1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
180 struct ice_hw *hw = &pf->hw;
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
197 mutex_unlock(&pf->vfs.table_lock);
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
229 * send a link status message to a single VF
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
254 void ice_vc_notify_link_state(struct ice_pf *pf)
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
269 * indicate a pending reset to all VFs on a given PF
271 void ice_vc_notify_reset(struct ice_pf *pf)
273 struct virtchnl_pf_event pfe;
275 if (!ice_has_vfs(pf))
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
303 dev = ice_pf_to_dev(pf);
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
322 * called from the VF to request the API version used by the PF
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
354 max_frame_size = pi->phy.link_info.max_frame_size;
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
359 return max_frame_size;
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
415 * called from the VF to request its resources
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
433 vfres = kzalloc(len, GFP_KERNEL);
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 VIRTCHNL_VF_OFFLOAD_VLAN;
446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 vsi = ice_get_vf_vsi(vf);
449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
509 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
551 * check for the valid VSI ID
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
555 struct ice_pf *pf = vf->pf;
558 vsi = ice_find_vsi(pf, vsi_id);
560 return (vsi && (vsi->vf == vf));
564 * ice_vc_isvalid_q_id
565 * @vf: pointer to the VF info
567 * @qid: VSI relative queue ID
569 * check for the valid queue ID
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
573 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 /* allocated Tx and Rx queues should be always equal for VF VSI */
575 return (vsi && (qid < vsi->alloc_txq));
579 * ice_vc_isvalid_ring_len
580 * @ring_len: length of ring
582 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
587 return ring_len == 0 ||
588 (ring_len >= ICE_MIN_NUM_DESC &&
589 ring_len <= ICE_MAX_NUM_DESC &&
590 !(ring_len % ICE_REQ_DESC_MULTIPLE));
594 * ice_vc_validate_pattern
595 * @vf: pointer to the VF info
596 * @proto: virtchnl protocol headers
598 * validate the pattern is supported or not.
600 * Return: true on success, false on error.
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
605 bool is_ipv4 = false;
606 bool is_ipv6 = false;
611 while (i < proto->count &&
612 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 switch (proto->proto_hdr[i].type) {
614 case VIRTCHNL_PROTO_HDR_ETH:
615 ptype = ICE_PTYPE_MAC_PAY;
617 case VIRTCHNL_PROTO_HDR_IPV4:
618 ptype = ICE_PTYPE_IPV4_PAY;
621 case VIRTCHNL_PROTO_HDR_IPV6:
622 ptype = ICE_PTYPE_IPV6_PAY;
625 case VIRTCHNL_PROTO_HDR_UDP:
627 ptype = ICE_PTYPE_IPV4_UDP_PAY;
629 ptype = ICE_PTYPE_IPV6_UDP_PAY;
632 case VIRTCHNL_PROTO_HDR_TCP:
634 ptype = ICE_PTYPE_IPV4_TCP_PAY;
636 ptype = ICE_PTYPE_IPV6_TCP_PAY;
638 case VIRTCHNL_PROTO_HDR_SCTP:
640 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
642 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
644 case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 case VIRTCHNL_PROTO_HDR_GTPU_EH:
647 ptype = ICE_MAC_IPV4_GTPU;
649 ptype = ICE_MAC_IPV6_GTPU;
651 case VIRTCHNL_PROTO_HDR_L2TPV3:
653 ptype = ICE_MAC_IPV4_L2TPV3;
655 ptype = ICE_MAC_IPV6_L2TPV3;
657 case VIRTCHNL_PROTO_HDR_ESP:
659 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
662 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
665 case VIRTCHNL_PROTO_HDR_AH:
667 ptype = ICE_MAC_IPV4_AH;
669 ptype = ICE_MAC_IPV6_AH;
671 case VIRTCHNL_PROTO_HDR_PFCP:
673 ptype = ICE_MAC_IPV4_PFCP_SESSION;
675 ptype = ICE_MAC_IPV6_PFCP_SESSION;
684 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
688 * ice_vc_parse_rss_cfg - parses hash fields and headers from
689 * a specific virtchnl RSS cfg
690 * @hw: pointer to the hardware
691 * @rss_cfg: pointer to the virtchnl RSS cfg
692 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
694 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
696 * Return true if all the protocol header and hash fields in the RSS cfg could
697 * be parsed, else return false
699 * This function parses the virtchnl RSS cfg to be the intended
700 * hash fields and the intended header for RSS configuration
703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
704 u32 *addl_hdrs, u64 *hash_flds)
706 const struct ice_vc_hash_field_match_type *hf_list;
707 const struct ice_vc_hdr_match_type *hdr_list;
708 int i, hf_list_len, hdr_list_len;
710 hf_list = ice_vc_hash_field_list;
711 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
712 hdr_list = ice_vc_hdr_list;
713 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
716 struct virtchnl_proto_hdr *proto_hdr =
717 &rss_cfg->proto_hdrs.proto_hdr[i];
718 bool hdr_found = false;
721 /* Find matched ice headers according to virtchnl headers. */
722 for (j = 0; j < hdr_list_len; j++) {
723 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725 if (proto_hdr->type == hdr_map.vc_hdr) {
726 *addl_hdrs |= hdr_map.ice_hdr;
734 /* Find matched ice hash fields according to
735 * virtchnl hash fields.
737 for (j = 0; j < hf_list_len; j++) {
738 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740 if (proto_hdr->type == hf_map.vc_hdr &&
741 proto_hdr->field_selector == hf_map.vc_hash_field) {
742 *hash_flds |= hf_map.ice_hash_field;
752 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754 * @caps: VF driver negotiated capabilities
756 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
759 static bool ice_vf_adv_rss_offload_ena(u32 caps)
761 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
765 * ice_vc_handle_rss_cfg
766 * @vf: pointer to the VF info
767 * @msg: pointer to the message buffer
768 * @add: add a RSS config if true, otherwise delete a RSS config
770 * This function adds/deletes a RSS config
772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
775 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
776 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
777 struct device *dev = ice_pf_to_dev(vf->pf);
778 struct ice_hw *hw = &vf->pf->hw;
781 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
782 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
788 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
789 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
796 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
801 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
802 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
803 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
809 vsi = ice_get_vf_vsi(vf);
811 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
815 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
816 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
820 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
821 struct ice_vsi_ctx *ctx;
822 u8 lut_type, hash_type;
825 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
826 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
827 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
829 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
835 ctx->info.q_opt_rss = ((lut_type <<
836 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
837 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
839 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
841 /* Preserve existing queueing option setting */
842 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
843 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
844 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
845 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
847 ctx->info.valid_sections =
848 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
850 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
852 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
853 status, ice_aq_str(hw->adminq.sq_last_status));
854 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
856 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
861 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
862 u64 hash_flds = ICE_HASH_INVALID;
864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
866 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
871 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
873 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
875 vsi->vsi_num, v_ret);
880 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
882 /* We just ignore -ENOENT, because if two configurations
883 * share the same profile remove one of them actually
884 * removes both, since the profile is deleted.
