]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
spi: fix use-after-free of the add_lock mutex
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62         if (len != -ENODEV)
63                 return len;
64
65         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70                                      struct device_attribute *a,
71                                      const char *buf, size_t count)
72 {
73         struct spi_device *spi = to_spi_device(dev);
74         const char *end = memchr(buf, '\n', count);
75         const size_t len = end ? end - buf : count;
76         const char *driver_override, *old;
77
78         /* We need to keep extra room for a newline when displaying value */
79         if (len >= (PAGE_SIZE - 1))
80                 return -EINVAL;
81
82         driver_override = kstrndup(buf, len, GFP_KERNEL);
83         if (!driver_override)
84                 return -ENOMEM;
85
86         device_lock(dev);
87         old = spi->driver_override;
88         if (len) {
89                 spi->driver_override = driver_override;
90         } else {
91                 /* Empty string, disable driver override */
92                 spi->driver_override = NULL;
93                 kfree(driver_override);
94         }
95         device_unlock(dev);
96         kfree(old);
97
98         return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102                                     struct device_attribute *a, char *buf)
103 {
104         const struct spi_device *spi = to_spi_device(dev);
105         ssize_t len;
106
107         device_lock(dev);
108         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109         device_unlock(dev);
110         return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file)                               \
115 static ssize_t spi_controller_##field##_show(struct device *dev,        \
116                                              struct device_attribute *attr, \
117                                              char *buf)                 \
118 {                                                                       \
119         struct spi_controller *ctlr = container_of(dev,                 \
120                                          struct spi_controller, dev);   \
121         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
122 }                                                                       \
123 static struct device_attribute dev_attr_spi_controller_##field = {      \
124         .attr = { .name = file, .mode = 0444 },                         \
125         .show = spi_controller_##field##_show,                          \
126 };                                                                      \
127 static ssize_t spi_device_##field##_show(struct device *dev,            \
128                                          struct device_attribute *attr, \
129                                         char *buf)                      \
130 {                                                                       \
131         struct spi_device *spi = to_spi_device(dev);                    \
132         return spi_statistics_##field##_show(&spi->statistics, buf);    \
133 }                                                                       \
134 static struct device_attribute dev_attr_spi_device_##field = {          \
135         .attr = { .name = file, .mode = 0444 },                         \
136         .show = spi_device_##field##_show,                              \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141                                             char *buf)                  \
142 {                                                                       \
143         unsigned long flags;                                            \
144         ssize_t len;                                                    \
145         spin_lock_irqsave(&stat->lock, flags);                          \
146         len = sprintf(buf, format_string, stat->field);                 \
147         spin_unlock_irqrestore(&stat->lock, flags);                     \
148         return len;                                                     \
149 }                                                                       \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string)                       \
153         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
154                                  field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
170         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
171                                  "transfer_bytes_histo_" number,        \
172                                  transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194         &dev_attr_modalias.attr,
195         &dev_attr_driver_override.attr,
196         NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200         .attrs  = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204         &dev_attr_spi_device_messages.attr,
205         &dev_attr_spi_device_transfers.attr,
206         &dev_attr_spi_device_errors.attr,
207         &dev_attr_spi_device_timedout.attr,
208         &dev_attr_spi_device_spi_sync.attr,
209         &dev_attr_spi_device_spi_sync_immediate.attr,
210         &dev_attr_spi_device_spi_async.attr,
211         &dev_attr_spi_device_bytes.attr,
212         &dev_attr_spi_device_bytes_rx.attr,
213         &dev_attr_spi_device_bytes_tx.attr,
214         &dev_attr_spi_device_transfer_bytes_histo0.attr,
215         &dev_attr_spi_device_transfer_bytes_histo1.attr,
216         &dev_attr_spi_device_transfer_bytes_histo2.attr,
217         &dev_attr_spi_device_transfer_bytes_histo3.attr,
218         &dev_attr_spi_device_transfer_bytes_histo4.attr,
219         &dev_attr_spi_device_transfer_bytes_histo5.attr,
220         &dev_attr_spi_device_transfer_bytes_histo6.attr,
221         &dev_attr_spi_device_transfer_bytes_histo7.attr,
222         &dev_attr_spi_device_transfer_bytes_histo8.attr,
223         &dev_attr_spi_device_transfer_bytes_histo9.attr,
224         &dev_attr_spi_device_transfer_bytes_histo10.attr,
225         &dev_attr_spi_device_transfer_bytes_histo11.attr,
226         &dev_attr_spi_device_transfer_bytes_histo12.attr,
227         &dev_attr_spi_device_transfer_bytes_histo13.attr,
228         &dev_attr_spi_device_transfer_bytes_histo14.attr,
229         &dev_attr_spi_device_transfer_bytes_histo15.attr,
230         &dev_attr_spi_device_transfer_bytes_histo16.attr,
231         &dev_attr_spi_device_transfers_split_maxsize.attr,
232         NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236         .name  = "statistics",
237         .attrs  = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241         &spi_dev_group,
242         &spi_device_statistics_group,
243         NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247         &dev_attr_spi_controller_messages.attr,
248         &dev_attr_spi_controller_transfers.attr,
249         &dev_attr_spi_controller_errors.attr,
250         &dev_attr_spi_controller_timedout.attr,
251         &dev_attr_spi_controller_spi_sync.attr,
252         &dev_attr_spi_controller_spi_sync_immediate.attr,
253         &dev_attr_spi_controller_spi_async.attr,
254         &dev_attr_spi_controller_bytes.attr,
255         &dev_attr_spi_controller_bytes_rx.attr,
256         &dev_attr_spi_controller_bytes_tx.attr,
257         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274         &dev_attr_spi_controller_transfers_split_maxsize.attr,
275         NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279         .name  = "statistics",
280         .attrs  = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284         &spi_controller_statistics_group,
285         NULL,
286 };
287
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289                                               struct spi_transfer *xfer,
290                                               struct spi_controller *ctlr)
291 {
292         unsigned long flags;
293         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295         if (l2len < 0)
296                 l2len = 0;
297
298         spin_lock_irqsave(&stats->lock, flags);
299
300         stats->transfers++;
301         stats->transfer_bytes_histo[l2len]++;
302
303         stats->bytes += xfer->len;
304         if ((xfer->tx_buf) &&
305             (xfer->tx_buf != ctlr->dummy_tx))
306                 stats->bytes_tx += xfer->len;
307         if ((xfer->rx_buf) &&
308             (xfer->rx_buf != ctlr->dummy_rx))
309                 stats->bytes_rx += xfer->len;
310
311         spin_unlock_irqrestore(&stats->lock, flags);
312 }
313
314 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
315  * and the sysfs version makes coldplug work too.
316  */
317
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
319                                                 const struct spi_device *sdev)
320 {
321         while (id->name[0]) {
322                 if (!strcmp(sdev->modalias, id->name))
323                         return id;
324                 id++;
325         }
326         return NULL;
327 }
328
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
330 {
331         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
332
333         return spi_match_id(sdrv->id_table, sdev);
334 }
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
336
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
338 {
339         const struct spi_device *spi = to_spi_device(dev);
340         const struct spi_driver *sdrv = to_spi_driver(drv);
341
342         /* Check override first, and if set, only use the named driver */
343         if (spi->driver_override)
344                 return strcmp(spi->driver_override, drv->name) == 0;
345
346         /* Attempt an OF style match */
347         if (of_driver_match_device(dev, drv))
348                 return 1;
349
350         /* Then try ACPI */
351         if (acpi_driver_match_device(dev, drv))
352                 return 1;
353
354         if (sdrv->id_table)
355                 return !!spi_match_id(sdrv->id_table, spi);
356
357         return strcmp(spi->modalias, drv->name) == 0;
358 }
359
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
361 {
362         const struct spi_device         *spi = to_spi_device(dev);
363         int rc;
364
365         rc = acpi_device_uevent_modalias(dev, env);
366         if (rc != -ENODEV)
367                 return rc;
368
369         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
370 }
371
372 static int spi_probe(struct device *dev)
373 {
374         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
375         struct spi_device               *spi = to_spi_device(dev);
376         int ret;
377
378         ret = of_clk_set_defaults(dev->of_node, false);
379         if (ret)
380                 return ret;
381
382         if (dev->of_node) {
383                 spi->irq = of_irq_get(dev->of_node, 0);
384                 if (spi->irq == -EPROBE_DEFER)
385                         return -EPROBE_DEFER;
386                 if (spi->irq < 0)
387                         spi->irq = 0;
388         }
389
390         ret = dev_pm_domain_attach(dev, true);
391         if (ret)
392                 return ret;
393
394         if (sdrv->probe) {
395                 ret = sdrv->probe(spi);
396                 if (ret)
397                         dev_pm_domain_detach(dev, true);
398         }
399
400         return ret;
401 }
402
403 static void spi_remove(struct device *dev)
404 {
405         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
406
407         if (sdrv->remove) {
408                 int ret;
409
410                 ret = sdrv->remove(to_spi_device(dev));
411                 if (ret)
412                         dev_warn(dev,
413                                  "Failed to unbind driver (%pe), ignoring\n",
414                                  ERR_PTR(ret));
415         }
416
417         dev_pm_domain_detach(dev, true);
418 }
419
420 static void spi_shutdown(struct device *dev)
421 {
422         if (dev->driver) {
423                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
424
425                 if (sdrv->shutdown)
426                         sdrv->shutdown(to_spi_device(dev));
427         }
428 }
429
430 struct bus_type spi_bus_type = {
431         .name           = "spi",
432         .dev_groups     = spi_dev_groups,
433         .match          = spi_match_device,
434         .uevent         = spi_uevent,
435         .probe          = spi_probe,
436         .remove         = spi_remove,
437         .shutdown       = spi_shutdown,
438 };
439 EXPORT_SYMBOL_GPL(spi_bus_type);
440
441 /**
442  * __spi_register_driver - register a SPI driver
443  * @owner: owner module of the driver to register
444  * @sdrv: the driver to register
445  * Context: can sleep
446  *
447  * Return: zero on success, else a negative error code.
448  */
449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
450 {
451         sdrv->driver.owner = owner;
452         sdrv->driver.bus = &spi_bus_type;
453         return driver_register(&sdrv->driver);
454 }
455 EXPORT_SYMBOL_GPL(__spi_register_driver);
456
457 /*-------------------------------------------------------------------------*/
458
459 /* SPI devices should normally not be created by SPI device drivers; that
460  * would make them board-specific.  Similarly with SPI controller drivers.
461  * Device registration normally goes into like arch/.../mach.../board-YYY.c
462  * with other readonly (flashable) information about mainboard devices.
463  */
464
465 struct boardinfo {
466         struct list_head        list;
467         struct spi_board_info   board_info;
468 };
469
470 static LIST_HEAD(board_list);
471 static LIST_HEAD(spi_controller_list);
472
473 /*
474  * Used to protect add/del operation for board_info list and
475  * spi_controller list, and their matching process
476  * also used to protect object of type struct idr
477  */
478 static DEFINE_MUTEX(board_lock);
479
480 /**
481  * spi_alloc_device - Allocate a new SPI device
482  * @ctlr: Controller to which device is connected
483  * Context: can sleep
484  *
485  * Allows a driver to allocate and initialize a spi_device without
486  * registering it immediately.  This allows a driver to directly
487  * fill the spi_device with device parameters before calling
488  * spi_add_device() on it.
489  *
490  * Caller is responsible to call spi_add_device() on the returned
491  * spi_device structure to add it to the SPI controller.  If the caller
492  * needs to discard the spi_device without adding it, then it should
493  * call spi_dev_put() on it.
494  *
495  * Return: a pointer to the new device, or NULL.
496  */
497 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
498 {
499         struct spi_device       *spi;
500
501         if (!spi_controller_get(ctlr))
502                 return NULL;
503
504         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
505         if (!spi) {
506                 spi_controller_put(ctlr);
507                 return NULL;
508         }
509
510         spi->master = spi->controller = ctlr;
511         spi->dev.parent = &ctlr->dev;
512         spi->dev.bus = &spi_bus_type;
513         spi->dev.release = spidev_release;
514         spi->cs_gpio = -ENOENT;
515         spi->mode = ctlr->buswidth_override_bits;
516
517         spin_lock_init(&spi->statistics.lock);
518
519         device_initialize(&spi->dev);
520         return spi;
521 }
522
523 static void spi_dev_set_name(struct spi_device *spi)
524 {
525         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
526
527         if (adev) {
528                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
529                 return;
530         }
531
532         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
533                      spi->chip_select);
534 }
535
536 static int spi_dev_check(struct device *dev, void *data)
537 {
538         struct spi_device *spi = to_spi_device(dev);
539         struct spi_device *new_spi = data;
540
541         if (spi->controller == new_spi->controller &&
542             spi->chip_select == new_spi->chip_select)
543                 return -EBUSY;
544         return 0;
545 }
546
547 static void spi_cleanup(struct spi_device *spi)
548 {
549         if (spi->controller->cleanup)
550                 spi->controller->cleanup(spi);
551 }
552
553 static int __spi_add_device(struct spi_device *spi)
554 {
555         struct spi_controller *ctlr = spi->controller;
556         struct device *dev = ctlr->dev.parent;
557         int status;
558
559         /*
560          * We need to make sure there's no other device with this
561          * chipselect **BEFORE** we call setup(), else we'll trash
562          * its configuration.
563          */
564         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
565         if (status) {
566                 dev_err(dev, "chipselect %d already in use\n",
567                                 spi->chip_select);
568                 return status;
569         }
570
571         /* Controller may unregister concurrently */
572         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
573             !device_is_registered(&ctlr->dev)) {
574                 return -ENODEV;
575         }
576
577         /* Descriptors take precedence */
578         if (ctlr->cs_gpiods)
579                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
580         else if (ctlr->cs_gpios)
581                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
582
583         /* Drivers may modify this initial i/o setup, but will
584          * normally rely on the device being setup.  Devices
585          * using SPI_CS_HIGH can't coexist well otherwise...
586          */
587         status = spi_setup(spi);
588         if (status < 0) {
589                 dev_err(dev, "can't setup %s, status %d\n",
590                                 dev_name(&spi->dev), status);
591                 return status;
592         }
593
594         /* Device may be bound to an active driver when this returns */
595         status = device_add(&spi->dev);
596         if (status < 0) {
597                 dev_err(dev, "can't add %s, status %d\n",
598                                 dev_name(&spi->dev), status);
599                 spi_cleanup(spi);
600         } else {
601                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
602         }
603
604         return status;
605 }
606
607 /**
608  * spi_add_device - Add spi_device allocated with spi_alloc_device
609  * @spi: spi_device to register
610  *
611  * Companion function to spi_alloc_device.  Devices allocated with
612  * spi_alloc_device can be added onto the spi bus with this function.
613  *
614  * Return: 0 on success; negative errno on failure
615  */
616 static int spi_add_device(struct spi_device *spi)
617 {
618         struct spi_controller *ctlr = spi->controller;
619         struct device *dev = ctlr->dev.parent;
620         int status;
621
622         /* Chipselects are numbered 0..max; validate. */
623         if (spi->chip_select >= ctlr->num_chipselect) {
624                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
625                         ctlr->num_chipselect);
626                 return -EINVAL;
627         }
628
629         /* Set the bus ID string */
630         spi_dev_set_name(spi);
631
632         mutex_lock(&ctlr->add_lock);
633         status = __spi_add_device(spi);
634         mutex_unlock(&ctlr->add_lock);
635         return status;
636 }
637
638 static int spi_add_device_locked(struct spi_device *spi)
639 {
640         struct spi_controller *ctlr = spi->controller;
641         struct device *dev = ctlr->dev.parent;
642
643         /* Chipselects are numbered 0..max; validate. */
644         if (spi->chip_select >= ctlr->num_chipselect) {
645                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
646                         ctlr->num_chipselect);
647                 return -EINVAL;
648         }
649
650         /* Set the bus ID string */
651         spi_dev_set_name(spi);
652
653         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
654         return __spi_add_device(spi);
655 }
656
657 /**
658  * spi_new_device - instantiate one new SPI device
659  * @ctlr: Controller to which device is connected
660  * @chip: Describes the SPI device
661  * Context: can sleep
662  *
663  * On typical mainboards, this is purely internal; and it's not needed
664  * after board init creates the hard-wired devices.  Some development
665  * platforms may not be able to use spi_register_board_info though, and
666  * this is exported so that for example a USB or parport based adapter
667  * driver could add devices (which it would learn about out-of-band).
