]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_message *msg)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if (spi_valid_txbuf(msg, xfer))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if (spi_valid_rxbuf(msg, xfer))
334                 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336         u64_stats_update_end(&stats->syncp);
337         put_cpu();
338 }
339
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346         while (id->name[0]) {
347                 if (!strcmp(name, id->name))
348                         return id;
349                 id++;
350         }
351         return NULL;
352 }
353
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358         return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364         const void *match;
365
366         match = device_get_match_data(&sdev->dev);
367         if (match)
368                 return match;
369
370         return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376         const struct spi_device *spi = to_spi_device(dev);
377         const struct spi_driver *sdrv = to_spi_driver(drv);
378
379         /* Check override first, and if set, only use the named driver */
380         if (spi->driver_override)
381                 return strcmp(spi->driver_override, drv->name) == 0;
382
383         /* Attempt an OF style match */
384         if (of_driver_match_device(dev, drv))
385                 return 1;
386
387         /* Then try ACPI */
388         if (acpi_driver_match_device(dev, drv))
389                 return 1;
390
391         if (sdrv->id_table)
392                 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394         return strcmp(spi->modalias, drv->name) == 0;
395 }
396
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399         const struct spi_device         *spi = to_spi_device(dev);
400         int rc;
401
402         rc = acpi_device_uevent_modalias(dev, env);
403         if (rc != -ENODEV)
404                 return rc;
405
406         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
409 static int spi_probe(struct device *dev)
410 {
411         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
412         struct spi_device               *spi = to_spi_device(dev);
413         int ret;
414
415         ret = of_clk_set_defaults(dev->of_node, false);
416         if (ret)
417                 return ret;
418
419         if (dev->of_node) {
420                 spi->irq = of_irq_get(dev->of_node, 0);
421                 if (spi->irq == -EPROBE_DEFER)
422                         return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
423                 if (spi->irq < 0)
424                         spi->irq = 0;
425         }
426
427         if (has_acpi_companion(dev) && spi->irq < 0) {
428                 struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
429
430                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
431                 if (spi->irq == -EPROBE_DEFER)
432                         return -EPROBE_DEFER;
433                 if (spi->irq < 0)
434                         spi->irq = 0;
435         }
436
437         ret = dev_pm_domain_attach(dev, true);
438         if (ret)
439                 return ret;
440
441         if (sdrv->probe) {
442                 ret = sdrv->probe(spi);
443                 if (ret)
444                         dev_pm_domain_detach(dev, true);
445         }
446
447         return ret;
448 }
449
450 static void spi_remove(struct device *dev)
451 {
452         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
453
454         if (sdrv->remove)
455                 sdrv->remove(to_spi_device(dev));
456
457         dev_pm_domain_detach(dev, true);
458 }
459
460 static void spi_shutdown(struct device *dev)
461 {
462         if (dev->driver) {
463                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
464
465                 if (sdrv->shutdown)
466                         sdrv->shutdown(to_spi_device(dev));
467         }
468 }
469
470 const struct bus_type spi_bus_type = {
471         .name           = "spi",
472         .dev_groups     = spi_dev_groups,
473         .match          = spi_match_device,
474         .uevent         = spi_uevent,
475         .probe          = spi_probe,
476         .remove         = spi_remove,
477         .shutdown       = spi_shutdown,
478 };
479 EXPORT_SYMBOL_GPL(spi_bus_type);
480
481 /**
482  * __spi_register_driver - register a SPI driver
483  * @owner: owner module of the driver to register
484  * @sdrv: the driver to register
485  * Context: can sleep
486  *
487  * Return: zero on success, else a negative error code.
488  */
489 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
490 {
491         sdrv->driver.owner = owner;
492         sdrv->driver.bus = &spi_bus_type;
493
494         /*
495          * For Really Good Reasons we use spi: modaliases not of:
496          * modaliases for DT so module autoloading won't work if we
497          * don't have a spi_device_id as well as a compatible string.
498          */
499         if (sdrv->driver.of_match_table) {
500                 const struct of_device_id *of_id;
501
502                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
503                      of_id++) {
504                         const char *of_name;
505
506                         /* Strip off any vendor prefix */
507                         of_name = strnchr(of_id->compatible,
508                                           sizeof(of_id->compatible), ',');
509                         if (of_name)
510                                 of_name++;
511                         else
512                                 of_name = of_id->compatible;
513
514                         if (sdrv->id_table) {
515                                 const struct spi_device_id *spi_id;
516
517                                 spi_id = spi_match_id(sdrv->id_table, of_name);
518                                 if (spi_id)
519                                         continue;
520                         } else {
521                                 if (strcmp(sdrv->driver.name, of_name) == 0)
522                                         continue;
523                         }
524
525                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
526                                 sdrv->driver.name, of_id->compatible);
527                 }
528         }
529
530         return driver_register(&sdrv->driver);
531 }
532 EXPORT_SYMBOL_GPL(__spi_register_driver);
533
534 /*-------------------------------------------------------------------------*/
535
536 /*
537  * SPI devices should normally not be created by SPI device drivers; that
538  * would make them board-specific.  Similarly with SPI controller drivers.
539  * Device registration normally goes into like arch/.../mach.../board-YYY.c
540  * with other readonly (flashable) information about mainboard devices.
541  */
542
543 struct boardinfo {
544         struct list_head        list;
545         struct spi_board_info   board_info;
546 };
547
548 static LIST_HEAD(board_list);
549 static LIST_HEAD(spi_controller_list);
550
551 /*
552  * Used to protect add/del operation for board_info list and
553  * spi_controller list, and their matching process also used
554  * to protect object of type struct idr.
555  */
556 static DEFINE_MUTEX(board_lock);
557
558 /**
559  * spi_alloc_device - Allocate a new SPI device
560  * @ctlr: Controller to which device is connected
561  * Context: can sleep
562  *
563  * Allows a driver to allocate and initialize a spi_device without
564  * registering it immediately.  This allows a driver to directly
565  * fill the spi_device with device parameters before calling
566  * spi_add_device() on it.
567  *
568  * Caller is responsible to call spi_add_device() on the returned
569  * spi_device structure to add it to the SPI controller.  If the caller
570  * needs to discard the spi_device without adding it, then it should
571  * call spi_dev_put() on it.
572  *
573  * Return: a pointer to the new device, or NULL.
574  */
575 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
576 {
577         struct spi_device       *spi;
578
579         if (!spi_controller_get(ctlr))
580                 return NULL;
581
582         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
583         if (!spi) {
584                 spi_controller_put(ctlr);
585                 return NULL;
586         }
587
588         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
589         if (!spi->pcpu_statistics) {
590                 kfree(spi);
591                 spi_controller_put(ctlr);
592                 return NULL;
593         }
594
595         spi->controller = ctlr;
596         spi->dev.parent = &ctlr->dev;
597         spi->dev.bus = &spi_bus_type;
598         spi->dev.release = spidev_release;
599         spi->mode = ctlr->buswidth_override_bits;
600
601         device_initialize(&spi->dev);
602         return spi;
603 }
604 EXPORT_SYMBOL_GPL(spi_alloc_device);
605
606 static void spi_dev_set_name(struct spi_device *spi)
607 {
608         struct device *dev = &spi->dev;
609         struct fwnode_handle *fwnode = dev_fwnode(dev);
610
611         if (is_acpi_device_node(fwnode)) {
612                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
613                 return;
614         }
615
616         if (is_software_node(fwnode)) {
617                 dev_set_name(dev, "spi-%pfwP", fwnode);
618                 return;
619         }
620
621         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
622                      spi_get_chipselect(spi, 0));
623 }
624
625 /*
626  * Zero(0) is a valid physical CS value and can be located at any
627  * logical CS in the spi->chip_select[]. If all the physical CS
628  * are initialized to 0 then It would be difficult to differentiate
629  * between a valid physical CS 0 & an unused logical CS whose physical
630  * CS can be 0. As a solution to this issue initialize all the CS to -1.
631  * Now all the unused logical CS will have -1 physical CS value & can be
632  * ignored while performing physical CS validity checks.
633  */
634 #define SPI_INVALID_CS          ((s8)-1)
635
636 static inline bool is_valid_cs(s8 chip_select)
637 {
638         return chip_select != SPI_INVALID_CS;
639 }
640
641 static inline int spi_dev_check_cs(struct device *dev,
642                                    struct spi_device *spi, u8 idx,
643                                    struct spi_device *new_spi, u8 new_idx)
644 {
645         u8 cs, cs_new;
646         u8 idx_new;
647
648         cs = spi_get_chipselect(spi, idx);
649         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
650                 cs_new = spi_get_chipselect(new_spi, idx_new);
651                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
652                         dev_err(dev, "chipselect %u already in use\n", cs_new);
653                         return -EBUSY;
654                 }
655         }
656         return 0;
657 }
658
659 static int spi_dev_check(struct device *dev, void *data)
660 {
661         struct spi_device *spi = to_spi_device(dev);
662         struct spi_device *new_spi = data;
663         int status, idx;
664
665         if (spi->controller == new_spi->controller) {
666                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
667                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
668                         if (status)
669                                 return status;
670                 }
671         }
672         return 0;
673 }
674
675 static void spi_cleanup(struct spi_device *spi)
676 {
677         if (spi->controller->cleanup)
678                 spi->controller->cleanup(spi);
679 }
680
681 static int __spi_add_device(struct spi_device *spi)
682 {
683         struct spi_controller *ctlr = spi->controller;
684         struct device *dev = ctlr->dev.parent;
685         int status, idx;
686         u8 cs;
687
688         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689                 /* Chipselects are numbered 0..max; validate. */
690                 cs = spi_get_chipselect(spi, idx);
691                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
692                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
693                                 ctlr->num_chipselect);
694                         return -EINVAL;
695                 }
696         }
697
698         /*
699          * Make sure that multiple logical CS doesn't map to the same physical CS.
700          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
701          */
702         if (!spi_controller_is_target(ctlr)) {
703                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
704                         status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
705                         if (status)
706                                 return status;
707                 }
708         }
709
710         /* Set the bus ID string */
711         spi_dev_set_name(spi);
712
713         /*
714          * We need to make sure there's no other device with this
715          * chipselect **BEFORE** we call setup(), else we'll trash
716          * its configuration.
