                 if (prev_trans->state < want_state) {
2269                         refcount_inc(&prev_trans->use_count);
2270                         spin_unlock(&fs_info->trans_lock);
2271
2272                         wait_for_commit(prev_trans, want_state);
2273
2274                         ret = READ_ONCE(prev_trans->aborted);
2275
2276                         btrfs_put_transaction(prev_trans);
2277                         if (ret)
2278                                 goto lockdep_release;
2279                         spin_lock(&fs_info->trans_lock);
2280                 }
2281         } else {
2282                 /*
2283                  * The previous transaction was aborted and was already removed
2284                  * from the list of transactions at fs_info->trans_list. So we
2285                  * abort to prevent writing a new superblock that reflects a
2286                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2287                  */
2288                 if (BTRFS_FS_ERROR(fs_info)) {
2289                         spin_unlock(&fs_info->trans_lock);
2290                         ret = -EROFS;
2291                         goto lockdep_release;
2292                 }
2293         }
2294
2295         cur_trans->state = TRANS_STATE_COMMIT_START;
2296         wake_up(&fs_info->transaction_blocked_wait);
2297         spin_unlock(&fs_info->trans_lock);
2298
2299         /*
2300          * Get the time spent on the work done by the commit thread and not
2301          * the time spent waiting on a previous commit
2302          */
2303         start_time = ktime_get_ns();
2304
2305         extwriter_counter_dec(cur_trans, trans->type);
2306
2307         ret = btrfs_start_delalloc_flush(fs_info);
2308         if (ret)
2309                 goto lockdep_release;
2310
2311         ret = btrfs_run_delayed_items(trans);
2312         if (ret)
2313                 goto lockdep_release;
2314
2315         /*
2316          * The thread has started/joined the transaction thus it holds the
2317          * lockdep map as a reader. It has to release it before acquiring the
2318          * lockdep map as a writer.
2319          */
2320         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2321         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2322         wait_event(cur_trans->writer_wait,
2323                    extwriter_counter_read(cur_trans) == 0);
2324
2325         /* some pending stuffs might be added after the previous flush. */
2326         ret = btrfs_run_delayed_items(trans);
2327         if (ret) {
2328                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2329                 goto cleanup_transaction;
2330         }
2331
2332         btrfs_wait_delalloc_flush(fs_info);
2333
2334         /*
2335          * Wait for all ordered extents started by a fast fsync that joined this
2336          * transaction. Otherwise if this transaction commits before the ordered
2337          * extents complete we lose logged data after a power failure.
2338          */
2339         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2340         wait_event(cur_trans->pending_wait,
2341                    atomic_read(&cur_trans->pending_ordered) == 0);
2342
2343         btrfs_scrub_pause(fs_info);
2344         /*
2345          * Ok now we need to make sure to block out any other joins while we
2346          * commit the transaction.  We could have started a join before setting
2347          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2348          */
2349         spin_lock(&fs_info->trans_lock);
2350         add_pending_snapshot(trans);
2351         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2352         spin_unlock(&fs_info->trans_lock);
2353
2354         /*
2355          * The thread has started/joined the transaction thus it holds the
2356          * lockdep map as a reader. It has to release it before acquiring the
2357          * lockdep map as a writer.
2358          */
2359         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2360         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2361         wait_event(cur_trans->writer_wait,
2362                    atomic_read(&cur_trans->num_writers) == 1);
2363
2364         /*
2365          * Make lockdep happy by acquiring the state locks after
2366          * btrfs_trans_num_writers is released. If we acquired the state locks
2367          * before releasing the btrfs_trans_num_writers lock then lockdep would
2368          * complain because we did not follow the reverse order unlocking rule.
2369          */
2370         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2371         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2372         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2373
2374         /*
2375          * We've started the commit, clear the flag in case we were triggered to
2376          * do an async commit but somebody else started before the transaction
2377          * kthread could do the work.
2378          */
2379         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2380
2381         if (TRANS_ABORTED(cur_trans)) {
2382                 ret = cur_trans->aborted;
2383                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2384                 goto scrub_continue;
2385         }
2386         /*
2387          * the reloc mutex makes sure that we stop
2388          * the balancing code from coming in and moving
2389          * extents around in the middle of the commit
2390          */
2391         mutex_lock(&fs_info->reloc_mutex);
2392
2393         /*
2394          * We needn't worry about the delayed items because we will
2395          * deal with them in create_pending_snapshot(), which is the
2396          * core function of the snapshot creation.
2397          */
2398         ret = create_pending_snapshots(trans);
2399         if (ret)
2400                 goto unlock_reloc;
2401
2402         /*
2403          * We insert the dir indexes of the snapshots and update the inode
2404          * of the snapshots' parents after the snapshot creation, so there
2405          * are some delayed items which are not dealt with. Now deal with
2406          * them.