668  *
669  * Return: the new device, or NULL.
670  */
671 struct spi_device *spi_new_device(struct spi_controller *ctlr,
672                                   struct spi_board_info *chip)
673 {
674         struct spi_device       *proxy;
675         int                     status;
676
677         /* NOTE:  caller did any chip->bus_num checks necessary.
678          *
679          * Also, unless we change the return value convention to use
680          * error-or-pointer (not NULL-or-pointer), troubleshootability
681          * suggests syslogged diagnostics are best here (ugh).
682          */
683
684         proxy = spi_alloc_device(ctlr);
685         if (!proxy)
686                 return NULL;
687
688         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
689
690         proxy->chip_select = chip->chip_select;
691         proxy->max_speed_hz = chip->max_speed_hz;
692         proxy->mode = chip->mode;
693         proxy->irq = chip->irq;
694         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
695         proxy->dev.platform_data = (void *) chip->platform_data;
696         proxy->controller_data = chip->controller_data;
697         proxy->controller_state = NULL;
698
699         if (chip->swnode) {
700                 status = device_add_software_node(&proxy->dev, chip->swnode);
701                 if (status) {
702                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
703                                 chip->modalias, status);
704                         goto err_dev_put;
705                 }
706         }
707
708         status = spi_add_device(proxy);
709         if (status < 0)
710                 goto err_dev_put;
711
712         return proxy;
713
714 err_dev_put:
715         device_remove_software_node(&proxy->dev);
716         spi_dev_put(proxy);
717         return NULL;
718 }
719 EXPORT_SYMBOL_GPL(spi_new_device);
720
721 /**
722  * spi_unregister_device - unregister a single SPI device
723  * @spi: spi_device to unregister
724  *
725  * Start making the passed SPI device vanish. Normally this would be handled
726  * by spi_unregister_controller().
727  */
728 void spi_unregister_device(struct spi_device *spi)
729 {
730         if (!spi)
731                 return;
732
733         if (spi->dev.of_node) {
734                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
735                 of_node_put(spi->dev.of_node);
736         }
737         if (ACPI_COMPANION(&spi->dev))
738                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
739         device_remove_software_node(&spi->dev);
740         device_del(&spi->dev);
741         spi_cleanup(spi);
742         put_device(&spi->dev);
743 }
744 EXPORT_SYMBOL_GPL(spi_unregister_device);
745
746 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
747                                               struct spi_board_info *bi)
748 {
749         struct spi_device *dev;
750
751         if (ctlr->bus_num != bi->bus_num)
752                 return;
753
754         dev = spi_new_device(ctlr, bi);
755         if (!dev)
756                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
757                         bi->modalias);
758 }
759
760 /**
761  * spi_register_board_info - register SPI devices for a given board
762  * @info: array of chip descriptors
763  * @n: how many descriptors are provided
764  * Context: can sleep
765  *
766  * Board-specific early init code calls this (probably during arch_initcall)
767  * with segments of the SPI device table.  Any device nodes are created later,
768  * after the relevant parent SPI controller (bus_num) is defined.  We keep
769  * this table of devices forever, so that reloading a controller driver will
770  * not make Linux forget about these hard-wired devices.
771  *
772  * Other code can also call this, e.g. a particular add-on board might provide
773  * SPI devices through its expansion connector, so code initializing that board
774  * would naturally declare its SPI devices.
775  *
776  * The board info passed can safely be __initdata ... but be careful of
777  * any embedded pointers (platform_data, etc), they're copied as-is.
778  *
779  * Return: zero on success, else a negative error code.
780  */
781 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
782 {
783         struct boardinfo *bi;
784         int i;
785
786         if (!n)
787                 return 0;
788
789         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
790         if (!bi)
791                 return -ENOMEM;
792
793         for (i = 0; i < n; i++, bi++, info++) {
794                 struct spi_controller *ctlr;
795
796                 memcpy(&bi->board_info, info, sizeof(*info));
797
798                 mutex_lock(&board_lock);
799                 list_add_tail(&bi->list, &board_list);
800                 list_for_each_entry(ctlr, &spi_controller_list, list)
801                         spi_match_controller_to_boardinfo(ctlr,
802                                                           &bi->board_info);
803                 mutex_unlock(&board_lock);
804         }
805
806         return 0;
807 }
808
809 /*-------------------------------------------------------------------------*/
810
811 /* Core methods for SPI resource management */
812
813 /**
814  * spi_res_alloc - allocate a spi resource that is life-cycle managed
815  *                 during the processing of a spi_message while using
816  *                 spi_transfer_one
817  * @spi:     the spi device for which we allocate memory
818  * @release: the release code to execute for this resource
819  * @size:    size to alloc and return
820  * @gfp:     GFP allocation flags
821  *
822  * Return: the pointer to the allocated data
823  *
824  * This may get enhanced in the future to allocate from a memory pool
825  * of the @spi_device or @spi_controller to avoid repeated allocations.
826  */
827 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
828                            size_t size, gfp_t gfp)
829 {
830         struct spi_res *sres;
831
832         sres = kzalloc(sizeof(*sres) + size, gfp);
833         if (!sres)
834                 return NULL;
835
836         INIT_LIST_HEAD(&sres->entry);
837         sres->release = release;
838
839         return sres->data;
840 }
841
842 /**
843  * spi_res_free - free an spi resource
844  * @res: pointer to the custom data of a resource
845  *
846  */
847 static void spi_res_free(void *res)
848 {
849         struct spi_res *sres = container_of(res, struct spi_res, data);
850
851         if (!res)
852                 return;
853
854         WARN_ON(!list_empty(&sres->entry));
855         kfree(sres);
856 }
857
858 /**
859  * spi_res_add - add a spi_res to the spi_message
860  * @message: the spi message
861  * @res:     the spi_resource
862  */
863 static void spi_res_add(struct spi_message *message, void *res)
864 {
865         struct spi_res *sres = container_of(res, struct spi_res, data);
866
867         WARN_ON(!list_empty(&sres->entry));
868         list_add_tail(&sres->entry, &message->resources);
869 }
870
871 /**
872  * spi_res_release - release all spi resources for this message
873  * @ctlr:  the @spi_controller
874  * @message: the @spi_message
875  */
876 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
877 {
878         struct spi_res *res, *tmp;
879
880         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
881                 if (res->release)
882                         res->release(ctlr, message, res->data);
883
884                 list_del(&res->entry);
885
886                 kfree(res);
887         }
888 }
889
890 /*-------------------------------------------------------------------------*/
891
892 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
893 {
894         bool activate = enable;
895
896         /*
897          * Avoid calling into the driver (or doing delays) if the chip select
898          * isn't actually changing from the last time this was called.
899          */
900         if (!force && (spi->controller->last_cs_enable == enable) &&
901             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
902                 return;
903
904         trace_spi_set_cs(spi, activate);
905
906         spi->controller->last_cs_enable = enable;
907         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
908
909         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
910             !spi->controller->set_cs_timing) {
911                 if (activate)
912                         spi_delay_exec(&spi->cs_setup, NULL);
913                 else
914                         spi_delay_exec(&spi->cs_hold, NULL);
915         }
916
917         if (spi->mode & SPI_CS_HIGH)
918                 enable = !enable;
919
920         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
921                 if (!(spi->mode & SPI_NO_CS)) {
922                         if (spi->cs_gpiod) {
923                                 /*
924                                  * Historically ACPI has no means of the GPIO polarity and
925                                  * thus the SPISerialBus() resource defines it on the per-chip
926                                  * basis. In order to avoid a chain of negations, the GPIO
927                                  * polarity is considered being Active High. Even for the cases
928                                  * when _DSD() is involved (in the updated versions of ACPI)
929                                  * the GPIO CS polarity must be defined Active High to avoid
930                                  * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
931                                  * into account.
932                                  */
933                                 if (has_acpi_companion(&spi->dev))
934                                         gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
935                                 else
936                                         /* Polarity handled by GPIO library */
937                                         gpiod_set_value_cansleep(spi->cs_gpiod, activate);
938                         } else {
939                                 /*
940                                  * invert the enable line, as active low is
941                                  * default for SPI.
942                                  */
943                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
944                         }
945                 }
946                 /* Some SPI masters need both GPIO CS & slave_select */
947                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
948                     spi->controller->set_cs)
949                         spi->controller->set_cs(spi, !enable);
950         } else if (spi->controller->set_cs) {
951                 spi->controller->set_cs(spi, !enable);
952         }
953
954         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
955             !spi->controller->set_cs_timing) {
956                 if (!activate)
957                         spi_delay_exec(&spi->cs_inactive, NULL);
958         }
959 }
960
961 #ifdef CONFIG_HAS_DMA
962 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
963                 struct sg_table *sgt, void *buf, size_t len,
964                 enum dma_data_direction dir)
965 {
966         const bool vmalloced_buf = is_vmalloc_addr(buf);
967         unsigned int max_seg_size = dma_get_max_seg_size(dev);
968 #ifdef CONFIG_HIGHMEM
969         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
970                                 (unsigned long)buf < (PKMAP_BASE +
971                                         (LAST_PKMAP * PAGE_SIZE)));
972 #else
973         const bool kmap_buf = false;
974 #endif
975         int desc_len;
976         int sgs;
977         struct page *vm_page;
978         struct scatterlist *sg;
979         void *sg_buf;
980         size_t min;
981         int i, ret;
982
983         if (vmalloced_buf || kmap_buf) {
984                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
985                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
986         } else if (virt_addr_valid(buf)) {
987                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
988                 sgs = DIV_ROUND_UP(len, desc_len);
989         } else {
990                 return -EINVAL;
991         }
992
993         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
994         if (ret != 0)
995                 return ret;
996
997         sg = &sgt->sgl[0];
998         for (i = 0; i < sgs; i++) {
999
1000                 if (vmalloced_buf || kmap_buf) {
1001                         /*
1002                          * Next scatterlist entry size is the minimum between
1003                          * the desc_len and the remaining buffer length that
1004                          * fits in a page.
1005                          */
1006                         min = min_t(size_t, desc_len,
1007                                     min_t(size_t, len,
1008                                           PAGE_SIZE - offset_in_page(buf)));
1009                         if (vmalloced_buf)
1010                                 vm_page = vmalloc_to_page(buf);
1011                         else
1012                                 vm_page = kmap_to_page(buf);
1013                         if (!vm_page) {
1014                                 sg_free_table(sgt);
1015                                 return -ENOMEM;
1016                         }
1017                         sg_set_page(sg, vm_page,
1018                                     min, offset_in_page(buf));
1019                 } else {
1020                         min = min_t(size_t, len, desc_len);
1021                         sg_buf = buf;
1022                         sg_set_buf(sg, sg_buf, min);
1023                 }
1024
1025                 buf += min;
1026                 len -= min;
1027                 sg = sg_next(sg);
1028         }
1029
1030         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1031         if (!ret)
1032                 ret = -ENOMEM;
1033         if (ret < 0) {
1034                 sg_free_table(sgt);
1035                 return ret;
1036         }
1037
1038         sgt->nents = ret;
1039
1040         return 0;
1041 }
1042
1043 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1044                    struct sg_table *sgt, enum dma_data_direction dir)
1045 {
1046         if (sgt->orig_nents) {
1047                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1048                 sg_free_table(sgt);
1049         }
1050 }
1051
1052 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1053 {
1054         struct device *tx_dev, *rx_dev;
1055         struct spi_transfer *xfer;
1056         int ret;
1057
1058         if (!ctlr->can_dma)
1059                 return 0;
1060
1061         if (ctlr->dma_tx)
1062                 tx_dev = ctlr->dma_tx->device->dev;
1063         else if (ctlr->dma_map_dev)
1064                 tx_dev = ctlr->dma_map_dev;
1065         else
1066                 tx_dev = ctlr->dev.parent;
1067
1068         if (ctlr->dma_rx)
1069                 rx_dev = ctlr->dma_rx->device->dev;
1070         else if (ctlr->dma_map_dev)
1071                 rx_dev = ctlr->dma_map_dev;
1072         else
1073                 rx_dev = ctlr->dev.parent;
1074
1075         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1076                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1077                         continue;
1078
1079                 if (xfer->tx_buf != NULL) {
1080                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1081                                           (void *)xfer->tx_buf, xfer->len,
1082                                           DMA_TO_DEVICE);
1083                         if (ret != 0)
1084                                 return ret;
1085                 }
1086
1087                 if (xfer->rx_buf != NULL) {
1088                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1089                                           xfer->rx_buf, xfer->len,
1090                                           DMA_FROM_DEVICE);
1091                         if (ret != 0) {
1092                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1093                                               DMA_TO_DEVICE);
1094                                 return ret;
1095                         }
1096                 }
1097         }
1098
1099         ctlr->cur_msg_mapped = true;
1100
1101         return 0;
1102 }
1103
1104 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1105 {
1106         struct spi_transfer *xfer;
1107         struct device *tx_dev, *rx_dev;
1108
1109         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1110                 return 0;
1111
1112         if (ctlr->dma_tx)
1113                 tx_dev = ctlr->dma_tx->device->dev;
1114         else
1115                 tx_dev = ctlr->dev.parent;
1116
1117         if (ctlr->dma_rx)
1118                 rx_dev = ctlr->dma_rx->device->dev;
1119         else
1120                 rx_dev = ctlr->dev.parent;
1121
1122         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1123                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1124                         continue;
1125
1126                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1127                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1128         }
1129
1130         ctlr->cur_msg_mapped = false;
1131
1132         return 0;
1133 }
1134 #else /* !CONFIG_HAS_DMA */
1135 static inline int __spi_map_msg(struct spi_controller *ctlr,
1136                                 struct spi_message *msg)
1137 {
1138         return 0;
1139 }
1140
1141 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1142                                   struct spi_message *msg)
1143 {
1144         return 0;
1145 }
1146 #endif /* !CONFIG_HAS_DMA */
1147
1148 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1149                                 struct spi_message *msg)
1150 {
1151         struct spi_transfer *xfer;
1152
1153         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1154                 /*
1155                  * Restore the original value of tx_buf or rx_buf if they are
1156                  * NULL.