717          */
718         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
719         if (status)
720                 return status;
721
722         /* Controller may unregister concurrently */
723         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
724             !device_is_registered(&ctlr->dev)) {
725                 return -ENODEV;
726         }
727
728         if (ctlr->cs_gpiods) {
729                 u8 cs;
730
731                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
732                         cs = spi_get_chipselect(spi, idx);
733                         if (is_valid_cs(cs))
734                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
735                 }
736         }
737
738         /*
739          * Drivers may modify this initial i/o setup, but will
740          * normally rely on the device being setup.  Devices
741          * using SPI_CS_HIGH can't coexist well otherwise...
742          */
743         status = spi_setup(spi);
744         if (status < 0) {
745                 dev_err(dev, "can't setup %s, status %d\n",
746                                 dev_name(&spi->dev), status);
747                 return status;
748         }
749
750         /* Device may be bound to an active driver when this returns */
751         status = device_add(&spi->dev);
752         if (status < 0) {
753                 dev_err(dev, "can't add %s, status %d\n",
754                                 dev_name(&spi->dev), status);
755                 spi_cleanup(spi);
756         } else {
757                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
758         }
759
760         return status;
761 }
762
763 /**
764  * spi_add_device - Add spi_device allocated with spi_alloc_device
765  * @spi: spi_device to register
766  *
767  * Companion function to spi_alloc_device.  Devices allocated with
768  * spi_alloc_device can be added onto the SPI bus with this function.
769  *
770  * Return: 0 on success; negative errno on failure
771  */
772 int spi_add_device(struct spi_device *spi)
773 {
774         struct spi_controller *ctlr = spi->controller;
775         int status;
776
777         /* Set the bus ID string */
778         spi_dev_set_name(spi);
779
780         mutex_lock(&ctlr->add_lock);
781         status = __spi_add_device(spi);
782         mutex_unlock(&ctlr->add_lock);
783         return status;
784 }
785 EXPORT_SYMBOL_GPL(spi_add_device);
786
787 static void spi_set_all_cs_unused(struct spi_device *spi)
788 {
789         u8 idx;
790
791         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
792                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
793 }
794
795 /**
796  * spi_new_device - instantiate one new SPI device
797  * @ctlr: Controller to which device is connected
798  * @chip: Describes the SPI device
799  * Context: can sleep
800  *
801  * On typical mainboards, this is purely internal; and it's not needed
802  * after board init creates the hard-wired devices.  Some development
803  * platforms may not be able to use spi_register_board_info though, and
804  * this is exported so that for example a USB or parport based adapter
805  * driver could add devices (which it would learn about out-of-band).
806  *
807  * Return: the new device, or NULL.
808  */
809 struct spi_device *spi_new_device(struct spi_controller *ctlr,
810                                   struct spi_board_info *chip)
811 {
812         struct spi_device       *proxy;
813         int                     status;
814
815         /*
816          * NOTE:  caller did any chip->bus_num checks necessary.
817          *
818          * Also, unless we change the return value convention to use
819          * error-or-pointer (not NULL-or-pointer), troubleshootability
820          * suggests syslogged diagnostics are best here (ugh).
821          */
822
823         proxy = spi_alloc_device(ctlr);
824         if (!proxy)
825                 return NULL;
826
827         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
828
829         /* Use provided chip-select for proxy device */
830         spi_set_all_cs_unused(proxy);
831         spi_set_chipselect(proxy, 0, chip->chip_select);
832
833         proxy->max_speed_hz = chip->max_speed_hz;
834         proxy->mode = chip->mode;
835         proxy->irq = chip->irq;
836         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
837         proxy->dev.platform_data = (void *) chip->platform_data;
838         proxy->controller_data = chip->controller_data;
839         proxy->controller_state = NULL;
840         /*
841          * By default spi->chip_select[0] will hold the physical CS number,
842          * so set bit 0 in spi->cs_index_mask.
843          */
844         proxy->cs_index_mask = BIT(0);
845
846         if (chip->swnode) {
847                 status = device_add_software_node(&proxy->dev, chip->swnode);
848                 if (status) {
849                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
850                                 chip->modalias, status);
851                         goto err_dev_put;
852                 }
853         }
854
855         status = spi_add_device(proxy);
856         if (status < 0)
857                 goto err_dev_put;
858
859         return proxy;
860
861 err_dev_put:
862         device_remove_software_node(&proxy->dev);
863         spi_dev_put(proxy);
864         return NULL;
865 }
866 EXPORT_SYMBOL_GPL(spi_new_device);
867
868 /**
869  * spi_unregister_device - unregister a single SPI device
870  * @spi: spi_device to unregister
871  *
872  * Start making the passed SPI device vanish. Normally this would be handled
873  * by spi_unregister_controller().
874  */
875 void spi_unregister_device(struct spi_device *spi)
876 {
877         if (!spi)
878                 return;
879
880         if (spi->dev.of_node) {
881                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
882                 of_node_put(spi->dev.of_node);
883         }
884         if (ACPI_COMPANION(&spi->dev))
885                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
886         device_remove_software_node(&spi->dev);
887         device_del(&spi->dev);
888         spi_cleanup(spi);
889         put_device(&spi->dev);
890 }
891 EXPORT_SYMBOL_GPL(spi_unregister_device);
892
893 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
894                                               struct spi_board_info *bi)
895 {
896         struct spi_device *dev;
897
898         if (ctlr->bus_num != bi->bus_num)
899                 return;
900
901         dev = spi_new_device(ctlr, bi);
902         if (!dev)
903                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
904                         bi->modalias);
905 }
906
907 /**
908  * spi_register_board_info - register SPI devices for a given board
909  * @info: array of chip descriptors
910  * @n: how many descriptors are provided
911  * Context: can sleep
912  *
913  * Board-specific early init code calls this (probably during arch_initcall)
914  * with segments of the SPI device table.  Any device nodes are created later,
915  * after the relevant parent SPI controller (bus_num) is defined.  We keep
916  * this table of devices forever, so that reloading a controller driver will
917  * not make Linux forget about these hard-wired devices.
918  *
919  * Other code can also call this, e.g. a particular add-on board might provide
920  * SPI devices through its expansion connector, so code initializing that board
921  * would naturally declare its SPI devices.
922  *
923  * The board info passed can safely be __initdata ... but be careful of
924  * any embedded pointers (platform_data, etc), they're copied as-is.
925  *
926  * Return: zero on success, else a negative error code.
927  */
928 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
929 {
930         struct boardinfo *bi;
931         int i;
932
933         if (!n)
934                 return 0;
935
936         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
937         if (!bi)
938                 return -ENOMEM;
939
940         for (i = 0; i < n; i++, bi++, info++) {
941                 struct spi_controller *ctlr;
942
943                 memcpy(&bi->board_info, info, sizeof(*info));
944
945                 mutex_lock(&board_lock);
946                 list_add_tail(&bi->list, &board_list);
947                 list_for_each_entry(ctlr, &spi_controller_list, list)
948                         spi_match_controller_to_boardinfo(ctlr,
949                                                           &bi->board_info);
950                 mutex_unlock(&board_lock);
951         }
952
953         return 0;
954 }
955
956 /*-------------------------------------------------------------------------*/
957
958 /* Core methods for SPI resource management */
959
960 /**
961  * spi_res_alloc - allocate a spi resource that is life-cycle managed
962  *                 during the processing of a spi_message while using
963  *                 spi_transfer_one
964  * @spi:     the SPI device for which we allocate memory
965  * @release: the release code to execute for this resource
966  * @size:    size to alloc and return
967  * @gfp:     GFP allocation flags
968  *
969  * Return: the pointer to the allocated data
970  *
971  * This may get enhanced in the future to allocate from a memory pool
972  * of the @spi_device or @spi_controller to avoid repeated allocations.
973  */
974 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
975                            size_t size, gfp_t gfp)
976 {
977         struct spi_res *sres;
978
979         sres = kzalloc(sizeof(*sres) + size, gfp);
980         if (!sres)
981                 return NULL;
982
983         INIT_LIST_HEAD(&sres->entry);
984         sres->release = release;
985
986         return sres->data;
987 }
988
989 /**
990  * spi_res_free - free an SPI resource
991  * @res: pointer to the custom data of a resource
992  */
993 static void spi_res_free(void *res)
994 {
995         struct spi_res *sres = container_of(res, struct spi_res, data);
996
997         WARN_ON(!list_empty(&sres->entry));
998         kfree(sres);
999 }
1000
1001 /**
1002  * spi_res_add - add a spi_res to the spi_message
1003  * @message: the SPI message
1004  * @res:     the spi_resource
1005  */
1006 static void spi_res_add(struct spi_message *message, void *res)
1007 {
1008         struct spi_res *sres = container_of(res, struct spi_res, data);
1009
1010         WARN_ON(!list_empty(&sres->entry));
1011         list_add_tail(&sres->entry, &message->resources);
1012 }
1013
1014 /**
1015  * spi_res_release - release all SPI resources for this message
1016  * @ctlr:  the @spi_controller
1017  * @message: the @spi_message
1018  */
1019 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020 {
1021         struct spi_res *res, *tmp;
1022
1023         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024                 if (res->release)
1025                         res->release(ctlr, message, res->data);
1026
1027                 list_del(&res->entry);
1028
1029                 kfree(res);
1030         }
1031 }
1032
1033 /*-------------------------------------------------------------------------*/
1034 #define spi_for_each_valid_cs(spi, idx)                         \
1035         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1036                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1037
1038 static inline bool spi_is_last_cs(struct spi_device *spi)
1039 {
1040         u8 idx;
1041         bool last = false;
1042
1043         spi_for_each_valid_cs(spi, idx) {
1044                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045                         last = true;
1046         }
1047         return last;
1048 }
1049
1050 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051 {
1052         /*
1053          * Historically ACPI has no means of the GPIO polarity and
1054          * thus the SPISerialBus() resource defines it on the per-chip
1055          * basis. In order to avoid a chain of negations, the GPIO
1056          * polarity is considered being Active High. Even for the cases
1057          * when _DSD() is involved (in the updated versions of ACPI)
1058          * the GPIO CS polarity must be defined Active High to avoid
1059          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060          * into account.
1061          */
1062         if (has_acpi_companion(&spi->dev))
1063                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064         else
1065                 /* Polarity handled by GPIO library */
1066                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067
1068         if (activate)
1069                 spi_delay_exec(&spi->cs_setup, NULL);
1070         else
1071                 spi_delay_exec(&spi->cs_inactive, NULL);
1072 }
1073
1074 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075 {
1076         bool activate = enable;
1077         u8 idx;
1078
1079         /*
1080          * Avoid calling into the driver (or doing delays) if the chip select
1081          * isn't actually changing from the last time this was called.
