1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 spi_controller_put(spi->controller);
51 kfree(spi->driver_override);
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 const struct spi_device *spi = to_spi_device(dev);
61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 static DEVICE_ATTR_RO(modalias);
69 static ssize_t driver_override_store(struct device *dev,
70 struct device_attribute *a,
71 const char *buf, size_t count)
73 struct spi_device *spi = to_spi_device(dev);
74 const char *end = memchr(buf, '\n', count);
75 const size_t len = end ? end - buf : count;
76 const char *driver_override, *old;
78 /* We need to keep extra room for a newline when displaying value */
79 if (len >= (PAGE_SIZE - 1))
82 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 old = spi->driver_override;
89 spi->driver_override = driver_override;
91 /* Empty string, disable driver override */
92 spi->driver_override = NULL;
93 kfree(driver_override);
101 static ssize_t driver_override_show(struct device *dev,
102 struct device_attribute *a, char *buf)
104 const struct spi_device *spi = to_spi_device(dev);
108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
112 static DEVICE_ATTR_RW(driver_override);
114 #define SPI_STATISTICS_ATTRS(field, file) \
115 static ssize_t spi_controller_##field##_show(struct device *dev, \
116 struct device_attribute *attr, \
119 struct spi_controller *ctlr = container_of(dev, \
120 struct spi_controller, dev); \
121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
123 static struct device_attribute dev_attr_spi_controller_##field = { \
124 .attr = { .name = file, .mode = 0444 }, \
125 .show = spi_controller_##field##_show, \
127 static ssize_t spi_device_##field##_show(struct device *dev, \
128 struct device_attribute *attr, \
131 struct spi_device *spi = to_spi_device(dev); \
132 return spi_statistics_##field##_show(&spi->statistics, buf); \
134 static struct device_attribute dev_attr_spi_device_##field = { \
135 .attr = { .name = file, .mode = 0444 }, \
136 .show = spi_device_##field##_show, \
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
143 unsigned long flags; \
145 spin_lock_irqsave(&stat->lock, flags); \
146 len = sprintf(buf, format_string, stat->field); \
147 spin_unlock_irqrestore(&stat->lock, flags); \
150 SPI_STATISTICS_ATTRS(name, file)
152 #define SPI_STATISTICS_SHOW(field, format_string) \
153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
154 field, format_string)
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
171 "transfer_bytes_histo_" number, \
172 transfer_bytes_histo[index], "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
193 static struct attribute *spi_dev_attrs[] = {
194 &dev_attr_modalias.attr,
195 &dev_attr_driver_override.attr,
199 static const struct attribute_group spi_dev_group = {
200 .attrs = spi_dev_attrs,
203 static struct attribute *spi_device_statistics_attrs[] = {
204 &dev_attr_spi_device_messages.attr,
205 &dev_attr_spi_device_transfers.attr,
206 &dev_attr_spi_device_errors.attr,
207 &dev_attr_spi_device_timedout.attr,
208 &dev_attr_spi_device_spi_sync.attr,
209 &dev_attr_spi_device_spi_sync_immediate.attr,
210 &dev_attr_spi_device_spi_async.attr,
211 &dev_attr_spi_device_bytes.attr,
212 &dev_attr_spi_device_bytes_rx.attr,
213 &dev_attr_spi_device_bytes_tx.attr,
214 &dev_attr_spi_device_transfer_bytes_histo0.attr,
215 &dev_attr_spi_device_transfer_bytes_histo1.attr,
216 &dev_attr_spi_device_transfer_bytes_histo2.attr,
217 &dev_attr_spi_device_transfer_bytes_histo3.attr,
218 &dev_attr_spi_device_transfer_bytes_histo4.attr,
219 &dev_attr_spi_device_transfer_bytes_histo5.attr,
220 &dev_attr_spi_device_transfer_bytes_histo6.attr,
221 &dev_attr_spi_device_transfer_bytes_histo7.attr,
222 &dev_attr_spi_device_transfer_bytes_histo8.attr,
223 &dev_attr_spi_device_transfer_bytes_histo9.attr,
224 &dev_attr_spi_device_transfer_bytes_histo10.attr,
225 &dev_attr_spi_device_transfer_bytes_histo11.attr,
226 &dev_attr_spi_device_transfer_bytes_histo12.attr,
227 &dev_attr_spi_device_transfer_bytes_histo13.attr,
228 &dev_attr_spi_device_transfer_bytes_histo14.attr,
229 &dev_attr_spi_device_transfer_bytes_histo15.attr,
230 &dev_attr_spi_device_transfer_bytes_histo16.attr,
231 &dev_attr_spi_device_transfers_split_maxsize.attr,
235 static const struct attribute_group spi_device_statistics_group = {
236 .name = "statistics",
237 .attrs = spi_device_statistics_attrs,
240 static const struct attribute_group *spi_dev_groups[] = {
242 &spi_device_statistics_group,
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 &dev_attr_spi_controller_messages.attr,
248 &dev_attr_spi_controller_transfers.attr,
249 &dev_attr_spi_controller_errors.attr,
250 &dev_attr_spi_controller_timedout.attr,
251 &dev_attr_spi_controller_spi_sync.attr,
252 &dev_attr_spi_controller_spi_sync_immediate.attr,
253 &dev_attr_spi_controller_spi_async.attr,
254 &dev_attr_spi_controller_bytes.attr,
255 &dev_attr_spi_controller_bytes_rx.attr,
256 &dev_attr_spi_controller_bytes_tx.attr,
257 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 &dev_attr_spi_controller_transfers_split_maxsize.attr,
278 static const struct attribute_group spi_controller_statistics_group = {
279 .name = "statistics",
280 .attrs = spi_controller_statistics_attrs,
283 static const struct attribute_group *spi_master_groups[] = {
284 &spi_controller_statistics_group,
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 struct spi_transfer *xfer,
290 struct spi_controller *ctlr)
293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 spin_lock_irqsave(&stats->lock, flags);
301 stats->transfer_bytes_histo[l2len]++;
303 stats->bytes += xfer->len;
304 if ((xfer->tx_buf) &&
305 (xfer->tx_buf != ctlr->dummy_tx))
306 stats->bytes_tx += xfer->len;
307 if ((xfer->rx_buf) &&
308 (xfer->rx_buf != ctlr->dummy_rx))
309 stats->bytes_rx += xfer->len;
311 spin_unlock_irqrestore(&stats->lock, flags);
314 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
315 * and the sysfs version makes coldplug work too.
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
319 const struct spi_device *sdev)
321 while (id->name[0]) {
322 if (!strcmp(sdev->modalias, id->name))
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 return spi_match_id(sdrv->id_table, sdev);
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 const struct spi_device *spi = to_spi_device(dev);
340 const struct spi_driver *sdrv = to_spi_driver(drv);
342 /* Check override first, and if set, only use the named driver */
343 if (spi->driver_override)
344 return strcmp(spi->driver_override, drv->name) == 0;
346 /* Attempt an OF style match */
347 if (of_driver_match_device(dev, drv))
351 if (acpi_driver_match_device(dev, drv))
355 return !!spi_match_id(sdrv->id_table, spi);
357 return strcmp(spi->modalias, drv->name) == 0;
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 const struct spi_device *spi = to_spi_device(dev);
365 rc = acpi_device_uevent_modalias(dev, env);
369 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
372 static int spi_probe(struct device *dev)
374 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
375 struct spi_device *spi = to_spi_device(dev);
378 ret = of_clk_set_defaults(dev->of_node, false);
383 spi->irq = of_irq_get(dev->of_node, 0);
384 if (spi->irq == -EPROBE_DEFER)
385 return -EPROBE_DEFER;
390 ret = dev_pm_domain_attach(dev, true);
395 ret = sdrv->probe(spi);
397 dev_pm_domain_detach(dev, true);
403 static void spi_remove(struct device *dev)
405 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
410 ret = sdrv->remove(to_spi_device(dev));
413 "Failed to unbind driver (%pe), ignoring\n",
417 dev_pm_domain_detach(dev, true);
420 static void spi_shutdown(struct device *dev)
423 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
426 sdrv->shutdown(to_spi_device(dev));
430 struct bus_type spi_bus_type = {
432 .dev_groups = spi_dev_groups,
433 .match = spi_match_device,
434 .uevent = spi_uevent,
436 .remove = spi_remove,
437 .shutdown = spi_shutdown,
439 EXPORT_SYMBOL_GPL(spi_bus_type);
442 * __spi_register_driver - register a SPI driver
443 * @owner: owner module of the driver to register
444 * @sdrv: the driver to register
447 * Return: zero on success, else a negative error code.
449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 sdrv->driver.owner = owner;
452 sdrv->driver.bus = &spi_bus_type;
453 return driver_register(&sdrv->driver);
455 EXPORT_SYMBOL_GPL(__spi_register_driver);
457 /*-------------------------------------------------------------------------*/
459 /* SPI devices should normally not be created by SPI device drivers; that
460 * would make them board-specific. Similarly with SPI controller drivers.
461 * Device registration normally goes into like arch/.../mach.../board-YYY.c
462 * with other readonly (flashable) information about mainboard devices.
466 struct list_head list;
467 struct spi_board_info board_info;
470 static LIST_HEAD(board_list);
471 static LIST_HEAD(spi_controller_list);
474 * Used to protect add/del operation for board_info list and
475 * spi_controller list, and their matching process
476 * also used to protect object of type struct idr
478 static DEFINE_MUTEX(board_lock);
481 * spi_alloc_device - Allocate a new SPI device
482 * @ctlr: Controller to which device is connected
485 * Allows a driver to allocate and initialize a spi_device without
486 * registering it immediately. This allows a driver to directly
487 * fill the spi_device with device parameters before calling
488 * spi_add_device() on it.
490 * Caller is responsible to call spi_add_device() on the returned
491 * spi_device structure to add it to the SPI controller. If the caller
492 * needs to discard the spi_device without adding it, then it should
493 * call spi_dev_put() on it.
495 * Return: a pointer to the new device, or NULL.
497 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 struct spi_device *spi;
501 if (!spi_controller_get(ctlr))
504 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 spi_controller_put(ctlr);
510 spi->master = spi->controller = ctlr;
511 spi->dev.parent = &ctlr->dev;
512 spi->dev.bus = &spi_bus_type;
513 spi->dev.release = spidev_release;
514 spi->cs_gpio = -ENOENT;
515 spi->mode = ctlr->buswidth_override_bits;
517 spin_lock_init(&spi->statistics.lock);
519 device_initialize(&spi->dev);
523 static void spi_dev_set_name(struct spi_device *spi)
525 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
532 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
536 static int spi_dev_check(struct device *dev, void *data)
538 struct spi_device *spi = to_spi_device(dev);
539 struct spi_device *new_spi = data;
541 if (spi->controller == new_spi->controller &&
542 spi->chip_select == new_spi->chip_select)
547 static void spi_cleanup(struct spi_device *spi)
549 if (spi->controller->cleanup)
550 spi->controller->cleanup(spi);
553 static int __spi_add_device(struct spi_device *spi)
555 struct spi_controller *ctlr = spi->controller;
556 struct device *dev = ctlr->dev.parent;
560 * We need to make sure there's no other device with this
561 * chipselect **BEFORE** we call setup(), else we'll trash
564 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
566 dev_err(dev, "chipselect %d already in use\n",
571 /* Controller may unregister concurrently */
572 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
573 !device_is_registered(&ctlr->dev)) {
577 /* Descriptors take precedence */
579 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
580 else if (ctlr->cs_gpios)
581 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
583 /* Drivers may modify this initial i/o setup, but will
584 * normally rely on the device being setup. Devices
585 * using SPI_CS_HIGH can't coexist well otherwise...