1157                  */
1158                 if (xfer->tx_buf == ctlr->dummy_tx)
1159                         xfer->tx_buf = NULL;
1160                 if (xfer->rx_buf == ctlr->dummy_rx)
1161                         xfer->rx_buf = NULL;
1162         }
1163
1164         return __spi_unmap_msg(ctlr, msg);
1165 }
1166
1167 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1168 {
1169         struct spi_transfer *xfer;
1170         void *tmp;
1171         unsigned int max_tx, max_rx;
1172
1173         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1174                 && !(msg->spi->mode & SPI_3WIRE)) {
1175                 max_tx = 0;
1176                 max_rx = 0;
1177
1178                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1179                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1180                             !xfer->tx_buf)
1181                                 max_tx = max(xfer->len, max_tx);
1182                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1183                             !xfer->rx_buf)
1184                                 max_rx = max(xfer->len, max_rx);
1185                 }
1186
1187                 if (max_tx) {
1188                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1189                                        GFP_KERNEL | GFP_DMA);
1190                         if (!tmp)
1191                                 return -ENOMEM;
1192                         ctlr->dummy_tx = tmp;
1193                         memset(tmp, 0, max_tx);
1194                 }
1195
1196                 if (max_rx) {
1197                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1198                                        GFP_KERNEL | GFP_DMA);
1199                         if (!tmp)
1200                                 return -ENOMEM;
1201                         ctlr->dummy_rx = tmp;
1202                 }
1203
1204                 if (max_tx || max_rx) {
1205                         list_for_each_entry(xfer, &msg->transfers,
1206                                             transfer_list) {
1207                                 if (!xfer->len)
1208                                         continue;
1209                                 if (!xfer->tx_buf)
1210                                         xfer->tx_buf = ctlr->dummy_tx;
1211                                 if (!xfer->rx_buf)
1212                                         xfer->rx_buf = ctlr->dummy_rx;
1213                         }
1214                 }
1215         }
1216
1217         return __spi_map_msg(ctlr, msg);
1218 }
1219
1220 static int spi_transfer_wait(struct spi_controller *ctlr,
1221                              struct spi_message *msg,
1222                              struct spi_transfer *xfer)
1223 {
1224         struct spi_statistics *statm = &ctlr->statistics;
1225         struct spi_statistics *stats = &msg->spi->statistics;
1226         u32 speed_hz = xfer->speed_hz;
1227         unsigned long long ms;
1228
1229         if (spi_controller_is_slave(ctlr)) {
1230                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1231                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1232                         return -EINTR;
1233                 }
1234         } else {
1235                 if (!speed_hz)
1236                         speed_hz = 100000;
1237
1238                 /*
1239                  * For each byte we wait for 8 cycles of the SPI clock.
1240                  * Since speed is defined in Hz and we want milliseconds,
1241                  * use respective multiplier, but before the division,
1242                  * otherwise we may get 0 for short transfers.
1243                  */
1244                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1245                 do_div(ms, speed_hz);
1246
1247                 /*
1248                  * Increase it twice and add 200 ms tolerance, use
1249                  * predefined maximum in case of overflow.
1250                  */
1251                 ms += ms + 200;
1252                 if (ms > UINT_MAX)
1253                         ms = UINT_MAX;
1254
1255                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1256                                                  msecs_to_jiffies(ms));
1257
1258                 if (ms == 0) {
1259                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1260                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1261                         dev_err(&msg->spi->dev,
1262                                 "SPI transfer timed out\n");
1263                         return -ETIMEDOUT;
1264                 }
1265         }
1266
1267         return 0;
1268 }
1269
1270 static void _spi_transfer_delay_ns(u32 ns)
1271 {
1272         if (!ns)
1273                 return;
1274         if (ns <= NSEC_PER_USEC) {
1275                 ndelay(ns);
1276         } else {
1277                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1278
1279                 if (us <= 10)
1280                         udelay(us);
1281                 else
1282                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1283         }
1284 }
1285
1286 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1287 {
1288         u32 delay = _delay->value;
1289         u32 unit = _delay->unit;
1290         u32 hz;
1291
1292         if (!delay)
1293                 return 0;
1294
1295         switch (unit) {
1296         case SPI_DELAY_UNIT_USECS:
1297                 delay *= NSEC_PER_USEC;
1298                 break;
1299         case SPI_DELAY_UNIT_NSECS:
1300                 /* Nothing to do here */
1301                 break;
1302         case SPI_DELAY_UNIT_SCK:
1303                 /* clock cycles need to be obtained from spi_transfer */
1304                 if (!xfer)
1305                         return -EINVAL;
1306                 /*
1307                  * If there is unknown effective speed, approximate it
1308                  * by underestimating with half of the requested hz.
1309                  */
1310                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1311                 if (!hz)
1312                         return -EINVAL;
1313
1314                 /* Convert delay to nanoseconds */
1315                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1316                 break;
1317         default:
1318                 return -EINVAL;
1319         }
1320
1321         return delay;
1322 }
1323 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1324
1325 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1326 {
1327         int delay;
1328
1329         might_sleep();
1330
1331         if (!_delay)
1332                 return -EINVAL;
1333
1334         delay = spi_delay_to_ns(_delay, xfer);
1335         if (delay < 0)
1336                 return delay;
1337
1338         _spi_transfer_delay_ns(delay);
1339
1340         return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(spi_delay_exec);
1343
1344 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1345                                           struct spi_transfer *xfer)
1346 {
1347         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1348         u32 delay = xfer->cs_change_delay.value;
1349         u32 unit = xfer->cs_change_delay.unit;
1350         int ret;
1351
1352         /* return early on "fast" mode - for everything but USECS */
1353         if (!delay) {
1354                 if (unit == SPI_DELAY_UNIT_USECS)
1355                         _spi_transfer_delay_ns(default_delay_ns);
1356                 return;
1357         }
1358
1359         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1360         if (ret) {
1361                 dev_err_once(&msg->spi->dev,
1362                              "Use of unsupported delay unit %i, using default of %luus\n",
1363                              unit, default_delay_ns / NSEC_PER_USEC);
1364                 _spi_transfer_delay_ns(default_delay_ns);
1365         }
1366 }
1367
1368 /*
1369  * spi_transfer_one_message - Default implementation of transfer_one_message()
1370  *
1371  * This is a standard implementation of transfer_one_message() for
1372  * drivers which implement a transfer_one() operation.  It provides
1373  * standard handling of delays and chip select management.
1374  */
1375 static int spi_transfer_one_message(struct spi_controller *ctlr,
1376                                     struct spi_message *msg)
1377 {
1378         struct spi_transfer *xfer;
1379         bool keep_cs = false;
1380         int ret = 0;
1381         struct spi_statistics *statm = &ctlr->statistics;
1382         struct spi_statistics *stats = &msg->spi->statistics;
1383
1384         spi_set_cs(msg->spi, true, false);
1385
1386         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1387         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1388
1389         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1390                 trace_spi_transfer_start(msg, xfer);
1391
1392                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1393                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1394
1395                 if (!ctlr->ptp_sts_supported) {
1396                         xfer->ptp_sts_word_pre = 0;
1397                         ptp_read_system_prets(xfer->ptp_sts);
1398                 }
1399
1400                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1401                         reinit_completion(&ctlr->xfer_completion);
1402
1403 fallback_pio:
1404                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1405                         if (ret < 0) {
1406                                 if (ctlr->cur_msg_mapped &&
1407                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1408                                         __spi_unmap_msg(ctlr, msg);
1409                                         ctlr->fallback = true;
1410                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1411                                         goto fallback_pio;
1412                                 }
1413
1414                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1415                                                                errors);
1416                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1417                                                                errors);
1418                                 dev_err(&msg->spi->dev,
1419                                         "SPI transfer failed: %d\n", ret);
1420                                 goto out;
1421                         }
1422
1423                         if (ret > 0) {
1424                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1425                                 if (ret < 0)
1426                                         msg->status = ret;
1427                         }
1428                 } else {
1429                         if (xfer->len)
1430                                 dev_err(&msg->spi->dev,
1431                                         "Bufferless transfer has length %u\n",
1432                                         xfer->len);
1433                 }
1434
1435                 if (!ctlr->ptp_sts_supported) {
1436                         ptp_read_system_postts(xfer->ptp_sts);
1437                         xfer->ptp_sts_word_post = xfer->len;
1438                 }
1439
1440                 trace_spi_transfer_stop(msg, xfer);
1441
1442                 if (msg->status != -EINPROGRESS)
1443                         goto out;
1444
1445                 spi_transfer_delay_exec(xfer);
1446
1447                 if (xfer->cs_change) {
1448                         if (list_is_last(&xfer->transfer_list,
1449                                          &msg->transfers)) {
1450                                 keep_cs = true;
1451                         } else {
1452                                 spi_set_cs(msg->spi, false, false);
1453                                 _spi_transfer_cs_change_delay(msg, xfer);
1454                                 spi_set_cs(msg->spi, true, false);
1455                         }
1456                 }
1457
1458                 msg->actual_length += xfer->len;
1459         }
1460
1461 out:
1462         if (ret != 0 || !keep_cs)
1463                 spi_set_cs(msg->spi, false, false);
1464
1465         if (msg->status == -EINPROGRESS)
1466                 msg->status = ret;
1467
1468         if (msg->status && ctlr->handle_err)
1469                 ctlr->handle_err(ctlr, msg);
1470
1471         spi_finalize_current_message(ctlr);
1472
1473         return ret;
1474 }
1475
1476 /**
1477  * spi_finalize_current_transfer - report completion of a transfer
1478  * @ctlr: the controller reporting completion
1479  *
1480  * Called by SPI drivers using the core transfer_one_message()
1481  * implementation to notify it that the current interrupt driven
1482  * transfer has finished and the next one may be scheduled.
1483  */
1484 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1485 {
1486         complete(&ctlr->xfer_completion);
1487 }
1488 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1489
1490 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1491 {
1492         if (ctlr->auto_runtime_pm) {
1493                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1494                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1495         }
1496 }
1497
1498 /**
1499  * __spi_pump_messages - function which processes spi message queue
1500  * @ctlr: controller to process queue for
1501  * @in_kthread: true if we are in the context of the message pump thread
1502  *
1503  * This function checks if there is any spi message in the queue that
1504  * needs processing and if so call out to the driver to initialize hardware
1505  * and transfer each message.
1506  *
1507  * Note that it is called both from the kthread itself and also from
1508  * inside spi_sync(); the queue extraction handling at the top of the
1509  * function should deal with this safely.
1510  */
1511 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1512 {
1513         struct spi_transfer *xfer;
1514         struct spi_message *msg;
1515         bool was_busy = false;
1516         unsigned long flags;
1517         int ret;
1518
1519         /* Lock queue */
1520         spin_lock_irqsave(&ctlr->queue_lock, flags);
1521
1522         /* Make sure we are not already running a message */
1523         if (ctlr->cur_msg) {
1524                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1525                 return;
1526         }
1527
1528         /* If another context is idling the device then defer */
1529         if (ctlr->idling) {
1530                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1531                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1532                 return;
1533         }
1534
1535         /* Check if the queue is idle */
1536         if (list_empty(&ctlr->queue) || !ctlr->running) {
1537                 if (!ctlr->busy) {
1538                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1539                         return;
1540                 }
1541
1542                 /* Defer any non-atomic teardown to the thread */
1543                 if (!in_kthread) {
1544                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1545                             !ctlr->unprepare_transfer_hardware) {
1546                                 spi_idle_runtime_pm(ctlr);
1547                                 ctlr->busy = false;
1548                                 trace_spi_controller_idle(ctlr);
1549                         } else {
1550                                 kthread_queue_work(ctlr->kworker,
1551                                                    &ctlr->pump_messages);
1552                         }
1553                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1554                         return;
1555                 }
1556
1557                 ctlr->busy = false;
1558                 ctlr->idling = true;
1559                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1560
1561                 kfree(ctlr->dummy_rx);
1562                 ctlr->dummy_rx = NULL;
1563                 kfree(ctlr->dummy_tx);
1564                 ctlr->dummy_tx = NULL;
1565                 if (ctlr->unprepare_transfer_hardware &&
1566                     ctlr->unprepare_transfer_hardware(ctlr))
1567                         dev_err(&ctlr->dev,
1568                                 "failed to unprepare transfer hardware\n");
1569                 spi_idle_runtime_pm(ctlr);
1570                 trace_spi_controller_idle(ctlr);
1571
1572                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1573                 ctlr->idling = false;
1574                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1575                 return;
1576         }
1577
1578         /* Extract head of queue */
1579         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1580         ctlr->cur_msg = msg;
1581
1582         list_del_init(&msg->queue);
1583         if (ctlr->busy)
1584                 was_busy = true;
1585         else
1586                 ctlr->busy = true;
1587         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1588
1589         mutex_lock(&ctlr->io_mutex);
1590
1591         if (!was_busy && ctlr->auto_runtime_pm) {
1592                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1593                 if (ret < 0) {
1594                         pm_runtime_put_noidle(ctlr->dev.parent);
1595                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1596                                 ret);
1597                         mutex_unlock(&ctlr->io_mutex);
1598                         return;
1599                 }
1600         }
1601
1602         if (!was_busy)
1603                 trace_spi_controller_busy(ctlr);
1604
1605         if (!was_busy && ctlr->prepare_transfer_hardware) {
1606                 ret = ctlr->prepare_transfer_hardware(ctlr);
1607                 if (ret) {
1608                         dev_err(&ctlr->dev,
1609                                 "failed to prepare transfer hardware: %d\n",
1610                                 ret);
1611
1612                         if (ctlr->auto_runtime_pm)
1613                                 pm_runtime_put(ctlr->dev.parent);
1614
1615                         msg->status = ret;
1616                         spi_finalize_current_message(ctlr);
1617
1618                         mutex_unlock(&ctlr->io_mutex);
1619                         return;
1620                 }
1621         }
1622
1623         trace_spi_message_start(msg);
1624
1625         if (ctlr->prepare_message) {
1626                 ret = ctlr->prepare_message(ctlr, msg);
1627                 if (ret) {
1628                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1629                                 ret);
1630                         msg->status = ret;
1631                         spi_finalize_current_message(ctlr);
1632                         goto out;
1633                 }
1634                 ctlr->cur_msg_prepared = true;
1635         }
1636
1637         ret = spi_map_msg(ctlr, msg);
1638         if (ret) {
1639                 msg->status = ret;
1640                 spi_finalize_current_message(ctlr);
1641                 goto out;
1642         }
1643
1644         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1645                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1646                         xfer->ptp_sts_word_pre = 0;
1647                         ptp_read_system_prets(xfer->ptp_sts);
1648                 }
1649         }
1650
1651         ret = ctlr->transfer_one_message(ctlr, msg);
1652         if (ret) {
1653                 dev_err(&ctlr->dev,
1654                         "failed to transfer one message from queue\n");
1655                 goto out;
1656         }
1657
1658 out:
1659         mutex_unlock(&ctlr->io_mutex);
1660
1661         /* Prod the scheduler in case transfer_one() was busy waiting */
1662         if (!ret)
1663                 cond_resched();
1664 }
1665
1666 /**
1667  * spi_pump_messages - kthread work function which processes spi message queue
1668  * @work: pointer to kthread work struct contained in the controller struct
1669  */
1670 static void spi_pump_messages(struct kthread_work *work)
1671 {
1672         struct spi_controller *ctlr =
1673                 container_of(work, struct spi_controller, pump_messages);
1674
1675         __spi_pump_messages(ctlr, true);
1676 }
1677
1678 /**
1679  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1680  *                          TX timestamp for the requested byte from the SPI
1681  *                          transfer. The frequency with which this function
1682  *                          must be called (once per word, once for the whole
1683  *                          transfer, once per batch of words etc) is arbitrary
1684  *                          as long as the @tx buffer offset is greater than or
1685  *                          equal to the requested byte at the time of the
1686  *                          call. The timestamp is only taken once, at the
1687  *                          first such call. It is assumed that the driver
1688  *                          advances its @tx buffer pointer monotonically.
1689  * @ctlr: Pointer to the spi_controller structure of the driver
1690  * @xfer: Pointer to the transfer being timestamped
1691  * @progress: How many words (not bytes) have been transferred so far
1692  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1693  *            transfer, for less jitter in time measurement. Only compatible
1694  *            with PIO drivers. If true, must follow up with
1695  *            spi_take_timestamp_post or otherwise system will crash.