1082          */
1083         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084                         spi_is_last_cs(spi)) ||
1085                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086                         !spi_is_last_cs(spi))) &&
1087             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088                 return;
1089
1090         trace_spi_set_cs(spi, activate);
1091
1092         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096
1097         if (spi->mode & SPI_CS_HIGH)
1098                 enable = !enable;
1099
1100         /*
1101          * Handle chip select delays for GPIO based CS or controllers without
1102          * programmable chip select timing.
1103          */
1104         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105                 spi_delay_exec(&spi->cs_hold, NULL);
1106
1107         if (spi_is_csgpiod(spi)) {
1108                 if (!(spi->mode & SPI_NO_CS)) {
1109                         spi_for_each_valid_cs(spi, idx) {
1110                                 if (spi_get_csgpiod(spi, idx))
1111                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1112                         }
1113                 }
1114                 /* Some SPI masters need both GPIO CS & slave_select */
1115                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116                     spi->controller->set_cs)
1117                         spi->controller->set_cs(spi, !enable);
1118         } else if (spi->controller->set_cs) {
1119                 spi->controller->set_cs(spi, !enable);
1120         }
1121
1122         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123                 if (activate)
1124                         spi_delay_exec(&spi->cs_setup, NULL);
1125                 else
1126                         spi_delay_exec(&spi->cs_inactive, NULL);
1127         }
1128 }
1129
1130 #ifdef CONFIG_HAS_DMA
1131 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132                              struct sg_table *sgt, void *buf, size_t len,
1133                              enum dma_data_direction dir, unsigned long attrs)
1134 {
1135         const bool vmalloced_buf = is_vmalloc_addr(buf);
1136         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137 #ifdef CONFIG_HIGHMEM
1138         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139                                 (unsigned long)buf < (PKMAP_BASE +
1140                                         (LAST_PKMAP * PAGE_SIZE)));
1141 #else
1142         const bool kmap_buf = false;
1143 #endif
1144         int desc_len;
1145         int sgs;
1146         struct page *vm_page;
1147         struct scatterlist *sg;
1148         void *sg_buf;
1149         size_t min;
1150         int i, ret;
1151
1152         if (vmalloced_buf || kmap_buf) {
1153                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155         } else if (virt_addr_valid(buf)) {
1156                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157                 sgs = DIV_ROUND_UP(len, desc_len);
1158         } else {
1159                 return -EINVAL;
1160         }
1161
1162         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163         if (ret != 0)
1164                 return ret;
1165
1166         sg = &sgt->sgl[0];
1167         for (i = 0; i < sgs; i++) {
1168
1169                 if (vmalloced_buf || kmap_buf) {
1170                         /*
1171                          * Next scatterlist entry size is the minimum between
1172                          * the desc_len and the remaining buffer length that
1173                          * fits in a page.
1174                          */
1175                         min = min_t(size_t, desc_len,
1176                                     min_t(size_t, len,
1177                                           PAGE_SIZE - offset_in_page(buf)));
1178                         if (vmalloced_buf)
1179                                 vm_page = vmalloc_to_page(buf);
1180                         else
1181                                 vm_page = kmap_to_page(buf);
1182                         if (!vm_page) {
1183                                 sg_free_table(sgt);
1184                                 return -ENOMEM;
1185                         }
1186                         sg_set_page(sg, vm_page,
1187                                     min, offset_in_page(buf));
1188                 } else {
1189                         min = min_t(size_t, len, desc_len);
1190                         sg_buf = buf;
1191                         sg_set_buf(sg, sg_buf, min);
1192                 }
1193
1194                 buf += min;
1195                 len -= min;
1196                 sg = sg_next(sg);
1197         }
1198
1199         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1200         if (ret < 0) {
1201                 sg_free_table(sgt);
1202                 return ret;
1203         }
1204
1205         return 0;
1206 }
1207
1208 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209                 struct sg_table *sgt, void *buf, size_t len,
1210                 enum dma_data_direction dir)
1211 {
1212         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213 }
1214
1215 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216                                 struct device *dev, struct sg_table *sgt,
1217                                 enum dma_data_direction dir,
1218                                 unsigned long attrs)
1219 {
1220         dma_unmap_sgtable(dev, sgt, dir, attrs);
1221         sg_free_table(sgt);
1222         sgt->orig_nents = 0;
1223         sgt->nents = 0;
1224 }
1225
1226 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227                    struct sg_table *sgt, enum dma_data_direction dir)
1228 {
1229         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1230 }
1231
1232 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233 {
1234         struct device *tx_dev, *rx_dev;
1235         struct spi_transfer *xfer;
1236         int ret;
1237
1238         if (!ctlr->can_dma)
1239                 return 0;
1240
1241         if (ctlr->dma_tx)
1242                 tx_dev = ctlr->dma_tx->device->dev;
1243         else if (ctlr->dma_map_dev)
1244                 tx_dev = ctlr->dma_map_dev;
1245         else
1246                 tx_dev = ctlr->dev.parent;
1247
1248         if (ctlr->dma_rx)
1249                 rx_dev = ctlr->dma_rx->device->dev;
1250         else if (ctlr->dma_map_dev)
1251                 rx_dev = ctlr->dma_map_dev;
1252         else
1253                 rx_dev = ctlr->dev.parent;
1254
1255         ret = -ENOMSG;
1256         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257                 /* The sync is done before each transfer. */
1258                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259
1260                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261                         continue;
1262
1263                 if (xfer->tx_buf != NULL) {
1264                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265                                                 (void *)xfer->tx_buf,
1266                                                 xfer->len, DMA_TO_DEVICE,
1267                                                 attrs);
1268                         if (ret != 0)
1269                                 return ret;
1270
1271                         xfer->tx_sg_mapped = true;
1272                 }
1273
1274                 if (xfer->rx_buf != NULL) {
1275                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276                                                 xfer->rx_buf, xfer->len,
1277                                                 DMA_FROM_DEVICE, attrs);
1278                         if (ret != 0) {
1279                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1280                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1281                                                 attrs);
1282
1283                                 return ret;
1284                         }
1285
1286                         xfer->rx_sg_mapped = true;
1287                 }
1288         }
1289         /* No transfer has been mapped, bail out with success */
1290         if (ret)
1291                 return 0;
1292
1293         ctlr->cur_rx_dma_dev = rx_dev;
1294         ctlr->cur_tx_dma_dev = tx_dev;
1295
1296         return 0;
1297 }
1298
1299 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300 {
1301         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303         struct spi_transfer *xfer;
1304
1305         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306                 /* The sync has already been done after each transfer. */
1307                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308
1309                 if (xfer->rx_sg_mapped)
1310                         spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311                                             DMA_FROM_DEVICE, attrs);
1312                 xfer->rx_sg_mapped = false;
1313
1314                 if (xfer->tx_sg_mapped)
1315                         spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316                                             DMA_TO_DEVICE, attrs);
1317                 xfer->tx_sg_mapped = false;
1318         }
1319
1320         return 0;
1321 }
1322
1323 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324                                     struct spi_transfer *xfer)
1325 {
1326         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329         if (xfer->tx_sg_mapped)
1330                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331         if (xfer->rx_sg_mapped)
1332                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333 }
1334
1335 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336                                  struct spi_transfer *xfer)
1337 {
1338         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340
1341         if (xfer->rx_sg_mapped)
1342                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343         if (xfer->tx_sg_mapped)
1344                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345 }
1346 #else /* !CONFIG_HAS_DMA */
1347 static inline int __spi_map_msg(struct spi_controller *ctlr,
1348                                 struct spi_message *msg)
1349 {
1350         return 0;
1351 }
1352
1353 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354                                   struct spi_message *msg)
1355 {
1356         return 0;
1357 }
1358
1359 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360                                     struct spi_transfer *xfer)
1361 {
1362 }
1363
1364 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365                                  struct spi_transfer *xfer)
1366 {
1367 }
1368 #endif /* !CONFIG_HAS_DMA */
1369
1370 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371                                 struct spi_message *msg)
1372 {
1373         struct spi_transfer *xfer;
1374
1375         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376                 /*
1377                  * Restore the original value of tx_buf or rx_buf if they are
1378                  * NULL.
1379                  */
1380                 if (xfer->tx_buf == ctlr->dummy_tx)
1381                         xfer->tx_buf = NULL;
1382                 if (xfer->rx_buf == ctlr->dummy_rx)
1383                         xfer->rx_buf = NULL;
1384         }
1385
1386         return __spi_unmap_msg(ctlr, msg);
1387 }
1388
1389 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390 {
1391         struct spi_transfer *xfer;
1392         void *tmp;
1393         unsigned int max_tx, max_rx;
1394
1395         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396                 && !(msg->spi->mode & SPI_3WIRE)) {
1397                 max_tx = 0;
1398                 max_rx = 0;
1399
1400                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402                             !xfer->tx_buf)
1403                                 max_tx = max(xfer->len, max_tx);
1404                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405                             !xfer->rx_buf)
1406                                 max_rx = max(xfer->len, max_rx);
1407                 }
1408
1409                 if (max_tx) {
1410                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1411                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412                         if (!tmp)
1413                                 return -ENOMEM;
1414                         ctlr->dummy_tx = tmp;
1415                 }
1416
1417                 if (max_rx) {
1418                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1419                                        GFP_KERNEL | GFP_DMA);
1420                         if (!tmp)
1421                                 return -ENOMEM;
1422                         ctlr->dummy_rx = tmp;
1423                 }
1424
1425                 if (max_tx || max_rx) {
1426                         list_for_each_entry(xfer, &msg->transfers,
1427                                             transfer_list) {
1428                                 if (!xfer->len)
1429                                         continue;
1430                                 if (!xfer->tx_buf)
1431                                         xfer->tx_buf = ctlr->dummy_tx;
1432                                 if (!xfer->rx_buf)
1433                                         xfer->rx_buf = ctlr->dummy_rx;
1434                         }
1435                 }
1436         }
1437
1438         return __spi_map_msg(ctlr, msg);
1439 }
1440
1441 static int spi_transfer_wait(struct spi_controller *ctlr,
1442                              struct spi_message *msg,
1443                              struct spi_transfer *xfer)
1444 {
1445         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447         u32 speed_hz = xfer->speed_hz;
1448         unsigned long long ms;
1449
1450         if (spi_controller_is_target(ctlr)) {
1451                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453                         return -EINTR;
1454                 }
1455         } else {
1456                 if (!speed_hz)
1457                         speed_hz = 100000;
1458
1459                 /*
1460                  * For each byte we wait for 8 cycles of the SPI clock.
1461                  * Since speed is defined in Hz and we want milliseconds,
1462                  * use respective multiplier, but before the division,
1463                  * otherwise we may get 0 for short transfers.