587 status = spi_setup(spi);
589 dev_err(dev, "can't setup %s, status %d\n",
590 dev_name(&spi->dev), status);
594 /* Device may be bound to an active driver when this returns */
595 status = device_add(&spi->dev);
597 dev_err(dev, "can't add %s, status %d\n",
598 dev_name(&spi->dev), status);
601 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 * spi_add_device - Add spi_device allocated with spi_alloc_device
609 * @spi: spi_device to register
611 * Companion function to spi_alloc_device. Devices allocated with
612 * spi_alloc_device can be added onto the spi bus with this function.
614 * Return: 0 on success; negative errno on failure
616 static int spi_add_device(struct spi_device *spi)
618 struct spi_controller *ctlr = spi->controller;
619 struct device *dev = ctlr->dev.parent;
622 /* Chipselects are numbered 0..max; validate. */
623 if (spi->chip_select >= ctlr->num_chipselect) {
624 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
625 ctlr->num_chipselect);
629 /* Set the bus ID string */
630 spi_dev_set_name(spi);
632 mutex_lock(&ctlr->add_lock);
633 status = __spi_add_device(spi);
634 mutex_unlock(&ctlr->add_lock);
638 static int spi_add_device_locked(struct spi_device *spi)
640 struct spi_controller *ctlr = spi->controller;
641 struct device *dev = ctlr->dev.parent;
643 /* Chipselects are numbered 0..max; validate. */
644 if (spi->chip_select >= ctlr->num_chipselect) {
645 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
646 ctlr->num_chipselect);
650 /* Set the bus ID string */
651 spi_dev_set_name(spi);
653 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
654 return __spi_add_device(spi);
658 * spi_new_device - instantiate one new SPI device
659 * @ctlr: Controller to which device is connected
660 * @chip: Describes the SPI device
663 * On typical mainboards, this is purely internal; and it's not needed
664 * after board init creates the hard-wired devices. Some development
665 * platforms may not be able to use spi_register_board_info though, and
666 * this is exported so that for example a USB or parport based adapter
667 * driver could add devices (which it would learn about out-of-band).
669 * Return: the new device, or NULL.
671 struct spi_device *spi_new_device(struct spi_controller *ctlr,
672 struct spi_board_info *chip)
674 struct spi_device *proxy;
677 /* NOTE: caller did any chip->bus_num checks necessary.
679 * Also, unless we change the return value convention to use
680 * error-or-pointer (not NULL-or-pointer), troubleshootability
681 * suggests syslogged diagnostics are best here (ugh).
684 proxy = spi_alloc_device(ctlr);
688 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
690 proxy->chip_select = chip->chip_select;
691 proxy->max_speed_hz = chip->max_speed_hz;
692 proxy->mode = chip->mode;
693 proxy->irq = chip->irq;
694 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
695 proxy->dev.platform_data = (void *) chip->platform_data;
696 proxy->controller_data = chip->controller_data;
697 proxy->controller_state = NULL;
700 status = device_add_software_node(&proxy->dev, chip->swnode);
702 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
703 chip->modalias, status);
708 status = spi_add_device(proxy);
715 device_remove_software_node(&proxy->dev);
719 EXPORT_SYMBOL_GPL(spi_new_device);
722 * spi_unregister_device - unregister a single SPI device
723 * @spi: spi_device to unregister
725 * Start making the passed SPI device vanish. Normally this would be handled
726 * by spi_unregister_controller().
728 void spi_unregister_device(struct spi_device *spi)
733 if (spi->dev.of_node) {
734 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
735 of_node_put(spi->dev.of_node);
737 if (ACPI_COMPANION(&spi->dev))
738 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
739 device_remove_software_node(&spi->dev);
740 device_del(&spi->dev);
742 put_device(&spi->dev);
744 EXPORT_SYMBOL_GPL(spi_unregister_device);
746 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
747 struct spi_board_info *bi)
749 struct spi_device *dev;
751 if (ctlr->bus_num != bi->bus_num)
754 dev = spi_new_device(ctlr, bi);
756 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
761 * spi_register_board_info - register SPI devices for a given board
762 * @info: array of chip descriptors
763 * @n: how many descriptors are provided
766 * Board-specific early init code calls this (probably during arch_initcall)
767 * with segments of the SPI device table. Any device nodes are created later,
768 * after the relevant parent SPI controller (bus_num) is defined. We keep
769 * this table of devices forever, so that reloading a controller driver will
770 * not make Linux forget about these hard-wired devices.
772 * Other code can also call this, e.g. a particular add-on board might provide
773 * SPI devices through its expansion connector, so code initializing that board
774 * would naturally declare its SPI devices.
776 * The board info passed can safely be __initdata ... but be careful of
777 * any embedded pointers (platform_data, etc), they're copied as-is.
779 * Return: zero on success, else a negative error code.
781 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
783 struct boardinfo *bi;
789 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
793 for (i = 0; i < n; i++, bi++, info++) {
794 struct spi_controller *ctlr;
796 memcpy(&bi->board_info, info, sizeof(*info));
798 mutex_lock(&board_lock);
799 list_add_tail(&bi->list, &board_list);
800 list_for_each_entry(ctlr, &spi_controller_list, list)
801 spi_match_controller_to_boardinfo(ctlr,
803 mutex_unlock(&board_lock);
809 /*-------------------------------------------------------------------------*/
811 /* Core methods for SPI resource management */
814 * spi_res_alloc - allocate a spi resource that is life-cycle managed
815 * during the processing of a spi_message while using
817 * @spi: the spi device for which we allocate memory
818 * @release: the release code to execute for this resource
819 * @size: size to alloc and return
820 * @gfp: GFP allocation flags
822 * Return: the pointer to the allocated data
824 * This may get enhanced in the future to allocate from a memory pool
825 * of the @spi_device or @spi_controller to avoid repeated allocations.
827 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
828 size_t size, gfp_t gfp)
830 struct spi_res *sres;
832 sres = kzalloc(sizeof(*sres) + size, gfp);
836 INIT_LIST_HEAD(&sres->entry);
837 sres->release = release;
843 * spi_res_free - free an spi resource
844 * @res: pointer to the custom data of a resource
847 static void spi_res_free(void *res)
849 struct spi_res *sres = container_of(res, struct spi_res, data);
854 WARN_ON(!list_empty(&sres->entry));
859 * spi_res_add - add a spi_res to the spi_message
860 * @message: the spi message
861 * @res: the spi_resource
863 static void spi_res_add(struct spi_message *message, void *res)
865 struct spi_res *sres = container_of(res, struct spi_res, data);
867 WARN_ON(!list_empty(&sres->entry));
868 list_add_tail(&sres->entry, &message->resources);
872 * spi_res_release - release all spi resources for this message
873 * @ctlr: the @spi_controller
874 * @message: the @spi_message
876 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
878 struct spi_res *res, *tmp;
880 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
882 res->release(ctlr, message, res->data);
884 list_del(&res->entry);
890 /*-------------------------------------------------------------------------*/
892 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
894 bool activate = enable;
897 * Avoid calling into the driver (or doing delays) if the chip select
898 * isn't actually changing from the last time this was called.
900 if (!force && (spi->controller->last_cs_enable == enable) &&
901 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
904 trace_spi_set_cs(spi, activate);
906 spi->controller->last_cs_enable = enable;
907 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
909 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
910 !spi->controller->set_cs_timing) {
912 spi_delay_exec(&spi->cs_setup, NULL);
914 spi_delay_exec(&spi->cs_hold, NULL);
917 if (spi->mode & SPI_CS_HIGH)
920 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
921 if (!(spi->mode & SPI_NO_CS)) {
924 * Historically ACPI has no means of the GPIO polarity and
925 * thus the SPISerialBus() resource defines it on the per-chip
926 * basis. In order to avoid a chain of negations, the GPIO
927 * polarity is considered being Active High. Even for the cases
928 * when _DSD() is involved (in the updated versions of ACPI)
929 * the GPIO CS polarity must be defined Active High to avoid
930 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
933 if (has_acpi_companion(&spi->dev))
934 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
936 /* Polarity handled by GPIO library */
937 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
940 * invert the enable line, as active low is
943 gpio_set_value_cansleep(spi->cs_gpio, !enable);
946 /* Some SPI masters need both GPIO CS & slave_select */
947 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
948 spi->controller->set_cs)
949 spi->controller->set_cs(spi, !enable);
950 } else if (spi->controller->set_cs) {
951 spi->controller->set_cs(spi, !enable);
954 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
955 !spi->controller->set_cs_timing) {
957 spi_delay_exec(&spi->cs_inactive, NULL);
961 #ifdef CONFIG_HAS_DMA
962 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
963 struct sg_table *sgt, void *buf, size_t len,
964 enum dma_data_direction dir)
966 const bool vmalloced_buf = is_vmalloc_addr(buf);
967 unsigned int max_seg_size = dma_get_max_seg_size(dev);
968 #ifdef CONFIG_HIGHMEM
969 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
970 (unsigned long)buf < (PKMAP_BASE +
971 (LAST_PKMAP * PAGE_SIZE)));
973 const bool kmap_buf = false;
977 struct page *vm_page;
978 struct scatterlist *sg;
983 if (vmalloced_buf || kmap_buf) {
984 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
985 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
986 } else if (virt_addr_valid(buf)) {
987 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
988 sgs = DIV_ROUND_UP(len, desc_len);
993 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
998 for (i = 0; i < sgs; i++) {
1000 if (vmalloced_buf || kmap_buf) {
1002 * Next scatterlist entry size is the minimum between
1003 * the desc_len and the remaining buffer length that
1006 min = min_t(size_t, desc_len,
1008 PAGE_SIZE - offset_in_page(buf)));
1010 vm_page = vmalloc_to_page(buf);
1012 vm_page = kmap_to_page(buf);
1017 sg_set_page(sg, vm_page,
1018 min, offset_in_page(buf));
1020 min = min_t(size_t, len, desc_len);
1022 sg_set_buf(sg, sg_buf, min);
1030 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1043 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1044 struct sg_table *sgt, enum dma_data_direction dir)
1046 if (sgt->orig_nents) {
1047 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1052 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1054 struct device *tx_dev, *rx_dev;
1055 struct spi_transfer *xfer;
1062 tx_dev = ctlr->dma_tx->device->dev;
1063 else if (ctlr->dma_map_dev)
1064 tx_dev = ctlr->dma_map_dev;
1066 tx_dev = ctlr->dev.parent;
1069 rx_dev = ctlr->dma_rx->device->dev;
1070 else if (ctlr->dma_map_dev)
1071 rx_dev = ctlr->dma_map_dev;
1073 rx_dev = ctlr->dev.parent;
1075 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1076 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1079 if (xfer->tx_buf != NULL) {
1080 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1081 (void *)xfer->tx_buf, xfer->len,
1087 if (xfer->rx_buf != NULL) {
1088 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1089 xfer->rx_buf, xfer->len,
1092 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1099 ctlr->cur_msg_mapped = true;
1104 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1106 struct spi_transfer *xfer;
1107 struct device *tx_dev, *rx_dev;
1109 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1113 tx_dev = ctlr->dma_tx->device->dev;
1115 tx_dev = ctlr->dev.parent;
1118 rx_dev = ctlr->dma_rx->device->dev;
1120 rx_dev = ctlr->dev.parent;
1122 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1123 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1126 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1127 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1130 ctlr->cur_msg_mapped = false;
1134 #else /* !CONFIG_HAS_DMA */
1135 static inline int __spi_map_msg(struct spi_controller *ctlr,
1136 struct spi_message *msg)
1141 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1142 struct spi_message *msg)
1146 #endif /* !CONFIG_HAS_DMA */
1148 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1149 struct spi_message *msg)
1151 struct spi_transfer *xfer;
1153 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1155 * Restore the original value of tx_buf or rx_buf if they are
1158 if (xfer->tx_buf == ctlr->dummy_tx)
1159 xfer->tx_buf = NULL;
1160 if (xfer->rx_buf == ctlr->dummy_rx)
1161 xfer->rx_buf = NULL;
1164 return __spi_unmap_msg(ctlr, msg);
1167 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 struct spi_transfer *xfer;
1171 unsigned int max_tx, max_rx;
1173 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1174 && !(msg->spi->mode & SPI_3WIRE)) {
1178 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1179 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1181 max_tx = max(xfer->len, max_tx);
1182 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1184 max_rx = max(xfer->len, max_rx);
1188 tmp = krealloc(ctlr->dummy_tx, max_tx,
1189 GFP_KERNEL | GFP_DMA);
1192 ctlr->dummy_tx = tmp;
1193 memset(tmp, 0, max_tx);
1197 tmp = krealloc(ctlr->dummy_rx, max_rx,
1198 GFP_KERNEL | GFP_DMA);
1201 ctlr->dummy_rx = tmp;
1204 if (max_tx || max_rx) {
1205 list_for_each_entry(xfer, &msg->transfers,
1210 xfer->tx_buf = ctlr->dummy_tx;
1212 xfer->rx_buf = ctlr->dummy_rx;
1217 return __spi_map_msg(ctlr, msg);
1220 static int spi_transfer_wait(struct spi_controller *ctlr,
1221 struct spi_message *msg,
1222 struct spi_transfer *xfer)
1224 struct spi_statistics *statm = &ctlr->statistics;
1225 struct spi_statistics *stats = &msg->spi->statistics;
1226 u32 speed_hz = xfer->speed_hz;
1227 unsigned long long ms;
1229 if (spi_controller_is_slave(ctlr)) {
1230 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1231 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1239 * For each byte we wait for 8 cycles of the SPI clock.