1696  *            WARNING: for fully predictable results, the CPU frequency must
1697  *            also be under control (governor).
1698  */
1699 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1700                             struct spi_transfer *xfer,
1701                             size_t progress, bool irqs_off)
1702 {
1703         if (!xfer->ptp_sts)
1704                 return;
1705
1706         if (xfer->timestamped)
1707                 return;
1708
1709         if (progress > xfer->ptp_sts_word_pre)
1710                 return;
1711
1712         /* Capture the resolution of the timestamp */
1713         xfer->ptp_sts_word_pre = progress;
1714
1715         if (irqs_off) {
1716                 local_irq_save(ctlr->irq_flags);
1717                 preempt_disable();
1718         }
1719
1720         ptp_read_system_prets(xfer->ptp_sts);
1721 }
1722 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1723
1724 /**
1725  * spi_take_timestamp_post - helper for drivers to collect the end of the
1726  *                           TX timestamp for the requested byte from the SPI
1727  *                           transfer. Can be called with an arbitrary
1728  *                           frequency: only the first call where @tx exceeds
1729  *                           or is equal to the requested word will be
1730  *                           timestamped.
1731  * @ctlr: Pointer to the spi_controller structure of the driver
1732  * @xfer: Pointer to the transfer being timestamped
1733  * @progress: How many words (not bytes) have been transferred so far
1734  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1735  */
1736 void spi_take_timestamp_post(struct spi_controller *ctlr,
1737                              struct spi_transfer *xfer,
1738                              size_t progress, bool irqs_off)
1739 {
1740         if (!xfer->ptp_sts)
1741                 return;
1742
1743         if (xfer->timestamped)
1744                 return;
1745
1746         if (progress < xfer->ptp_sts_word_post)
1747                 return;
1748
1749         ptp_read_system_postts(xfer->ptp_sts);
1750
1751         if (irqs_off) {
1752                 local_irq_restore(ctlr->irq_flags);
1753                 preempt_enable();
1754         }
1755
1756         /* Capture the resolution of the timestamp */
1757         xfer->ptp_sts_word_post = progress;
1758
1759         xfer->timestamped = true;
1760 }
1761 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1762
1763 /**
1764  * spi_set_thread_rt - set the controller to pump at realtime priority
1765  * @ctlr: controller to boost priority of
1766  *
1767  * This can be called because the controller requested realtime priority
1768  * (by setting the ->rt value before calling spi_register_controller()) or
1769  * because a device on the bus said that its transfers needed realtime
1770  * priority.
1771  *
1772  * NOTE: at the moment if any device on a bus says it needs realtime then
1773  * the thread will be at realtime priority for all transfers on that
1774  * controller.  If this eventually becomes a problem we may see if we can
1775  * find a way to boost the priority only temporarily during relevant
1776  * transfers.
1777  */
1778 static void spi_set_thread_rt(struct spi_controller *ctlr)
1779 {
1780         dev_info(&ctlr->dev,
1781                 "will run message pump with realtime priority\n");
1782         sched_set_fifo(ctlr->kworker->task);
1783 }
1784
1785 static int spi_init_queue(struct spi_controller *ctlr)
1786 {
1787         ctlr->running = false;
1788         ctlr->busy = false;
1789
1790         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1791         if (IS_ERR(ctlr->kworker)) {
1792                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1793                 return PTR_ERR(ctlr->kworker);
1794         }
1795
1796         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1797
1798         /*
1799          * Controller config will indicate if this controller should run the
1800          * message pump with high (realtime) priority to reduce the transfer
1801          * latency on the bus by minimising the delay between a transfer
1802          * request and the scheduling of the message pump thread. Without this
1803          * setting the message pump thread will remain at default priority.
1804          */
1805         if (ctlr->rt)
1806                 spi_set_thread_rt(ctlr);
1807
1808         return 0;
1809 }
1810
1811 /**
1812  * spi_get_next_queued_message() - called by driver to check for queued
1813  * messages
1814  * @ctlr: the controller to check for queued messages
1815  *
1816  * If there are more messages in the queue, the next message is returned from
1817  * this call.
1818  *
1819  * Return: the next message in the queue, else NULL if the queue is empty.
1820  */
1821 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1822 {
1823         struct spi_message *next;
1824         unsigned long flags;
1825
1826         /* get a pointer to the next message, if any */
1827         spin_lock_irqsave(&ctlr->queue_lock, flags);
1828         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1829                                         queue);
1830         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1831
1832         return next;
1833 }
1834 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1835
1836 /**
1837  * spi_finalize_current_message() - the current message is complete
1838  * @ctlr: the controller to return the message to
1839  *
1840  * Called by the driver to notify the core that the message in the front of the
1841  * queue is complete and can be removed from the queue.
1842  */
1843 void spi_finalize_current_message(struct spi_controller *ctlr)
1844 {
1845         struct spi_transfer *xfer;
1846         struct spi_message *mesg;
1847         unsigned long flags;
1848         int ret;
1849
1850         spin_lock_irqsave(&ctlr->queue_lock, flags);
1851         mesg = ctlr->cur_msg;
1852         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853
1854         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1855                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1856                         ptp_read_system_postts(xfer->ptp_sts);
1857                         xfer->ptp_sts_word_post = xfer->len;
1858                 }
1859         }
1860
1861         if (unlikely(ctlr->ptp_sts_supported))
1862                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1863                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1864
1865         spi_unmap_msg(ctlr, mesg);
1866
1867         /* In the prepare_messages callback the spi bus has the opportunity to
1868          * split a transfer to smaller chunks.
1869          * Release splited transfers here since spi_map_msg is done on the
1870          * splited transfers.
1871          */
1872         spi_res_release(ctlr, mesg);
1873
1874         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1875                 ret = ctlr->unprepare_message(ctlr, mesg);
1876                 if (ret) {
1877                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1878                                 ret);
1879                 }
1880         }
1881
1882         spin_lock_irqsave(&ctlr->queue_lock, flags);
1883         ctlr->cur_msg = NULL;
1884         ctlr->cur_msg_prepared = false;
1885         ctlr->fallback = false;
1886         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1887         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1888
1889         trace_spi_message_done(mesg);
1890
1891         mesg->state = NULL;
1892         if (mesg->complete)
1893                 mesg->complete(mesg->context);
1894 }
1895 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1896
1897 static int spi_start_queue(struct spi_controller *ctlr)
1898 {
1899         unsigned long flags;
1900
1901         spin_lock_irqsave(&ctlr->queue_lock, flags);
1902
1903         if (ctlr->running || ctlr->busy) {
1904                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1905                 return -EBUSY;
1906         }
1907
1908         ctlr->running = true;
1909         ctlr->cur_msg = NULL;
1910         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1911
1912         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1913
1914         return 0;
1915 }
1916
1917 static int spi_stop_queue(struct spi_controller *ctlr)
1918 {
1919         unsigned long flags;
1920         unsigned limit = 500;
1921         int ret = 0;
1922
1923         spin_lock_irqsave(&ctlr->queue_lock, flags);
1924
1925         /*
1926          * This is a bit lame, but is optimized for the common execution path.
1927          * A wait_queue on the ctlr->busy could be used, but then the common
1928          * execution path (pump_messages) would be required to call wake_up or
1929          * friends on every SPI message. Do this instead.
1930          */
1931         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1932                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1933                 usleep_range(10000, 11000);
1934                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1935         }
1936
1937         if (!list_empty(&ctlr->queue) || ctlr->busy)
1938                 ret = -EBUSY;
1939         else
1940                 ctlr->running = false;
1941
1942         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1943
1944         if (ret) {
1945                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1946                 return ret;
1947         }
1948         return ret;
1949 }
1950
1951 static int spi_destroy_queue(struct spi_controller *ctlr)
1952 {
1953         int ret;
1954
1955         ret = spi_stop_queue(ctlr);
1956
1957         /*
1958          * kthread_flush_worker will block until all work is done.
1959          * If the reason that stop_queue timed out is that the work will never
1960          * finish, then it does no good to call flush/stop thread, so
1961          * return anyway.
1962          */
1963         if (ret) {
1964                 dev_err(&ctlr->dev, "problem destroying queue\n");
1965                 return ret;
1966         }
1967
1968         kthread_destroy_worker(ctlr->kworker);
1969
1970         return 0;
1971 }
1972
1973 static int __spi_queued_transfer(struct spi_device *spi,
1974                                  struct spi_message *msg,
1975                                  bool need_pump)
1976 {
1977         struct spi_controller *ctlr = spi->controller;
1978         unsigned long flags;
1979
1980         spin_lock_irqsave(&ctlr->queue_lock, flags);
1981
1982         if (!ctlr->running) {
1983                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984                 return -ESHUTDOWN;
1985         }
1986         msg->actual_length = 0;
1987         msg->status = -EINPROGRESS;
1988
1989         list_add_tail(&msg->queue, &ctlr->queue);
1990         if (!ctlr->busy && need_pump)
1991                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1992
1993         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1994         return 0;
1995 }
1996
1997 /**
1998  * spi_queued_transfer - transfer function for queued transfers
1999  * @spi: spi device which is requesting transfer
2000  * @msg: spi message which is to handled is queued to driver queue
2001  *
2002  * Return: zero on success, else a negative error code.
2003  */
2004 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2005 {
2006         return __spi_queued_transfer(spi, msg, true);
2007 }
2008
2009 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2010 {
2011         int ret;
2012
2013         ctlr->transfer = spi_queued_transfer;
2014         if (!ctlr->transfer_one_message)
2015                 ctlr->transfer_one_message = spi_transfer_one_message;
2016
2017         /* Initialize and start queue */
2018         ret = spi_init_queue(ctlr);
2019         if (ret) {
2020                 dev_err(&ctlr->dev, "problem initializing queue\n");
2021                 goto err_init_queue;
2022         }
2023         ctlr->queued = true;
2024         ret = spi_start_queue(ctlr);
2025         if (ret) {
2026                 dev_err(&ctlr->dev, "problem starting queue\n");
2027                 goto err_start_queue;
2028         }
2029
2030         return 0;
2031
2032 err_start_queue:
2033         spi_destroy_queue(ctlr);
2034 err_init_queue:
2035         return ret;
2036 }
2037
2038 /**
2039  * spi_flush_queue - Send all pending messages in the queue from the callers'
2040  *                   context
2041  * @ctlr: controller to process queue for
2042  *
2043  * This should be used when one wants to ensure all pending messages have been
2044  * sent before doing something. Is used by the spi-mem code to make sure SPI
2045  * memory operations do not preempt regular SPI transfers that have been queued
2046  * before the spi-mem operation.
2047  */
2048 void spi_flush_queue(struct spi_controller *ctlr)
2049 {
2050         if (ctlr->transfer == spi_queued_transfer)
2051                 __spi_pump_messages(ctlr, false);
2052 }
2053
2054 /*-------------------------------------------------------------------------*/
2055
2056 #if defined(CONFIG_OF)
2057 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2058                            struct device_node *nc)
2059 {
2060         u32 value;
2061         int rc;
2062
2063         /* Mode (clock phase/polarity/etc.) */
2064         if (of_property_read_bool(nc, "spi-cpha"))
2065                 spi->mode |= SPI_CPHA;
2066         if (of_property_read_bool(nc, "spi-cpol"))
2067                 spi->mode |= SPI_CPOL;
2068         if (of_property_read_bool(nc, "spi-3wire"))
2069                 spi->mode |= SPI_3WIRE;
2070         if (of_property_read_bool(nc, "spi-lsb-first"))
2071                 spi->mode |= SPI_LSB_FIRST;
2072         if (of_property_read_bool(nc, "spi-cs-high"))
2073                 spi->mode |= SPI_CS_HIGH;
2074
2075         /* Device DUAL/QUAD mode */
2076         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2077                 switch (value) {
2078                 case 0:
2079                         spi->mode |= SPI_NO_TX;
2080                         break;
2081                 case 1:
2082                         break;
2083                 case 2:
2084                         spi->mode |= SPI_TX_DUAL;
2085                         break;
2086                 case 4:
2087                         spi->mode |= SPI_TX_QUAD;
2088                         break;
2089                 case 8:
2090                         spi->mode |= SPI_TX_OCTAL;
2091                         break;
2092                 default:
2093                         dev_warn(&ctlr->dev,
2094                                 "spi-tx-bus-width %d not supported\n",
2095                                 value);
2096                         break;
2097                 }
2098         }
2099
2100         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2101                 switch (value) {
2102                 case 0:
2103                         spi->mode |= SPI_NO_RX;
2104                         break;
2105                 case 1:
2106                         break;
2107                 case 2:
2108                         spi->mode |= SPI_RX_DUAL;
2109                         break;
2110                 case 4:
2111                         spi->mode |= SPI_RX_QUAD;
2112                         break;
2113                 case 8:
2114                         spi->mode |= SPI_RX_OCTAL;
2115                         break;
2116                 default:
2117                         dev_warn(&ctlr->dev,
2118                                 "spi-rx-bus-width %d not supported\n",
2119                                 value);
2120                         break;
2121                 }
2122         }
2123
2124         if (spi_controller_is_slave(ctlr)) {
2125                 if (!of_node_name_eq(nc, "slave")) {
2126                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2127                                 nc);
2128                         return -EINVAL;
2129                 }
2130                 return 0;
2131         }
2132
2133         /* Device address */
2134         rc = of_property_read_u32(nc, "reg", &value);
2135         if (rc) {
2136                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2137                         nc, rc);
2138                 return rc;
2139         }
2140         spi->chip_select = value;
2141
2142         /* Device speed */
2143         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2144                 spi->max_speed_hz = value;
2145
2146         return 0;
2147 }
2148
2149 static struct spi_device *
2150 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2151 {
2152         struct spi_device *spi;
2153         int rc;
2154
2155         /* Alloc an spi_device */
2156         spi = spi_alloc_device(ctlr);
2157         if (!spi) {
2158                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2159                 rc = -ENOMEM;
2160                 goto err_out;
2161         }
2162
2163         /* Select device driver */
2164         rc = of_modalias_node(nc, spi->modalias,
2165                                 sizeof(spi->modalias));
2166         if (rc < 0) {
2167                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2168                 goto err_out;
2169         }
2170
2171         rc = of_spi_parse_dt(ctlr, spi, nc);
2172         if (rc)
2173                 goto err_out;
2174
2175         /* Store a pointer to the node in the device structure */
2176         of_node_get(nc);
2177         spi->dev.of_node = nc;
2178         spi->dev.fwnode = of_fwnode_handle(nc);
2179
2180         /* Register the new device */
2181         rc = spi_add_device(spi);
2182         if (rc) {
2183                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2184                 goto err_of_node_put;
2185         }
2186
2187         return spi;
2188
2189 err_of_node_put:
2190         of_node_put(nc);
2191 err_out:
2192         spi_dev_put(spi);
2193         return ERR_PTR(rc);
2194 }
2195
2196 /**
2197  * of_register_spi_devices() - Register child devices onto the SPI bus
2198  * @ctlr:       Pointer to spi_controller device
2199  *
2200  * Registers an spi_device for each child node of controller node which
2201  * represents a valid SPI slave.
2202  */
2203 static void of_register_spi_devices(struct spi_controller *ctlr)
2204 {
2205         struct spi_device *spi;
2206         struct device_node *nc;
2207
2208         if (!ctlr->dev.of_node)
2209                 return;
2210
2211         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2212                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2213                         continue;
2214                 spi = of_register_spi_device(ctlr, nc);
2215                 if (IS_ERR(spi)) {
2216                         dev_warn(&ctlr->dev,
2217                                  "Failed to create SPI device for %pOF\n", nc);
2218                         of_node_clear_flag(nc, OF_POPULATED);
2219                 }
2220         }
2221 }
2222 #else
2223 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2224 #endif
2225
2226 /**
2227  * spi_new_ancillary_device() - Register ancillary SPI device
2228  * @spi:         Pointer to the main SPI device registering the ancillary device
2229  * @chip_select: Chip Select of the ancillary device
2230  *
2231  * Register an ancillary SPI device; for example some chips have a chip-select
2232  * for normal device usage and another one for setup/firmware upload.