886 if (status && status != -ENOENT) {
887 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
888 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
895 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
899 * ice_vc_config_rss_key
900 * @vf: pointer to the VF info
901 * @msg: pointer to the msg buffer
903 * Configure the VF's RSS key
905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
907 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
908 struct virtchnl_rss_key *vrk =
909 (struct virtchnl_rss_key *)msg;
912 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
913 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
917 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
918 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
922 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
923 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
927 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
928 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 vsi = ice_get_vf_vsi(vf);
934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
938 if (ice_set_rss_key(vsi, vrk->key))
939 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
941 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 * ice_vc_config_rss_lut
947 * @vf: pointer to the VF info
948 * @msg: pointer to the msg buffer
950 * Configure the VF's RSS LUT
952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
954 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
955 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
958 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
959 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
963 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
964 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
968 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
973 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
974 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 vsi = ice_get_vf_vsi(vf);
980 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
984 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
985 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
987 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 * ice_vc_cfg_promiscuous_mode_msg
993 * @vf: pointer to the VF info
994 * @msg: pointer to the msg buffer
996 * called from the VF to configure VF VSIs promiscuous mode
998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1000 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1001 bool rm_promisc, alluni = false, allmulti = false;
1002 struct virtchnl_promisc_info *info =
1003 (struct virtchnl_promisc_info *)msg;
1004 struct ice_vsi_vlan_ops *vlan_ops;
1005 int mcast_err = 0, ucast_err = 0;
1006 struct ice_pf *pf = vf->pf;
1007 struct ice_vsi *vsi;
1008 u8 mcast_m, ucast_m;
1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1017 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022 vsi = ice_get_vf_vsi(vf);
1024 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1028 dev = ice_pf_to_dev(pf);
1029 if (!ice_is_vf_trusted(vf)) {
1030 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1032 /* Leave v_ret alone, lie to the VF on purpose. */
1036 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1039 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1042 rm_promisc = !allmulti && !alluni;
1044 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1046 ret = vlan_ops->ena_rx_filtering(vsi);
1048 ret = vlan_ops->dis_rx_filtering(vsi);
1050 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1051 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1055 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1057 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1059 /* in this case we're turning on promiscuous mode */
1060 ret = ice_set_dflt_vsi(vsi);
1062 /* in this case we're turning off promiscuous mode */
1063 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1064 ret = ice_clear_dflt_vsi(vsi);
1067 /* in this case we're turning on/off only
1071 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1073 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1076 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1078 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1083 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1085 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1088 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1090 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1092 if (ucast_err || mcast_err)
1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1098 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1099 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1101 else if (!allmulti &&
1102 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1104 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1107 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1108 vf->vf_id, mcast_err);
1113 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1114 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1117 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1119 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1122 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1123 vf->vf_id, ucast_err);
1127 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1132 * ice_vc_get_stats_msg
1133 * @vf: pointer to the VF info
1134 * @msg: pointer to the msg buffer
1136 * called from the VF to get VSI stats
1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1140 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1141 struct virtchnl_queue_select *vqs =
1142 (struct virtchnl_queue_select *)msg;
1143 struct ice_eth_stats stats = { 0 };
1144 struct ice_vsi *vsi;
1146 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1147 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1151 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1152 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1156 vsi = ice_get_vf_vsi(vf);
1158 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1162 ice_update_eth_stats(vsi);
1164 stats = vsi->eth_stats;
1167 /* send the response to the VF */
1168 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1169 (u8 *)&stats, sizeof(stats));
1173 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1174 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1176 * Return true on successful validation, else false
1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1180 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1181 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1182 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1189 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1190 * @vsi: VSI of the VF to configure
1191 * @q_idx: VF queue index used to determine the queue in the PF's space
1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1195 struct ice_hw *hw = &vsi->back->hw;
1196 u32 pfq = vsi->txq_map[q_idx];
1199 reg = rd32(hw, QINT_TQCTL(pfq));
1201 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1202 * this is most likely a poll mode VF driver, so don't enable an
1203 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1205 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1208 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1212 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1213 * @vsi: VSI of the VF to configure
1214 * @q_idx: VF queue index used to determine the queue in the PF's space
1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1218 struct ice_hw *hw = &vsi->back->hw;
1219 u32 pfq = vsi->rxq_map[q_idx];
1222 reg = rd32(hw, QINT_RQCTL(pfq));
1224 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1225 * this is most likely a poll mode VF driver, so don't enable an
1226 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1228 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1231 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1236 * @vf: pointer to the VF info
1237 * @msg: pointer to the msg buffer
1239 * called from the VF to enable all or specific queue(s)
1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1244 struct virtchnl_queue_select *vqs =
1245 (struct virtchnl_queue_select *)msg;
1246 struct ice_vsi *vsi;
1247 unsigned long q_map;
1250 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1255 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1256 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1260 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1265 vsi = ice_get_vf_vsi(vf);
1267 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1271 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1272 * Tx queue group list was configured and the context bits were
1273 * programmed using ice_vsi_cfg_txqs
1275 q_map = vqs->rx_queues;
1276 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1277 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1278 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1282 /* Skip queue if enabled */
1283 if (test_bit(vf_q_id, vf->rxq_ena))
1286 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1287 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1288 vf_q_id, vsi->vsi_num);
1289 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1293 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1294 set_bit(vf_q_id, vf->rxq_ena);
1297 q_map = vqs->tx_queues;
1298 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1299 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304 /* Skip queue if enabled */
1305 if (test_bit(vf_q_id, vf->txq_ena))
1308 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1309 set_bit(vf_q_id, vf->txq_ena);
1312 /* Set flag to indicate that queues are enabled */
1313 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1314 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1317 /* send the response to the VF */
1318 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1323 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1324 * @vf: VF to disable queue for
1325 * @vsi: VSI for the VF
1326 * @q_id: VF relative (0-based) queue ID
1328 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1329 * disabled then clear q_id bit in the enabled queues bitmap and return
1330 * success. Otherwise return error.
1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1335 struct ice_txq_meta txq_meta = { 0 };
1336 struct ice_tx_ring *ring;
1339 if (!test_bit(q_id, vf->txq_ena))
1340 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1341 q_id, vsi->vsi_num);
1343 ring = vsi->tx_rings[q_id];
1347 ice_fill_txq_meta(vsi, ring, &txq_meta);
1349 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1351 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1352 q_id, vsi->vsi_num);
1356 /* Clear enabled queues flag */
1357 clear_bit(q_id, vf->txq_ena);
1364 * @vf: pointer to the VF info
1365 * @msg: pointer to the msg buffer
1367 * called from the VF to disable all or specific queue(s)
1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1372 struct virtchnl_queue_select *vqs =
1373 (struct virtchnl_queue_select *)msg;
1374 struct ice_vsi *vsi;
1375 unsigned long q_map;
1378 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1379 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1384 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1385 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1389 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1390 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 vsi = ice_get_vf_vsi(vf);
1396 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1400 if (vqs->tx_queues) {
1401 q_map = vqs->tx_queues;
1403 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1404 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1405 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1409 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1410 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1416 q_map = vqs->rx_queues;
1417 /* speed up Rx queue disable by batching them if possible */
1419 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1420 if (ice_vsi_stop_all_rx_rings(vsi)) {