1464                  */
1465                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1466                 do_div(ms, speed_hz);
1467
1468                 /*
1469                  * Increase it twice and add 200 ms tolerance, use
1470                  * predefined maximum in case of overflow.
1471                  */
1472                 ms += ms + 200;
1473                 if (ms > UINT_MAX)
1474                         ms = UINT_MAX;
1475
1476                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477                                                  msecs_to_jiffies(ms));
1478
1479                 if (ms == 0) {
1480                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482                         dev_err(&msg->spi->dev,
1483                                 "SPI transfer timed out\n");
1484                         return -ETIMEDOUT;
1485                 }
1486
1487                 if (xfer->error & SPI_TRANS_FAIL_IO)
1488                         return -EIO;
1489         }
1490
1491         return 0;
1492 }
1493
1494 static void _spi_transfer_delay_ns(u32 ns)
1495 {
1496         if (!ns)
1497                 return;
1498         if (ns <= NSEC_PER_USEC) {
1499                 ndelay(ns);
1500         } else {
1501                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502
1503                 if (us <= 10)
1504                         udelay(us);
1505                 else
1506                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507         }
1508 }
1509
1510 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1511 {
1512         u32 delay = _delay->value;
1513         u32 unit = _delay->unit;
1514         u32 hz;
1515
1516         if (!delay)
1517                 return 0;
1518
1519         switch (unit) {
1520         case SPI_DELAY_UNIT_USECS:
1521                 delay *= NSEC_PER_USEC;
1522                 break;
1523         case SPI_DELAY_UNIT_NSECS:
1524                 /* Nothing to do here */
1525                 break;
1526         case SPI_DELAY_UNIT_SCK:
1527                 /* Clock cycles need to be obtained from spi_transfer */
1528                 if (!xfer)
1529                         return -EINVAL;
1530                 /*
1531                  * If there is unknown effective speed, approximate it
1532                  * by underestimating with half of the requested Hz.
1533                  */
1534                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535                 if (!hz)
1536                         return -EINVAL;
1537
1538                 /* Convert delay to nanoseconds */
1539                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540                 break;
1541         default:
1542                 return -EINVAL;
1543         }
1544
1545         return delay;
1546 }
1547 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548
1549 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550 {
1551         int delay;
1552
1553         might_sleep();
1554
1555         if (!_delay)
1556                 return -EINVAL;
1557
1558         delay = spi_delay_to_ns(_delay, xfer);
1559         if (delay < 0)
1560                 return delay;
1561
1562         _spi_transfer_delay_ns(delay);
1563
1564         return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(spi_delay_exec);
1567
1568 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569                                           struct spi_transfer *xfer)
1570 {
1571         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572         u32 delay = xfer->cs_change_delay.value;
1573         u32 unit = xfer->cs_change_delay.unit;
1574         int ret;
1575
1576         /* Return early on "fast" mode - for everything but USECS */
1577         if (!delay) {
1578                 if (unit == SPI_DELAY_UNIT_USECS)
1579                         _spi_transfer_delay_ns(default_delay_ns);
1580                 return;
1581         }
1582
1583         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584         if (ret) {
1585                 dev_err_once(&msg->spi->dev,
1586                              "Use of unsupported delay unit %i, using default of %luus\n",
1587                              unit, default_delay_ns / NSEC_PER_USEC);
1588                 _spi_transfer_delay_ns(default_delay_ns);
1589         }
1590 }
1591
1592 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593                                                   struct spi_transfer *xfer)
1594 {
1595         _spi_transfer_cs_change_delay(msg, xfer);
1596 }
1597 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598
1599 /*
1600  * spi_transfer_one_message - Default implementation of transfer_one_message()
1601  *
1602  * This is a standard implementation of transfer_one_message() for
1603  * drivers which implement a transfer_one() operation.  It provides
1604  * standard handling of delays and chip select management.
1605  */
1606 static int spi_transfer_one_message(struct spi_controller *ctlr,
1607                                     struct spi_message *msg)
1608 {
1609         struct spi_transfer *xfer;
1610         bool keep_cs = false;
1611         int ret = 0;
1612         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1614
1615         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616         spi_set_cs(msg->spi, !xfer->cs_off, false);
1617
1618         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620
1621         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622                 trace_spi_transfer_start(msg, xfer);
1623
1624                 spi_statistics_add_transfer_stats(statm, xfer, msg);
1625                 spi_statistics_add_transfer_stats(stats, xfer, msg);
1626
1627                 if (!ctlr->ptp_sts_supported) {
1628                         xfer->ptp_sts_word_pre = 0;
1629                         ptp_read_system_prets(xfer->ptp_sts);
1630                 }
1631
1632                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633                         reinit_completion(&ctlr->xfer_completion);
1634
1635 fallback_pio:
1636                         spi_dma_sync_for_device(ctlr, xfer);
1637                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638                         if (ret < 0) {
1639                                 spi_dma_sync_for_cpu(ctlr, xfer);
1640
1641                                 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642                                     (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643                                         __spi_unmap_msg(ctlr, msg);
1644                                         ctlr->fallback = true;
1645                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646                                         goto fallback_pio;
1647                                 }
1648
1649                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1650                                                                errors);
1651                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1652                                                                errors);
1653                                 dev_err(&msg->spi->dev,
1654                                         "SPI transfer failed: %d\n", ret);
1655                                 goto out;
1656                         }
1657
1658                         if (ret > 0) {
1659                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1660                                 if (ret < 0)
1661                                         msg->status = ret;
1662                         }
1663
1664                         spi_dma_sync_for_cpu(ctlr, xfer);
1665                 } else {
1666                         if (xfer->len)
1667                                 dev_err(&msg->spi->dev,
1668                                         "Bufferless transfer has length %u\n",
1669                                         xfer->len);
1670                 }
1671
1672                 if (!ctlr->ptp_sts_supported) {
1673                         ptp_read_system_postts(xfer->ptp_sts);
1674                         xfer->ptp_sts_word_post = xfer->len;
1675                 }
1676
1677                 trace_spi_transfer_stop(msg, xfer);
1678
1679                 if (msg->status != -EINPROGRESS)
1680                         goto out;
1681
1682                 spi_transfer_delay_exec(xfer);
1683
1684                 if (xfer->cs_change) {
1685                         if (list_is_last(&xfer->transfer_list,
1686                                          &msg->transfers)) {
1687                                 keep_cs = true;
1688                         } else {
1689                                 if (!xfer->cs_off)
1690                                         spi_set_cs(msg->spi, false, false);
1691                                 _spi_transfer_cs_change_delay(msg, xfer);
1692                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1693                                         spi_set_cs(msg->spi, true, false);
1694                         }
1695                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697                         spi_set_cs(msg->spi, xfer->cs_off, false);
1698                 }
1699
1700                 msg->actual_length += xfer->len;
1701         }
1702
1703 out:
1704         if (ret != 0 || !keep_cs)
1705                 spi_set_cs(msg->spi, false, false);
1706
1707         if (msg->status == -EINPROGRESS)
1708                 msg->status = ret;
1709
1710         if (msg->status && ctlr->handle_err)
1711                 ctlr->handle_err(ctlr, msg);
1712
1713         spi_finalize_current_message(ctlr);
1714
1715         return ret;
1716 }
1717
1718 /**
1719  * spi_finalize_current_transfer - report completion of a transfer
1720  * @ctlr: the controller reporting completion
1721  *
1722  * Called by SPI drivers using the core transfer_one_message()
1723  * implementation to notify it that the current interrupt driven
1724  * transfer has finished and the next one may be scheduled.
1725  */
1726 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727 {
1728         complete(&ctlr->xfer_completion);
1729 }
1730 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731
1732 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733 {
1734         if (ctlr->auto_runtime_pm) {
1735                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1736                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1737         }
1738 }
1739
1740 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741                 struct spi_message *msg, bool was_busy)
1742 {
1743         struct spi_transfer *xfer;
1744         int ret;
1745
1746         if (!was_busy && ctlr->auto_runtime_pm) {
1747                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1748                 if (ret < 0) {
1749                         pm_runtime_put_noidle(ctlr->dev.parent);
1750                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751                                 ret);
1752
1753                         msg->status = ret;
1754                         spi_finalize_current_message(ctlr);
1755
1756                         return ret;
1757                 }
1758         }
1759
1760         if (!was_busy)
1761                 trace_spi_controller_busy(ctlr);
1762
1763         if (!was_busy && ctlr->prepare_transfer_hardware) {
1764                 ret = ctlr->prepare_transfer_hardware(ctlr);
1765                 if (ret) {
1766                         dev_err(&ctlr->dev,
1767                                 "failed to prepare transfer hardware: %d\n",
1768                                 ret);
1769
1770                         if (ctlr->auto_runtime_pm)
1771                                 pm_runtime_put(ctlr->dev.parent);
1772
1773                         msg->status = ret;
1774                         spi_finalize_current_message(ctlr);
1775
1776                         return ret;
1777                 }
1778         }
1779
1780         trace_spi_message_start(msg);
1781
1782         if (ctlr->prepare_message) {
1783                 ret = ctlr->prepare_message(ctlr, msg);
1784                 if (ret) {
1785                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786                                 ret);
1787                         msg->status = ret;
1788                         spi_finalize_current_message(ctlr);
1789                         return ret;
1790                 }
1791                 msg->prepared = true;
1792         }
1793
1794         ret = spi_map_msg(ctlr, msg);
1795         if (ret) {
1796                 msg->status = ret;
1797                 spi_finalize_current_message(ctlr);
1798                 return ret;
1799         }
1800
1801         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803                         xfer->ptp_sts_word_pre = 0;
1804                         ptp_read_system_prets(xfer->ptp_sts);
1805                 }
1806         }
1807
1808         /*
1809          * Drivers implementation of transfer_one_message() must arrange for
1810          * spi_finalize_current_message() to get called. Most drivers will do
1811          * this in the calling context, but some don't. For those cases, a
1812          * completion is used to guarantee that this function does not return
1813          * until spi_finalize_current_message() is done accessing
1814          * ctlr->cur_msg.
1815          * Use of the following two flags enable to opportunistically skip the
1816          * use of the completion since its use involves expensive spin locks.
1817          * In case of a race with the context that calls
1818          * spi_finalize_current_message() the completion will always be used,
1819          * due to strict ordering of these flags using barriers.