2233  *
2234  * This may only be called from main SPI device's probe routine.
2235  *
2236  * Return: 0 on success; negative errno on failure
2237  */
2238 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2239                                              u8 chip_select)
2240 {
2241         struct spi_device *ancillary;
2242         int rc = 0;
2243
2244         /* Alloc an spi_device */
2245         ancillary = spi_alloc_device(spi->controller);
2246         if (!ancillary) {
2247                 rc = -ENOMEM;
2248                 goto err_out;
2249         }
2250
2251         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2252
2253         /* Use provided chip-select for ancillary device */
2254         ancillary->chip_select = chip_select;
2255
2256         /* Take over SPI mode/speed from SPI main device */
2257         ancillary->max_speed_hz = spi->max_speed_hz;
2258         ancillary->mode = spi->mode;
2259
2260         /* Register the new device */
2261         rc = spi_add_device_locked(ancillary);
2262         if (rc) {
2263                 dev_err(&spi->dev, "failed to register ancillary device\n");
2264                 goto err_out;
2265         }
2266
2267         return ancillary;
2268
2269 err_out:
2270         spi_dev_put(ancillary);
2271         return ERR_PTR(rc);
2272 }
2273 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2274
2275 #ifdef CONFIG_ACPI
2276 struct acpi_spi_lookup {
2277         struct spi_controller   *ctlr;
2278         u32                     max_speed_hz;
2279         u32                     mode;
2280         int                     irq;
2281         u8                      bits_per_word;
2282         u8                      chip_select;
2283 };
2284
2285 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2286                                             struct acpi_spi_lookup *lookup)
2287 {
2288         const union acpi_object *obj;
2289
2290         if (!x86_apple_machine)
2291                 return;
2292
2293         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2294             && obj->buffer.length >= 4)
2295                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2296
2297         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2298             && obj->buffer.length == 8)
2299                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2300
2301         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2302             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2303                 lookup->mode |= SPI_LSB_FIRST;
2304
2305         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2306             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2307                 lookup->mode |= SPI_CPOL;
2308
2309         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2310             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2311                 lookup->mode |= SPI_CPHA;
2312 }
2313
2314 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2315 {
2316         struct acpi_spi_lookup *lookup = data;
2317         struct spi_controller *ctlr = lookup->ctlr;
2318
2319         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2320                 struct acpi_resource_spi_serialbus *sb;
2321                 acpi_handle parent_handle;
2322                 acpi_status status;
2323
2324                 sb = &ares->data.spi_serial_bus;
2325                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2326
2327                         status = acpi_get_handle(NULL,
2328                                                  sb->resource_source.string_ptr,
2329                                                  &parent_handle);
2330
2331                         if (ACPI_FAILURE(status) ||
2332                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2333                                 return -ENODEV;
2334
2335                         /*
2336                          * ACPI DeviceSelection numbering is handled by the
2337                          * host controller driver in Windows and can vary
2338                          * from driver to driver. In Linux we always expect
2339                          * 0 .. max - 1 so we need to ask the driver to
2340                          * translate between the two schemes.
2341                          */
2342                         if (ctlr->fw_translate_cs) {
2343                                 int cs = ctlr->fw_translate_cs(ctlr,
2344                                                 sb->device_selection);
2345                                 if (cs < 0)
2346                                         return cs;
2347                                 lookup->chip_select = cs;
2348                         } else {
2349                                 lookup->chip_select = sb->device_selection;
2350                         }
2351
2352                         lookup->max_speed_hz = sb->connection_speed;
2353                         lookup->bits_per_word = sb->data_bit_length;
2354
2355                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2356                                 lookup->mode |= SPI_CPHA;
2357                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2358                                 lookup->mode |= SPI_CPOL;
2359                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2360                                 lookup->mode |= SPI_CS_HIGH;
2361                 }
2362         } else if (lookup->irq < 0) {
2363                 struct resource r;
2364
2365                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2366                         lookup->irq = r.start;
2367         }
2368
2369         /* Always tell the ACPI core to skip this resource */
2370         return 1;
2371 }
2372
2373 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2374                                             struct acpi_device *adev)
2375 {
2376         acpi_handle parent_handle = NULL;
2377         struct list_head resource_list;
2378         struct acpi_spi_lookup lookup = {};
2379         struct spi_device *spi;
2380         int ret;
2381
2382         if (acpi_bus_get_status(adev) || !adev->status.present ||
2383             acpi_device_enumerated(adev))
2384                 return AE_OK;
2385
2386         lookup.ctlr             = ctlr;
2387         lookup.irq              = -1;
2388
2389         INIT_LIST_HEAD(&resource_list);
2390         ret = acpi_dev_get_resources(adev, &resource_list,
2391                                      acpi_spi_add_resource, &lookup);
2392         acpi_dev_free_resource_list(&resource_list);
2393
2394         if (ret < 0)
2395                 /* found SPI in _CRS but it points to another controller */
2396                 return AE_OK;
2397
2398         if (!lookup.max_speed_hz &&
2399             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2400             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2401                 /* Apple does not use _CRS but nested devices for SPI slaves */
2402                 acpi_spi_parse_apple_properties(adev, &lookup);
2403         }
2404
2405         if (!lookup.max_speed_hz)
2406                 return AE_OK;
2407
2408         spi = spi_alloc_device(ctlr);
2409         if (!spi) {
2410                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2411                         dev_name(&adev->dev));
2412                 return AE_NO_MEMORY;
2413         }
2414
2415
2416         ACPI_COMPANION_SET(&spi->dev, adev);
2417         spi->max_speed_hz       = lookup.max_speed_hz;
2418         spi->mode               |= lookup.mode;
2419         spi->irq                = lookup.irq;
2420         spi->bits_per_word      = lookup.bits_per_word;
2421         spi->chip_select        = lookup.chip_select;
2422
2423         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2424                           sizeof(spi->modalias));
2425
2426         if (spi->irq < 0)
2427                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2428
2429         acpi_device_set_enumerated(adev);
2430
2431         adev->power.flags.ignore_parent = true;
2432         if (spi_add_device(spi)) {
2433                 adev->power.flags.ignore_parent = false;
2434                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2435                         dev_name(&adev->dev));
2436                 spi_dev_put(spi);
2437         }
2438
2439         return AE_OK;
2440 }
2441
2442 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2443                                        void *data, void **return_value)
2444 {
2445         struct spi_controller *ctlr = data;
2446         struct acpi_device *adev;
2447
2448         if (acpi_bus_get_device(handle, &adev))
2449                 return AE_OK;
2450
2451         return acpi_register_spi_device(ctlr, adev);
2452 }
2453
2454 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2455
2456 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2457 {
2458         acpi_status status;
2459         acpi_handle handle;
2460
2461         handle = ACPI_HANDLE(ctlr->dev.parent);
2462         if (!handle)
2463                 return;
2464
2465         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2466                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2467                                      acpi_spi_add_device, NULL, ctlr, NULL);
2468         if (ACPI_FAILURE(status))
2469                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2470 }
2471 #else
2472 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2473 #endif /* CONFIG_ACPI */
2474
2475 static void spi_controller_release(struct device *dev)
2476 {
2477         struct spi_controller *ctlr;
2478
2479         ctlr = container_of(dev, struct spi_controller, dev);
2480         kfree(ctlr);
2481 }
2482
2483 static struct class spi_master_class = {
2484         .name           = "spi_master",
2485         .owner          = THIS_MODULE,
2486         .dev_release    = spi_controller_release,
2487         .dev_groups     = spi_master_groups,
2488 };
2489
2490 #ifdef CONFIG_SPI_SLAVE
2491 /**
2492  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2493  *                   controller
2494  * @spi: device used for the current transfer
2495  */
2496 int spi_slave_abort(struct spi_device *spi)
2497 {
2498         struct spi_controller *ctlr = spi->controller;
2499
2500         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2501                 return ctlr->slave_abort(ctlr);
2502
2503         return -ENOTSUPP;
2504 }
2505 EXPORT_SYMBOL_GPL(spi_slave_abort);
2506
2507 static int match_true(struct device *dev, void *data)
2508 {
2509         return 1;
2510 }
2511
2512 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2513                           char *buf)
2514 {
2515         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2516                                                    dev);
2517         struct device *child;
2518
2519         child = device_find_child(&ctlr->dev, NULL, match_true);
2520         return sprintf(buf, "%s\n",
2521                        child ? to_spi_device(child)->modalias : NULL);
2522 }
2523
2524 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2525                            const char *buf, size_t count)
2526 {
2527         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2528                                                    dev);
2529         struct spi_device *spi;
2530         struct device *child;
2531         char name[32];
2532         int rc;
2533
2534         rc = sscanf(buf, "%31s", name);
2535         if (rc != 1 || !name[0])
2536                 return -EINVAL;
2537
2538         child = device_find_child(&ctlr->dev, NULL, match_true);
2539         if (child) {
2540                 /* Remove registered slave */
2541                 device_unregister(child);
2542                 put_device(child);
2543         }
2544
2545         if (strcmp(name, "(null)")) {
2546                 /* Register new slave */
2547                 spi = spi_alloc_device(ctlr);
2548                 if (!spi)
2549                         return -ENOMEM;
2550
2551                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2552
2553                 rc = spi_add_device(spi);
2554                 if (rc) {
2555                         spi_dev_put(spi);
2556                         return rc;
2557                 }
2558         }
2559
2560         return count;
2561 }
2562
2563 static DEVICE_ATTR_RW(slave);
2564
2565 static struct attribute *spi_slave_attrs[] = {
2566         &dev_attr_slave.attr,
2567         NULL,
2568 };
2569
2570 static const struct attribute_group spi_slave_group = {
2571         .attrs = spi_slave_attrs,
2572 };
2573
2574 static const struct attribute_group *spi_slave_groups[] = {
2575         &spi_controller_statistics_group,
2576         &spi_slave_group,
2577         NULL,
2578 };
2579
2580 static struct class spi_slave_class = {
2581         .name           = "spi_slave",
2582         .owner          = THIS_MODULE,
2583         .dev_release    = spi_controller_release,
2584         .dev_groups     = spi_slave_groups,
2585 };
2586 #else
2587 extern struct class spi_slave_class;    /* dummy */
2588 #endif
2589
2590 /**
2591  * __spi_alloc_controller - allocate an SPI master or slave controller
2592  * @dev: the controller, possibly using the platform_bus
2593  * @size: how much zeroed driver-private data to allocate; the pointer to this
2594  *      memory is in the driver_data field of the returned device, accessible
2595  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2596  *      drivers granting DMA access to portions of their private data need to
2597  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2598  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2599  *      slave (true) controller
2600  * Context: can sleep
2601  *
2602  * This call is used only by SPI controller drivers, which are the
2603  * only ones directly touching chip registers.  It's how they allocate
2604  * an spi_controller structure, prior to calling spi_register_controller().
2605  *
2606  * This must be called from context that can sleep.
2607  *
2608  * The caller is responsible for assigning the bus number and initializing the
2609  * controller's methods before calling spi_register_controller(); and (after
2610  * errors adding the device) calling spi_controller_put() to prevent a memory
2611  * leak.
2612  *
2613  * Return: the SPI controller structure on success, else NULL.
2614  */
2615 struct spi_controller *__spi_alloc_controller(struct device *dev,
2616                                               unsigned int size, bool slave)
2617 {
2618         struct spi_controller   *ctlr;
2619         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2620
2621         if (!dev)
2622                 return NULL;
2623
2624         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2625         if (!ctlr)
2626                 return NULL;
2627
2628         device_initialize(&ctlr->dev);
2629         INIT_LIST_HEAD(&ctlr->queue);
2630         spin_lock_init(&ctlr->queue_lock);
2631         spin_lock_init(&ctlr->bus_lock_spinlock);
2632         mutex_init(&ctlr->bus_lock_mutex);
2633         mutex_init(&ctlr->io_mutex);
2634         mutex_init(&ctlr->add_lock);
2635         ctlr->bus_num = -1;
2636         ctlr->num_chipselect = 1;
2637         ctlr->slave = slave;
2638         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2639                 ctlr->dev.class = &spi_slave_class;
2640         else
2641                 ctlr->dev.class = &spi_master_class;
2642         ctlr->dev.parent = dev;
2643         pm_suspend_ignore_children(&ctlr->dev, true);
2644         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2645
2646         return ctlr;
2647 }
2648 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2649
2650 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2651 {
2652         spi_controller_put(*(struct spi_controller **)ctlr);
2653 }
2654
2655 /**
2656  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2657  * @dev: physical device of SPI controller
2658  * @size: how much zeroed driver-private data to allocate
2659  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2660  * Context: can sleep
2661  *
2662  * Allocate an SPI controller and automatically release a reference on it
2663  * when @dev is unbound from its driver.  Drivers are thus relieved from
2664  * having to call spi_controller_put().
2665  *
2666  * The arguments to this function are identical to __spi_alloc_controller().
2667  *
2668  * Return: the SPI controller structure on success, else NULL.
2669  */
2670 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2671                                                    unsigned int size,
2672                                                    bool slave)
2673 {
2674         struct spi_controller **ptr, *ctlr;
2675
2676         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2677                            GFP_KERNEL);
2678         if (!ptr)
2679                 return NULL;
2680
2681         ctlr = __spi_alloc_controller(dev, size, slave);
2682         if (ctlr) {
2683                 ctlr->devm_allocated = true;
2684                 *ptr = ctlr;
2685                 devres_add(dev, ptr);
2686         } else {
2687                 devres_free(ptr);
2688         }
2689
2690         return ctlr;
2691 }
2692 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2693
2694 #ifdef CONFIG_OF
2695 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2696 {
2697         int nb, i, *cs;
2698         struct device_node *np = ctlr->dev.of_node;
2699
2700         if (!np)
2701                 return 0;
2702
2703         nb = of_gpio_named_count(np, "cs-gpios");
2704         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2705
2706         /* Return error only for an incorrectly formed cs-gpios property */
2707         if (nb == 0 || nb == -ENOENT)
2708                 return 0;
2709         else if (nb < 0)
2710                 return nb;
2711
2712         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2713                           GFP_KERNEL);
2714         ctlr->cs_gpios = cs;
2715
2716         if (!ctlr->cs_gpios)
2717                 return -ENOMEM;
2718
2719         for (i = 0; i < ctlr->num_chipselect; i++)
2720                 cs[i] = -ENOENT;
2721
2722         for (i = 0; i < nb; i++)
2723                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2724
2725         return 0;
2726 }
2727 #else
2728 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2729 {
2730         return 0;
2731 }
2732 #endif
2733
2734 /**
2735  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2736  * @ctlr: The SPI master to grab GPIO descriptors for
2737  */
2738 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2739 {
2740         int nb, i;
2741         struct gpio_desc **cs;
2742         struct device *dev = &ctlr->dev;
2743         unsigned long native_cs_mask = 0;
2744         unsigned int num_cs_gpios = 0;
2745
2746         nb = gpiod_count(dev, "cs");
2747         if (nb < 0) {
2748                 /* No GPIOs at all is fine, else return the error */
2749                 if (nb == -ENOENT)
2750                         return 0;
2751                 return nb;
2752         }
2753
2754         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2755
2756         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2757                           GFP_KERNEL);
2758         if (!cs)
2759                 return -ENOMEM;
2760         ctlr->cs_gpiods = cs;
2761
2762         for (i = 0; i < nb; i++) {
2763                 /*
2764                  * Most chipselects are active low, the inverted
2765                  * semantics are handled by special quirks in gpiolib,
2766                  * so initializing them GPIOD_OUT_LOW here means
2767                  * "unasserted", in most cases this will drive the physical
2768                  * line high.