1421 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1423 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1427 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1429 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1430 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1435 /* Skip queue if not enabled */
1436 if (!test_bit(vf_q_id, vf->rxq_ena))
1439 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1441 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1442 vf_q_id, vsi->vsi_num);
1443 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1447 /* Clear enabled queues flag */
1448 clear_bit(vf_q_id, vf->rxq_ena);
1452 /* Clear enabled queues flag */
1453 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1454 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1457 /* send the response to the VF */
1458 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1464 * @vf: pointer to the VF info
1465 * @vsi: the VSI being configured
1466 * @vector_id: vector ID
1467 * @map: vector map for mapping vectors to queues
1468 * @q_vector: structure for interrupt vector
1469 * configure the IRQ to queue map
1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1473 struct virtchnl_vector_map *map,
1474 struct ice_q_vector *q_vector)
1476 u16 vsi_q_id, vsi_q_id_idx;
1479 q_vector->num_ring_rx = 0;
1480 q_vector->num_ring_tx = 0;
1482 qmap = map->rxq_map;
1483 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1484 vsi_q_id = vsi_q_id_idx;
1486 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1487 return VIRTCHNL_STATUS_ERR_PARAM;
1489 q_vector->num_ring_rx++;
1490 q_vector->rx.itr_idx = map->rxitr_idx;
1491 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1492 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1493 q_vector->rx.itr_idx);
1496 qmap = map->txq_map;
1497 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1498 vsi_q_id = vsi_q_id_idx;
1500 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1501 return VIRTCHNL_STATUS_ERR_PARAM;
1503 q_vector->num_ring_tx++;
1504 q_vector->tx.itr_idx = map->txitr_idx;
1505 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1506 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1507 q_vector->tx.itr_idx);
1510 return VIRTCHNL_STATUS_SUCCESS;
1514 * ice_vc_cfg_irq_map_msg
1515 * @vf: pointer to the VF info
1516 * @msg: pointer to the msg buffer
1518 * called from the VF to configure the IRQ to queue map
1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1522 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1523 u16 num_q_vectors_mapped, vsi_id, vector_id;
1524 struct virtchnl_irq_map_info *irqmap_info;
1525 struct virtchnl_vector_map *map;
1526 struct ice_vsi *vsi;
1529 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1530 num_q_vectors_mapped = irqmap_info->num_vectors;
1532 /* Check to make sure number of VF vectors mapped is not greater than
1533 * number of VF vectors originally allocated, and check that
1534 * there is actually at least a single VF queue vector mapped
1536 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1537 vf->num_msix < num_q_vectors_mapped ||
1538 !num_q_vectors_mapped) {
1539 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1543 vsi = ice_get_vf_vsi(vf);
1545 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1549 for (i = 0; i < num_q_vectors_mapped; i++) {
1550 struct ice_q_vector *q_vector;
1552 map = &irqmap_info->vecmap[i];
1554 vector_id = map->vector_id;
1555 vsi_id = map->vsi_id;
1556 /* vector_id is always 0-based for each VF, and can never be
1557 * larger than or equal to the max allowed interrupts per VF
1559 if (!(vector_id < vf->num_msix) ||
1560 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1561 (!vector_id && (map->rxq_map || map->txq_map))) {
1562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1566 /* No need to map VF miscellaneous or rogue vector */
1570 /* Subtract non queue vector from vector_id passed by VF
1571 * to get actual number of VSI queue vector array index
1573 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1575 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1579 /* lookout for the invalid queue index */
1580 v_ret = (enum virtchnl_status_code)
1581 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1587 /* send the response to the VF */
1588 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1594 * @vf: pointer to the VF info
1595 * @msg: pointer to the msg buffer
1597 * called from the VF to configure the Rx/Tx queues
1599 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1601 struct virtchnl_vsi_queue_config_info *qci =
1602 (struct virtchnl_vsi_queue_config_info *)msg;
1603 struct virtchnl_queue_pair_info *qpi;
1604 struct ice_pf *pf = vf->pf;
1605 struct ice_lag *lag;
1606 struct ice_vsi *vsi;
1607 u8 act_prt, pri_prt;
1611 mutex_lock(&pf->lag_mutex);
1612 act_prt = ICE_LAG_INVALID_PORT;
1613 pri_prt = pf->hw.port_info->lport;
1614 if (lag && lag->bonded && lag->primary) {
1615 act_prt = lag->active_port;
1616 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1618 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1620 act_prt = ICE_LAG_INVALID_PORT;
1623 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1626 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1629 vsi = ice_get_vf_vsi(vf);
1633 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1634 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1635 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1636 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1640 for (i = 0; i < qci->num_queue_pairs; i++) {
1641 if (!qci->qpair[i].rxq.crc_disable)
1644 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1649 for (i = 0; i < qci->num_queue_pairs; i++) {
1650 qpi = &qci->qpair[i];
1651 if (qpi->txq.vsi_id != qci->vsi_id ||
1652 qpi->rxq.vsi_id != qci->vsi_id ||
1653 qpi->rxq.queue_id != qpi->txq.queue_id ||
1654 qpi->txq.headwb_enabled ||
1655 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1656 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1657 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1661 q_idx = qpi->rxq.queue_id;
1663 /* make sure selected "q_idx" is in valid range of queues
1664 * for selected "vsi"
1666 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1670 /* copy Tx queue info from VF into VSI */
1671 if (qpi->txq.ring_len > 0) {
1672 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1673 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1675 /* Disable any existing queue first */
1676 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1679 /* Configure a queue with the requested settings */
1680 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1681 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1687 /* copy Rx queue info from VF into VSI */
1688 if (qpi->rxq.ring_len > 0) {
1689 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1692 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1693 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1695 if (qpi->rxq.crc_disable)
1696 vsi->rx_rings[q_idx]->flags |=
1697 ICE_RX_FLAGS_CRC_STRIP_DIS;
1699 vsi->rx_rings[q_idx]->flags &=
1700 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1702 if (qpi->rxq.databuffer_size != 0 &&
1703 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1704 qpi->rxq.databuffer_size < 1024))
1706 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1707 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1708 if (qpi->rxq.max_pkt_size > max_frame_size ||
1709 qpi->rxq.max_pkt_size < 64)
1712 vsi->max_frame = qpi->rxq.max_pkt_size;
1713 /* add space for the port VLAN since the VF driver is
1714 * not expected to account for it in the MTU
1717 if (ice_vf_is_port_vlan_ena(vf))
1718 vsi->max_frame += VLAN_HLEN;
1720 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1721 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1726 /* If Rx flex desc is supported, select RXDID for Rx
1727 * queues. Otherwise, use legacy 32byte descriptor
1728 * format. Legacy 16byte descriptor is not supported.
1729 * If this RXDID is selected, return error.
1731 if (vf->driver_caps &
1732 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1733 rxdid = qpi->rxq.rxdid;
1734 if (!(BIT(rxdid) & pf->supported_rxdids))
1737 rxdid = ICE_RXDID_LEGACY_1;
1740 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1741 vsi->rxq_map[q_idx],
1742 rxdid, 0x03, false);
1746 if (lag && lag->bonded && lag->primary &&
1747 act_prt != ICE_LAG_INVALID_PORT)
1748 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1749 mutex_unlock(&pf->lag_mutex);
1751 /* send the response to the VF */
1752 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1753 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1755 /* disable whatever we can */
1756 for (; i >= 0; i--) {
1757 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1758 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1760 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1761 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1765 if (lag && lag->bonded && lag->primary &&
1766 act_prt != ICE_LAG_INVALID_PORT)
1767 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1768 mutex_unlock(&pf->lag_mutex);
1770 ice_lag_move_new_vf_nodes(vf);
1772 /* send the response to the VF */
1773 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1774 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1778 * ice_can_vf_change_mac
1779 * @vf: pointer to the VF info
1781 * Return true if the VF is allowed to change its MAC filters, false otherwise
1783 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1785 /* If the VF MAC address has been set administratively (via the
1786 * ndo_set_vf_mac command), then deny permission to the VF to
1787 * add/delete unicast MAC addresses, unless the VF is trusted
1789 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1796 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1797 * @vc_ether_addr: used to extract the type
1800 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1802 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1806 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1807 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1810 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1812 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1814 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1818 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1819 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1821 * This function should only be called when the MAC address in
1822 * virtchnl_ether_addr is a valid unicast MAC
1825 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1827 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1829 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1833 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1835 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1838 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1840 u8 *mac_addr = vc_ether_addr->addr;
1842 if (!is_valid_ether_addr(mac_addr))
1845 /* only allow legacy VF drivers to set the device and hardware MAC if it
1846 * is zero and allow new VF drivers to set the hardware MAC if the type
1847 * was correctly specified over VIRTCHNL
1849 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1850 is_zero_ether_addr(vf->hw_lan_addr)) ||
1851 ice_is_vc_addr_primary(vc_ether_addr)) {
1852 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1853 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1856 /* hardware and device MACs are already set, but its possible that the
1857 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1858 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1859 * away for the legacy VF driver case as it will be updated in the
1860 * delete flow for this case
1862 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1863 ether_addr_copy(vf->legacy_last_added_umac.addr,
1865 vf->legacy_last_added_umac.time_modified = jiffies;
1870 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1871 * @vf: pointer to the VF info
1872 * @vsi: pointer to the VF's VSI
1873 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1876 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1877 struct virtchnl_ether_addr *vc_ether_addr)
1879 struct device *dev = ice_pf_to_dev(vf->pf);
1880 u8 *mac_addr = vc_ether_addr->addr;