1240 * Since speed is defined in Hz and we want milliseconds,
1241 * use respective multiplier, but before the division,
1242 * otherwise we may get 0 for short transfers.
1244 ms = 8LL * MSEC_PER_SEC * xfer->len;
1245 do_div(ms, speed_hz);
1248 * Increase it twice and add 200 ms tolerance, use
1249 * predefined maximum in case of overflow.
1255 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1256 msecs_to_jiffies(ms));
1259 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1260 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1261 dev_err(&msg->spi->dev,
1262 "SPI transfer timed out\n");
1270 static void _spi_transfer_delay_ns(u32 ns)
1274 if (ns <= NSEC_PER_USEC) {
1277 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1282 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1286 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1288 u32 delay = _delay->value;
1289 u32 unit = _delay->unit;
1296 case SPI_DELAY_UNIT_USECS:
1297 delay *= NSEC_PER_USEC;
1299 case SPI_DELAY_UNIT_NSECS:
1300 /* Nothing to do here */
1302 case SPI_DELAY_UNIT_SCK:
1303 /* clock cycles need to be obtained from spi_transfer */
1307 * If there is unknown effective speed, approximate it
1308 * by underestimating with half of the requested hz.
1310 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1314 /* Convert delay to nanoseconds */
1315 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1323 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1325 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1334 delay = spi_delay_to_ns(_delay, xfer);
1338 _spi_transfer_delay_ns(delay);
1342 EXPORT_SYMBOL_GPL(spi_delay_exec);
1344 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1345 struct spi_transfer *xfer)
1347 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1348 u32 delay = xfer->cs_change_delay.value;
1349 u32 unit = xfer->cs_change_delay.unit;
1352 /* return early on "fast" mode - for everything but USECS */
1354 if (unit == SPI_DELAY_UNIT_USECS)
1355 _spi_transfer_delay_ns(default_delay_ns);
1359 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1361 dev_err_once(&msg->spi->dev,
1362 "Use of unsupported delay unit %i, using default of %luus\n",
1363 unit, default_delay_ns / NSEC_PER_USEC);
1364 _spi_transfer_delay_ns(default_delay_ns);
1369 * spi_transfer_one_message - Default implementation of transfer_one_message()
1371 * This is a standard implementation of transfer_one_message() for
1372 * drivers which implement a transfer_one() operation. It provides
1373 * standard handling of delays and chip select management.
1375 static int spi_transfer_one_message(struct spi_controller *ctlr,
1376 struct spi_message *msg)
1378 struct spi_transfer *xfer;
1379 bool keep_cs = false;
1381 struct spi_statistics *statm = &ctlr->statistics;
1382 struct spi_statistics *stats = &msg->spi->statistics;
1384 spi_set_cs(msg->spi, true, false);
1386 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1387 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1389 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1390 trace_spi_transfer_start(msg, xfer);
1392 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1393 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1395 if (!ctlr->ptp_sts_supported) {
1396 xfer->ptp_sts_word_pre = 0;
1397 ptp_read_system_prets(xfer->ptp_sts);
1400 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1401 reinit_completion(&ctlr->xfer_completion);
1404 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1406 if (ctlr->cur_msg_mapped &&
1407 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1408 __spi_unmap_msg(ctlr, msg);
1409 ctlr->fallback = true;
1410 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1414 SPI_STATISTICS_INCREMENT_FIELD(statm,
1416 SPI_STATISTICS_INCREMENT_FIELD(stats,
1418 dev_err(&msg->spi->dev,
1419 "SPI transfer failed: %d\n", ret);
1424 ret = spi_transfer_wait(ctlr, msg, xfer);
1430 dev_err(&msg->spi->dev,
1431 "Bufferless transfer has length %u\n",
1435 if (!ctlr->ptp_sts_supported) {
1436 ptp_read_system_postts(xfer->ptp_sts);
1437 xfer->ptp_sts_word_post = xfer->len;
1440 trace_spi_transfer_stop(msg, xfer);
1442 if (msg->status != -EINPROGRESS)
1445 spi_transfer_delay_exec(xfer);
1447 if (xfer->cs_change) {
1448 if (list_is_last(&xfer->transfer_list,
1452 spi_set_cs(msg->spi, false, false);
1453 _spi_transfer_cs_change_delay(msg, xfer);
1454 spi_set_cs(msg->spi, true, false);
1458 msg->actual_length += xfer->len;
1462 if (ret != 0 || !keep_cs)
1463 spi_set_cs(msg->spi, false, false);
1465 if (msg->status == -EINPROGRESS)
1468 if (msg->status && ctlr->handle_err)
1469 ctlr->handle_err(ctlr, msg);
1471 spi_finalize_current_message(ctlr);
1477 * spi_finalize_current_transfer - report completion of a transfer
1478 * @ctlr: the controller reporting completion
1480 * Called by SPI drivers using the core transfer_one_message()
1481 * implementation to notify it that the current interrupt driven
1482 * transfer has finished and the next one may be scheduled.
1484 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1486 complete(&ctlr->xfer_completion);
1488 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1490 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1492 if (ctlr->auto_runtime_pm) {
1493 pm_runtime_mark_last_busy(ctlr->dev.parent);
1494 pm_runtime_put_autosuspend(ctlr->dev.parent);
1499 * __spi_pump_messages - function which processes spi message queue
1500 * @ctlr: controller to process queue for
1501 * @in_kthread: true if we are in the context of the message pump thread
1503 * This function checks if there is any spi message in the queue that
1504 * needs processing and if so call out to the driver to initialize hardware
1505 * and transfer each message.
1507 * Note that it is called both from the kthread itself and also from
1508 * inside spi_sync(); the queue extraction handling at the top of the
1509 * function should deal with this safely.
1511 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1513 struct spi_transfer *xfer;
1514 struct spi_message *msg;
1515 bool was_busy = false;
1516 unsigned long flags;
1520 spin_lock_irqsave(&ctlr->queue_lock, flags);
1522 /* Make sure we are not already running a message */
1523 if (ctlr->cur_msg) {
1524 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1528 /* If another context is idling the device then defer */
1530 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1531 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1535 /* Check if the queue is idle */
1536 if (list_empty(&ctlr->queue) || !ctlr->running) {
1538 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1542 /* Defer any non-atomic teardown to the thread */
1544 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1545 !ctlr->unprepare_transfer_hardware) {
1546 spi_idle_runtime_pm(ctlr);
1548 trace_spi_controller_idle(ctlr);
1550 kthread_queue_work(ctlr->kworker,
1551 &ctlr->pump_messages);
1553 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1558 ctlr->idling = true;
1559 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1561 kfree(ctlr->dummy_rx);
1562 ctlr->dummy_rx = NULL;
1563 kfree(ctlr->dummy_tx);
1564 ctlr->dummy_tx = NULL;
1565 if (ctlr->unprepare_transfer_hardware &&
1566 ctlr->unprepare_transfer_hardware(ctlr))
1568 "failed to unprepare transfer hardware\n");
1569 spi_idle_runtime_pm(ctlr);
1570 trace_spi_controller_idle(ctlr);
1572 spin_lock_irqsave(&ctlr->queue_lock, flags);
1573 ctlr->idling = false;
1574 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1578 /* Extract head of queue */
1579 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1580 ctlr->cur_msg = msg;
1582 list_del_init(&msg->queue);
1587 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1589 mutex_lock(&ctlr->io_mutex);
1591 if (!was_busy && ctlr->auto_runtime_pm) {
1592 ret = pm_runtime_get_sync(ctlr->dev.parent);
1594 pm_runtime_put_noidle(ctlr->dev.parent);
1595 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1597 mutex_unlock(&ctlr->io_mutex);
1603 trace_spi_controller_busy(ctlr);
1605 if (!was_busy && ctlr->prepare_transfer_hardware) {
1606 ret = ctlr->prepare_transfer_hardware(ctlr);
1609 "failed to prepare transfer hardware: %d\n",
1612 if (ctlr->auto_runtime_pm)
1613 pm_runtime_put(ctlr->dev.parent);
1616 spi_finalize_current_message(ctlr);
1618 mutex_unlock(&ctlr->io_mutex);
1623 trace_spi_message_start(msg);
1625 if (ctlr->prepare_message) {
1626 ret = ctlr->prepare_message(ctlr, msg);
1628 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1631 spi_finalize_current_message(ctlr);
1634 ctlr->cur_msg_prepared = true;
1637 ret = spi_map_msg(ctlr, msg);
1640 spi_finalize_current_message(ctlr);
1644 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1645 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1646 xfer->ptp_sts_word_pre = 0;
1647 ptp_read_system_prets(xfer->ptp_sts);
1651 ret = ctlr->transfer_one_message(ctlr, msg);
1654 "failed to transfer one message from queue\n");
1659 mutex_unlock(&ctlr->io_mutex);
1661 /* Prod the scheduler in case transfer_one() was busy waiting */
1667 * spi_pump_messages - kthread work function which processes spi message queue
1668 * @work: pointer to kthread work struct contained in the controller struct
1670 static void spi_pump_messages(struct kthread_work *work)
1672 struct spi_controller *ctlr =
1673 container_of(work, struct spi_controller, pump_messages);
1675 __spi_pump_messages(ctlr, true);
1679 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1680 * TX timestamp for the requested byte from the SPI
1681 * transfer. The frequency with which this function
1682 * must be called (once per word, once for the whole
1683 * transfer, once per batch of words etc) is arbitrary
1684 * as long as the @tx buffer offset is greater than or
1685 * equal to the requested byte at the time of the
1686 * call. The timestamp is only taken once, at the
1687 * first such call. It is assumed that the driver
1688 * advances its @tx buffer pointer monotonically.