2407          *
2408          * We needn't worry that this operation will corrupt the snapshots,
2409          * because all the tree which are snapshoted will be forced to COW
2410          * the nodes and leaves.
2411          */
2412         ret = btrfs_run_delayed_items(trans);
2413         if (ret)
2414                 goto unlock_reloc;
2415
2416         ret = btrfs_run_delayed_refs(trans, U64_MAX);
2417         if (ret)
2418                 goto unlock_reloc;
2419
2420         /*
2421          * make sure none of the code above managed to slip in a
2422          * delayed item
2423          */
2424         btrfs_assert_delayed_root_empty(fs_info);
2425
2426         WARN_ON(cur_trans != trans->transaction);
2427
2428         ret = commit_fs_roots(trans);
2429         if (ret)
2430                 goto unlock_reloc;
2431
2432         /* commit_fs_roots gets rid of all the tree log roots, it is now
2433          * safe to free the root of tree log roots
2434          */
2435         btrfs_free_log_root_tree(trans, fs_info);
2436
2437         /*
2438          * Since fs roots are all committed, we can get a quite accurate
2439          * new_roots. So let's do quota accounting.
2440          */
2441         ret = btrfs_qgroup_account_extents(trans);
2442         if (ret < 0)
2443                 goto unlock_reloc;
2444
2445         ret = commit_cowonly_roots(trans);
2446         if (ret)
2447                 goto unlock_reloc;
2448
2449         /*
2450          * The tasks which save the space cache and inode cache may also
2451          * update ->aborted, check it.
2452          */
2453         if (TRANS_ABORTED(cur_trans)) {
2454                 ret = cur_trans->aborted;
2455                 goto unlock_reloc;
2456         }
2457
2458         cur_trans = fs_info->running_transaction;
2459
2460         btrfs_set_root_node(&fs_info->tree_root->root_item,
2461                             fs_info->tree_root->node);
2462         list_add_tail(&fs_info->tree_root->dirty_list,
2463                       &cur_trans->switch_commits);
2464
2465         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2466                             fs_info->chunk_root->node);
2467         list_add_tail(&fs_info->chunk_root->dirty_list,
2468                       &cur_trans->switch_commits);
2469
2470         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2471                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2472                                     fs_info->block_group_root->node);
2473                 list_add_tail(&fs_info->block_group_root->dirty_list,
2474                               &cur_trans->switch_commits);
2475         }
2476
2477         switch_commit_roots(trans);
2478
2479         ASSERT(list_empty(&cur_trans->dirty_bgs));
2480         ASSERT(list_empty(&cur_trans->io_bgs));
2481         update_super_roots(fs_info);
2482
2483         btrfs_set_super_log_root(fs_info->super_copy, 0);
2484         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2485         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2486                sizeof(*fs_info->super_copy));
2487
2488         btrfs_commit_device_sizes(cur_trans);
2489
2490         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2491         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2492
2493         btrfs_trans_release_chunk_metadata(trans);
2494
2495         /*
2496          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2497          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2498          * make sure that before we commit our superblock, no other task can
2499          * start a new transaction and commit a log tree before we commit our
2500          * superblock. Anyone trying to commit a log tree locks this mutex before
2501          * writing its superblock.
2502          */
2503         mutex_lock(&fs_info->tree_log_mutex);
2504
2505         spin_lock(&fs_info->trans_lock);
2506         cur_trans->state = TRANS_STATE_UNBLOCKED;
2507         fs_info->running_transaction = NULL;
2508         spin_unlock(&fs_info->trans_lock);
2509         mutex_unlock(&fs_info->reloc_mutex);
2510
2511         wake_up(&fs_info->transaction_wait);
2512         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2513
2514         /* If we have features changed, wake up the cleaner to update sysfs. */
2515         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2516             fs_info->cleaner_kthread)
2517                 wake_up_process(fs_info->cleaner_kthread);
2518
2519         ret = btrfs_write_and_wait_transaction(trans);
2520         if (ret) {
2521                 btrfs_handle_fs_error(fs_info, ret,
2522                                       "Error while writing out transaction");
2523                 mutex_unlock(&fs_info->tree_log_mutex);
2524                 goto scrub_continue;
2525         }
2526
2527         ret = write_all_supers(fs_info, 0);
2528         /*
2529          * the super is written, we can safely allow the tree-loggers
2530          * to go about their business
2531          */
2532         mutex_unlock(&fs_info->tree_log_mutex);
2533         if (ret)
2534                 goto scrub_continue;
2535
2536         /*
2537          * We needn't acquire the lock here because there is no other task
2538          * which can change it.
2539          */
2540         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2541         wake_up(&cur_trans->commit_wait);
2542         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2543
2544         btrfs_finish_extent_commit(trans);
2545
2546         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2547                 btrfs_clear_space_info_full(fs_info);
2548
2549         btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2550         /*
2551          * We needn't acquire the lock here because there is no other task
2552          * which can change it.