1883 /* device MAC already added */
1884 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1887 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1888 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1892 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1893 if (ret == -EEXIST) {
1894 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1896 /* don't return since we might need to update
1897 * the primary MAC in ice_vfhw_mac_add() below
1900 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1901 mac_addr, vf->vf_id, ret);
1907 ice_vfhw_mac_add(vf, vc_ether_addr);
1913 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1914 * @last_added_umac: structure used to check expiration
1916 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1918 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1919 return time_is_before_jiffies(last_added_umac->time_modified +
1920 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1924 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1926 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1928 * only update cached hardware MAC for legacy VF drivers on delete
1929 * because we cannot guarantee order/type of MAC from the VF driver
1932 ice_update_legacy_cached_mac(struct ice_vf *vf,
1933 struct virtchnl_ether_addr *vc_ether_addr)
1935 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1936 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1939 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1940 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1944 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1946 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1949 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1951 u8 *mac_addr = vc_ether_addr->addr;
1953 if (!is_valid_ether_addr(mac_addr) ||
1954 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1957 /* allow the device MAC to be repopulated in the add flow and don't
1958 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1959 * to be persistent on VM reboot and across driver unload/load, which
1960 * won't work if we clear the hardware MAC here
1962 eth_zero_addr(vf->dev_lan_addr);
1964 ice_update_legacy_cached_mac(vf, vc_ether_addr);
1968 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1969 * @vf: pointer to the VF info
1970 * @vsi: pointer to the VF's VSI
1971 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1974 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1975 struct virtchnl_ether_addr *vc_ether_addr)
1977 struct device *dev = ice_pf_to_dev(vf->pf);
1978 u8 *mac_addr = vc_ether_addr->addr;
1981 if (!ice_can_vf_change_mac(vf) &&
1982 ether_addr_equal(vf->dev_lan_addr, mac_addr))
1985 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1986 if (status == -ENOENT) {
1987 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1990 } else if (status) {
1991 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1992 mac_addr, vf->vf_id, status);
1996 ice_vfhw_mac_del(vf, vc_ether_addr);
2004 * ice_vc_handle_mac_addr_msg
2005 * @vf: pointer to the VF info
2006 * @msg: pointer to the msg buffer
2007 * @set: true if MAC filters are being set, false otherwise
2009 * add guest MAC address filter
2012 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2014 int (*ice_vc_cfg_mac)
2015 (struct ice_vf *vf, struct ice_vsi *vsi,
2016 struct virtchnl_ether_addr *virtchnl_ether_addr);
2017 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2018 struct virtchnl_ether_addr_list *al =
2019 (struct virtchnl_ether_addr_list *)msg;
2020 struct ice_pf *pf = vf->pf;
2021 enum virtchnl_ops vc_op;
2022 struct ice_vsi *vsi;
2026 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2027 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2029 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2030 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2033 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2034 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2035 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2036 goto handle_mac_exit;
2039 /* If this VF is not privileged, then we can't add more than a
2040 * limited number of addresses. Check to make sure that the
2041 * additions do not push us over the limit.
2043 if (set && !ice_is_vf_trusted(vf) &&
2044 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2045 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2047 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2048 goto handle_mac_exit;
2051 vsi = ice_get_vf_vsi(vf);
2053 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2054 goto handle_mac_exit;
2057 for (i = 0; i < al->num_elements; i++) {
2058 u8 *mac_addr = al->list[i].addr;
2061 if (is_broadcast_ether_addr(mac_addr) ||
2062 is_zero_ether_addr(mac_addr))
2065 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2066 if (result == -EEXIST || result == -ENOENT) {
2068 } else if (result) {
2069 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2070 goto handle_mac_exit;
2075 /* send the response to the VF */
2076 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2080 * ice_vc_add_mac_addr_msg
2081 * @vf: pointer to the VF info
2082 * @msg: pointer to the msg buffer
2084 * add guest MAC address filter
2086 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2088 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2092 * ice_vc_del_mac_addr_msg
2093 * @vf: pointer to the VF info
2094 * @msg: pointer to the msg buffer
2096 * remove guest MAC address filter
2098 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2100 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2104 * ice_vc_request_qs_msg
2105 * @vf: pointer to the VF info
2106 * @msg: pointer to the msg buffer
2108 * VFs get a default number of queues but can use this message to request a
2109 * different number. If the request is successful, PF will reset the VF and
2110 * return 0. If unsuccessful, PF will send message informing VF of number of
2111 * available queue pairs via virtchnl message response to VF.
2113 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2115 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2116 struct virtchnl_vf_res_request *vfres =
2117 (struct virtchnl_vf_res_request *)msg;
2118 u16 req_queues = vfres->num_queue_pairs;
2119 struct ice_pf *pf = vf->pf;
2120 u16 max_allowed_vf_queues;
2121 u16 tx_rx_queue_left;
2125 dev = ice_pf_to_dev(pf);
2126 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2127 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2131 cur_queues = vf->num_vf_qs;
2132 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2133 ice_get_avail_rxq_count(pf));
2134 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2136 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2138 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2139 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2140 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2141 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2142 } else if (req_queues > cur_queues &&
2143 req_queues - cur_queues > tx_rx_queue_left) {
2144 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2145 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2146 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2147 ICE_MAX_RSS_QS_PER_VF);
2149 /* request is successful, then reset VF */
2150 vf->num_req_qs = req_queues;
2151 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2152 dev_info(dev, "VF %d granted request of %u queues.\n",
2153 vf->vf_id, req_queues);
2158 /* send the response to the VF */
2159 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2160 v_ret, (u8 *)vfres, sizeof(*vfres));
2164 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2165 * @caps: VF driver negotiated capabilities
2167 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2169 static bool ice_vf_vlan_offload_ena(u32 caps)
2171 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2175 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2176 * @vf: VF used to determine if VLAN promiscuous config is allowed
2178 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2180 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2181 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2182 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2189 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2190 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2191 * @vlan: VLAN used to enable VLAN promiscuous
2193 * This function should only be called if VLAN promiscuous mode is allowed,
2194 * which can be determined via ice_is_vlan_promisc_allowed().
2196 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2198 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2201 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2203 if (status && status != -EEXIST)
2210 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2211 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2212 * @vlan: VLAN used to disable VLAN promiscuous
2214 * This function should only be called if VLAN promiscuous mode is allowed,
2215 * which can be determined via ice_is_vlan_promisc_allowed().
2217 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2219 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2222 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2224 if (status && status != -ENOENT)
2231 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2232 * @vf: VF to check against
2235 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2236 * wants to, so return false.
2238 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2239 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2241 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2243 if (ice_is_vf_trusted(vf))
2246 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2247 return ((ice_vsi_num_non_zero_vlans(vsi) +
2248 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2252 * ice_vc_process_vlan_msg
2253 * @vf: pointer to the VF info
2254 * @msg: pointer to the msg buffer
2255 * @add_v: Add VLAN if true, otherwise delete VLAN
2257 * Process virtchnl op to add or remove programmed guest VLAN ID
2259 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2261 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2262 struct virtchnl_vlan_filter_list *vfl =
2263 (struct virtchnl_vlan_filter_list *)msg;
2264 struct ice_pf *pf = vf->pf;
2265 bool vlan_promisc = false;
2266 struct ice_vsi *vsi;
2271 dev = ice_pf_to_dev(pf);
2272 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2273 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2277 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2278 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2282 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2283 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2287 for (i = 0; i < vfl->num_elements; i++) {
2288 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2289 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2290 dev_err(dev, "invalid VF VLAN id %d\n",
2296 vsi = ice_get_vf_vsi(vf);
2298 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2302 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2303 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2305 /* There is no need to let VF know about being not trusted,
2306 * so we can just return success message here
2311 /* in DVM a VF can add/delete inner VLAN filters when
2312 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2314 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2315 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2319 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2320 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2321 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2323 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2324 !ice_is_dvm_ena(&pf->hw) &&
2325 !ice_vf_is_port_vlan_ena(vf);
2328 for (i = 0; i < vfl->num_elements; i++) {
2329 u16 vid = vfl->vlan_id[i];
2330 struct ice_vlan vlan;
2332 if (ice_vf_has_max_vlans(vf, vsi)) {
2333 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2335 /* There is no need to let VF know about being
2336 * not trusted, so we can just return success
2337 * message here as well.