1689 * @ctlr: Pointer to the spi_controller structure of the driver
1690 * @xfer: Pointer to the transfer being timestamped
1691 * @progress: How many words (not bytes) have been transferred so far
1692 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1693 * transfer, for less jitter in time measurement. Only compatible
1694 * with PIO drivers. If true, must follow up with
1695 * spi_take_timestamp_post or otherwise system will crash.
1696 * WARNING: for fully predictable results, the CPU frequency must
1697 * also be under control (governor).
1699 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1700 struct spi_transfer *xfer,
1701 size_t progress, bool irqs_off)
1706 if (xfer->timestamped)
1709 if (progress > xfer->ptp_sts_word_pre)
1712 /* Capture the resolution of the timestamp */
1713 xfer->ptp_sts_word_pre = progress;
1716 local_irq_save(ctlr->irq_flags);
1720 ptp_read_system_prets(xfer->ptp_sts);
1722 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1725 * spi_take_timestamp_post - helper for drivers to collect the end of the
1726 * TX timestamp for the requested byte from the SPI
1727 * transfer. Can be called with an arbitrary
1728 * frequency: only the first call where @tx exceeds
1729 * or is equal to the requested word will be
1731 * @ctlr: Pointer to the spi_controller structure of the driver
1732 * @xfer: Pointer to the transfer being timestamped
1733 * @progress: How many words (not bytes) have been transferred so far
1734 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1736 void spi_take_timestamp_post(struct spi_controller *ctlr,
1737 struct spi_transfer *xfer,
1738 size_t progress, bool irqs_off)
1743 if (xfer->timestamped)
1746 if (progress < xfer->ptp_sts_word_post)
1749 ptp_read_system_postts(xfer->ptp_sts);
1752 local_irq_restore(ctlr->irq_flags);
1756 /* Capture the resolution of the timestamp */
1757 xfer->ptp_sts_word_post = progress;
1759 xfer->timestamped = true;
1761 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1764 * spi_set_thread_rt - set the controller to pump at realtime priority
1765 * @ctlr: controller to boost priority of
1767 * This can be called because the controller requested realtime priority
1768 * (by setting the ->rt value before calling spi_register_controller()) or
1769 * because a device on the bus said that its transfers needed realtime
1772 * NOTE: at the moment if any device on a bus says it needs realtime then
1773 * the thread will be at realtime priority for all transfers on that
1774 * controller. If this eventually becomes a problem we may see if we can
1775 * find a way to boost the priority only temporarily during relevant
1778 static void spi_set_thread_rt(struct spi_controller *ctlr)
1780 dev_info(&ctlr->dev,
1781 "will run message pump with realtime priority\n");
1782 sched_set_fifo(ctlr->kworker->task);
1785 static int spi_init_queue(struct spi_controller *ctlr)
1787 ctlr->running = false;
1790 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1791 if (IS_ERR(ctlr->kworker)) {
1792 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1793 return PTR_ERR(ctlr->kworker);
1796 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1799 * Controller config will indicate if this controller should run the
1800 * message pump with high (realtime) priority to reduce the transfer
1801 * latency on the bus by minimising the delay between a transfer
1802 * request and the scheduling of the message pump thread. Without this
1803 * setting the message pump thread will remain at default priority.
1806 spi_set_thread_rt(ctlr);
1812 * spi_get_next_queued_message() - called by driver to check for queued
1814 * @ctlr: the controller to check for queued messages
1816 * If there are more messages in the queue, the next message is returned from
1819 * Return: the next message in the queue, else NULL if the queue is empty.
1821 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1823 struct spi_message *next;
1824 unsigned long flags;
1826 /* get a pointer to the next message, if any */
1827 spin_lock_irqsave(&ctlr->queue_lock, flags);
1828 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1830 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1837 * spi_finalize_current_message() - the current message is complete
1838 * @ctlr: the controller to return the message to
1840 * Called by the driver to notify the core that the message in the front of the
1841 * queue is complete and can be removed from the queue.
1843 void spi_finalize_current_message(struct spi_controller *ctlr)
1845 struct spi_transfer *xfer;
1846 struct spi_message *mesg;
1847 unsigned long flags;
1850 spin_lock_irqsave(&ctlr->queue_lock, flags);
1851 mesg = ctlr->cur_msg;
1852 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1854 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1855 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1856 ptp_read_system_postts(xfer->ptp_sts);
1857 xfer->ptp_sts_word_post = xfer->len;
1861 if (unlikely(ctlr->ptp_sts_supported))
1862 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1863 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1865 spi_unmap_msg(ctlr, mesg);
1867 /* In the prepare_messages callback the spi bus has the opportunity to
1868 * split a transfer to smaller chunks.
1869 * Release splited transfers here since spi_map_msg is done on the
1870 * splited transfers.
1872 spi_res_release(ctlr, mesg);
1874 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1875 ret = ctlr->unprepare_message(ctlr, mesg);
1877 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1882 spin_lock_irqsave(&ctlr->queue_lock, flags);
1883 ctlr->cur_msg = NULL;
1884 ctlr->cur_msg_prepared = false;
1885 ctlr->fallback = false;
1886 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1887 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889 trace_spi_message_done(mesg);
1893 mesg->complete(mesg->context);
1895 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1897 static int spi_start_queue(struct spi_controller *ctlr)
1899 unsigned long flags;
1901 spin_lock_irqsave(&ctlr->queue_lock, flags);
1903 if (ctlr->running || ctlr->busy) {
1904 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1908 ctlr->running = true;
1909 ctlr->cur_msg = NULL;
1910 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1917 static int spi_stop_queue(struct spi_controller *ctlr)
1919 unsigned long flags;
1920 unsigned limit = 500;
1923 spin_lock_irqsave(&ctlr->queue_lock, flags);
1926 * This is a bit lame, but is optimized for the common execution path.
1927 * A wait_queue on the ctlr->busy could be used, but then the common
1928 * execution path (pump_messages) would be required to call wake_up or
1929 * friends on every SPI message. Do this instead.
1931 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1932 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1933 usleep_range(10000, 11000);
1934 spin_lock_irqsave(&ctlr->queue_lock, flags);
1937 if (!list_empty(&ctlr->queue) || ctlr->busy)
1940 ctlr->running = false;
1942 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1945 dev_warn(&ctlr->dev, "could not stop message queue\n");
1951 static int spi_destroy_queue(struct spi_controller *ctlr)
1955 ret = spi_stop_queue(ctlr);
1958 * kthread_flush_worker will block until all work is done.
1959 * If the reason that stop_queue timed out is that the work will never
1960 * finish, then it does no good to call flush/stop thread, so
1964 dev_err(&ctlr->dev, "problem destroying queue\n");
1968 kthread_destroy_worker(ctlr->kworker);
1973 static int __spi_queued_transfer(struct spi_device *spi,
1974 struct spi_message *msg,
1977 struct spi_controller *ctlr = spi->controller;
1978 unsigned long flags;
1980 spin_lock_irqsave(&ctlr->queue_lock, flags);
1982 if (!ctlr->running) {
1983 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1986 msg->actual_length = 0;
1987 msg->status = -EINPROGRESS;
1989 list_add_tail(&msg->queue, &ctlr->queue);
1990 if (!ctlr->busy && need_pump)
1991 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1993 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1998 * spi_queued_transfer - transfer function for queued transfers
1999 * @spi: spi device which is requesting transfer
2000 * @msg: spi message which is to handled is queued to driver queue
2002 * Return: zero on success, else a negative error code.
2004 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2006 return __spi_queued_transfer(spi, msg, true);
2009 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2013 ctlr->transfer = spi_queued_transfer;
2014 if (!ctlr->transfer_one_message)
2015 ctlr->transfer_one_message = spi_transfer_one_message;
2017 /* Initialize and start queue */
2018 ret = spi_init_queue(ctlr);
2020 dev_err(&ctlr->dev, "problem initializing queue\n");
2021 goto err_init_queue;
2023 ctlr->queued = true;
2024 ret = spi_start_queue(ctlr);
2026 dev_err(&ctlr->dev, "problem starting queue\n");
2027 goto err_start_queue;
2033 spi_destroy_queue(ctlr);
2039 * spi_flush_queue - Send all pending messages in the queue from the callers'
2041 * @ctlr: controller to process queue for
2043 * This should be used when one wants to ensure all pending messages have been
2044 * sent before doing something. Is used by the spi-mem code to make sure SPI
2045 * memory operations do not preempt regular SPI transfers that have been queued
2046 * before the spi-mem operation.
2048 void spi_flush_queue(struct spi_controller *ctlr)
2050 if (ctlr->transfer == spi_queued_transfer)
2051 __spi_pump_messages(ctlr, false);
2054 /*-------------------------------------------------------------------------*/
2056 #if defined(CONFIG_OF)
2057 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2058 struct device_node *nc)
2063 /* Mode (clock phase/polarity/etc.) */
2064 if (of_property_read_bool(nc, "spi-cpha"))
2065 spi->mode |= SPI_CPHA;
2066 if (of_property_read_bool(nc, "spi-cpol"))
2067 spi->mode |= SPI_CPOL;
2068 if (of_property_read_bool(nc, "spi-3wire"))
2069 spi->mode |= SPI_3WIRE;
2070 if (of_property_read_bool(nc, "spi-lsb-first"))
2071 spi->mode |= SPI_LSB_FIRST;
2072 if (of_property_read_bool(nc, "spi-cs-high"))
2073 spi->mode |= SPI_CS_HIGH;
2075 /* Device DUAL/QUAD mode */
2076 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2079 spi->mode |= SPI_NO_TX;
2084 spi->mode |= SPI_TX_DUAL;
2087 spi->mode |= SPI_TX_QUAD;
2090 spi->mode |= SPI_TX_OCTAL;
2093 dev_warn(&ctlr->dev,
2094 "spi-tx-bus-width %d not supported\n",
2100 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2103 spi->mode |= SPI_NO_RX;
2108 spi->mode |= SPI_RX_DUAL;
2111 spi->mode |= SPI_RX_QUAD;
2114 spi->mode |= SPI_RX_OCTAL;
2117 dev_warn(&ctlr->dev,
2118 "spi-rx-bus-width %d not supported\n",
2124 if (spi_controller_is_slave(ctlr)) {
2125 if (!of_node_name_eq(nc, "slave")) {
2126 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2133 /* Device address */
2134 rc = of_property_read_u32(nc, "reg", &value);
2136 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2140 spi->chip_select = value;
2143 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2144 spi->max_speed_hz = value;
2149 static struct spi_device *
2150 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2152 struct spi_device *spi;
2155 /* Alloc an spi_device */
2156 spi = spi_alloc_device(ctlr);
2158 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2163 /* Select device driver */
2164 rc = of_modalias_node(nc, spi->modalias,
2165 sizeof(spi->modalias));
2167 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2171 rc = of_spi_parse_dt(ctlr, spi, nc);
2175 /* Store a pointer to the node in the device structure */
2177 spi->dev.of_node = nc;
2178 spi->dev.fwnode = of_fwnode_handle(nc);
2180 /* Register the new device */
2181 rc = spi_add_device(spi);
2183 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2184 goto err_of_node_put;
2197 * of_register_spi_devices() - Register child devices onto the SPI bus
2198 * @ctlr: Pointer to spi_controller device
2200 * Registers an spi_device for each child node of controller node which
2201 * represents a valid SPI slave.
2203 static void of_register_spi_devices(struct spi_controller *ctlr)
2205 struct spi_device *spi;
2206 struct device_node *nc;
2208 if (!ctlr->dev.of_node)
2211 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2212 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2214 spi = of_register_spi_device(ctlr, nc);
2216 dev_warn(&ctlr->dev,
2217 "Failed to create SPI device for %pOF\n", nc);
2218 of_node_clear_flag(nc, OF_POPULATED);
2223 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2227 * spi_new_ancillary_device() - Register ancillary SPI device
2228 * @spi: Pointer to the main SPI device registering the ancillary device
2229 * @chip_select: Chip Select of the ancillary device
2231 * Register an ancillary SPI device; for example some chips have a chip-select
2232 * for normal device usage and another one for setup/firmware upload.