2769                  */
2770                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2771                                                       GPIOD_OUT_LOW);
2772                 if (IS_ERR(cs[i]))
2773                         return PTR_ERR(cs[i]);
2774
2775                 if (cs[i]) {
2776                         /*
2777                          * If we find a CS GPIO, name it after the device and
2778                          * chip select line.
2779                          */
2780                         char *gpioname;
2781
2782                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2783                                                   dev_name(dev), i);
2784                         if (!gpioname)
2785                                 return -ENOMEM;
2786                         gpiod_set_consumer_name(cs[i], gpioname);
2787                         num_cs_gpios++;
2788                         continue;
2789                 }
2790
2791                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2792                         dev_err(dev, "Invalid native chip select %d\n", i);
2793                         return -EINVAL;
2794                 }
2795                 native_cs_mask |= BIT(i);
2796         }
2797
2798         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2799
2800         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2801             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2802                 dev_err(dev, "No unused native chip select available\n");
2803                 return -EINVAL;
2804         }
2805
2806         return 0;
2807 }
2808
2809 static int spi_controller_check_ops(struct spi_controller *ctlr)
2810 {
2811         /*
2812          * The controller may implement only the high-level SPI-memory like
2813          * operations if it does not support regular SPI transfers, and this is
2814          * valid use case.
2815          * If ->mem_ops is NULL, we request that at least one of the
2816          * ->transfer_xxx() method be implemented.
2817          */
2818         if (ctlr->mem_ops) {
2819                 if (!ctlr->mem_ops->exec_op)
2820                         return -EINVAL;
2821         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2822                    !ctlr->transfer_one_message) {
2823                 return -EINVAL;
2824         }
2825
2826         return 0;
2827 }
2828
2829 /**
2830  * spi_register_controller - register SPI master or slave controller
2831  * @ctlr: initialized master, originally from spi_alloc_master() or
2832  *      spi_alloc_slave()
2833  * Context: can sleep
2834  *
2835  * SPI controllers connect to their drivers using some non-SPI bus,
2836  * such as the platform bus.  The final stage of probe() in that code
2837  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2838  *
2839  * SPI controllers use board specific (often SOC specific) bus numbers,
2840  * and board-specific addressing for SPI devices combines those numbers
2841  * with chip select numbers.  Since SPI does not directly support dynamic
2842  * device identification, boards need configuration tables telling which
2843  * chip is at which address.
2844  *
2845  * This must be called from context that can sleep.  It returns zero on
2846  * success, else a negative error code (dropping the controller's refcount).
2847  * After a successful return, the caller is responsible for calling
2848  * spi_unregister_controller().
2849  *
2850  * Return: zero on success, else a negative error code.
2851  */
2852 int spi_register_controller(struct spi_controller *ctlr)
2853 {
2854         struct device           *dev = ctlr->dev.parent;
2855         struct boardinfo        *bi;
2856         int                     status;
2857         int                     id, first_dynamic;
2858
2859         if (!dev)
2860                 return -ENODEV;
2861
2862         /*
2863          * Make sure all necessary hooks are implemented before registering
2864          * the SPI controller.
2865          */
2866         status = spi_controller_check_ops(ctlr);
2867         if (status)
2868                 return status;
2869
2870         if (ctlr->bus_num >= 0) {
2871                 /* devices with a fixed bus num must check-in with the num */
2872                 mutex_lock(&board_lock);
2873                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2874                         ctlr->bus_num + 1, GFP_KERNEL);
2875                 mutex_unlock(&board_lock);
2876                 if (WARN(id < 0, "couldn't get idr"))
2877                         return id == -ENOSPC ? -EBUSY : id;
2878                 ctlr->bus_num = id;
2879         } else if (ctlr->dev.of_node) {
2880                 /* allocate dynamic bus number using Linux idr */
2881                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2882                 if (id >= 0) {
2883                         ctlr->bus_num = id;
2884                         mutex_lock(&board_lock);
2885                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2886                                        ctlr->bus_num + 1, GFP_KERNEL);
2887                         mutex_unlock(&board_lock);
2888                         if (WARN(id < 0, "couldn't get idr"))
2889                                 return id == -ENOSPC ? -EBUSY : id;
2890                 }
2891         }
2892         if (ctlr->bus_num < 0) {
2893                 first_dynamic = of_alias_get_highest_id("spi");
2894                 if (first_dynamic < 0)
2895                         first_dynamic = 0;
2896                 else
2897                         first_dynamic++;
2898
2899                 mutex_lock(&board_lock);
2900                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2901                                0, GFP_KERNEL);
2902                 mutex_unlock(&board_lock);
2903                 if (WARN(id < 0, "couldn't get idr"))
2904                         return id;
2905                 ctlr->bus_num = id;
2906         }
2907         ctlr->bus_lock_flag = 0;
2908         init_completion(&ctlr->xfer_completion);
2909         if (!ctlr->max_dma_len)
2910                 ctlr->max_dma_len = INT_MAX;
2911
2912         /* register the device, then userspace will see it.
2913          * registration fails if the bus ID is in use.
2914          */
2915         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2916
2917         if (!spi_controller_is_slave(ctlr)) {
2918                 if (ctlr->use_gpio_descriptors) {
2919                         status = spi_get_gpio_descs(ctlr);
2920                         if (status)
2921                                 goto free_bus_id;
2922                         /*
2923                          * A controller using GPIO descriptors always
2924                          * supports SPI_CS_HIGH if need be.
2925                          */
2926                         ctlr->mode_bits |= SPI_CS_HIGH;
2927                 } else {
2928                         /* Legacy code path for GPIOs from DT */
2929                         status = of_spi_get_gpio_numbers(ctlr);
2930                         if (status)
2931                                 goto free_bus_id;
2932                 }
2933         }
2934
2935         /*
2936          * Even if it's just one always-selected device, there must
2937          * be at least one chipselect.
2938          */
2939         if (!ctlr->num_chipselect) {
2940                 status = -EINVAL;
2941                 goto free_bus_id;
2942         }
2943
2944         status = device_add(&ctlr->dev);
2945         if (status < 0)
2946                 goto free_bus_id;
2947         dev_dbg(dev, "registered %s %s\n",
2948                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2949                         dev_name(&ctlr->dev));
2950
2951         /*
2952          * If we're using a queued driver, start the queue. Note that we don't
2953          * need the queueing logic if the driver is only supporting high-level
2954          * memory operations.
2955          */
2956         if (ctlr->transfer) {
2957                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2958         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2959                 status = spi_controller_initialize_queue(ctlr);
2960                 if (status) {
2961                         device_del(&ctlr->dev);
2962                         goto free_bus_id;
2963                 }
2964         }
2965         /* add statistics */
2966         spin_lock_init(&ctlr->statistics.lock);
2967
2968         mutex_lock(&board_lock);
2969         list_add_tail(&ctlr->list, &spi_controller_list);
2970         list_for_each_entry(bi, &board_list, list)
2971                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2972         mutex_unlock(&board_lock);
2973
2974         /* Register devices from the device tree and ACPI */
2975         of_register_spi_devices(ctlr);
2976         acpi_register_spi_devices(ctlr);
2977         return status;
2978
2979 free_bus_id:
2980         mutex_lock(&board_lock);
2981         idr_remove(&spi_master_idr, ctlr->bus_num);
2982         mutex_unlock(&board_lock);
2983         return status;
2984 }
2985 EXPORT_SYMBOL_GPL(spi_register_controller);
2986
2987 static void devm_spi_unregister(void *ctlr)
2988 {
2989         spi_unregister_controller(ctlr);
2990 }
2991
2992 /**
2993  * devm_spi_register_controller - register managed SPI master or slave
2994  *      controller
2995  * @dev:    device managing SPI controller
2996  * @ctlr: initialized controller, originally from spi_alloc_master() or
2997  *      spi_alloc_slave()
2998  * Context: can sleep
2999  *
3000  * Register a SPI device as with spi_register_controller() which will
3001  * automatically be unregistered and freed.
3002  *
3003  * Return: zero on success, else a negative error code.
3004  */
3005 int devm_spi_register_controller(struct device *dev,
3006                                  struct spi_controller *ctlr)
3007 {
3008         int ret;
3009
3010         ret = spi_register_controller(ctlr);
3011         if (ret)
3012                 return ret;
3013
3014         return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3015 }
3016 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3017
3018 static int __unregister(struct device *dev, void *null)
3019 {
3020         spi_unregister_device(to_spi_device(dev));
3021         return 0;
3022 }
3023
3024 /**
3025  * spi_unregister_controller - unregister SPI master or slave controller
3026  * @ctlr: the controller being unregistered
3027  * Context: can sleep
3028  *
3029  * This call is used only by SPI controller drivers, which are the
3030  * only ones directly touching chip registers.
3031  *
3032  * This must be called from context that can sleep.
3033  *
3034  * Note that this function also drops a reference to the controller.
3035  */
3036 void spi_unregister_controller(struct spi_controller *ctlr)
3037 {
3038         struct spi_controller *found;
3039         int id = ctlr->bus_num;
3040
3041         /* Prevent addition of new devices, unregister existing ones */
3042         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3043                 mutex_lock(&ctlr->add_lock);
3044
3045         device_for_each_child(&ctlr->dev, NULL, __unregister);
3046
3047         /* First make sure that this controller was ever added */
3048         mutex_lock(&board_lock);
3049         found = idr_find(&spi_master_idr, id);
3050         mutex_unlock(&board_lock);
3051         if (ctlr->queued) {
3052                 if (spi_destroy_queue(ctlr))
3053                         dev_err(&ctlr->dev, "queue remove failed\n");
3054         }
3055         mutex_lock(&board_lock);
3056         list_del(&ctlr->list);
3057         mutex_unlock(&board_lock);
3058
3059         device_del(&ctlr->dev);
3060
3061         /* free bus id */
3062         mutex_lock(&board_lock);
3063         if (found == ctlr)
3064                 idr_remove(&spi_master_idr, id);
3065         mutex_unlock(&board_lock);
3066
3067         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3068                 mutex_unlock(&ctlr->add_lock);
3069
3070         /* Release the last reference on the controller if its driver
3071          * has not yet been converted to devm_spi_alloc_master/slave().
3072          */
3073         if (!ctlr->devm_allocated)
3074                 put_device(&ctlr->dev);
3075 }
3076 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3077
3078 int spi_controller_suspend(struct spi_controller *ctlr)
3079 {
3080         int ret;
3081
3082         /* Basically no-ops for non-queued controllers */
3083         if (!ctlr->queued)
3084                 return 0;
3085
3086         ret = spi_stop_queue(ctlr);
3087         if (ret)
3088                 dev_err(&ctlr->dev, "queue stop failed\n");
3089
3090         return ret;
3091 }
3092 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3093
3094 int spi_controller_resume(struct spi_controller *ctlr)
3095 {
3096         int ret;
3097
3098         if (!ctlr->queued)
3099                 return 0;
3100
3101         ret = spi_start_queue(ctlr);
3102         if (ret)
3103                 dev_err(&ctlr->dev, "queue restart failed\n");
3104
3105         return ret;
3106 }
3107 EXPORT_SYMBOL_GPL(spi_controller_resume);
3108
3109 /*-------------------------------------------------------------------------*/
3110
3111 /* Core methods for spi_message alterations */
3112
3113 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3114                                             struct spi_message *msg,
3115                                             void *res)
3116 {
3117         struct spi_replaced_transfers *rxfer = res;
3118         size_t i;
3119
3120         /* call extra callback if requested */
3121         if (rxfer->release)
3122                 rxfer->release(ctlr, msg, res);
3123
3124         /* insert replaced transfers back into the message */
3125         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3126
3127         /* remove the formerly inserted entries */
3128         for (i = 0; i < rxfer->inserted; i++)
3129                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3130 }
3131
3132 /**
3133  * spi_replace_transfers - replace transfers with several transfers
3134  *                         and register change with spi_message.resources
3135  * @msg:           the spi_message we work upon
3136  * @xfer_first:    the first spi_transfer we want to replace
3137  * @remove:        number of transfers to remove
3138  * @insert:        the number of transfers we want to insert instead
3139  * @release:       extra release code necessary in some circumstances
3140  * @extradatasize: extra data to allocate (with alignment guarantees
3141  *                 of struct @spi_transfer)
3142  * @gfp:           gfp flags
3143  *
3144  * Returns: pointer to @spi_replaced_transfers,
3145  *          PTR_ERR(...) in case of errors.
3146  */
3147 static struct spi_replaced_transfers *spi_replace_transfers(
3148         struct spi_message *msg,
3149         struct spi_transfer *xfer_first,
3150         size_t remove,
3151         size_t insert,
3152         spi_replaced_release_t release,
3153         size_t extradatasize,
3154         gfp_t gfp)
3155 {
3156         struct spi_replaced_transfers *rxfer;
3157         struct spi_transfer *xfer;
3158         size_t i;
3159
3160         /* allocate the structure using spi_res */
3161         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3162                               struct_size(rxfer, inserted_transfers, insert)
3163                               + extradatasize,
3164                               gfp);
3165         if (!rxfer)
3166                 return ERR_PTR(-ENOMEM);
3167
3168         /* the release code to invoke before running the generic release */
3169         rxfer->release = release;
3170
3171         /* assign extradata */
3172         if (extradatasize)
3173                 rxfer->extradata =
3174                         &rxfer->inserted_transfers[insert];
3175
3176         /* init the replaced_transfers list */
3177         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3178
3179         /* assign the list_entry after which we should reinsert
3180          * the @replaced_transfers - it may be spi_message.messages!
3181          */
3182         rxfer->replaced_after = xfer_first->transfer_list.prev;
3183
3184         /* remove the requested number of transfers */
3185         for (i = 0; i < remove; i++) {
3186                 /* if the entry after replaced_after it is msg->transfers
3187                  * then we have been requested to remove more transfers
3188                  * than are in the list
3189                  */
3190                 if (rxfer->replaced_after->next == &msg->transfers) {
3191                         dev_err(&msg->spi->dev,
3192                                 "requested to remove more spi_transfers than are available\n");
3193                         /* insert replaced transfers back into the message */
3194                         list_splice(&rxfer->replaced_transfers,
3195                                     rxfer->replaced_after);
3196
3197                         /* free the spi_replace_transfer structure */
3198                         spi_res_free(rxfer);
3199
3200                         /* and return with an error */
3201                         return ERR_PTR(-EINVAL);
3202                 }
3203
3204                 /* remove the entry after replaced_after from list of
3205                  * transfers and add it to list of replaced_transfers
3206                  */
3207                 list_move_tail(rxfer->replaced_after->next,
3208                                &rxfer->replaced_transfers);
3209         }
3210
3211         /* create copy of the given xfer with identical settings
3212          * based on the first transfer to get removed
3213          */
3214         for (i = 0; i < insert; i++) {
3215                 /* we need to run in reverse order */
3216                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3217
3218                 /* copy all spi_transfer data */
3219                 memcpy(xfer, xfer_first, sizeof(*xfer));
3220
3221                 /* add to list */
3222                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3223
3224                 /* clear cs_change and delay for all but the last */
3225                 if (i) {
3226                         xfer->cs_change = false;
3227                         xfer->delay.value = 0;
3228                 }
3229         }
3230
3231         /* set up inserted */
3232         rxfer->inserted = insert;
3233
3234         /* and register it with spi_res/spi_message */
3235         spi_res_add(msg, rxfer);
3236
3237         return rxfer;
3238 }
3239
3240 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3241                                         struct spi_message *msg,
3242                                         struct spi_transfer **xferp,
3243                                         size_t maxsize,
3244                                         gfp_t gfp)
3245 {
3246         struct spi_transfer *xfer = *xferp, *xfers;
3247         struct spi_replaced_transfers *srt;
3248         size_t offset;
3249         size_t count, i;
3250
3251         /* calculate how many we have to replace */
3252         count = DIV_ROUND_UP(xfer->len, maxsize);
3253
3254         /* create replacement */
3255         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3256         if (IS_ERR(srt))
3257                 return PTR_ERR(srt);
3258         xfers = srt->inserted_transfers;
3259
3260         /* now handle each of those newly inserted spi_transfers
3261          * note that the replacements spi_transfers all are preset
3262          * to the same values as *xferp, so tx_buf, rx_buf and len
3263          * are all identical (as well as most others)
3264          * so we just have to fix up len and the pointers.