2342 /* we add VLAN 0 by default for each VF so we can enable
2343 * Tx VLAN anti-spoof without triggering MDD events so
2344 * we don't need to add it again here
2349 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2350 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2352 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2356 /* Enable VLAN filtering on first non-zero VLAN */
2357 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2359 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2361 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2362 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2367 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2368 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2369 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2373 } else if (vlan_promisc) {
2374 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2376 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2377 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2383 /* In case of non_trusted VF, number of VLAN elements passed
2384 * to PF for removal might be greater than number of VLANs
2385 * filter programmed for that VF - So, use actual number of
2386 * VLANS added earlier with add VLAN opcode. In order to avoid
2387 * removing VLAN that doesn't exist, which result to sending
2388 * erroneous failed message back to the VF
2392 num_vf_vlan = vsi->num_vlan;
2393 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2394 u16 vid = vfl->vlan_id[i];
2395 struct ice_vlan vlan;
2397 /* we add VLAN 0 by default for each VF so we can enable
2398 * Tx VLAN anti-spoof without triggering MDD events so
2399 * we don't want a VIRTCHNL request to remove it
2404 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2405 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2407 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411 /* Disable VLAN filtering when only VLAN 0 is left */
2412 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2413 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2414 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2418 ice_vf_dis_vlan_promisc(vsi, &vlan);
2423 /* send the response to the VF */
2425 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2428 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2433 * ice_vc_add_vlan_msg
2434 * @vf: pointer to the VF info
2435 * @msg: pointer to the msg buffer
2437 * Add and program guest VLAN ID
2439 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2441 return ice_vc_process_vlan_msg(vf, msg, true);
2445 * ice_vc_remove_vlan_msg
2446 * @vf: pointer to the VF info
2447 * @msg: pointer to the msg buffer
2449 * remove programmed guest VLAN ID
2451 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2453 return ice_vc_process_vlan_msg(vf, msg, false);
2457 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2458 * @vsi: pointer to the VF VSI info
2460 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2464 ice_for_each_alloc_rxq(vsi, i)
2465 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2472 * ice_vc_ena_vlan_stripping
2473 * @vf: pointer to the VF info
2475 * Enable VLAN header stripping for a given VF
2477 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2479 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2480 struct ice_vsi *vsi;
2482 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2483 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2487 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2488 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2492 vsi = ice_get_vf_vsi(vf);
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2498 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2499 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2501 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2509 * ice_vc_dis_vlan_stripping
2510 * @vf: pointer to the VF info
2512 * Disable VLAN header stripping for a given VF
2514 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2516 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2517 struct ice_vsi *vsi;
2519 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2520 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2524 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2529 vsi = ice_get_vf_vsi(vf);
2531 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2535 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2538 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2541 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2546 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2547 * @vf: pointer to the VF info
2549 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2551 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2552 struct virtchnl_rss_hena *vrh = NULL;
2555 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2556 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2560 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2561 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2566 len = sizeof(struct virtchnl_rss_hena);
2567 vrh = kzalloc(len, GFP_KERNEL);
2569 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2574 vrh->hena = ICE_DEFAULT_RSS_HENA;
2576 /* send the response back to the VF */
2577 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2584 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2585 * @vf: pointer to the VF info
2586 * @msg: pointer to the msg buffer
2588 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2590 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2591 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2592 struct ice_pf *pf = vf->pf;
2593 struct ice_vsi *vsi;
2597 dev = ice_pf_to_dev(pf);
2599 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2600 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2604 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2605 dev_err(dev, "RSS not supported by PF\n");
2606 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2610 vsi = ice_get_vf_vsi(vf);
2612 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2616 /* clear all previously programmed RSS configuration to allow VF drivers
2617 * the ability to customize the RSS configuration and/or completely
2620 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2621 if (status && !vrh->hena) {
2622 /* only report failure to clear the current RSS configuration if
2623 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2625 v_ret = ice_err_to_virt_err(status);
2627 } else if (status) {
2628 /* allow the VF to update the RSS configuration even on failure
2629 * to clear the current RSS confguration in an attempt to keep
2630 * RSS in a working state
2632 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2637 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2638 v_ret = ice_err_to_virt_err(status);
2641 /* send the response to the VF */
2643 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2648 * ice_vc_query_rxdid - query RXDID supported by DDP package
2649 * @vf: pointer to VF info
2651 * Called from VF to query a bitmap of supported flexible
2652 * descriptor RXDIDs of a DDP package.
2654 static int ice_vc_query_rxdid(struct ice_vf *vf)
2656 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2657 struct virtchnl_supported_rxdids *rxdid = NULL;
2658 struct ice_hw *hw = &vf->pf->hw;
2659 struct ice_pf *pf = vf->pf;
2664 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2669 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2670 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2674 len = sizeof(struct virtchnl_supported_rxdids);
2675 rxdid = kzalloc(len, GFP_KERNEL);
2677 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2682 /* RXDIDs supported by DDP package can be read from the register
2683 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2684 * is not listed in DDP package, add it in the bitmap manually.
2685 * Legacy 16byte descriptor is not supported.
2687 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2689 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2690 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2691 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2692 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2693 rxdid->supported_rxdids |= BIT(i);
2696 pf->supported_rxdids = rxdid->supported_rxdids;
2699 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2700 v_ret, (u8 *)rxdid, len);
2706 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2707 * @vf: VF to enable/disable VLAN stripping for on initialization
2709 * Set the default for VLAN stripping based on whether a port VLAN is configured
2710 * and the current VLAN mode of the device.
2712 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2714 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2716 vf->vlan_strip_ena = 0;
2721 /* don't modify stripping if port VLAN is configured in SVM since the
2722 * port VLAN is based on the inner/single VLAN in SVM
2724 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2727 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2730 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2732 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2736 return vsi->inner_vlan_ops.dis_stripping(vsi);
2739 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2744 return ICE_MAX_VLAN_PER_VF;
2748 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2749 * @vf: VF that being checked for
2751 * When the device is in double VLAN mode, check whether or not the outer VLAN
2754 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2756 if (ice_vf_is_port_vlan_ena(vf))
2763 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2764 * @vf: VF that capabilities are being set for
2765 * @caps: VLAN capabilities to populate
2767 * Determine VLAN capabilities support based on whether a port VLAN is
2768 * configured. If a port VLAN is configured then the VF should use the inner
2769 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2773 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2775 struct virtchnl_vlan_supported_caps *supported_caps;
2777 if (ice_vf_outer_vlan_not_allowed(vf)) {
2778 /* until support for inner VLAN filtering is added when a port
2779 * VLAN is configured, only support software offloaded inner
2780 * VLANs when a port VLAN is confgured in DVM
2782 supported_caps = &caps->filtering.filtering_support;
2783 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2785 supported_caps = &caps->offloads.stripping_support;
2786 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2787 VIRTCHNL_VLAN_TOGGLE |
2788 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2789 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2791 supported_caps = &caps->offloads.insertion_support;
2792 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2793 VIRTCHNL_VLAN_TOGGLE |
2794 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2795 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2797 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2798 caps->offloads.ethertype_match =
2799 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2801 supported_caps = &caps->filtering.filtering_support;
2802 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2803 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2804 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2805 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2806 VIRTCHNL_VLAN_ETHERTYPE_AND;
2807 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2808 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2809 VIRTCHNL_VLAN_ETHERTYPE_9100;
2811 supported_caps = &caps->offloads.stripping_support;
2812 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2813 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2814 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2815 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2816 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2817 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2818 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2819 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2820 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2822 supported_caps = &caps->offloads.insertion_support;
2823 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2824 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2825 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2826 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2827 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2828 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2829 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2830 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2831 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2833 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2835 caps->offloads.ethertype_match =
2836 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2839 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2843 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2844 * @vf: VF that capabilities are being set for
2845 * @caps: VLAN capabilities to populate
2847 * Determine VLAN capabilities support based on whether a port VLAN is
2848 * configured. If a port VLAN is configured then the VF does not have any VLAN
2849 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2850 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2851 * VLAN fitlering and offload capabilities.