2234 * This may only be called from main SPI device's probe routine.
2236 * Return: 0 on success; negative errno on failure
2238 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2241 struct spi_device *ancillary;
2244 /* Alloc an spi_device */
2245 ancillary = spi_alloc_device(spi->controller);
2251 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2253 /* Use provided chip-select for ancillary device */
2254 ancillary->chip_select = chip_select;
2256 /* Take over SPI mode/speed from SPI main device */
2257 ancillary->max_speed_hz = spi->max_speed_hz;
2258 ancillary->mode = spi->mode;
2260 /* Register the new device */
2261 rc = spi_add_device_locked(ancillary);
2263 dev_err(&spi->dev, "failed to register ancillary device\n");
2270 spi_dev_put(ancillary);
2273 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2276 struct acpi_spi_lookup {
2277 struct spi_controller *ctlr;
2285 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2286 struct acpi_spi_lookup *lookup)
2288 const union acpi_object *obj;
2290 if (!x86_apple_machine)
2293 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2294 && obj->buffer.length >= 4)
2295 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2297 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2298 && obj->buffer.length == 8)
2299 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2301 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2302 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2303 lookup->mode |= SPI_LSB_FIRST;
2305 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2306 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2307 lookup->mode |= SPI_CPOL;
2309 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2310 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2311 lookup->mode |= SPI_CPHA;
2314 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2316 struct acpi_spi_lookup *lookup = data;
2317 struct spi_controller *ctlr = lookup->ctlr;
2319 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2320 struct acpi_resource_spi_serialbus *sb;
2321 acpi_handle parent_handle;
2324 sb = &ares->data.spi_serial_bus;
2325 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2327 status = acpi_get_handle(NULL,
2328 sb->resource_source.string_ptr,
2331 if (ACPI_FAILURE(status) ||
2332 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2336 * ACPI DeviceSelection numbering is handled by the
2337 * host controller driver in Windows and can vary
2338 * from driver to driver. In Linux we always expect
2339 * 0 .. max - 1 so we need to ask the driver to
2340 * translate between the two schemes.
2342 if (ctlr->fw_translate_cs) {
2343 int cs = ctlr->fw_translate_cs(ctlr,
2344 sb->device_selection);
2347 lookup->chip_select = cs;
2349 lookup->chip_select = sb->device_selection;
2352 lookup->max_speed_hz = sb->connection_speed;
2353 lookup->bits_per_word = sb->data_bit_length;
2355 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2356 lookup->mode |= SPI_CPHA;
2357 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2358 lookup->mode |= SPI_CPOL;
2359 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2360 lookup->mode |= SPI_CS_HIGH;
2362 } else if (lookup->irq < 0) {
2365 if (acpi_dev_resource_interrupt(ares, 0, &r))
2366 lookup->irq = r.start;
2369 /* Always tell the ACPI core to skip this resource */
2373 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2374 struct acpi_device *adev)
2376 acpi_handle parent_handle = NULL;
2377 struct list_head resource_list;
2378 struct acpi_spi_lookup lookup = {};
2379 struct spi_device *spi;
2382 if (acpi_bus_get_status(adev) || !adev->status.present ||
2383 acpi_device_enumerated(adev))
2389 INIT_LIST_HEAD(&resource_list);
2390 ret = acpi_dev_get_resources(adev, &resource_list,
2391 acpi_spi_add_resource, &lookup);
2392 acpi_dev_free_resource_list(&resource_list);
2395 /* found SPI in _CRS but it points to another controller */
2398 if (!lookup.max_speed_hz &&
2399 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2400 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2401 /* Apple does not use _CRS but nested devices for SPI slaves */
2402 acpi_spi_parse_apple_properties(adev, &lookup);
2405 if (!lookup.max_speed_hz)
2408 spi = spi_alloc_device(ctlr);
2410 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2411 dev_name(&adev->dev));
2412 return AE_NO_MEMORY;
2416 ACPI_COMPANION_SET(&spi->dev, adev);
2417 spi->max_speed_hz = lookup.max_speed_hz;
2418 spi->mode |= lookup.mode;
2419 spi->irq = lookup.irq;
2420 spi->bits_per_word = lookup.bits_per_word;
2421 spi->chip_select = lookup.chip_select;
2423 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2424 sizeof(spi->modalias));
2427 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2429 acpi_device_set_enumerated(adev);
2431 adev->power.flags.ignore_parent = true;
2432 if (spi_add_device(spi)) {
2433 adev->power.flags.ignore_parent = false;
2434 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2435 dev_name(&adev->dev));
2442 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2443 void *data, void **return_value)
2445 struct spi_controller *ctlr = data;
2446 struct acpi_device *adev;
2448 if (acpi_bus_get_device(handle, &adev))
2451 return acpi_register_spi_device(ctlr, adev);
2454 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2456 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2461 handle = ACPI_HANDLE(ctlr->dev.parent);
2465 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2466 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2467 acpi_spi_add_device, NULL, ctlr, NULL);
2468 if (ACPI_FAILURE(status))
2469 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2472 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2473 #endif /* CONFIG_ACPI */
2475 static void spi_controller_release(struct device *dev)
2477 struct spi_controller *ctlr;
2479 ctlr = container_of(dev, struct spi_controller, dev);
2483 static struct class spi_master_class = {
2484 .name = "spi_master",
2485 .owner = THIS_MODULE,
2486 .dev_release = spi_controller_release,
2487 .dev_groups = spi_master_groups,
2490 #ifdef CONFIG_SPI_SLAVE
2492 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2494 * @spi: device used for the current transfer
2496 int spi_slave_abort(struct spi_device *spi)
2498 struct spi_controller *ctlr = spi->controller;
2500 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2501 return ctlr->slave_abort(ctlr);
2505 EXPORT_SYMBOL_GPL(spi_slave_abort);
2507 static int match_true(struct device *dev, void *data)
2512 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2515 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2517 struct device *child;
2519 child = device_find_child(&ctlr->dev, NULL, match_true);
2520 return sprintf(buf, "%s\n",
2521 child ? to_spi_device(child)->modalias : NULL);
2524 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2525 const char *buf, size_t count)
2527 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2529 struct spi_device *spi;
2530 struct device *child;
2534 rc = sscanf(buf, "%31s", name);
2535 if (rc != 1 || !name[0])
2538 child = device_find_child(&ctlr->dev, NULL, match_true);
2540 /* Remove registered slave */
2541 device_unregister(child);
2545 if (strcmp(name, "(null)")) {
2546 /* Register new slave */
2547 spi = spi_alloc_device(ctlr);
2551 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2553 rc = spi_add_device(spi);
2563 static DEVICE_ATTR_RW(slave);
2565 static struct attribute *spi_slave_attrs[] = {
2566 &dev_attr_slave.attr,
2570 static const struct attribute_group spi_slave_group = {
2571 .attrs = spi_slave_attrs,
2574 static const struct attribute_group *spi_slave_groups[] = {
2575 &spi_controller_statistics_group,
2580 static struct class spi_slave_class = {
2581 .name = "spi_slave",
2582 .owner = THIS_MODULE,
2583 .dev_release = spi_controller_release,
2584 .dev_groups = spi_slave_groups,
2587 extern struct class spi_slave_class; /* dummy */
2591 * __spi_alloc_controller - allocate an SPI master or slave controller
2592 * @dev: the controller, possibly using the platform_bus
2593 * @size: how much zeroed driver-private data to allocate; the pointer to this
2594 * memory is in the driver_data field of the returned device, accessible
2595 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2596 * drivers granting DMA access to portions of their private data need to
2597 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2598 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2599 * slave (true) controller
2600 * Context: can sleep
2602 * This call is used only by SPI controller drivers, which are the
2603 * only ones directly touching chip registers. It's how they allocate
2604 * an spi_controller structure, prior to calling spi_register_controller().
2606 * This must be called from context that can sleep.
2608 * The caller is responsible for assigning the bus number and initializing the
2609 * controller's methods before calling spi_register_controller(); and (after
2610 * errors adding the device) calling spi_controller_put() to prevent a memory
2613 * Return: the SPI controller structure on success, else NULL.
2615 struct spi_controller *__spi_alloc_controller(struct device *dev,
2616 unsigned int size, bool slave)
2618 struct spi_controller *ctlr;
2619 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2624 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2628 device_initialize(&ctlr->dev);
2629 INIT_LIST_HEAD(&ctlr->queue);
2630 spin_lock_init(&ctlr->queue_lock);
2631 spin_lock_init(&ctlr->bus_lock_spinlock);
2632 mutex_init(&ctlr->bus_lock_mutex);
2633 mutex_init(&ctlr->io_mutex);
2634 mutex_init(&ctlr->add_lock);
2636 ctlr->num_chipselect = 1;
2637 ctlr->slave = slave;
2638 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2639 ctlr->dev.class = &spi_slave_class;
2641 ctlr->dev.class = &spi_master_class;
2642 ctlr->dev.parent = dev;
2643 pm_suspend_ignore_children(&ctlr->dev, true);
2644 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2648 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2650 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2652 spi_controller_put(*(struct spi_controller **)ctlr);
2656 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2657 * @dev: physical device of SPI controller
2658 * @size: how much zeroed driver-private data to allocate
2659 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2660 * Context: can sleep
2662 * Allocate an SPI controller and automatically release a reference on it
2663 * when @dev is unbound from its driver. Drivers are thus relieved from
2664 * having to call spi_controller_put().
2666 * The arguments to this function are identical to __spi_alloc_controller().
2668 * Return: the SPI controller structure on success, else NULL.
2670 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2674 struct spi_controller **ptr, *ctlr;
2676 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2681 ctlr = __spi_alloc_controller(dev, size, slave);
2683 ctlr->devm_allocated = true;
2685 devres_add(dev, ptr);
2692 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2695 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2698 struct device_node *np = ctlr->dev.of_node;
2703 nb = of_gpio_named_count(np, "cs-gpios");
2704 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2706 /* Return error only for an incorrectly formed cs-gpios property */
2707 if (nb == 0 || nb == -ENOENT)
2712 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2714 ctlr->cs_gpios = cs;
2716 if (!ctlr->cs_gpios)
2719 for (i = 0; i < ctlr->num_chipselect; i++)
2722 for (i = 0; i < nb; i++)
2723 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2728 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2735 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2736 * @ctlr: The SPI master to grab GPIO descriptors for
2738 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2741 struct gpio_desc **cs;
2742 struct device *dev = &ctlr->dev;
2743 unsigned long native_cs_mask = 0;
2744 unsigned int num_cs_gpios = 0;
2746 nb = gpiod_count(dev, "cs");
2748 /* No GPIOs at all is fine, else return the error */
2754 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2756 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2760 ctlr->cs_gpiods = cs;
2762 for (i = 0; i < nb; i++) {
2764 * Most chipselects are active low, the inverted
2765 * semantics are handled by special quirks in gpiolib,
2766 * so initializing them GPIOD_OUT_LOW here means
2767 * "unasserted", in most cases this will drive the physical
2770 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2773 return PTR_ERR(cs[i]);
2777 * If we find a CS GPIO, name it after the device and
2782 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2786 gpiod_set_consumer_name(cs[i], gpioname);
2791 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2792 dev_err(dev, "Invalid native chip select %d\n", i);
2795 native_cs_mask |= BIT(i);
2798 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2800 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2801 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2802 dev_err(dev, "No unused native chip select available\n");
2809 static int spi_controller_check_ops(struct spi_controller *ctlr)
2812 * The controller may implement only the high-level SPI-memory like
2813 * operations if it does not support regular SPI transfers, and this is
2815 * If ->mem_ops is NULL, we request that at least one of the
2816 * ->transfer_xxx() method be implemented.