1820          */
1821         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823         reinit_completion(&ctlr->cur_msg_completion);
1824         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825
1826         ret = ctlr->transfer_one_message(ctlr, msg);
1827         if (ret) {
1828                 dev_err(&ctlr->dev,
1829                         "failed to transfer one message from queue\n");
1830                 return ret;
1831         }
1832
1833         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834         smp_mb(); /* See spi_finalize_current_message()... */
1835         if (READ_ONCE(ctlr->cur_msg_incomplete))
1836                 wait_for_completion(&ctlr->cur_msg_completion);
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * __spi_pump_messages - function which processes SPI message queue
1843  * @ctlr: controller to process queue for
1844  * @in_kthread: true if we are in the context of the message pump thread
1845  *
1846  * This function checks if there is any SPI message in the queue that
1847  * needs processing and if so call out to the driver to initialize hardware
1848  * and transfer each message.
1849  *
1850  * Note that it is called both from the kthread itself and also from
1851  * inside spi_sync(); the queue extraction handling at the top of the
1852  * function should deal with this safely.
1853  */
1854 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1855 {
1856         struct spi_message *msg;
1857         bool was_busy = false;
1858         unsigned long flags;
1859         int ret;
1860
1861         /* Take the I/O mutex */
1862         mutex_lock(&ctlr->io_mutex);
1863
1864         /* Lock queue */
1865         spin_lock_irqsave(&ctlr->queue_lock, flags);
1866
1867         /* Make sure we are not already running a message */
1868         if (ctlr->cur_msg)
1869                 goto out_unlock;
1870
1871         /* Check if the queue is idle */
1872         if (list_empty(&ctlr->queue) || !ctlr->running) {
1873                 if (!ctlr->busy)
1874                         goto out_unlock;
1875
1876                 /* Defer any non-atomic teardown to the thread */
1877                 if (!in_kthread) {
1878                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879                             !ctlr->unprepare_transfer_hardware) {
1880                                 spi_idle_runtime_pm(ctlr);
1881                                 ctlr->busy = false;
1882                                 ctlr->queue_empty = true;
1883                                 trace_spi_controller_idle(ctlr);
1884                         } else {
1885                                 kthread_queue_work(ctlr->kworker,
1886                                                    &ctlr->pump_messages);
1887                         }
1888                         goto out_unlock;
1889                 }
1890
1891                 ctlr->busy = false;
1892                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894                 kfree(ctlr->dummy_rx);
1895                 ctlr->dummy_rx = NULL;
1896                 kfree(ctlr->dummy_tx);
1897                 ctlr->dummy_tx = NULL;
1898                 if (ctlr->unprepare_transfer_hardware &&
1899                     ctlr->unprepare_transfer_hardware(ctlr))
1900                         dev_err(&ctlr->dev,
1901                                 "failed to unprepare transfer hardware\n");
1902                 spi_idle_runtime_pm(ctlr);
1903                 trace_spi_controller_idle(ctlr);
1904
1905                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1906                 ctlr->queue_empty = true;
1907                 goto out_unlock;
1908         }
1909
1910         /* Extract head of queue */
1911         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912         ctlr->cur_msg = msg;
1913
1914         list_del_init(&msg->queue);
1915         if (ctlr->busy)
1916                 was_busy = true;
1917         else
1918                 ctlr->busy = true;
1919         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920
1921         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923
1924         ctlr->cur_msg = NULL;
1925         ctlr->fallback = false;
1926
1927         mutex_unlock(&ctlr->io_mutex);
1928
1929         /* Prod the scheduler in case transfer_one() was busy waiting */
1930         if (!ret)
1931                 cond_resched();
1932         return;
1933
1934 out_unlock:
1935         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936         mutex_unlock(&ctlr->io_mutex);
1937 }
1938
1939 /**
1940  * spi_pump_messages - kthread work function which processes spi message queue
1941  * @work: pointer to kthread work struct contained in the controller struct
1942  */
1943 static void spi_pump_messages(struct kthread_work *work)
1944 {
1945         struct spi_controller *ctlr =
1946                 container_of(work, struct spi_controller, pump_messages);
1947
1948         __spi_pump_messages(ctlr, true);
1949 }
1950
1951 /**
1952  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953  * @ctlr: Pointer to the spi_controller structure of the driver
1954  * @xfer: Pointer to the transfer being timestamped
1955  * @progress: How many words (not bytes) have been transferred so far
1956  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957  *            transfer, for less jitter in time measurement. Only compatible
1958  *            with PIO drivers. If true, must follow up with
1959  *            spi_take_timestamp_post or otherwise system will crash.
1960  *            WARNING: for fully predictable results, the CPU frequency must
1961  *            also be under control (governor).
1962  *
1963  * This is a helper for drivers to collect the beginning of the TX timestamp
1964  * for the requested byte from the SPI transfer. The frequency with which this
1965  * function must be called (once per word, once for the whole transfer, once
1966  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967  * greater than or equal to the requested byte at the time of the call. The
1968  * timestamp is only taken once, at the first such call. It is assumed that
1969  * the driver advances its @tx buffer pointer monotonically.
1970  */
1971 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972                             struct spi_transfer *xfer,
1973                             size_t progress, bool irqs_off)
1974 {
1975         if (!xfer->ptp_sts)
1976                 return;
1977
1978         if (xfer->timestamped)
1979                 return;
1980
1981         if (progress > xfer->ptp_sts_word_pre)
1982                 return;
1983
1984         /* Capture the resolution of the timestamp */
1985         xfer->ptp_sts_word_pre = progress;
1986
1987         if (irqs_off) {
1988                 local_irq_save(ctlr->irq_flags);
1989                 preempt_disable();
1990         }
1991
1992         ptp_read_system_prets(xfer->ptp_sts);
1993 }
1994 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995
1996 /**
1997  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998  * @ctlr: Pointer to the spi_controller structure of the driver
1999  * @xfer: Pointer to the transfer being timestamped
2000  * @progress: How many words (not bytes) have been transferred so far
2001  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002  *
2003  * This is a helper for drivers to collect the end of the TX timestamp for
2004  * the requested byte from the SPI transfer. Can be called with an arbitrary
2005  * frequency: only the first call where @tx exceeds or is equal to the
2006  * requested word will be timestamped.
2007  */
2008 void spi_take_timestamp_post(struct spi_controller *ctlr,
2009                              struct spi_transfer *xfer,
2010                              size_t progress, bool irqs_off)
2011 {
2012         if (!xfer->ptp_sts)
2013                 return;
2014
2015         if (xfer->timestamped)
2016                 return;
2017
2018         if (progress < xfer->ptp_sts_word_post)
2019                 return;
2020
2021         ptp_read_system_postts(xfer->ptp_sts);
2022
2023         if (irqs_off) {
2024                 local_irq_restore(ctlr->irq_flags);
2025                 preempt_enable();
2026         }
2027
2028         /* Capture the resolution of the timestamp */
2029         xfer->ptp_sts_word_post = progress;
2030
2031         xfer->timestamped = 1;
2032 }
2033 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034
2035 /**
2036  * spi_set_thread_rt - set the controller to pump at realtime priority
2037  * @ctlr: controller to boost priority of
2038  *
2039  * This can be called because the controller requested realtime priority
2040  * (by setting the ->rt value before calling spi_register_controller()) or
2041  * because a device on the bus said that its transfers needed realtime
2042  * priority.
2043  *
2044  * NOTE: at the moment if any device on a bus says it needs realtime then
2045  * the thread will be at realtime priority for all transfers on that
2046  * controller.  If this eventually becomes a problem we may see if we can
2047  * find a way to boost the priority only temporarily during relevant
2048  * transfers.
2049  */
2050 static void spi_set_thread_rt(struct spi_controller *ctlr)
2051 {
2052         dev_info(&ctlr->dev,
2053                 "will run message pump with realtime priority\n");
2054         sched_set_fifo(ctlr->kworker->task);
2055 }
2056
2057 static int spi_init_queue(struct spi_controller *ctlr)
2058 {
2059         ctlr->running = false;
2060         ctlr->busy = false;
2061         ctlr->queue_empty = true;
2062
2063         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064         if (IS_ERR(ctlr->kworker)) {
2065                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066                 return PTR_ERR(ctlr->kworker);
2067         }
2068
2069         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070
2071         /*
2072          * Controller config will indicate if this controller should run the
2073          * message pump with high (realtime) priority to reduce the transfer
2074          * latency on the bus by minimising the delay between a transfer
2075          * request and the scheduling of the message pump thread. Without this
2076          * setting the message pump thread will remain at default priority.
2077          */
2078         if (ctlr->rt)
2079                 spi_set_thread_rt(ctlr);
2080
2081         return 0;
2082 }
2083
2084 /**
2085  * spi_get_next_queued_message() - called by driver to check for queued
2086  * messages
2087  * @ctlr: the controller to check for queued messages
2088  *
2089  * If there are more messages in the queue, the next message is returned from
2090  * this call.
2091  *
2092  * Return: the next message in the queue, else NULL if the queue is empty.
2093  */
2094 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095 {
2096         struct spi_message *next;
2097         unsigned long flags;
2098
2099         /* Get a pointer to the next message, if any */
2100         spin_lock_irqsave(&ctlr->queue_lock, flags);
2101         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102                                         queue);
2103         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104
2105         return next;
2106 }
2107 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108
2109 /*
2110  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111  *                            and spi_maybe_unoptimize_message()
2112  * @msg: the message to unoptimize
2113  *
2114  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115  * core should use spi_maybe_unoptimize_message() rather than calling this
2116  * function directly.
2117  *
2118  * It is not valid to call this on a message that is not currently optimized.
2119  */
2120 static void __spi_unoptimize_message(struct spi_message *msg)
2121 {
2122         struct spi_controller *ctlr = msg->spi->controller;
2123
2124         if (ctlr->unoptimize_message)
2125                 ctlr->unoptimize_message(msg);
2126
2127         spi_res_release(ctlr, msg);
2128
2129         msg->optimized = false;
2130         msg->opt_state = NULL;
2131 }
2132
2133 /*
2134  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135  * @msg: the message to unoptimize
2136  *
2137  * This function is used to unoptimize a message if and only if it was
2138  * optimized by the core (via spi_maybe_optimize_message()).
2139  */
2140 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141 {
2142         if (!msg->pre_optimized && msg->optimized &&
2143             !msg->spi->controller->defer_optimize_message)
2144                 __spi_unoptimize_message(msg);
2145 }
2146
2147 /**
2148  * spi_finalize_current_message() - the current message is complete
2149  * @ctlr: the controller to return the message to
2150  *
2151  * Called by the driver to notify the core that the message in the front of the
2152  * queue is complete and can be removed from the queue.