2854 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2856 struct virtchnl_vlan_supported_caps *supported_caps;
2858 if (ice_vf_is_port_vlan_ena(vf)) {
2859 supported_caps = &caps->filtering.filtering_support;
2860 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2861 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2863 supported_caps = &caps->offloads.stripping_support;
2864 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2865 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2867 supported_caps = &caps->offloads.insertion_support;
2868 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2869 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2871 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2872 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2873 caps->filtering.max_filters = 0;
2875 supported_caps = &caps->filtering.filtering_support;
2876 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2877 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2878 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2880 supported_caps = &caps->offloads.stripping_support;
2881 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2882 VIRTCHNL_VLAN_TOGGLE |
2883 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2884 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2886 supported_caps = &caps->offloads.insertion_support;
2887 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2888 VIRTCHNL_VLAN_TOGGLE |
2889 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2890 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2892 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2893 caps->offloads.ethertype_match =
2894 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2895 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2900 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2901 * @vf: VF to determine VLAN capabilities for
2903 * This will only be called if the VF and PF successfully negotiated
2904 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2906 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2907 * is configured or not.
2909 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2912 struct virtchnl_vlan_caps *caps = NULL;
2915 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2916 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2920 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2922 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2925 len = sizeof(*caps);
2927 if (ice_is_dvm_ena(&vf->pf->hw))
2928 ice_vc_set_dvm_caps(vf, caps);
2930 ice_vc_set_svm_caps(vf, caps);
2932 /* store negotiated caps to prevent invalid VF messages */
2933 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2936 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2937 v_ret, (u8 *)caps, len);
2943 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2944 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2945 * @tpid: VLAN TPID used for validation
2947 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2948 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2950 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2952 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2956 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2959 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2962 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2966 if (!(filtering_caps & vlan_ethertype))
2973 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2974 * @vc_vlan: virtchnl_vlan to validate
2976 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2977 * false. Otherwise return true.
2979 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2981 if (!vc_vlan->tci || !vc_vlan->tpid)
2988 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2989 * @vfc: negotiated/supported VLAN filtering capabilities
2990 * @vfl: VLAN filter list from VF to validate
2992 * Validate all of the filters in the VLAN filter list from the VF. If any of
2993 * the checks fail then return false. Otherwise return true.
2996 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2997 struct virtchnl_vlan_filter_list_v2 *vfl)
3001 if (!vfl->num_elements)
3004 for (i = 0; i < vfl->num_elements; i++) {
3005 struct virtchnl_vlan_supported_caps *filtering_support =
3006 &vfc->filtering_support;
3007 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3008 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3009 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3011 if ((ice_vc_is_valid_vlan(outer) &&
3012 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3013 (ice_vc_is_valid_vlan(inner) &&
3014 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3017 if ((outer->tci_mask &&
3018 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3020 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3023 if (((outer->tci & VLAN_PRIO_MASK) &&
3024 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3025 ((inner->tci & VLAN_PRIO_MASK) &&
3026 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3029 if ((ice_vc_is_valid_vlan(outer) &&
3030 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3032 (ice_vc_is_valid_vlan(inner) &&
3033 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3042 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3043 * @vc_vlan: struct virtchnl_vlan to transform
3045 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3047 struct ice_vlan vlan = { 0 };
3049 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3050 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3051 vlan.tpid = vc_vlan->tpid;
3057 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3058 * @vsi: VF's VSI used to perform the action
3059 * @vlan_action: function to perform the action with (i.e. add/del)
3060 * @vlan: VLAN filter to perform the action with
3063 ice_vc_vlan_action(struct ice_vsi *vsi,
3064 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3065 struct ice_vlan *vlan)
3069 err = vlan_action(vsi, vlan);
3077 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3078 * @vf: VF used to delete the VLAN(s)
3079 * @vsi: VF's VSI used to delete the VLAN(s)
3080 * @vfl: virthchnl filter list used to delete the filters
3083 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3084 struct virtchnl_vlan_filter_list_v2 *vfl)
3086 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3090 for (i = 0; i < vfl->num_elements; i++) {
3091 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3092 struct virtchnl_vlan *vc_vlan;
3094 vc_vlan = &vlan_fltr->outer;
3095 if (ice_vc_is_valid_vlan(vc_vlan)) {
3096 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3098 err = ice_vc_vlan_action(vsi,
3099 vsi->outer_vlan_ops.del_vlan,
3105 ice_vf_dis_vlan_promisc(vsi, &vlan);
3107 /* Disable VLAN filtering when only VLAN 0 is left */
3108 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3109 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3115 vc_vlan = &vlan_fltr->inner;
3116 if (ice_vc_is_valid_vlan(vc_vlan)) {
3117 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3119 err = ice_vc_vlan_action(vsi,
3120 vsi->inner_vlan_ops.del_vlan,
3125 /* no support for VLAN promiscuous on inner VLAN unless
3126 * we are in Single VLAN Mode (SVM)
3128 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3130 ice_vf_dis_vlan_promisc(vsi, &vlan);
3132 /* Disable VLAN filtering when only VLAN 0 is left */
3133 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3134 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3146 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3147 * @vf: VF the message was received from
3148 * @msg: message received from the VF
3150 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3152 struct virtchnl_vlan_filter_list_v2 *vfl =
3153 (struct virtchnl_vlan_filter_list_v2 *)msg;
3154 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3155 struct ice_vsi *vsi;
3157 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3159 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3163 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3164 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3168 vsi = ice_get_vf_vsi(vf);
3170 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3174 if (ice_vc_del_vlans(vf, vsi, vfl))
3175 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3178 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3183 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3184 * @vf: VF used to add the VLAN(s)
3185 * @vsi: VF's VSI used to add the VLAN(s)
3186 * @vfl: virthchnl filter list used to add the filters
3189 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3190 struct virtchnl_vlan_filter_list_v2 *vfl)
3192 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3196 for (i = 0; i < vfl->num_elements; i++) {
3197 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3198 struct virtchnl_vlan *vc_vlan;
3200 vc_vlan = &vlan_fltr->outer;
3201 if (ice_vc_is_valid_vlan(vc_vlan)) {
3202 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3204 err = ice_vc_vlan_action(vsi,
3205 vsi->outer_vlan_ops.add_vlan,
3211 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3216 /* Enable VLAN filtering on first non-zero VLAN */
3217 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3218 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3224 vc_vlan = &vlan_fltr->inner;
3225 if (ice_vc_is_valid_vlan(vc_vlan)) {
3226 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3228 err = ice_vc_vlan_action(vsi,
3229 vsi->inner_vlan_ops.add_vlan,
3234 /* no support for VLAN promiscuous on inner VLAN unless
3235 * we are in Single VLAN Mode (SVM)
3237 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3239 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3244 /* Enable VLAN filtering on first non-zero VLAN */
3245 if (vf->spoofchk && vlan.vid) {
3246 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3258 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3259 * @vsi: VF VSI used to get number of existing VLAN filters
3260 * @vfc: negotiated/supported VLAN filtering capabilities
3261 * @vfl: VLAN filter list from VF to validate
3263 * Validate all of the filters in the VLAN filter list from the VF during the
3264 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3265 * Otherwise return true.
3268 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3269 struct virtchnl_vlan_filtering_caps *vfc,
3270 struct virtchnl_vlan_filter_list_v2 *vfl)
3272 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3275 if (num_requested_filters > vfc->max_filters)
3278 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3282 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3283 * @vf: VF the message was received from
3284 * @msg: message received from the VF
3286 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3288 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3289 struct virtchnl_vlan_filter_list_v2 *vfl =
3290 (struct virtchnl_vlan_filter_list_v2 *)msg;
3291 struct ice_vsi *vsi;
3293 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3294 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3298 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3299 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3303 vsi = ice_get_vf_vsi(vf);
3305 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3309 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3310 &vf->vlan_v2_caps.filtering,
3312 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3316 if (ice_vc_add_vlans(vf, vsi, vfl))
3317 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3320 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3325 * ice_vc_valid_vlan_setting - validate VLAN setting
3326 * @negotiated_settings: negotiated VLAN settings during VF init
3327 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3330 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3332 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3335 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3336 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3338 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3339 hweight32(ethertype_setting) > 1)
3342 /* ability to modify the VLAN setting was not negotiated */
3343 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3350 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3351 * @caps: negotiated VLAN settings during VF init
3352 * @msg: message to validate
3354 * Used to validate any VLAN virtchnl message sent as a
3355 * virtchnl_vlan_setting structure. Validates the message against the
3356 * negotiated/supported caps during VF driver init.