2818 if (ctlr->mem_ops) {
2819 if (!ctlr->mem_ops->exec_op)
2821 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2822 !ctlr->transfer_one_message) {
2830 * spi_register_controller - register SPI master or slave controller
2831 * @ctlr: initialized master, originally from spi_alloc_master() or
2833 * Context: can sleep
2835 * SPI controllers connect to their drivers using some non-SPI bus,
2836 * such as the platform bus. The final stage of probe() in that code
2837 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2839 * SPI controllers use board specific (often SOC specific) bus numbers,
2840 * and board-specific addressing for SPI devices combines those numbers
2841 * with chip select numbers. Since SPI does not directly support dynamic
2842 * device identification, boards need configuration tables telling which
2843 * chip is at which address.
2845 * This must be called from context that can sleep. It returns zero on
2846 * success, else a negative error code (dropping the controller's refcount).
2847 * After a successful return, the caller is responsible for calling
2848 * spi_unregister_controller().
2850 * Return: zero on success, else a negative error code.
2852 int spi_register_controller(struct spi_controller *ctlr)
2854 struct device *dev = ctlr->dev.parent;
2855 struct boardinfo *bi;
2857 int id, first_dynamic;
2863 * Make sure all necessary hooks are implemented before registering
2864 * the SPI controller.
2866 status = spi_controller_check_ops(ctlr);
2870 if (ctlr->bus_num >= 0) {
2871 /* devices with a fixed bus num must check-in with the num */
2872 mutex_lock(&board_lock);
2873 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2874 ctlr->bus_num + 1, GFP_KERNEL);
2875 mutex_unlock(&board_lock);
2876 if (WARN(id < 0, "couldn't get idr"))
2877 return id == -ENOSPC ? -EBUSY : id;
2879 } else if (ctlr->dev.of_node) {
2880 /* allocate dynamic bus number using Linux idr */
2881 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2884 mutex_lock(&board_lock);
2885 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2886 ctlr->bus_num + 1, GFP_KERNEL);
2887 mutex_unlock(&board_lock);
2888 if (WARN(id < 0, "couldn't get idr"))
2889 return id == -ENOSPC ? -EBUSY : id;
2892 if (ctlr->bus_num < 0) {
2893 first_dynamic = of_alias_get_highest_id("spi");
2894 if (first_dynamic < 0)
2899 mutex_lock(&board_lock);
2900 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2902 mutex_unlock(&board_lock);
2903 if (WARN(id < 0, "couldn't get idr"))
2907 ctlr->bus_lock_flag = 0;
2908 init_completion(&ctlr->xfer_completion);
2909 if (!ctlr->max_dma_len)
2910 ctlr->max_dma_len = INT_MAX;
2912 /* register the device, then userspace will see it.
2913 * registration fails if the bus ID is in use.
2915 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2917 if (!spi_controller_is_slave(ctlr)) {
2918 if (ctlr->use_gpio_descriptors) {
2919 status = spi_get_gpio_descs(ctlr);
2923 * A controller using GPIO descriptors always
2924 * supports SPI_CS_HIGH if need be.
2926 ctlr->mode_bits |= SPI_CS_HIGH;
2928 /* Legacy code path for GPIOs from DT */
2929 status = of_spi_get_gpio_numbers(ctlr);
2936 * Even if it's just one always-selected device, there must
2937 * be at least one chipselect.
2939 if (!ctlr->num_chipselect) {
2944 status = device_add(&ctlr->dev);
2947 dev_dbg(dev, "registered %s %s\n",
2948 spi_controller_is_slave(ctlr) ? "slave" : "master",
2949 dev_name(&ctlr->dev));
2952 * If we're using a queued driver, start the queue. Note that we don't
2953 * need the queueing logic if the driver is only supporting high-level
2954 * memory operations.
2956 if (ctlr->transfer) {
2957 dev_info(dev, "controller is unqueued, this is deprecated\n");
2958 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2959 status = spi_controller_initialize_queue(ctlr);
2961 device_del(&ctlr->dev);
2965 /* add statistics */
2966 spin_lock_init(&ctlr->statistics.lock);
2968 mutex_lock(&board_lock);
2969 list_add_tail(&ctlr->list, &spi_controller_list);
2970 list_for_each_entry(bi, &board_list, list)
2971 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2972 mutex_unlock(&board_lock);
2974 /* Register devices from the device tree and ACPI */
2975 of_register_spi_devices(ctlr);
2976 acpi_register_spi_devices(ctlr);
2980 mutex_lock(&board_lock);
2981 idr_remove(&spi_master_idr, ctlr->bus_num);
2982 mutex_unlock(&board_lock);
2985 EXPORT_SYMBOL_GPL(spi_register_controller);
2987 static void devm_spi_unregister(void *ctlr)
2989 spi_unregister_controller(ctlr);
2993 * devm_spi_register_controller - register managed SPI master or slave
2995 * @dev: device managing SPI controller
2996 * @ctlr: initialized controller, originally from spi_alloc_master() or
2998 * Context: can sleep
3000 * Register a SPI device as with spi_register_controller() which will
3001 * automatically be unregistered and freed.
3003 * Return: zero on success, else a negative error code.
3005 int devm_spi_register_controller(struct device *dev,
3006 struct spi_controller *ctlr)
3010 ret = spi_register_controller(ctlr);
3014 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3016 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3018 static int __unregister(struct device *dev, void *null)
3020 spi_unregister_device(to_spi_device(dev));
3025 * spi_unregister_controller - unregister SPI master or slave controller
3026 * @ctlr: the controller being unregistered
3027 * Context: can sleep
3029 * This call is used only by SPI controller drivers, which are the
3030 * only ones directly touching chip registers.
3032 * This must be called from context that can sleep.
3034 * Note that this function also drops a reference to the controller.
3036 void spi_unregister_controller(struct spi_controller *ctlr)
3038 struct spi_controller *found;
3039 int id = ctlr->bus_num;
3041 /* Prevent addition of new devices, unregister existing ones */
3042 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3043 mutex_lock(&ctlr->add_lock);
3045 device_for_each_child(&ctlr->dev, NULL, __unregister);
3047 /* First make sure that this controller was ever added */
3048 mutex_lock(&board_lock);
3049 found = idr_find(&spi_master_idr, id);
3050 mutex_unlock(&board_lock);
3052 if (spi_destroy_queue(ctlr))
3053 dev_err(&ctlr->dev, "queue remove failed\n");
3055 mutex_lock(&board_lock);
3056 list_del(&ctlr->list);
3057 mutex_unlock(&board_lock);
3059 device_del(&ctlr->dev);
3062 mutex_lock(&board_lock);
3064 idr_remove(&spi_master_idr, id);
3065 mutex_unlock(&board_lock);
3067 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3068 mutex_unlock(&ctlr->add_lock);
3070 /* Release the last reference on the controller if its driver
3071 * has not yet been converted to devm_spi_alloc_master/slave().
3073 if (!ctlr->devm_allocated)
3074 put_device(&ctlr->dev);
3076 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3078 int spi_controller_suspend(struct spi_controller *ctlr)
3082 /* Basically no-ops for non-queued controllers */
3086 ret = spi_stop_queue(ctlr);
3088 dev_err(&ctlr->dev, "queue stop failed\n");
3092 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3094 int spi_controller_resume(struct spi_controller *ctlr)
3101 ret = spi_start_queue(ctlr);
3103 dev_err(&ctlr->dev, "queue restart failed\n");
3107 EXPORT_SYMBOL_GPL(spi_controller_resume);
3109 /*-------------------------------------------------------------------------*/
3111 /* Core methods for spi_message alterations */
3113 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3114 struct spi_message *msg,
3117 struct spi_replaced_transfers *rxfer = res;
3120 /* call extra callback if requested */
3122 rxfer->release(ctlr, msg, res);
3124 /* insert replaced transfers back into the message */
3125 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3127 /* remove the formerly inserted entries */
3128 for (i = 0; i < rxfer->inserted; i++)
3129 list_del(&rxfer->inserted_transfers[i].transfer_list);
3133 * spi_replace_transfers - replace transfers with several transfers
3134 * and register change with spi_message.resources
3135 * @msg: the spi_message we work upon
3136 * @xfer_first: the first spi_transfer we want to replace
3137 * @remove: number of transfers to remove
3138 * @insert: the number of transfers we want to insert instead
3139 * @release: extra release code necessary in some circumstances
3140 * @extradatasize: extra data to allocate (with alignment guarantees
3141 * of struct @spi_transfer)
3144 * Returns: pointer to @spi_replaced_transfers,
3145 * PTR_ERR(...) in case of errors.
3147 static struct spi_replaced_transfers *spi_replace_transfers(
3148 struct spi_message *msg,
3149 struct spi_transfer *xfer_first,
3152 spi_replaced_release_t release,
3153 size_t extradatasize,
3156 struct spi_replaced_transfers *rxfer;
3157 struct spi_transfer *xfer;
3160 /* allocate the structure using spi_res */
3161 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3162 struct_size(rxfer, inserted_transfers, insert)
3166 return ERR_PTR(-ENOMEM);
3168 /* the release code to invoke before running the generic release */
3169 rxfer->release = release;
3171 /* assign extradata */
3174 &rxfer->inserted_transfers[insert];
3176 /* init the replaced_transfers list */
3177 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3179 /* assign the list_entry after which we should reinsert
3180 * the @replaced_transfers - it may be spi_message.messages!
3182 rxfer->replaced_after = xfer_first->transfer_list.prev;
3184 /* remove the requested number of transfers */
3185 for (i = 0; i < remove; i++) {
3186 /* if the entry after replaced_after it is msg->transfers
3187 * then we have been requested to remove more transfers
3188 * than are in the list
3190 if (rxfer->replaced_after->next == &msg->transfers) {
3191 dev_err(&msg->spi->dev,
3192 "requested to remove more spi_transfers than are available\n");
3193 /* insert replaced transfers back into the message */
3194 list_splice(&rxfer->replaced_transfers,
3195 rxfer->replaced_after);
3197 /* free the spi_replace_transfer structure */
3198 spi_res_free(rxfer);
3200 /* and return with an error */
3201 return ERR_PTR(-EINVAL);
3204 /* remove the entry after replaced_after from list of
3205 * transfers and add it to list of replaced_transfers
3207 list_move_tail(rxfer->replaced_after->next,
3208 &rxfer->replaced_transfers);
3211 /* create copy of the given xfer with identical settings
3212 * based on the first transfer to get removed
3214 for (i = 0; i < insert; i++) {
3215 /* we need to run in reverse order */
3216 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3218 /* copy all spi_transfer data */
3219 memcpy(xfer, xfer_first, sizeof(*xfer));
3222 list_add(&xfer->transfer_list, rxfer->replaced_after);
3224 /* clear cs_change and delay for all but the last */
3226 xfer->cs_change = false;
3227 xfer->delay.value = 0;
3231 /* set up inserted */
3232 rxfer->inserted = insert;
3234 /* and register it with spi_res/spi_message */
3235 spi_res_add(msg, rxfer);
3240 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3241 struct spi_message *msg,
3242 struct spi_transfer **xferp,
3246 struct spi_transfer *xfer = *xferp, *xfers;
3247 struct spi_replaced_transfers *srt;
3251 /* calculate how many we have to replace */
3252 count = DIV_ROUND_UP(xfer->len, maxsize);
3254 /* create replacement */
3255 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3257 return PTR_ERR(srt);
3258 xfers = srt->inserted_transfers;
3260 /* now handle each of those newly inserted spi_transfers
3261 * note that the replacements spi_transfers all are preset
3262 * to the same values as *xferp, so tx_buf, rx_buf and len
3263 * are all identical (as well as most others)
3264 * so we just have to fix up len and the pointers.