3265          *
3266          * this also includes support for the depreciated
3267          * spi_message.is_dma_mapped interface
3268          */
3269
3270         /* the first transfer just needs the length modified, so we
3271          * run it outside the loop
3272          */
3273         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3274
3275         /* all the others need rx_buf/tx_buf also set */
3276         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3277                 /* update rx_buf, tx_buf and dma */
3278                 if (xfers[i].rx_buf)
3279                         xfers[i].rx_buf += offset;
3280                 if (xfers[i].rx_dma)
3281                         xfers[i].rx_dma += offset;
3282                 if (xfers[i].tx_buf)
3283                         xfers[i].tx_buf += offset;
3284                 if (xfers[i].tx_dma)
3285                         xfers[i].tx_dma += offset;
3286
3287                 /* update length */
3288                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3289         }
3290
3291         /* we set up xferp to the last entry we have inserted,
3292          * so that we skip those already split transfers
3293          */
3294         *xferp = &xfers[count - 1];
3295
3296         /* increment statistics counters */
3297         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3298                                        transfers_split_maxsize);
3299         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3300                                        transfers_split_maxsize);
3301
3302         return 0;
3303 }
3304
3305 /**
3306  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3307  *                               when an individual transfer exceeds a
3308  *                               certain size
3309  * @ctlr:    the @spi_controller for this transfer
3310  * @msg:   the @spi_message to transform
3311  * @maxsize:  the maximum when to apply this
3312  * @gfp: GFP allocation flags
3313  *
3314  * Return: status of transformation
3315  */
3316 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3317                                 struct spi_message *msg,
3318                                 size_t maxsize,
3319                                 gfp_t gfp)
3320 {
3321         struct spi_transfer *xfer;
3322         int ret;
3323
3324         /* iterate over the transfer_list,
3325          * but note that xfer is advanced to the last transfer inserted
3326          * to avoid checking sizes again unnecessarily (also xfer does
3327          * potentiall belong to a different list by the time the
3328          * replacement has happened
3329          */
3330         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3331                 if (xfer->len > maxsize) {
3332                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3333                                                            maxsize, gfp);
3334                         if (ret)
3335                                 return ret;
3336                 }
3337         }
3338
3339         return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3342
3343 /*-------------------------------------------------------------------------*/
3344
3345 /* Core methods for SPI controller protocol drivers.  Some of the
3346  * other core methods are currently defined as inline functions.
3347  */
3348
3349 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3350                                         u8 bits_per_word)
3351 {
3352         if (ctlr->bits_per_word_mask) {
3353                 /* Only 32 bits fit in the mask */
3354                 if (bits_per_word > 32)
3355                         return -EINVAL;
3356                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3357                         return -EINVAL;
3358         }
3359
3360         return 0;
3361 }
3362
3363 /**
3364  * spi_setup - setup SPI mode and clock rate
3365  * @spi: the device whose settings are being modified
3366  * Context: can sleep, and no requests are queued to the device
3367  *
3368  * SPI protocol drivers may need to update the transfer mode if the
3369  * device doesn't work with its default.  They may likewise need
3370  * to update clock rates or word sizes from initial values.  This function
3371  * changes those settings, and must be called from a context that can sleep.
3372  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3373  * effect the next time the device is selected and data is transferred to
3374  * or from it.  When this function returns, the spi device is deselected.
3375  *
3376  * Note that this call will fail if the protocol driver specifies an option
3377  * that the underlying controller or its driver does not support.  For
3378  * example, not all hardware supports wire transfers using nine bit words,
3379  * LSB-first wire encoding, or active-high chipselects.
3380  *
3381  * Return: zero on success, else a negative error code.
3382  */
3383 int spi_setup(struct spi_device *spi)
3384 {
3385         unsigned        bad_bits, ugly_bits;
3386         int             status;
3387
3388         /*
3389          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3390          * are set at the same time
3391          */
3392         if ((hweight_long(spi->mode &
3393                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3394             (hweight_long(spi->mode &
3395                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3396                 dev_err(&spi->dev,
3397                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3398                 return -EINVAL;
3399         }
3400         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3401          */
3402         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3403                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3404                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3405                 return -EINVAL;
3406         /* help drivers fail *cleanly* when they need options
3407          * that aren't supported with their current controller
3408          * SPI_CS_WORD has a fallback software implementation,
3409          * so it is ignored here.
3410          */
3411         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3412                                  SPI_NO_TX | SPI_NO_RX);
3413         /* nothing prevents from working with active-high CS in case if it
3414          * is driven by GPIO.
3415          */
3416         if (gpio_is_valid(spi->cs_gpio))
3417                 bad_bits &= ~SPI_CS_HIGH;
3418         ugly_bits = bad_bits &
3419                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3420                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3421         if (ugly_bits) {
3422                 dev_warn(&spi->dev,
3423                          "setup: ignoring unsupported mode bits %x\n",
3424                          ugly_bits);
3425                 spi->mode &= ~ugly_bits;
3426                 bad_bits &= ~ugly_bits;
3427         }
3428         if (bad_bits) {
3429                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3430                         bad_bits);
3431                 return -EINVAL;
3432         }
3433
3434         if (!spi->bits_per_word)
3435                 spi->bits_per_word = 8;
3436
3437         status = __spi_validate_bits_per_word(spi->controller,
3438                                               spi->bits_per_word);
3439         if (status)
3440                 return status;
3441
3442         if (spi->controller->max_speed_hz &&
3443             (!spi->max_speed_hz ||
3444              spi->max_speed_hz > spi->controller->max_speed_hz))
3445                 spi->max_speed_hz = spi->controller->max_speed_hz;
3446
3447         mutex_lock(&spi->controller->io_mutex);
3448
3449         if (spi->controller->setup) {
3450                 status = spi->controller->setup(spi);
3451                 if (status) {
3452                         mutex_unlock(&spi->controller->io_mutex);
3453                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3454                                 status);
3455                         return status;
3456                 }
3457         }
3458
3459         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3460                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3461                 if (status < 0) {
3462                         mutex_unlock(&spi->controller->io_mutex);
3463                         pm_runtime_put_noidle(spi->controller->dev.parent);
3464                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3465                                 status);
3466                         return status;
3467                 }
3468
3469                 /*
3470                  * We do not want to return positive value from pm_runtime_get,
3471                  * there are many instances of devices calling spi_setup() and
3472                  * checking for a non-zero return value instead of a negative
3473                  * return value.
3474                  */
3475                 status = 0;
3476
3477                 spi_set_cs(spi, false, true);
3478                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3479                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3480         } else {
3481                 spi_set_cs(spi, false, true);
3482         }
3483
3484         mutex_unlock(&spi->controller->io_mutex);
3485
3486         if (spi->rt && !spi->controller->rt) {
3487                 spi->controller->rt = true;
3488                 spi_set_thread_rt(spi->controller);
3489         }
3490
3491         trace_spi_setup(spi, status);
3492
3493         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3494                         spi->mode & SPI_MODE_X_MASK,
3495                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3496                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3497                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3498                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3499                         spi->bits_per_word, spi->max_speed_hz,
3500                         status);
3501
3502         return status;
3503 }
3504 EXPORT_SYMBOL_GPL(spi_setup);
3505
3506 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3507                                        struct spi_device *spi)
3508 {
3509         int delay1, delay2;
3510
3511         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3512         if (delay1 < 0)
3513                 return delay1;
3514
3515         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3516         if (delay2 < 0)
3517                 return delay2;
3518
3519         if (delay1 < delay2)
3520                 memcpy(&xfer->word_delay, &spi->word_delay,
3521                        sizeof(xfer->word_delay));
3522
3523         return 0;
3524 }
3525
3526 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3527 {
3528         struct spi_controller *ctlr = spi->controller;
3529         struct spi_transfer *xfer;
3530         int w_size;
3531
3532         if (list_empty(&message->transfers))
3533                 return -EINVAL;
3534
3535         /* If an SPI controller does not support toggling the CS line on each
3536          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3537          * for the CS line, we can emulate the CS-per-word hardware function by
3538          * splitting transfers into one-word transfers and ensuring that
3539          * cs_change is set for each transfer.
3540          */
3541         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3542                                           spi->cs_gpiod ||
3543                                           gpio_is_valid(spi->cs_gpio))) {
3544                 size_t maxsize;
3545                 int ret;
3546
3547                 maxsize = (spi->bits_per_word + 7) / 8;
3548
3549                 /* spi_split_transfers_maxsize() requires message->spi */
3550                 message->spi = spi;
3551
3552                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3553                                                   GFP_KERNEL);
3554                 if (ret)
3555                         return ret;
3556
3557                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3558                         /* don't change cs_change on the last entry in the list */
3559                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3560                                 break;
3561                         xfer->cs_change = 1;
3562                 }
3563         }
3564
3565         /* Half-duplex links include original MicroWire, and ones with
3566          * only one data pin like SPI_3WIRE (switches direction) or where
3567          * either MOSI or MISO is missing.  They can also be caused by
3568          * software limitations.
3569          */
3570         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3571             (spi->mode & SPI_3WIRE)) {
3572                 unsigned flags = ctlr->flags;
3573
3574                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3575                         if (xfer->rx_buf && xfer->tx_buf)
3576                                 return -EINVAL;
3577                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3578                                 return -EINVAL;
3579                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3580                                 return -EINVAL;
3581                 }
3582         }
3583
3584         /**
3585          * Set transfer bits_per_word and max speed as spi device default if
3586          * it is not set for this transfer.
3587          * Set transfer tx_nbits and rx_nbits as single transfer default
3588          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3589          * Ensure transfer word_delay is at least as long as that required by
3590          * device itself.
3591          */
3592         message->frame_length = 0;
3593         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3594                 xfer->effective_speed_hz = 0;
3595                 message->frame_length += xfer->len;
3596                 if (!xfer->bits_per_word)
3597                         xfer->bits_per_word = spi->bits_per_word;
3598
3599                 if (!xfer->speed_hz)
3600                         xfer->speed_hz = spi->max_speed_hz;
3601
3602                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3603                         xfer->speed_hz = ctlr->max_speed_hz;
3604
3605                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3606                         return -EINVAL;
3607
3608                 /*
3609                  * SPI transfer length should be multiple of SPI word size
3610                  * where SPI word size should be power-of-two multiple
3611                  */
3612                 if (xfer->bits_per_word <= 8)
3613                         w_size = 1;
3614                 else if (xfer->bits_per_word <= 16)
3615                         w_size = 2;
3616                 else
3617                         w_size = 4;
3618
3619                 /* No partial transfers accepted */
3620                 if (xfer->len % w_size)
3621                         return -EINVAL;
3622
3623                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3624                     xfer->speed_hz < ctlr->min_speed_hz)
3625                         return -EINVAL;
3626
3627                 if (xfer->tx_buf && !xfer->tx_nbits)
3628                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3629                 if (xfer->rx_buf && !xfer->rx_nbits)
3630                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3631                 /* check transfer tx/rx_nbits:
3632                  * 1. check the value matches one of single, dual and quad
3633                  * 2. check tx/rx_nbits match the mode in spi_device
3634                  */
3635                 if (xfer->tx_buf) {
3636                         if (spi->mode & SPI_NO_TX)
3637                                 return -EINVAL;
3638                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3639                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3640                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3641                                 return -EINVAL;
3642                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3643                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3644                                 return -EINVAL;
3645                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3646                                 !(spi->mode & SPI_TX_QUAD))
3647                                 return -EINVAL;
3648                 }
3649                 /* check transfer rx_nbits */
3650                 if (xfer->rx_buf) {
3651                         if (spi->mode & SPI_NO_RX)
3652                                 return -EINVAL;
3653                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3654                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3655                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3656                                 return -EINVAL;
3657                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3658                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3659                                 return -EINVAL;
3660                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3661                                 !(spi->mode & SPI_RX_QUAD))
3662                                 return -EINVAL;
3663                 }
3664
3665                 if (_spi_xfer_word_delay_update(xfer, spi))
3666                         return -EINVAL;
3667         }
3668
3669         message->status = -EINPROGRESS;
3670
3671         return 0;
3672 }
3673
3674 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3675 {
3676         struct spi_controller *ctlr = spi->controller;
3677         struct spi_transfer *xfer;
3678
3679         /*
3680          * Some controllers do not support doing regular SPI transfers. Return
3681          * ENOTSUPP when this is the case.
3682          */
3683         if (!ctlr->transfer)
3684                 return -ENOTSUPP;
3685
3686         message->spi = spi;
3687
3688         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3689         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3690
3691         trace_spi_message_submit(message);
3692
3693         if (!ctlr->ptp_sts_supported) {
3694                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3695                         xfer->ptp_sts_word_pre = 0;
3696                         ptp_read_system_prets(xfer->ptp_sts);
3697                 }
3698         }
3699
3700         return ctlr->transfer(spi, message);
3701 }
3702
3703 /**
3704  * spi_async - asynchronous SPI transfer
3705  * @spi: device with which data will be exchanged
3706  * @message: describes the data transfers, including completion callback
3707  * Context: any (irqs may be blocked, etc)
3708  *
3709  * This call may be used in_irq and other contexts which can't sleep,
3710  * as well as from task contexts which can sleep.
3711  *
3712  * The completion callback is invoked in a context which can't sleep.
3713  * Before that invocation, the value of message->status is undefined.
3714  * When the callback is issued, message->status holds either zero (to
3715  * indicate complete success) or a negative error code.  After that
3716  * callback returns, the driver which issued the transfer request may
3717  * deallocate the associated memory; it's no longer in use by any SPI
3718  * core or controller driver code.
3719  *
3720  * Note that although all messages to a spi_device are handled in
3721  * FIFO order, messages may go to different devices in other orders.
3722  * Some device might be higher priority, or have various "hard" access
3723  * time requirements, for example.
3724  *
3725  * On detection of any fault during the transfer, processing of
3726  * the entire message is aborted, and the device is deselected.
3727  * Until returning from the associated message completion callback,
3728  * no other spi_message queued to that device will be processed.
3729  * (This rule applies equally to all the synchronous transfer calls,
3730  * which are wrappers around this core asynchronous primitive.)
3731  *
3732  * Return: zero on success, else a negative error code.