3359 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3360 struct virtchnl_vlan_setting *msg)
3362 if ((!msg->outer_ethertype_setting &&
3363 !msg->inner_ethertype_setting) ||
3364 (!caps->outer && !caps->inner))
3367 if (msg->outer_ethertype_setting &&
3368 !ice_vc_valid_vlan_setting(caps->outer,
3369 msg->outer_ethertype_setting))
3372 if (msg->inner_ethertype_setting &&
3373 !ice_vc_valid_vlan_setting(caps->inner,
3374 msg->inner_ethertype_setting))
3381 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3382 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3383 * @tpid: VLAN TPID to populate
3385 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3387 switch (ethertype_setting) {
3388 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3389 *tpid = ETH_P_8021Q;
3391 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3392 *tpid = ETH_P_8021AD;
3394 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3395 *tpid = ETH_P_QINQ1;
3406 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3407 * @vsi: VF's VSI used to enable the VLAN offload
3408 * @ena_offload: function used to enable the VLAN offload
3409 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3412 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3413 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3414 u32 ethertype_setting)
3419 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3423 err = ena_offload(vsi, tpid);
3430 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3431 #define ICE_L2TSEL_BIT_OFFSET 23
3433 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3434 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3438 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3439 * @vsi: VSI used to update l2tsel on
3440 * @l2tsel: l2tsel setting requested
3442 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3443 * This will modify which descriptor field the first offloaded VLAN will be
3446 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3448 struct ice_hw *hw = &vsi->back->hw;
3452 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3455 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3457 for (i = 0; i < vsi->alloc_rxq; i++) {
3458 u16 pfq = vsi->rxq_map[i];
3459 u32 qrx_context_offset;
3462 qrx_context_offset =
3463 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3465 regval = rd32(hw, qrx_context_offset);
3466 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3467 regval |= l2tsel_bit;
3468 wr32(hw, qrx_context_offset, regval);
3473 * ice_vc_ena_vlan_stripping_v2_msg
3474 * @vf: VF the message was received from
3475 * @msg: message received from the VF
3477 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3479 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3481 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3482 struct virtchnl_vlan_supported_caps *stripping_support;
3483 struct virtchnl_vlan_setting *strip_msg =
3484 (struct virtchnl_vlan_setting *)msg;
3485 u32 ethertype_setting;
3486 struct ice_vsi *vsi;
3488 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3489 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3493 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3498 vsi = ice_get_vf_vsi(vf);
3500 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3504 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3505 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3506 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3510 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3511 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3515 ethertype_setting = strip_msg->outer_ethertype_setting;
3516 if (ethertype_setting) {
3517 if (ice_vc_ena_vlan_offload(vsi,
3518 vsi->outer_vlan_ops.ena_stripping,
3519 ethertype_setting)) {
3520 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3523 enum ice_l2tsel l2tsel =
3524 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3526 /* PF tells the VF that the outer VLAN tag is always
3527 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3528 * inner is always extracted to
3529 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3530 * support outer stripping so the first tag always ends
3531 * up in L2TAG2_2ND and the second/inner tag, if
3532 * enabled, is extracted in L2TAG1.
3534 ice_vsi_update_l2tsel(vsi, l2tsel);
3536 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3540 ethertype_setting = strip_msg->inner_ethertype_setting;
3541 if (ethertype_setting &&
3542 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3543 ethertype_setting)) {
3544 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3548 if (ethertype_setting)
3549 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3557 * ice_vc_dis_vlan_stripping_v2_msg
3558 * @vf: VF the message was received from
3559 * @msg: message received from the VF
3561 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3563 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3565 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3566 struct virtchnl_vlan_supported_caps *stripping_support;
3567 struct virtchnl_vlan_setting *strip_msg =
3568 (struct virtchnl_vlan_setting *)msg;
3569 u32 ethertype_setting;
3570 struct ice_vsi *vsi;
3572 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3577 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3578 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3582 vsi = ice_get_vf_vsi(vf);
3584 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3588 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3589 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3590 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3594 ethertype_setting = strip_msg->outer_ethertype_setting;
3595 if (ethertype_setting) {
3596 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3597 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3600 enum ice_l2tsel l2tsel =
3601 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3603 /* PF tells the VF that the outer VLAN tag is always
3604 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3605 * inner is always extracted to
3606 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3607 * support inner stripping while outer stripping is
3608 * disabled so that the first and only tag is extracted
3611 ice_vsi_update_l2tsel(vsi, l2tsel);
3613 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3617 ethertype_setting = strip_msg->inner_ethertype_setting;
3618 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623 if (ethertype_setting)
3624 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3627 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3632 * ice_vc_ena_vlan_insertion_v2_msg
3633 * @vf: VF the message was received from
3634 * @msg: message received from the VF
3636 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3638 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3640 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3641 struct virtchnl_vlan_supported_caps *insertion_support;
3642 struct virtchnl_vlan_setting *insertion_msg =
3643 (struct virtchnl_vlan_setting *)msg;
3644 u32 ethertype_setting;
3645 struct ice_vsi *vsi;
3647 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3648 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3652 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3653 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3657 vsi = ice_get_vf_vsi(vf);
3659 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3663 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3664 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3669 ethertype_setting = insertion_msg->outer_ethertype_setting;
3670 if (ethertype_setting &&
3671 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3672 ethertype_setting)) {
3673 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3677 ethertype_setting = insertion_msg->inner_ethertype_setting;
3678 if (ethertype_setting &&
3679 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3680 ethertype_setting)) {
3681 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3686 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3691 * ice_vc_dis_vlan_insertion_v2_msg
3692 * @vf: VF the message was received from
3693 * @msg: message received from the VF
3695 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3697 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3699 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3700 struct virtchnl_vlan_supported_caps *insertion_support;
3701 struct virtchnl_vlan_setting *insertion_msg =
3702 (struct virtchnl_vlan_setting *)msg;
3703 u32 ethertype_setting;
3704 struct ice_vsi *vsi;
3706 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3707 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3711 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3712 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716 vsi = ice_get_vf_vsi(vf);
3718 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3722 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3723 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3724 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3728 ethertype_setting = insertion_msg->outer_ethertype_setting;
3729 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3730 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3734 ethertype_setting = insertion_msg->inner_ethertype_setting;
3735 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3736 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3741 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3745 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3746 .get_ver_msg = ice_vc_get_ver_msg,
3747 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3748 .reset_vf = ice_vc_reset_vf_msg,
3749 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3750 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3751 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3752 .ena_qs_msg = ice_vc_ena_qs_msg,
3753 .dis_qs_msg = ice_vc_dis_qs_msg,
3754 .request_qs_msg = ice_vc_request_qs_msg,
3755 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3756 .config_rss_key = ice_vc_config_rss_key,
3757 .config_rss_lut = ice_vc_config_rss_lut,
3758 .get_stats_msg = ice_vc_get_stats_msg,
3759 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3760 .add_vlan_msg = ice_vc_add_vlan_msg,
3761 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3762 .query_rxdid = ice_vc_query_rxdid,
3763 .get_rss_hena = ice_vc_get_rss_hena,
3764 .set_rss_hena_msg = ice_vc_set_rss_hena,
3765 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3766 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3767 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3768 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3769 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3770 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3771 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3772 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3773 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3774 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3775 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3776 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3780 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3781 * @vf: the VF to switch ops
3783 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3785 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3789 * ice_vc_repr_add_mac
3790 * @vf: pointer to VF
3791 * @msg: virtchannel message
3793 * When port representors are created, we do not add MAC rule
3794 * to firmware, we store it so that PF could report same
3797 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3799 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3800 struct virtchnl_ether_addr_list *al =
3801 (struct virtchnl_ether_addr_list *)msg;
3802 struct ice_vsi *vsi;
3806 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3807 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3808 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3809 goto handle_mac_exit;
3814 vsi = ice_get_vf_vsi(vf);
3816 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3817 goto handle_mac_exit;
3820 for (i = 0; i < al->num_elements; i++) {
3821 u8 *mac_addr = al->list[i].addr;
3823 if (!is_unicast_ether_addr(mac_addr) ||
3824 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3827 if (vf->pf_set_mac) {
3828 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3829 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3830 goto handle_mac_exit;
3833 ice_vfhw_mac_add(vf, &al->list[i]);
3839 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3844 * ice_vc_repr_del_mac - response with success for deleting MAC
3845 * @vf: pointer to VF
3846 * @msg: virtchannel message
3848 * Respond with success to not break normal VF flow.