3266 * this also includes support for the depreciated
3267 * spi_message.is_dma_mapped interface
3270 /* the first transfer just needs the length modified, so we
3271 * run it outside the loop
3273 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3275 /* all the others need rx_buf/tx_buf also set */
3276 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3277 /* update rx_buf, tx_buf and dma */
3278 if (xfers[i].rx_buf)
3279 xfers[i].rx_buf += offset;
3280 if (xfers[i].rx_dma)
3281 xfers[i].rx_dma += offset;
3282 if (xfers[i].tx_buf)
3283 xfers[i].tx_buf += offset;
3284 if (xfers[i].tx_dma)
3285 xfers[i].tx_dma += offset;
3288 xfers[i].len = min(maxsize, xfers[i].len - offset);
3291 /* we set up xferp to the last entry we have inserted,
3292 * so that we skip those already split transfers
3294 *xferp = &xfers[count - 1];
3296 /* increment statistics counters */
3297 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3298 transfers_split_maxsize);
3299 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3300 transfers_split_maxsize);
3306 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3307 * when an individual transfer exceeds a
3309 * @ctlr: the @spi_controller for this transfer
3310 * @msg: the @spi_message to transform
3311 * @maxsize: the maximum when to apply this
3312 * @gfp: GFP allocation flags
3314 * Return: status of transformation
3316 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3317 struct spi_message *msg,
3321 struct spi_transfer *xfer;
3324 /* iterate over the transfer_list,
3325 * but note that xfer is advanced to the last transfer inserted
3326 * to avoid checking sizes again unnecessarily (also xfer does
3327 * potentiall belong to a different list by the time the
3328 * replacement has happened
3330 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3331 if (xfer->len > maxsize) {
3332 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3341 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3343 /*-------------------------------------------------------------------------*/
3345 /* Core methods for SPI controller protocol drivers. Some of the
3346 * other core methods are currently defined as inline functions.
3349 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3352 if (ctlr->bits_per_word_mask) {
3353 /* Only 32 bits fit in the mask */
3354 if (bits_per_word > 32)
3356 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3364 * spi_setup - setup SPI mode and clock rate
3365 * @spi: the device whose settings are being modified
3366 * Context: can sleep, and no requests are queued to the device
3368 * SPI protocol drivers may need to update the transfer mode if the
3369 * device doesn't work with its default. They may likewise need
3370 * to update clock rates or word sizes from initial values. This function
3371 * changes those settings, and must be called from a context that can sleep.
3372 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3373 * effect the next time the device is selected and data is transferred to
3374 * or from it. When this function returns, the spi device is deselected.
3376 * Note that this call will fail if the protocol driver specifies an option
3377 * that the underlying controller or its driver does not support. For
3378 * example, not all hardware supports wire transfers using nine bit words,
3379 * LSB-first wire encoding, or active-high chipselects.
3381 * Return: zero on success, else a negative error code.
3383 int spi_setup(struct spi_device *spi)
3385 unsigned bad_bits, ugly_bits;
3389 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3390 * are set at the same time
3392 if ((hweight_long(spi->mode &
3393 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3394 (hweight_long(spi->mode &
3395 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3397 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3400 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3402 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3403 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3404 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3406 /* help drivers fail *cleanly* when they need options
3407 * that aren't supported with their current controller
3408 * SPI_CS_WORD has a fallback software implementation,
3409 * so it is ignored here.
3411 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3412 SPI_NO_TX | SPI_NO_RX);
3413 /* nothing prevents from working with active-high CS in case if it
3414 * is driven by GPIO.
3416 if (gpio_is_valid(spi->cs_gpio))
3417 bad_bits &= ~SPI_CS_HIGH;
3418 ugly_bits = bad_bits &
3419 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3420 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3423 "setup: ignoring unsupported mode bits %x\n",
3425 spi->mode &= ~ugly_bits;
3426 bad_bits &= ~ugly_bits;
3429 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3434 if (!spi->bits_per_word)
3435 spi->bits_per_word = 8;
3437 status = __spi_validate_bits_per_word(spi->controller,
3438 spi->bits_per_word);
3442 if (spi->controller->max_speed_hz &&
3443 (!spi->max_speed_hz ||
3444 spi->max_speed_hz > spi->controller->max_speed_hz))
3445 spi->max_speed_hz = spi->controller->max_speed_hz;
3447 mutex_lock(&spi->controller->io_mutex);
3449 if (spi->controller->setup) {
3450 status = spi->controller->setup(spi);
3452 mutex_unlock(&spi->controller->io_mutex);
3453 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3459 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3460 status = pm_runtime_get_sync(spi->controller->dev.parent);
3462 mutex_unlock(&spi->controller->io_mutex);
3463 pm_runtime_put_noidle(spi->controller->dev.parent);
3464 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3470 * We do not want to return positive value from pm_runtime_get,
3471 * there are many instances of devices calling spi_setup() and
3472 * checking for a non-zero return value instead of a negative
3477 spi_set_cs(spi, false, true);
3478 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3479 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3481 spi_set_cs(spi, false, true);
3484 mutex_unlock(&spi->controller->io_mutex);
3486 if (spi->rt && !spi->controller->rt) {
3487 spi->controller->rt = true;
3488 spi_set_thread_rt(spi->controller);
3491 trace_spi_setup(spi, status);
3493 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3494 spi->mode & SPI_MODE_X_MASK,
3495 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3496 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3497 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3498 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3499 spi->bits_per_word, spi->max_speed_hz,
3504 EXPORT_SYMBOL_GPL(spi_setup);
3506 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3507 struct spi_device *spi)
3511 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3515 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3519 if (delay1 < delay2)
3520 memcpy(&xfer->word_delay, &spi->word_delay,
3521 sizeof(xfer->word_delay));
3526 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3528 struct spi_controller *ctlr = spi->controller;
3529 struct spi_transfer *xfer;
3532 if (list_empty(&message->transfers))
3535 /* If an SPI controller does not support toggling the CS line on each
3536 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3537 * for the CS line, we can emulate the CS-per-word hardware function by
3538 * splitting transfers into one-word transfers and ensuring that
3539 * cs_change is set for each transfer.
3541 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3543 gpio_is_valid(spi->cs_gpio))) {
3547 maxsize = (spi->bits_per_word + 7) / 8;
3549 /* spi_split_transfers_maxsize() requires message->spi */
3552 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3557 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3558 /* don't change cs_change on the last entry in the list */
3559 if (list_is_last(&xfer->transfer_list, &message->transfers))
3561 xfer->cs_change = 1;
3565 /* Half-duplex links include original MicroWire, and ones with
3566 * only one data pin like SPI_3WIRE (switches direction) or where
3567 * either MOSI or MISO is missing. They can also be caused by
3568 * software limitations.
3570 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3571 (spi->mode & SPI_3WIRE)) {
3572 unsigned flags = ctlr->flags;
3574 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3575 if (xfer->rx_buf && xfer->tx_buf)
3577 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3579 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3585 * Set transfer bits_per_word and max speed as spi device default if
3586 * it is not set for this transfer.
3587 * Set transfer tx_nbits and rx_nbits as single transfer default
3588 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3589 * Ensure transfer word_delay is at least as long as that required by
3592 message->frame_length = 0;
3593 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3594 xfer->effective_speed_hz = 0;
3595 message->frame_length += xfer->len;
3596 if (!xfer->bits_per_word)
3597 xfer->bits_per_word = spi->bits_per_word;
3599 if (!xfer->speed_hz)
3600 xfer->speed_hz = spi->max_speed_hz;
3602 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3603 xfer->speed_hz = ctlr->max_speed_hz;
3605 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3609 * SPI transfer length should be multiple of SPI word size
3610 * where SPI word size should be power-of-two multiple
3612 if (xfer->bits_per_word <= 8)
3614 else if (xfer->bits_per_word <= 16)
3619 /* No partial transfers accepted */
3620 if (xfer->len % w_size)
3623 if (xfer->speed_hz && ctlr->min_speed_hz &&
3624 xfer->speed_hz < ctlr->min_speed_hz)
3627 if (xfer->tx_buf && !xfer->tx_nbits)
3628 xfer->tx_nbits = SPI_NBITS_SINGLE;
3629 if (xfer->rx_buf && !xfer->rx_nbits)
3630 xfer->rx_nbits = SPI_NBITS_SINGLE;
3631 /* check transfer tx/rx_nbits:
3632 * 1. check the value matches one of single, dual and quad
3633 * 2. check tx/rx_nbits match the mode in spi_device
3636 if (spi->mode & SPI_NO_TX)
3638 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3639 xfer->tx_nbits != SPI_NBITS_DUAL &&
3640 xfer->tx_nbits != SPI_NBITS_QUAD)
3642 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3643 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3645 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3646 !(spi->mode & SPI_TX_QUAD))
3649 /* check transfer rx_nbits */
3651 if (spi->mode & SPI_NO_RX)
3653 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3654 xfer->rx_nbits != SPI_NBITS_DUAL &&
3655 xfer->rx_nbits != SPI_NBITS_QUAD)
3657 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3658 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3660 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3661 !(spi->mode & SPI_RX_QUAD))
3665 if (_spi_xfer_word_delay_update(xfer, spi))
3669 message->status = -EINPROGRESS;
3674 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3676 struct spi_controller *ctlr = spi->controller;
3677 struct spi_transfer *xfer;
3680 * Some controllers do not support doing regular SPI transfers. Return
3681 * ENOTSUPP when this is the case.
3683 if (!ctlr->transfer)
3688 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3689 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3691 trace_spi_message_submit(message);
3693 if (!ctlr->ptp_sts_supported) {
3694 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3695 xfer->ptp_sts_word_pre = 0;
3696 ptp_read_system_prets(xfer->ptp_sts);
3700 return ctlr->transfer(spi, message);
3704 * spi_async - asynchronous SPI transfer
3705 * @spi: device with which data will be exchanged
3706 * @message: describes the data transfers, including completion callback
3707 * Context: any (irqs may be blocked, etc)
3709 * This call may be used in_irq and other contexts which can't sleep,
3710 * as well as from task contexts which can sleep.
3712 * The completion callback is invoked in a context which can't sleep.
3713 * Before that invocation, the value of message->status is undefined.
3714 * When the callback is issued, message->status holds either zero (to
3715 * indicate complete success) or a negative error code. After that
3716 * callback returns, the driver which issued the transfer request may
3717 * deallocate the associated memory; it's no longer in use by any SPI
3718 * core or controller driver code.
3720 * Note that although all messages to a spi_device are handled in
3721 * FIFO order, messages may go to different devices in other orders.
3722 * Some device might be higher priority, or have various "hard" access
3723 * time requirements, for example.
3725 * On detection of any fault during the transfer, processing of
3726 * the entire message is aborted, and the device is deselected.
3727 * Until returning from the associated message completion callback,
3728 * no other spi_message queued to that device will be processed.
3729 * (This rule applies equally to all the synchronous transfer calls,
3730 * which are wrappers around this core asynchronous primitive.)
3732 * Return: zero on success, else a negative error code.
3734 int spi_async(struct spi_device *spi, struct spi_message *message)
3736 struct spi_controller *ctlr = spi->controller;
3738 unsigned long flags;
3740 ret = __spi_validate(spi, message);
3744 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3746 if (ctlr->bus_lock_flag)
3749 ret = __spi_async(spi, message);
3751 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3755 EXPORT_SYMBOL_GPL(spi_async);
3758 * spi_async_locked - version of spi_async with exclusive bus usage
3759 * @spi: device with which data will be exchanged
3760 * @message: describes the data transfers, including completion callback
3761 * Context: any (irqs may be blocked, etc)
3763 * This call may be used in_irq and other contexts which can't sleep,
3764 * as well as from task contexts which can sleep.