2153  */
2154 void spi_finalize_current_message(struct spi_controller *ctlr)
2155 {
2156         struct spi_transfer *xfer;
2157         struct spi_message *mesg;
2158         int ret;
2159
2160         mesg = ctlr->cur_msg;
2161
2162         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164                         ptp_read_system_postts(xfer->ptp_sts);
2165                         xfer->ptp_sts_word_post = xfer->len;
2166                 }
2167         }
2168
2169         if (unlikely(ctlr->ptp_sts_supported))
2170                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172
2173         spi_unmap_msg(ctlr, mesg);
2174
2175         if (mesg->prepared && ctlr->unprepare_message) {
2176                 ret = ctlr->unprepare_message(ctlr, mesg);
2177                 if (ret) {
2178                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179                                 ret);
2180                 }
2181         }
2182
2183         mesg->prepared = false;
2184
2185         spi_maybe_unoptimize_message(mesg);
2186
2187         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188         smp_mb(); /* See __spi_pump_transfer_message()... */
2189         if (READ_ONCE(ctlr->cur_msg_need_completion))
2190                 complete(&ctlr->cur_msg_completion);
2191
2192         trace_spi_message_done(mesg);
2193
2194         mesg->state = NULL;
2195         if (mesg->complete)
2196                 mesg->complete(mesg->context);
2197 }
2198 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199
2200 static int spi_start_queue(struct spi_controller *ctlr)
2201 {
2202         unsigned long flags;
2203
2204         spin_lock_irqsave(&ctlr->queue_lock, flags);
2205
2206         if (ctlr->running || ctlr->busy) {
2207                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208                 return -EBUSY;
2209         }
2210
2211         ctlr->running = true;
2212         ctlr->cur_msg = NULL;
2213         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214
2215         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216
2217         return 0;
2218 }
2219
2220 static int spi_stop_queue(struct spi_controller *ctlr)
2221 {
2222         unsigned int limit = 500;
2223         unsigned long flags;
2224
2225         /*
2226          * This is a bit lame, but is optimized for the common execution path.
2227          * A wait_queue on the ctlr->busy could be used, but then the common
2228          * execution path (pump_messages) would be required to call wake_up or
2229          * friends on every SPI message. Do this instead.
2230          */
2231         do {
2232                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2233                 if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234                         ctlr->running = false;
2235                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236                         return 0;
2237                 }
2238                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239                 usleep_range(10000, 11000);
2240         } while (--limit);
2241
2242         return -EBUSY;
2243 }
2244
2245 static int spi_destroy_queue(struct spi_controller *ctlr)
2246 {
2247         int ret;
2248
2249         ret = spi_stop_queue(ctlr);
2250
2251         /*
2252          * kthread_flush_worker will block until all work is done.
2253          * If the reason that stop_queue timed out is that the work will never
2254          * finish, then it does no good to call flush/stop thread, so
2255          * return anyway.
2256          */
2257         if (ret) {
2258                 dev_err(&ctlr->dev, "problem destroying queue\n");
2259                 return ret;
2260         }
2261
2262         kthread_destroy_worker(ctlr->kworker);
2263
2264         return 0;
2265 }
2266
2267 static int __spi_queued_transfer(struct spi_device *spi,
2268                                  struct spi_message *msg,
2269                                  bool need_pump)
2270 {
2271         struct spi_controller *ctlr = spi->controller;
2272         unsigned long flags;
2273
2274         spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276         if (!ctlr->running) {
2277                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278                 return -ESHUTDOWN;
2279         }
2280         msg->actual_length = 0;
2281         msg->status = -EINPROGRESS;
2282
2283         list_add_tail(&msg->queue, &ctlr->queue);
2284         ctlr->queue_empty = false;
2285         if (!ctlr->busy && need_pump)
2286                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289         return 0;
2290 }
2291
2292 /**
2293  * spi_queued_transfer - transfer function for queued transfers
2294  * @spi: SPI device which is requesting transfer
2295  * @msg: SPI message which is to handled is queued to driver queue
2296  *
2297  * Return: zero on success, else a negative error code.
2298  */
2299 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300 {
2301         return __spi_queued_transfer(spi, msg, true);
2302 }
2303
2304 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305 {
2306         int ret;
2307
2308         ctlr->transfer = spi_queued_transfer;
2309         if (!ctlr->transfer_one_message)
2310                 ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312         /* Initialize and start queue */
2313         ret = spi_init_queue(ctlr);
2314         if (ret) {
2315                 dev_err(&ctlr->dev, "problem initializing queue\n");
2316                 goto err_init_queue;
2317         }
2318         ctlr->queued = true;
2319         ret = spi_start_queue(ctlr);
2320         if (ret) {
2321                 dev_err(&ctlr->dev, "problem starting queue\n");
2322                 goto err_start_queue;
2323         }
2324
2325         return 0;
2326
2327 err_start_queue:
2328         spi_destroy_queue(ctlr);
2329 err_init_queue:
2330         return ret;
2331 }
2332
2333 /**
2334  * spi_flush_queue - Send all pending messages in the queue from the callers'
2335  *                   context
2336  * @ctlr: controller to process queue for
2337  *
2338  * This should be used when one wants to ensure all pending messages have been
2339  * sent before doing something. Is used by the spi-mem code to make sure SPI
2340  * memory operations do not preempt regular SPI transfers that have been queued
2341  * before the spi-mem operation.
2342  */
2343 void spi_flush_queue(struct spi_controller *ctlr)
2344 {
2345         if (ctlr->transfer == spi_queued_transfer)
2346                 __spi_pump_messages(ctlr, false);
2347 }
2348
2349 /*-------------------------------------------------------------------------*/
2350
2351 #if defined(CONFIG_OF)
2352 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353                                      struct spi_delay *delay, const char *prop)
2354 {
2355         u32 value;
2356
2357         if (!of_property_read_u32(nc, prop, &value)) {
2358                 if (value > U16_MAX) {
2359                         delay->value = DIV_ROUND_UP(value, 1000);
2360                         delay->unit = SPI_DELAY_UNIT_USECS;
2361                 } else {
2362                         delay->value = value;
2363                         delay->unit = SPI_DELAY_UNIT_NSECS;
2364                 }
2365         }
2366 }
2367
2368 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369                            struct device_node *nc)
2370 {
2371         u32 value, cs[SPI_CS_CNT_MAX];
2372         int rc, idx;
2373
2374         /* Mode (clock phase/polarity/etc.) */
2375         if (of_property_read_bool(nc, "spi-cpha"))
2376                 spi->mode |= SPI_CPHA;
2377         if (of_property_read_bool(nc, "spi-cpol"))
2378                 spi->mode |= SPI_CPOL;
2379         if (of_property_read_bool(nc, "spi-3wire"))
2380                 spi->mode |= SPI_3WIRE;
2381         if (of_property_read_bool(nc, "spi-lsb-first"))
2382                 spi->mode |= SPI_LSB_FIRST;
2383         if (of_property_read_bool(nc, "spi-cs-high"))
2384                 spi->mode |= SPI_CS_HIGH;
2385
2386         /* Device DUAL/QUAD mode */
2387         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388                 switch (value) {
2389                 case 0:
2390                         spi->mode |= SPI_NO_TX;
2391                         break;
2392                 case 1:
2393                         break;
2394                 case 2:
2395                         spi->mode |= SPI_TX_DUAL;
2396                         break;
2397                 case 4:
2398                         spi->mode |= SPI_TX_QUAD;
2399                         break;
2400                 case 8:
2401                         spi->mode |= SPI_TX_OCTAL;
2402                         break;
2403                 default:
2404                         dev_warn(&ctlr->dev,
2405                                 "spi-tx-bus-width %d not supported\n",
2406                                 value);
2407                         break;
2408                 }
2409         }
2410
2411         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412                 switch (value) {
2413                 case 0:
2414                         spi->mode |= SPI_NO_RX;
2415                         break;
2416                 case 1:
2417                         break;
2418                 case 2:
2419                         spi->mode |= SPI_RX_DUAL;
2420                         break;
2421                 case 4:
2422                         spi->mode |= SPI_RX_QUAD;
2423                         break;
2424                 case 8:
2425                         spi->mode |= SPI_RX_OCTAL;
2426                         break;
2427                 default:
2428                         dev_warn(&ctlr->dev,
2429                                 "spi-rx-bus-width %d not supported\n",
2430                                 value);
2431                         break;
2432                 }
2433         }
2434
2435         if (spi_controller_is_target(ctlr)) {
2436                 if (!of_node_name_eq(nc, "slave")) {
2437                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438                                 nc);
2439                         return -EINVAL;
2440                 }
2441                 return 0;
2442         }
2443
2444         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446                 return -EINVAL;
2447         }
2448
2449         spi_set_all_cs_unused(spi);
2450
2451         /* Device address */
2452         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453                                                  SPI_CS_CNT_MAX);
2454         if (rc < 0) {
2455                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456                         nc, rc);
2457                 return rc;
2458         }
2459         if (rc > ctlr->num_chipselect) {
2460                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461                         nc, rc);
2462                 return rc;
2463         }
2464         if ((of_property_present(nc, "parallel-memories")) &&
2465             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467                 return -EINVAL;
2468         }
2469         for (idx = 0; idx < rc; idx++)
2470                 spi_set_chipselect(spi, idx, cs[idx]);
2471
2472         /*
2473          * By default spi->chip_select[0] will hold the physical CS number,
2474          * so set bit 0 in spi->cs_index_mask.
2475          */
2476         spi->cs_index_mask = BIT(0);
2477
2478         /* Device speed */
2479         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480                 spi->max_speed_hz = value;
2481
2482         /* Device CS delays */
2483         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487         return 0;
2488 }
2489
2490 static struct spi_device *
2491 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492 {
2493         struct spi_device *spi;
2494         int rc;
2495
2496         /* Alloc an spi_device */
2497         spi = spi_alloc_device(ctlr);
2498         if (!spi) {
2499                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500                 rc = -ENOMEM;
2501                 goto err_out;
2502         }
2503
2504         /* Select device driver */
2505         rc = of_alias_from_compatible(nc, spi->modalias,
2506                                       sizeof(spi->modalias));
2507         if (rc < 0) {
2508                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509                 goto err_out;
2510         }
2511
2512         rc = of_spi_parse_dt(ctlr, spi, nc);
2513         if (rc)
2514                 goto err_out;
2515
2516         /* Store a pointer to the node in the device structure */
2517         of_node_get(nc);
2518
2519         device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521         /* Register the new device */
2522         rc = spi_add_device(spi);
2523         if (rc) {
2524                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525                 goto err_of_node_put;
2526         }
2527
2528         return spi;
2529
2530 err_of_node_put:
2531         of_node_put(nc);
2532 err_out:
2533         spi_dev_put(spi);
2534         return ERR_PTR(rc);
2535 }
2536
2537 /**
2538  * of_register_spi_devices() - Register child devices onto the SPI bus
2539  * @ctlr:       Pointer to spi_controller device
2540  *
2541  * Registers an spi_device for each child node of controller node which
2542  * represents a valid SPI slave.