3849 * For legacy VF driver try to update cached MAC address.
3852 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3854 struct virtchnl_ether_addr_list *al =
3855 (struct virtchnl_ether_addr_list *)msg;
3857 ice_update_legacy_cached_mac(vf, &al->list[0]);
3859 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3860 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3864 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3866 dev_dbg(ice_pf_to_dev(vf->pf),
3867 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3869 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3870 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3874 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3875 .get_ver_msg = ice_vc_get_ver_msg,
3876 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3877 .reset_vf = ice_vc_reset_vf_msg,
3878 .add_mac_addr_msg = ice_vc_repr_add_mac,
3879 .del_mac_addr_msg = ice_vc_repr_del_mac,
3880 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3881 .ena_qs_msg = ice_vc_ena_qs_msg,
3882 .dis_qs_msg = ice_vc_dis_qs_msg,
3883 .request_qs_msg = ice_vc_request_qs_msg,
3884 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3885 .config_rss_key = ice_vc_config_rss_key,
3886 .config_rss_lut = ice_vc_config_rss_lut,
3887 .get_stats_msg = ice_vc_get_stats_msg,
3888 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3889 .add_vlan_msg = ice_vc_add_vlan_msg,
3890 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3891 .query_rxdid = ice_vc_query_rxdid,
3892 .get_rss_hena = ice_vc_get_rss_hena,
3893 .set_rss_hena_msg = ice_vc_set_rss_hena,
3894 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3895 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3896 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3897 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3898 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3899 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3900 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3901 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3902 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3903 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3904 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3905 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3909 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3910 * @vf: the VF to switch ops
3912 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3914 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3918 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3919 * @vf: the VF to check
3920 * @mbxdata: data about the state of the mailbox
3922 * Detect if a given VF might be malicious and attempting to overflow the PF
3923 * mailbox. If so, log a warning message and ignore this event.
3926 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3928 bool report_malvf = false;
3934 dev = ice_pf_to_dev(pf);
3936 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3937 return vf->mbx_info.malicious;
3939 /* check to see if we have a newly malicious VF */
3940 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3943 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3944 vf->vf_id, vf->dev_lan_addr, status);
3947 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3948 u8 zero_addr[ETH_ALEN] = {};
3950 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3952 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3955 return vf->mbx_info.malicious;
3959 * ice_vc_process_vf_msg - Process request from VF
3960 * @pf: pointer to the PF structure
3961 * @event: pointer to the AQ event
3962 * @mbxdata: information used to detect VF attempting mailbox overflow
3964 * called from the common asq/arq handler to
3965 * process request from VF
3967 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3968 struct ice_mbx_data *mbxdata)
3970 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3971 s16 vf_id = le16_to_cpu(event->desc.retval);
3972 const struct ice_virtchnl_ops *ops;
3973 u16 msglen = event->msg_len;
3974 u8 *msg = event->msg_buf;
3975 struct ice_vf *vf = NULL;
3979 dev = ice_pf_to_dev(pf);
3981 vf = ice_get_vf_by_id(pf, vf_id);
3983 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3984 vf_id, v_opcode, msglen);
3988 mutex_lock(&vf->cfg_lock);
3990 /* Check if the VF is trying to overflow the mailbox */
3991 if (ice_is_malicious_vf(vf, mbxdata))
3994 /* Check if VF is disabled. */
3995 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4000 ops = vf->virtchnl_ops;
4002 /* Perform basic checks on the msg */
4003 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4005 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4013 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4015 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4016 vf_id, v_opcode, msglen, err);
4020 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4021 ice_vc_send_msg_to_vf(vf, v_opcode,
4022 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4028 case VIRTCHNL_OP_VERSION:
4029 err = ops->get_ver_msg(vf, msg);
4031 case VIRTCHNL_OP_GET_VF_RESOURCES:
4032 err = ops->get_vf_res_msg(vf, msg);
4033 if (ice_vf_init_vlan_stripping(vf))
4034 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4036 ice_vc_notify_vf_link_state(vf);
4038 case VIRTCHNL_OP_RESET_VF:
4041 case VIRTCHNL_OP_ADD_ETH_ADDR:
4042 err = ops->add_mac_addr_msg(vf, msg);
4044 case VIRTCHNL_OP_DEL_ETH_ADDR:
4045 err = ops->del_mac_addr_msg(vf, msg);
4047 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4048 err = ops->cfg_qs_msg(vf, msg);
4050 case VIRTCHNL_OP_ENABLE_QUEUES:
4051 err = ops->ena_qs_msg(vf, msg);
4052 ice_vc_notify_vf_link_state(vf);
4054 case VIRTCHNL_OP_DISABLE_QUEUES:
4055 err = ops->dis_qs_msg(vf, msg);
4057 case VIRTCHNL_OP_REQUEST_QUEUES:
4058 err = ops->request_qs_msg(vf, msg);
4060 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4061 err = ops->cfg_irq_map_msg(vf, msg);
4063 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4064 err = ops->config_rss_key(vf, msg);
4066 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4067 err = ops->config_rss_lut(vf, msg);
4069 case VIRTCHNL_OP_GET_STATS:
4070 err = ops->get_stats_msg(vf, msg);
4072 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4073 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4075 case VIRTCHNL_OP_ADD_VLAN:
4076 err = ops->add_vlan_msg(vf, msg);
4078 case VIRTCHNL_OP_DEL_VLAN:
4079 err = ops->remove_vlan_msg(vf, msg);
4081 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4082 err = ops->query_rxdid(vf);
4084 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4085 err = ops->get_rss_hena(vf);
4087 case VIRTCHNL_OP_SET_RSS_HENA:
4088 err = ops->set_rss_hena_msg(vf, msg);
4090 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4091 err = ops->ena_vlan_stripping(vf);
4093 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4094 err = ops->dis_vlan_stripping(vf);
4096 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4097 err = ops->add_fdir_fltr_msg(vf, msg);
4099 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4100 err = ops->del_fdir_fltr_msg(vf, msg);
4102 case VIRTCHNL_OP_ADD_RSS_CFG:
4103 err = ops->handle_rss_cfg_msg(vf, msg, true);
4105 case VIRTCHNL_OP_DEL_RSS_CFG:
4106 err = ops->handle_rss_cfg_msg(vf, msg, false);
4108 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4109 err = ops->get_offload_vlan_v2_caps(vf);
4111 case VIRTCHNL_OP_ADD_VLAN_V2:
4112 err = ops->add_vlan_v2_msg(vf, msg);
4114 case VIRTCHNL_OP_DEL_VLAN_V2:
4115 err = ops->remove_vlan_v2_msg(vf, msg);
4117 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4118 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4120 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4121 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4123 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4124 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4126 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4127 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4129 case VIRTCHNL_OP_UNKNOWN:
4131 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4133 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4134 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4139 /* Helper function cares less about error return values here
4140 * as it is busy with pending work.
4142 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4143 vf_id, v_opcode, err);
4147 mutex_unlock(&vf->cfg_lock);