2553          */
2554         cur_trans->state = TRANS_STATE_COMPLETED;
2555         wake_up(&cur_trans->commit_wait);
2556         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2557
2558         spin_lock(&fs_info->trans_lock);
2559         list_del_init(&cur_trans->list);
2560         spin_unlock(&fs_info->trans_lock);
2561
2562         btrfs_put_transaction(cur_trans);
2563         btrfs_put_transaction(cur_trans);
2564
2565         if (trans->type & __TRANS_FREEZABLE)
2566                 sb_end_intwrite(fs_info->sb);
2567
2568         trace_btrfs_transaction_commit(fs_info);
2569
2570         interval = ktime_get_ns() - start_time;
2571
2572         btrfs_scrub_continue(fs_info);
2573
2574         if (current->journal_info == trans)
2575                 current->journal_info = NULL;
2576
2577         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2578
2579         update_commit_stats(fs_info, interval);
2580
2581         return ret;
2582
2583 unlock_reloc:
2584         mutex_unlock(&fs_info->reloc_mutex);
2585         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2586 scrub_continue:
2587         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2588         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2589         btrfs_scrub_continue(fs_info);
2590 cleanup_transaction:
2591         btrfs_trans_release_metadata(trans);
2592         btrfs_cleanup_pending_block_groups(trans);
2593         btrfs_trans_release_chunk_metadata(trans);
2594         trans->block_rsv = NULL;
2595         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2596         if (current->journal_info == trans)
2597                 current->journal_info = NULL;
2598         cleanup_transaction(trans, ret);
2599
2600         return ret;
2601
2602 lockdep_release:
2603         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2604         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2605         goto cleanup_transaction;
2606
2607 lockdep_trans_commit_start_release:
2608         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2609         btrfs_end_transaction(trans);
2610         return ret;
2611 }
2612
2613 /*
2614  * return < 0 if error
2615  * 0 if there are no more dead_roots at the time of call
2616  * 1 there are more to be processed, call me again
2617  *
2618  * The return value indicates there are certainly more snapshots to delete, but
2619  * if there comes a new one during processing, it may return 0. We don't mind,
2620  * because btrfs_commit_super will poke cleaner thread and it will process it a
2621  * few seconds later.
2622  */
2623 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2624 {
2625         struct btrfs_root *root;
2626         int ret;
2627
2628         spin_lock(&fs_info->trans_lock);
2629         if (list_empty(&fs_info->dead_roots)) {
2630                 spin_unlock(&fs_info->trans_lock);
2631                 return 0;
2632         }
2633         root = list_first_entry(&fs_info->dead_roots,
2634                         struct btrfs_root, root_list);
2635         list_del_init(&root->root_list);
2636         spin_unlock(&fs_info->trans_lock);
2637
2638         btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2639
2640         btrfs_kill_all_delayed_nodes(root);
2641
2642         if (btrfs_header_backref_rev(root->node) <
2643                         BTRFS_MIXED_BACKREF_REV)
2644                 ret = btrfs_drop_snapshot(root, 0, 0);
2645         else
2646                 ret = btrfs_drop_snapshot(root, 1, 0);
2647
2648         btrfs_put_root(root);
2649         return (ret < 0) ? 0 : 1;
2650 }
2651
2652 /*
2653  * We only mark the transaction aborted and then set the file system read-only.
2654  * This will prevent new transactions from starting or trying to join this
2655  * one.
2656  *
2657  * This means that error recovery at the call site is limited to freeing
2658  * any local memory allocations and passing the error code up without
2659  * further cleanup. The transaction should complete as it normally would
2660  * in the call path but will return -EIO.
2661  *
2662  * We'll complete the cleanup in btrfs_end_transaction and
2663  * btrfs_commit_transaction.
2664  */
2665 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2666                                       const char *function,
2667                                       unsigned int line, int error, bool first_hit)
2668 {
2669         struct btrfs_fs_info *fs_info = trans->fs_info;
2670
2671         WRITE_ONCE(trans->aborted, error);
2672         WRITE_ONCE(trans->transaction->aborted, error);
2673         if (first_hit && error == -ENOSPC)
2674                 btrfs_dump_space_info_for_trans_abort(fs_info);
2675         /* Wake up anybody who may be waiting on this transaction */
2676         wake_up(&fs_info->transaction_wait);
2677         wake_up(&fs_info->transaction_blocked_wait);
2678         __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2679 }
2680
2681 int __init btrfs_transaction_init(void)
2682 {
2683         btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2684         if (!btrfs_trans_handle_cachep)
2685                 return -ENOMEM;
2686         return 0;
2687 }
2688
2689 void __cold btrfs_transaction_exit(void)
2690 {
2691         kmem_cache_destroy(btrfs_trans_handle_cachep);
2692 }
This page took 0.177232 seconds and 4 git commands to generate.