2543  */
2544 static void of_register_spi_devices(struct spi_controller *ctlr)
2545 {
2546         struct spi_device *spi;
2547         struct device_node *nc;
2548
2549         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551                         continue;
2552                 spi = of_register_spi_device(ctlr, nc);
2553                 if (IS_ERR(spi)) {
2554                         dev_warn(&ctlr->dev,
2555                                  "Failed to create SPI device for %pOF\n", nc);
2556                         of_node_clear_flag(nc, OF_POPULATED);
2557                 }
2558         }
2559 }
2560 #else
2561 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562 #endif
2563
2564 /**
2565  * spi_new_ancillary_device() - Register ancillary SPI device
2566  * @spi:         Pointer to the main SPI device registering the ancillary device
2567  * @chip_select: Chip Select of the ancillary device
2568  *
2569  * Register an ancillary SPI device; for example some chips have a chip-select
2570  * for normal device usage and another one for setup/firmware upload.
2571  *
2572  * This may only be called from main SPI device's probe routine.
2573  *
2574  * Return: 0 on success; negative errno on failure
2575  */
2576 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577                                              u8 chip_select)
2578 {
2579         struct spi_controller *ctlr = spi->controller;
2580         struct spi_device *ancillary;
2581         int rc;
2582
2583         /* Alloc an spi_device */
2584         ancillary = spi_alloc_device(ctlr);
2585         if (!ancillary) {
2586                 rc = -ENOMEM;
2587                 goto err_out;
2588         }
2589
2590         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592         /* Use provided chip-select for ancillary device */
2593         spi_set_all_cs_unused(ancillary);
2594         spi_set_chipselect(ancillary, 0, chip_select);
2595
2596         /* Take over SPI mode/speed from SPI main device */
2597         ancillary->max_speed_hz = spi->max_speed_hz;
2598         ancillary->mode = spi->mode;
2599         /*
2600          * By default spi->chip_select[0] will hold the physical CS number,
2601          * so set bit 0 in spi->cs_index_mask.
2602          */
2603         ancillary->cs_index_mask = BIT(0);
2604
2605         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607         /* Register the new device */
2608         rc = __spi_add_device(ancillary);
2609         if (rc) {
2610                 dev_err(&spi->dev, "failed to register ancillary device\n");
2611                 goto err_out;
2612         }
2613
2614         return ancillary;
2615
2616 err_out:
2617         spi_dev_put(ancillary);
2618         return ERR_PTR(rc);
2619 }
2620 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622 #ifdef CONFIG_ACPI
2623 struct acpi_spi_lookup {
2624         struct spi_controller   *ctlr;
2625         u32                     max_speed_hz;
2626         u32                     mode;
2627         int                     irq;
2628         u8                      bits_per_word;
2629         u8                      chip_select;
2630         int                     n;
2631         int                     index;
2632 };
2633
2634 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635 {
2636         struct acpi_resource_spi_serialbus *sb;
2637         int *count = data;
2638
2639         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640                 return 1;
2641
2642         sb = &ares->data.spi_serial_bus;
2643         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644                 return 1;
2645
2646         *count = *count + 1;
2647
2648         return 1;
2649 }
2650
2651 /**
2652  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653  * @adev:       ACPI device
2654  *
2655  * Return: the number of SpiSerialBus resources in the ACPI-device's
2656  * resource-list; or a negative error code.
2657  */
2658 int acpi_spi_count_resources(struct acpi_device *adev)
2659 {
2660         LIST_HEAD(r);
2661         int count = 0;
2662         int ret;
2663
2664         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665         if (ret < 0)
2666                 return ret;
2667
2668         acpi_dev_free_resource_list(&r);
2669
2670         return count;
2671 }
2672 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675                                             struct acpi_spi_lookup *lookup)
2676 {
2677         const union acpi_object *obj;
2678
2679         if (!x86_apple_machine)
2680                 return;
2681
2682         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683             && obj->buffer.length >= 4)
2684                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687             && obj->buffer.length == 8)
2688                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692                 lookup->mode |= SPI_LSB_FIRST;
2693
2694         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696                 lookup->mode |= SPI_CPOL;
2697
2698         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700                 lookup->mode |= SPI_CPHA;
2701 }
2702
2703 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704 {
2705         struct acpi_spi_lookup *lookup = data;
2706         struct spi_controller *ctlr = lookup->ctlr;
2707
2708         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709                 struct acpi_resource_spi_serialbus *sb;
2710                 acpi_handle parent_handle;
2711                 acpi_status status;
2712
2713                 sb = &ares->data.spi_serial_bus;
2714                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2717                                 return 1;
2718
2719                         status = acpi_get_handle(NULL,
2720                                                  sb->resource_source.string_ptr,
2721                                                  &parent_handle);
2722
2723                         if (ACPI_FAILURE(status))
2724                                 return -ENODEV;
2725
2726                         if (ctlr) {
2727                                 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728                                         return -ENODEV;
2729                         } else {
2730                                 struct acpi_device *adev;
2731
2732                                 adev = acpi_fetch_acpi_dev(parent_handle);
2733                                 if (!adev)
2734                                         return -ENODEV;
2735
2736                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2737                                 if (!ctlr)
2738                                         return -EPROBE_DEFER;
2739
2740                                 lookup->ctlr = ctlr;
2741                         }
2742
2743                         /*
2744                          * ACPI DeviceSelection numbering is handled by the
2745                          * host controller driver in Windows and can vary
2746                          * from driver to driver. In Linux we always expect
2747                          * 0 .. max - 1 so we need to ask the driver to
2748                          * translate between the two schemes.
2749                          */
2750                         if (ctlr->fw_translate_cs) {
2751                                 int cs = ctlr->fw_translate_cs(ctlr,
2752                                                 sb->device_selection);
2753                                 if (cs < 0)
2754                                         return cs;
2755                                 lookup->chip_select = cs;
2756                         } else {
2757                                 lookup->chip_select = sb->device_selection;
2758                         }
2759
2760                         lookup->max_speed_hz = sb->connection_speed;
2761                         lookup->bits_per_word = sb->data_bit_length;
2762
2763                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764                                 lookup->mode |= SPI_CPHA;
2765                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766                                 lookup->mode |= SPI_CPOL;
2767                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768                                 lookup->mode |= SPI_CS_HIGH;
2769                 }
2770         } else if (lookup->irq < 0) {
2771                 struct resource r;
2772
2773                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2774                         lookup->irq = r.start;
2775         }
2776
2777         /* Always tell the ACPI core to skip this resource */
2778         return 1;
2779 }
2780
2781 /**
2782  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783  * @ctlr: controller to which the spi device belongs
2784  * @adev: ACPI Device for the spi device
2785  * @index: Index of the spi resource inside the ACPI Node
2786  *
2787  * This should be used to allocate a new SPI device from and ACPI Device node.
2788  * The caller is responsible for calling spi_add_device to register the SPI device.
2789  *
2790  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791  * using the resource.
2792  * If index is set to -1, index is not used.
2793  * Note: If index is -1, ctlr must be set.
2794  *
2795  * Return: a pointer to the new device, or ERR_PTR on error.
2796  */
2797 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798                                          struct acpi_device *adev,
2799                                          int index)
2800 {
2801         acpi_handle parent_handle = NULL;
2802         struct list_head resource_list;
2803         struct acpi_spi_lookup lookup = {};
2804         struct spi_device *spi;
2805         int ret;
2806
2807         if (!ctlr && index == -1)
2808                 return ERR_PTR(-EINVAL);
2809
2810         lookup.ctlr             = ctlr;
2811         lookup.irq              = -1;
2812         lookup.index            = index;
2813         lookup.n                = 0;
2814
2815         INIT_LIST_HEAD(&resource_list);
2816         ret = acpi_dev_get_resources(adev, &resource_list,
2817                                      acpi_spi_add_resource, &lookup);
2818         acpi_dev_free_resource_list(&resource_list);
2819
2820         if (ret < 0)
2821                 /* Found SPI in _CRS but it points to another controller */
2822                 return ERR_PTR(ret);
2823
2824         if (!lookup.max_speed_hz &&
2825             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826             device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827                 /* Apple does not use _CRS but nested devices for SPI slaves */
2828                 acpi_spi_parse_apple_properties(adev, &lookup);
2829         }
2830
2831         if (!lookup.max_speed_hz)
2832                 return ERR_PTR(-ENODEV);
2833
2834         spi = spi_alloc_device(lookup.ctlr);
2835         if (!spi) {
2836                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837                         dev_name(&adev->dev));
2838                 return ERR_PTR(-ENOMEM);
2839         }
2840
2841         spi_set_all_cs_unused(spi);
2842         spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844         ACPI_COMPANION_SET(&spi->dev, adev);
2845         spi->max_speed_hz       = lookup.max_speed_hz;
2846         spi->mode               |= lookup.mode;
2847         spi->irq                = lookup.irq;
2848         spi->bits_per_word      = lookup.bits_per_word;
2849         /*
2850          * By default spi->chip_select[0] will hold the physical CS number,
2851          * so set bit 0 in spi->cs_index_mask.