3766 * The completion callback is invoked in a context which can't sleep.
3767 * Before that invocation, the value of message->status is undefined.
3768 * When the callback is issued, message->status holds either zero (to
3769 * indicate complete success) or a negative error code. After that
3770 * callback returns, the driver which issued the transfer request may
3771 * deallocate the associated memory; it's no longer in use by any SPI
3772 * core or controller driver code.
3774 * Note that although all messages to a spi_device are handled in
3775 * FIFO order, messages may go to different devices in other orders.
3776 * Some device might be higher priority, or have various "hard" access
3777 * time requirements, for example.
3779 * On detection of any fault during the transfer, processing of
3780 * the entire message is aborted, and the device is deselected.
3781 * Until returning from the associated message completion callback,
3782 * no other spi_message queued to that device will be processed.
3783 * (This rule applies equally to all the synchronous transfer calls,
3784 * which are wrappers around this core asynchronous primitive.)
3786 * Return: zero on success, else a negative error code.
3788 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3790 struct spi_controller *ctlr = spi->controller;
3792 unsigned long flags;
3794 ret = __spi_validate(spi, message);
3798 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3800 ret = __spi_async(spi, message);
3802 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3808 /*-------------------------------------------------------------------------*/
3810 /* Utility methods for SPI protocol drivers, layered on
3811 * top of the core. Some other utility methods are defined as
3815 static void spi_complete(void *arg)
3820 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3822 DECLARE_COMPLETION_ONSTACK(done);
3824 struct spi_controller *ctlr = spi->controller;
3825 unsigned long flags;
3827 status = __spi_validate(spi, message);
3831 message->complete = spi_complete;
3832 message->context = &done;
3835 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3836 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3838 /* If we're not using the legacy transfer method then we will
3839 * try to transfer in the calling context so special case.
3840 * This code would be less tricky if we could remove the
3841 * support for driver implemented message queues.
3843 if (ctlr->transfer == spi_queued_transfer) {
3844 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3846 trace_spi_message_submit(message);
3848 status = __spi_queued_transfer(spi, message, false);
3850 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3852 status = spi_async_locked(spi, message);
3856 /* Push out the messages in the calling context if we
3859 if (ctlr->transfer == spi_queued_transfer) {
3860 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3861 spi_sync_immediate);
3862 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3863 spi_sync_immediate);
3864 __spi_pump_messages(ctlr, false);
3867 wait_for_completion(&done);
3868 status = message->status;
3870 message->context = NULL;
3875 * spi_sync - blocking/synchronous SPI data transfers
3876 * @spi: device with which data will be exchanged
3877 * @message: describes the data transfers
3878 * Context: can sleep
3880 * This call may only be used from a context that may sleep. The sleep
3881 * is non-interruptible, and has no timeout. Low-overhead controller
3882 * drivers may DMA directly into and out of the message buffers.
3884 * Note that the SPI device's chip select is active during the message,
3885 * and then is normally disabled between messages. Drivers for some
3886 * frequently-used devices may want to minimize costs of selecting a chip,
3887 * by leaving it selected in anticipation that the next message will go
3888 * to the same chip. (That may increase power usage.)
3890 * Also, the caller is guaranteeing that the memory associated with the
3891 * message will not be freed before this call returns.
3893 * Return: zero on success, else a negative error code.
3895 int spi_sync(struct spi_device *spi, struct spi_message *message)
3899 mutex_lock(&spi->controller->bus_lock_mutex);
3900 ret = __spi_sync(spi, message);
3901 mutex_unlock(&spi->controller->bus_lock_mutex);
3905 EXPORT_SYMBOL_GPL(spi_sync);
3908 * spi_sync_locked - version of spi_sync with exclusive bus usage
3909 * @spi: device with which data will be exchanged
3910 * @message: describes the data transfers
3911 * Context: can sleep
3913 * This call may only be used from a context that may sleep. The sleep
3914 * is non-interruptible, and has no timeout. Low-overhead controller
3915 * drivers may DMA directly into and out of the message buffers.
3917 * This call should be used by drivers that require exclusive access to the
3918 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3919 * be released by a spi_bus_unlock call when the exclusive access is over.
3921 * Return: zero on success, else a negative error code.
3923 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3925 return __spi_sync(spi, message);
3927 EXPORT_SYMBOL_GPL(spi_sync_locked);
3930 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3931 * @ctlr: SPI bus master that should be locked for exclusive bus access
3932 * Context: can sleep
3934 * This call may only be used from a context that may sleep. The sleep
3935 * is non-interruptible, and has no timeout.
3937 * This call should be used by drivers that require exclusive access to the
3938 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3939 * exclusive access is over. Data transfer must be done by spi_sync_locked
3940 * and spi_async_locked calls when the SPI bus lock is held.
3942 * Return: always zero.
3944 int spi_bus_lock(struct spi_controller *ctlr)
3946 unsigned long flags;
3948 mutex_lock(&ctlr->bus_lock_mutex);
3950 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3951 ctlr->bus_lock_flag = 1;
3952 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3954 /* mutex remains locked until spi_bus_unlock is called */
3958 EXPORT_SYMBOL_GPL(spi_bus_lock);
3961 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3962 * @ctlr: SPI bus master that was locked for exclusive bus access
3963 * Context: can sleep
3965 * This call may only be used from a context that may sleep. The sleep
3966 * is non-interruptible, and has no timeout.
3968 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3971 * Return: always zero.
3973 int spi_bus_unlock(struct spi_controller *ctlr)
3975 ctlr->bus_lock_flag = 0;
3977 mutex_unlock(&ctlr->bus_lock_mutex);
3981 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3983 /* portable code must never pass more than 32 bytes */
3984 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3989 * spi_write_then_read - SPI synchronous write followed by read
3990 * @spi: device with which data will be exchanged
3991 * @txbuf: data to be written (need not be dma-safe)
3992 * @n_tx: size of txbuf, in bytes
3993 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3994 * @n_rx: size of rxbuf, in bytes
3995 * Context: can sleep
3997 * This performs a half duplex MicroWire style transaction with the
3998 * device, sending txbuf and then reading rxbuf. The return value
3999 * is zero for success, else a negative errno status code.
4000 * This call may only be used from a context that may sleep.
4002 * Parameters to this routine are always copied using a small buffer.
4003 * Performance-sensitive or bulk transfer code should instead use
4004 * spi_{async,sync}() calls with dma-safe buffers.
4006 * Return: zero on success, else a negative error code.
4008 int spi_write_then_read(struct spi_device *spi,
4009 const void *txbuf, unsigned n_tx,
4010 void *rxbuf, unsigned n_rx)
4012 static DEFINE_MUTEX(lock);
4015 struct spi_message message;
4016 struct spi_transfer x[2];
4019 /* Use preallocated DMA-safe buffer if we can. We can't avoid
4020 * copying here, (as a pure convenience thing), but we can
4021 * keep heap costs out of the hot path unless someone else is
4022 * using the pre-allocated buffer or the transfer is too large.
4024 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4025 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4026 GFP_KERNEL | GFP_DMA);
4033 spi_message_init(&message);
4034 memset(x, 0, sizeof(x));
4037 spi_message_add_tail(&x[0], &message);
4041 spi_message_add_tail(&x[1], &message);
4044 memcpy(local_buf, txbuf, n_tx);
4045 x[0].tx_buf = local_buf;
4046 x[1].rx_buf = local_buf + n_tx;
4049 status = spi_sync(spi, &message);
4051 memcpy(rxbuf, x[1].rx_buf, n_rx);
4053 if (x[0].tx_buf == buf)
4054 mutex_unlock(&lock);
4060 EXPORT_SYMBOL_GPL(spi_write_then_read);
4062 /*-------------------------------------------------------------------------*/
4064 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4065 /* must call put_device() when done with returned spi_device device */
4066 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4068 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4070 return dev ? to_spi_device(dev) : NULL;
4073 /* the spi controllers are not using spi_bus, so we find it with another way */
4074 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4078 dev = class_find_device_by_of_node(&spi_master_class, node);
4079 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4080 dev = class_find_device_by_of_node(&spi_slave_class, node);
4084 /* reference got in class_find_device */
4085 return container_of(dev, struct spi_controller, dev);
4088 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4091 struct of_reconfig_data *rd = arg;
4092 struct spi_controller *ctlr;
4093 struct spi_device *spi;
4095 switch (of_reconfig_get_state_change(action, arg)) {
4096 case OF_RECONFIG_CHANGE_ADD:
4097 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4099 return NOTIFY_OK; /* not for us */
4101 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4102 put_device(&ctlr->dev);
4106 spi = of_register_spi_device(ctlr, rd->dn);
4107 put_device(&ctlr->dev);
4110 pr_err("%s: failed to create for '%pOF'\n",
4112 of_node_clear_flag(rd->dn, OF_POPULATED);
4113 return notifier_from_errno(PTR_ERR(spi));
4117 case OF_RECONFIG_CHANGE_REMOVE:
4118 /* already depopulated? */
4119 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4122 /* find our device by node */
4123 spi = of_find_spi_device_by_node(rd->dn);
4125 return NOTIFY_OK; /* no? not meant for us */
4127 /* unregister takes one ref away */
4128 spi_unregister_device(spi);
4130 /* and put the reference of the find */
4131 put_device(&spi->dev);
4138 static struct notifier_block spi_of_notifier = {
4139 .notifier_call = of_spi_notify,
4141 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4142 extern struct notifier_block spi_of_notifier;
4143 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4145 #if IS_ENABLED(CONFIG_ACPI)
4146 static int spi_acpi_controller_match(struct device *dev, const void *data)
4148 return ACPI_COMPANION(dev->parent) == data;
4151 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4155 dev = class_find_device(&spi_master_class, NULL, adev,
4156 spi_acpi_controller_match);
4157 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4158 dev = class_find_device(&spi_slave_class, NULL, adev,
4159 spi_acpi_controller_match);
4163 return container_of(dev, struct spi_controller, dev);
4166 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4170 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4171 return to_spi_device(dev);
4174 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4177 struct acpi_device *adev = arg;
4178 struct spi_controller *ctlr;
4179 struct spi_device *spi;
4182 case ACPI_RECONFIG_DEVICE_ADD:
4183 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4187 acpi_register_spi_device(ctlr, adev);
4188 put_device(&ctlr->dev);
4190 case ACPI_RECONFIG_DEVICE_REMOVE:
4191 if (!acpi_device_enumerated(adev))
4194 spi = acpi_spi_find_device_by_adev(adev);
4198 spi_unregister_device(spi);
4199 put_device(&spi->dev);
4206 static struct notifier_block spi_acpi_notifier = {
4207 .notifier_call = acpi_spi_notify,
4210 extern struct notifier_block spi_acpi_notifier;
4213 static int __init spi_init(void)
4217 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4223 status = bus_register(&spi_bus_type);
4227 status = class_register(&spi_master_class);
4231 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4232 status = class_register(&spi_slave_class);
4237 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4238 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4239 if (IS_ENABLED(CONFIG_ACPI))
4240 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4245 class_unregister(&spi_master_class);
4247 bus_unregister(&spi_bus_type);
4255 /* board_info is normally registered in arch_initcall(),
4256 * but even essential drivers wait till later
4258 * REVISIT only boardinfo really needs static linking. the rest (device and
4259 * driver registration) _could_ be dynamically linked (modular) ... costs
4260 * include needing to have boardinfo data structures be much more public.
4262 postcore_initcall(spi_init);