3733  */
3734 int spi_async(struct spi_device *spi, struct spi_message *message)
3735 {
3736         struct spi_controller *ctlr = spi->controller;
3737         int ret;
3738         unsigned long flags;
3739
3740         ret = __spi_validate(spi, message);
3741         if (ret != 0)
3742                 return ret;
3743
3744         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3745
3746         if (ctlr->bus_lock_flag)
3747                 ret = -EBUSY;
3748         else
3749                 ret = __spi_async(spi, message);
3750
3751         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3752
3753         return ret;
3754 }
3755 EXPORT_SYMBOL_GPL(spi_async);
3756
3757 /**
3758  * spi_async_locked - version of spi_async with exclusive bus usage
3759  * @spi: device with which data will be exchanged
3760  * @message: describes the data transfers, including completion callback
3761  * Context: any (irqs may be blocked, etc)
3762  *
3763  * This call may be used in_irq and other contexts which can't sleep,
3764  * as well as from task contexts which can sleep.
3765  *
3766  * The completion callback is invoked in a context which can't sleep.
3767  * Before that invocation, the value of message->status is undefined.
3768  * When the callback is issued, message->status holds either zero (to
3769  * indicate complete success) or a negative error code.  After that
3770  * callback returns, the driver which issued the transfer request may
3771  * deallocate the associated memory; it's no longer in use by any SPI
3772  * core or controller driver code.
3773  *
3774  * Note that although all messages to a spi_device are handled in
3775  * FIFO order, messages may go to different devices in other orders.
3776  * Some device might be higher priority, or have various "hard" access
3777  * time requirements, for example.
3778  *
3779  * On detection of any fault during the transfer, processing of
3780  * the entire message is aborted, and the device is deselected.
3781  * Until returning from the associated message completion callback,
3782  * no other spi_message queued to that device will be processed.
3783  * (This rule applies equally to all the synchronous transfer calls,
3784  * which are wrappers around this core asynchronous primitive.)
3785  *
3786  * Return: zero on success, else a negative error code.
3787  */
3788 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3789 {
3790         struct spi_controller *ctlr = spi->controller;
3791         int ret;
3792         unsigned long flags;
3793
3794         ret = __spi_validate(spi, message);
3795         if (ret != 0)
3796                 return ret;
3797
3798         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3799
3800         ret = __spi_async(spi, message);
3801
3802         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3803
3804         return ret;
3805
3806 }
3807
3808 /*-------------------------------------------------------------------------*/
3809
3810 /* Utility methods for SPI protocol drivers, layered on
3811  * top of the core.  Some other utility methods are defined as
3812  * inline functions.
3813  */
3814
3815 static void spi_complete(void *arg)
3816 {
3817         complete(arg);
3818 }
3819
3820 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3821 {
3822         DECLARE_COMPLETION_ONSTACK(done);
3823         int status;
3824         struct spi_controller *ctlr = spi->controller;
3825         unsigned long flags;
3826
3827         status = __spi_validate(spi, message);
3828         if (status != 0)
3829                 return status;
3830
3831         message->complete = spi_complete;
3832         message->context = &done;
3833         message->spi = spi;
3834
3835         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3836         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3837
3838         /* If we're not using the legacy transfer method then we will
3839          * try to transfer in the calling context so special case.
3840          * This code would be less tricky if we could remove the
3841          * support for driver implemented message queues.
3842          */
3843         if (ctlr->transfer == spi_queued_transfer) {
3844                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3845
3846                 trace_spi_message_submit(message);
3847
3848                 status = __spi_queued_transfer(spi, message, false);
3849
3850                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3851         } else {
3852                 status = spi_async_locked(spi, message);
3853         }
3854
3855         if (status == 0) {
3856                 /* Push out the messages in the calling context if we
3857                  * can.
3858                  */
3859                 if (ctlr->transfer == spi_queued_transfer) {
3860                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3861                                                        spi_sync_immediate);
3862                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3863                                                        spi_sync_immediate);
3864                         __spi_pump_messages(ctlr, false);
3865                 }
3866
3867                 wait_for_completion(&done);
3868                 status = message->status;
3869         }
3870         message->context = NULL;
3871         return status;
3872 }
3873
3874 /**
3875  * spi_sync - blocking/synchronous SPI data transfers
3876  * @spi: device with which data will be exchanged
3877  * @message: describes the data transfers
3878  * Context: can sleep
3879  *
3880  * This call may only be used from a context that may sleep.  The sleep
3881  * is non-interruptible, and has no timeout.  Low-overhead controller
3882  * drivers may DMA directly into and out of the message buffers.
3883  *
3884  * Note that the SPI device's chip select is active during the message,
3885  * and then is normally disabled between messages.  Drivers for some
3886  * frequently-used devices may want to minimize costs of selecting a chip,
3887  * by leaving it selected in anticipation that the next message will go
3888  * to the same chip.  (That may increase power usage.)
3889  *
3890  * Also, the caller is guaranteeing that the memory associated with the
3891  * message will not be freed before this call returns.
3892  *
3893  * Return: zero on success, else a negative error code.
3894  */
3895 int spi_sync(struct spi_device *spi, struct spi_message *message)
3896 {
3897         int ret;
3898
3899         mutex_lock(&spi->controller->bus_lock_mutex);
3900         ret = __spi_sync(spi, message);
3901         mutex_unlock(&spi->controller->bus_lock_mutex);
3902
3903         return ret;
3904 }
3905 EXPORT_SYMBOL_GPL(spi_sync);
3906
3907 /**
3908  * spi_sync_locked - version of spi_sync with exclusive bus usage
3909  * @spi: device with which data will be exchanged
3910  * @message: describes the data transfers
3911  * Context: can sleep
3912  *
3913  * This call may only be used from a context that may sleep.  The sleep
3914  * is non-interruptible, and has no timeout.  Low-overhead controller
3915  * drivers may DMA directly into and out of the message buffers.
3916  *
3917  * This call should be used by drivers that require exclusive access to the
3918  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3919  * be released by a spi_bus_unlock call when the exclusive access is over.
3920  *
3921  * Return: zero on success, else a negative error code.
3922  */
3923 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3924 {
3925         return __spi_sync(spi, message);
3926 }
3927 EXPORT_SYMBOL_GPL(spi_sync_locked);
3928
3929 /**
3930  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3931  * @ctlr: SPI bus master that should be locked for exclusive bus access
3932  * Context: can sleep
3933  *
3934  * This call may only be used from a context that may sleep.  The sleep
3935  * is non-interruptible, and has no timeout.
3936  *
3937  * This call should be used by drivers that require exclusive access to the
3938  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3939  * exclusive access is over. Data transfer must be done by spi_sync_locked
3940  * and spi_async_locked calls when the SPI bus lock is held.
3941  *
3942  * Return: always zero.
3943  */
3944 int spi_bus_lock(struct spi_controller *ctlr)
3945 {
3946         unsigned long flags;
3947
3948         mutex_lock(&ctlr->bus_lock_mutex);
3949
3950         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3951         ctlr->bus_lock_flag = 1;
3952         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3953
3954         /* mutex remains locked until spi_bus_unlock is called */
3955
3956         return 0;
3957 }
3958 EXPORT_SYMBOL_GPL(spi_bus_lock);
3959
3960 /**
3961  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3962  * @ctlr: SPI bus master that was locked for exclusive bus access
3963  * Context: can sleep
3964  *
3965  * This call may only be used from a context that may sleep.  The sleep
3966  * is non-interruptible, and has no timeout.
3967  *
3968  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3969  * call.
3970  *
3971  * Return: always zero.
3972  */
3973 int spi_bus_unlock(struct spi_controller *ctlr)
3974 {
3975         ctlr->bus_lock_flag = 0;
3976
3977         mutex_unlock(&ctlr->bus_lock_mutex);
3978
3979         return 0;
3980 }
3981 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3982
3983 /* portable code must never pass more than 32 bytes */
3984 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3985
3986 static u8       *buf;
3987
3988 /**
3989  * spi_write_then_read - SPI synchronous write followed by read
3990  * @spi: device with which data will be exchanged
3991  * @txbuf: data to be written (need not be dma-safe)
3992  * @n_tx: size of txbuf, in bytes
3993  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3994  * @n_rx: size of rxbuf, in bytes
3995  * Context: can sleep
3996  *
3997  * This performs a half duplex MicroWire style transaction with the
3998  * device, sending txbuf and then reading rxbuf.  The return value
3999  * is zero for success, else a negative errno status code.
4000  * This call may only be used from a context that may sleep.
4001  *
4002  * Parameters to this routine are always copied using a small buffer.
4003  * Performance-sensitive or bulk transfer code should instead use
4004  * spi_{async,sync}() calls with dma-safe buffers.
4005  *
4006  * Return: zero on success, else a negative error code.
4007  */
4008 int spi_write_then_read(struct spi_device *spi,
4009                 const void *txbuf, unsigned n_tx,
4010                 void *rxbuf, unsigned n_rx)
4011 {
4012         static DEFINE_MUTEX(lock);
4013
4014         int                     status;
4015         struct spi_message      message;
4016         struct spi_transfer     x[2];
4017         u8                      *local_buf;
4018
4019         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4020          * copying here, (as a pure convenience thing), but we can
4021          * keep heap costs out of the hot path unless someone else is
4022          * using the pre-allocated buffer or the transfer is too large.
4023          */
4024         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4025                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4026                                     GFP_KERNEL | GFP_DMA);
4027                 if (!local_buf)
4028                         return -ENOMEM;
4029         } else {
4030                 local_buf = buf;
4031         }
4032
4033         spi_message_init(&message);
4034         memset(x, 0, sizeof(x));
4035         if (n_tx) {
4036                 x[0].len = n_tx;
4037                 spi_message_add_tail(&x[0], &message);
4038         }
4039         if (n_rx) {
4040                 x[1].len = n_rx;
4041                 spi_message_add_tail(&x[1], &message);
4042         }
4043
4044         memcpy(local_buf, txbuf, n_tx);
4045         x[0].tx_buf = local_buf;
4046         x[1].rx_buf = local_buf + n_tx;
4047
4048         /* do the i/o */
4049         status = spi_sync(spi, &message);
4050         if (status == 0)
4051                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4052
4053         if (x[0].tx_buf == buf)
4054                 mutex_unlock(&lock);
4055         else
4056                 kfree(local_buf);
4057
4058         return status;
4059 }
4060 EXPORT_SYMBOL_GPL(spi_write_then_read);
4061
4062 /*-------------------------------------------------------------------------*/
4063
4064 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4065 /* must call put_device() when done with returned spi_device device */
4066 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4067 {
4068         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4069
4070         return dev ? to_spi_device(dev) : NULL;
4071 }
4072
4073 /* the spi controllers are not using spi_bus, so we find it with another way */
4074 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4075 {
4076         struct device *dev;
4077
4078         dev = class_find_device_by_of_node(&spi_master_class, node);
4079         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4080                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4081         if (!dev)
4082                 return NULL;
4083
4084         /* reference got in class_find_device */
4085         return container_of(dev, struct spi_controller, dev);
4086 }
4087
4088 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4089                          void *arg)
4090 {
4091         struct of_reconfig_data *rd = arg;
4092         struct spi_controller *ctlr;
4093         struct spi_device *spi;
4094
4095         switch (of_reconfig_get_state_change(action, arg)) {
4096         case OF_RECONFIG_CHANGE_ADD:
4097                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4098                 if (ctlr == NULL)
4099                         return NOTIFY_OK;       /* not for us */
4100
4101                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4102                         put_device(&ctlr->dev);
4103                         return NOTIFY_OK;
4104                 }
4105
4106                 spi = of_register_spi_device(ctlr, rd->dn);
4107                 put_device(&ctlr->dev);
4108
4109                 if (IS_ERR(spi)) {
4110                         pr_err("%s: failed to create for '%pOF'\n",
4111                                         __func__, rd->dn);
4112                         of_node_clear_flag(rd->dn, OF_POPULATED);
4113                         return notifier_from_errno(PTR_ERR(spi));
4114                 }
4115                 break;
4116
4117         case OF_RECONFIG_CHANGE_REMOVE:
4118                 /* already depopulated? */
4119                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4120                         return NOTIFY_OK;
4121
4122                 /* find our device by node */
4123                 spi = of_find_spi_device_by_node(rd->dn);
4124                 if (spi == NULL)
4125                         return NOTIFY_OK;       /* no? not meant for us */
4126
4127                 /* unregister takes one ref away */
4128                 spi_unregister_device(spi);
4129
4130                 /* and put the reference of the find */
4131                 put_device(&spi->dev);
4132                 break;
4133         }
4134
4135         return NOTIFY_OK;
4136 }
4137
4138 static struct notifier_block spi_of_notifier = {
4139         .notifier_call = of_spi_notify,
4140 };
4141 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4142 extern struct notifier_block spi_of_notifier;
4143 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4144
4145 #if IS_ENABLED(CONFIG_ACPI)
4146 static int spi_acpi_controller_match(struct device *dev, const void *data)
4147 {
4148         return ACPI_COMPANION(dev->parent) == data;
4149 }
4150
4151 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4152 {
4153         struct device *dev;
4154
4155         dev = class_find_device(&spi_master_class, NULL, adev,
4156                                 spi_acpi_controller_match);
4157         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4158                 dev = class_find_device(&spi_slave_class, NULL, adev,
4159                                         spi_acpi_controller_match);
4160         if (!dev)
4161                 return NULL;
4162
4163         return container_of(dev, struct spi_controller, dev);
4164 }
4165
4166 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4167 {
4168         struct device *dev;
4169
4170         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4171         return to_spi_device(dev);
4172 }
4173
4174 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4175                            void *arg)
4176 {
4177         struct acpi_device *adev = arg;
4178         struct spi_controller *ctlr;
4179         struct spi_device *spi;
4180
4181         switch (value) {
4182         case ACPI_RECONFIG_DEVICE_ADD:
4183                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4184                 if (!ctlr)
4185                         break;
4186
4187                 acpi_register_spi_device(ctlr, adev);
4188                 put_device(&ctlr->dev);
4189                 break;
4190         case ACPI_RECONFIG_DEVICE_REMOVE:
4191                 if (!acpi_device_enumerated(adev))
4192                         break;
4193
4194                 spi = acpi_spi_find_device_by_adev(adev);
4195                 if (!spi)
4196                         break;
4197
4198                 spi_unregister_device(spi);
4199                 put_device(&spi->dev);
4200                 break;
4201         }
4202
4203         return NOTIFY_OK;
4204 }
4205
4206 static struct notifier_block spi_acpi_notifier = {
4207         .notifier_call = acpi_spi_notify,
4208 };
4209 #else
4210 extern struct notifier_block spi_acpi_notifier;
4211 #endif
4212
4213 static int __init spi_init(void)
4214 {
4215         int     status;
4216
4217         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4218         if (!buf) {
4219                 status = -ENOMEM;
4220                 goto err0;
4221         }
4222
4223         status = bus_register(&spi_bus_type);
4224         if (status < 0)
4225                 goto err1;
4226
4227         status = class_register(&spi_master_class);
4228         if (status < 0)
4229                 goto err2;
4230
4231         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4232                 status = class_register(&spi_slave_class);
4233                 if (status < 0)
4234                         goto err3;
4235         }
4236
4237         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4238                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4239         if (IS_ENABLED(CONFIG_ACPI))
4240                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4241
4242         return 0;
4243
4244 err3:
4245         class_unregister(&spi_master_class);
4246 err2:
4247         bus_unregister(&spi_bus_type);
4248 err1:
4249         kfree(buf);
4250         buf = NULL;
4251 err0:
4252         return status;
4253 }
4254
4255 /* board_info is normally registered in arch_initcall(),
4256  * but even essential drivers wait till later
4257  *
4258  * REVISIT only boardinfo really needs static linking. the rest (device and
4259  * driver registration) _could_ be dynamically linked (modular) ... costs
4260  * include needing to have boardinfo data structures be much more public.
4261  */
4262 postcore_initcall(spi_init);
This page took 0.28245 seconds and 4 git commands to generate.