2852          */
2853         spi->cs_index_mask      = BIT(0);
2854
2855         return spi;
2856 }
2857 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860                                             struct acpi_device *adev)
2861 {
2862         struct spi_device *spi;
2863
2864         if (acpi_bus_get_status(adev) || !adev->status.present ||
2865             acpi_device_enumerated(adev))
2866                 return AE_OK;
2867
2868         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869         if (IS_ERR(spi)) {
2870                 if (PTR_ERR(spi) == -ENOMEM)
2871                         return AE_NO_MEMORY;
2872                 else
2873                         return AE_OK;
2874         }
2875
2876         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877                           sizeof(spi->modalias));
2878
2879         acpi_device_set_enumerated(adev);
2880
2881         adev->power.flags.ignore_parent = true;
2882         if (spi_add_device(spi)) {
2883                 adev->power.flags.ignore_parent = false;
2884                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885                         dev_name(&adev->dev));
2886                 spi_dev_put(spi);
2887         }
2888
2889         return AE_OK;
2890 }
2891
2892 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893                                        void *data, void **return_value)
2894 {
2895         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896         struct spi_controller *ctlr = data;
2897
2898         if (!adev)
2899                 return AE_OK;
2900
2901         return acpi_register_spi_device(ctlr, adev);
2902 }
2903
2904 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2905
2906 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907 {
2908         acpi_status status;
2909         acpi_handle handle;
2910
2911         handle = ACPI_HANDLE(ctlr->dev.parent);
2912         if (!handle)
2913                 return;
2914
2915         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917                                      acpi_spi_add_device, NULL, ctlr, NULL);
2918         if (ACPI_FAILURE(status))
2919                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920 }
2921 #else
2922 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923 #endif /* CONFIG_ACPI */
2924
2925 static void spi_controller_release(struct device *dev)
2926 {
2927         struct spi_controller *ctlr;
2928
2929         ctlr = container_of(dev, struct spi_controller, dev);
2930         kfree(ctlr);
2931 }
2932
2933 static const struct class spi_master_class = {
2934         .name           = "spi_master",
2935         .dev_release    = spi_controller_release,
2936         .dev_groups     = spi_master_groups,
2937 };
2938
2939 #ifdef CONFIG_SPI_SLAVE
2940 /**
2941  * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942  *                   controller
2943  * @spi: device used for the current transfer
2944  */
2945 int spi_target_abort(struct spi_device *spi)
2946 {
2947         struct spi_controller *ctlr = spi->controller;
2948
2949         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950                 return ctlr->target_abort(ctlr);
2951
2952         return -ENOTSUPP;
2953 }
2954 EXPORT_SYMBOL_GPL(spi_target_abort);
2955
2956 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957                           char *buf)
2958 {
2959         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960                                                    dev);
2961         struct device *child;
2962
2963         child = device_find_any_child(&ctlr->dev);
2964         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2965 }
2966
2967 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968                            const char *buf, size_t count)
2969 {
2970         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971                                                    dev);
2972         struct spi_device *spi;
2973         struct device *child;
2974         char name[32];
2975         int rc;
2976
2977         rc = sscanf(buf, "%31s", name);
2978         if (rc != 1 || !name[0])
2979                 return -EINVAL;
2980
2981         child = device_find_any_child(&ctlr->dev);
2982         if (child) {
2983                 /* Remove registered slave */
2984                 device_unregister(child);
2985                 put_device(child);
2986         }
2987
2988         if (strcmp(name, "(null)")) {
2989                 /* Register new slave */
2990                 spi = spi_alloc_device(ctlr);
2991                 if (!spi)
2992                         return -ENOMEM;
2993
2994                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2995
2996                 rc = spi_add_device(spi);
2997                 if (rc) {
2998                         spi_dev_put(spi);
2999                         return rc;
3000                 }
3001         }
3002
3003         return count;
3004 }
3005
3006 static DEVICE_ATTR_RW(slave);
3007
3008 static struct attribute *spi_slave_attrs[] = {
3009         &dev_attr_slave.attr,
3010         NULL,
3011 };
3012
3013 static const struct attribute_group spi_slave_group = {
3014         .attrs = spi_slave_attrs,
3015 };
3016
3017 static const struct attribute_group *spi_slave_groups[] = {
3018         &spi_controller_statistics_group,
3019         &spi_slave_group,
3020         NULL,
3021 };
3022
3023 static const struct class spi_slave_class = {
3024         .name           = "spi_slave",
3025         .dev_release    = spi_controller_release,
3026         .dev_groups     = spi_slave_groups,
3027 };
3028 #else
3029 extern struct class spi_slave_class;    /* dummy */
3030 #endif
3031
3032 /**
3033  * __spi_alloc_controller - allocate an SPI master or slave controller
3034  * @dev: the controller, possibly using the platform_bus
3035  * @size: how much zeroed driver-private data to allocate; the pointer to this
3036  *      memory is in the driver_data field of the returned device, accessible
3037  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3038  *      drivers granting DMA access to portions of their private data need to
3039  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3040  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041  *      slave (true) controller
3042  * Context: can sleep
3043  *
3044  * This call is used only by SPI controller drivers, which are the
3045  * only ones directly touching chip registers.  It's how they allocate
3046  * an spi_controller structure, prior to calling spi_register_controller().
3047  *
3048  * This must be called from context that can sleep.
3049  *
3050  * The caller is responsible for assigning the bus number and initializing the
3051  * controller's methods before calling spi_register_controller(); and (after
3052  * errors adding the device) calling spi_controller_put() to prevent a memory
3053  * leak.
3054  *
3055  * Return: the SPI controller structure on success, else NULL.
3056  */
3057 struct spi_controller *__spi_alloc_controller(struct device *dev,
3058                                               unsigned int size, bool slave)
3059 {
3060         struct spi_controller   *ctlr;
3061         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062
3063         if (!dev)
3064                 return NULL;
3065
3066         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067         if (!ctlr)
3068                 return NULL;
3069
3070         device_initialize(&ctlr->dev);
3071         INIT_LIST_HEAD(&ctlr->queue);
3072         spin_lock_init(&ctlr->queue_lock);
3073         spin_lock_init(&ctlr->bus_lock_spinlock);
3074         mutex_init(&ctlr->bus_lock_mutex);
3075         mutex_init(&ctlr->io_mutex);
3076         mutex_init(&ctlr->add_lock);
3077         ctlr->bus_num = -1;
3078         ctlr->num_chipselect = 1;
3079         ctlr->slave = slave;
3080         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081                 ctlr->dev.class = &spi_slave_class;
3082         else
3083                 ctlr->dev.class = &spi_master_class;
3084         ctlr->dev.parent = dev;
3085         pm_suspend_ignore_children(&ctlr->dev, true);
3086         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087
3088         return ctlr;
3089 }
3090 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091
3092 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3093 {
3094         spi_controller_put(*(struct spi_controller **)ctlr);
3095 }
3096
3097 /**
3098  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099  * @dev: physical device of SPI controller
3100  * @size: how much zeroed driver-private data to allocate
3101  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102  * Context: can sleep
3103  *
3104  * Allocate an SPI controller and automatically release a reference on it
3105  * when @dev is unbound from its driver.  Drivers are thus relieved from
3106  * having to call spi_controller_put().
3107  *
3108  * The arguments to this function are identical to __spi_alloc_controller().
3109  *
3110  * Return: the SPI controller structure on success, else NULL.
3111  */
3112 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113                                                    unsigned int size,
3114                                                    bool slave)
3115 {
3116         struct spi_controller **ptr, *ctlr;
3117
3118         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119                            GFP_KERNEL);
3120         if (!ptr)
3121                 return NULL;
3122
3123         ctlr = __spi_alloc_controller(dev, size, slave);
3124         if (ctlr) {
3125                 ctlr->devm_allocated = true;
3126                 *ptr = ctlr;
3127                 devres_add(dev, ptr);
3128         } else {
3129                 devres_free(ptr);
3130         }
3131
3132         return ctlr;
3133 }
3134 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135
3136 /**
3137  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138  * @ctlr: The SPI master to grab GPIO descriptors for
3139  */
3140 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141 {
3142         int nb, i;
3143         struct gpio_desc **cs;
3144         struct device *dev = &ctlr->dev;
3145         unsigned long native_cs_mask = 0;
3146         unsigned int num_cs_gpios = 0;
3147
3148         nb = gpiod_count(dev, "cs");
3149         if (nb < 0) {
3150                 /* No GPIOs at all is fine, else return the error */
3151                 if (nb == -ENOENT)
3152                         return 0;
3153                 return nb;
3154         }
3155
3156         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157
3158         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3159                           GFP_KERNEL);
3160         if (!cs)
3161                 return -ENOMEM;
3162         ctlr->cs_gpiods = cs;
3163
3164         for (i = 0; i < nb; i++) {
3165                 /*
3166                  * Most chipselects are active low, the inverted
3167                  * semantics are handled by special quirks in gpiolib,
3168                  * so initializing them GPIOD_OUT_LOW here means
3169                  * "unasserted", in most cases this will drive the physical
3170                  * line high.
3171                  */
3172                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173                                                       GPIOD_OUT_LOW);
3174                 if (IS_ERR(cs[i]))
3175                         return PTR_ERR(cs[i]);
3176
3177                 if (cs[i]) {
3178                         /*
3179                          * If we find a CS GPIO, name it after the device and
3180                          * chip select line.
3181                          */
3182                         char *gpioname;
3183
3184                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185                                                   dev_name(dev), i);
3186                         if (!gpioname)
3187                                 return -ENOMEM;
3188                         gpiod_set_consumer_name(cs[i], gpioname);
3189                         num_cs_gpios++;
3190                         continue;
3191                 }
3192
3193                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194                         dev_err(dev, "Invalid native chip select %d\n", i);
3195                         return -EINVAL;
3196                 }
3197                 native_cs_mask |= BIT(i);
3198         }
3199
3200         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201
3202         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204                 dev_err(dev, "No unused native chip select available\n");
3205                 return -EINVAL;
3206         }
3207
3208         return 0;
3209 }
3210
3211 static int spi_controller_check_ops(struct spi_controller *ctlr)
3212 {
3213         /*
3214          * The controller may implement only the high-level SPI-memory like
3215          * operations if it does not support regular SPI transfers, and this is
3216          * valid use case.
3217          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218          * one of the ->transfer_xxx() method be implemented.
3219          */
3220         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221                 if (!ctlr->transfer && !ctlr->transfer_one &&
3222                    !ctlr->transfer_one_message) {
3223                         return -EINVAL;
3224                 }
3225         }
3226
3227         return 0;
3228 }
3229
3230 /* Allocate dynamic bus number using Linux idr */
3231 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232 {
3233         int id;
3234
3235         mutex_lock(&board_lock);
3236         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237         mutex_unlock(&board_lock);
3238         if (WARN(id < 0, "couldn't get idr"))
3239                 return id == -ENOSPC ? -EBUSY : id;
3240         ctlr->bus_num = id;
3241         return 0;
3242 }
3243
3244 /**
3245  * spi_register_controller - register SPI host or target controller
3246  * @ctlr: initialized controller, originally from spi_alloc_host() or
3247  *      spi_alloc_target()
3248  * Context: can sleep
3249  *
3250  * SPI controllers connect to their drivers using some non-SPI bus,
3251  * such as the platform bus.  The final stage of probe() in that code
3252  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253  *
3254  * SPI controllers use board specific (often SOC specific) bus numbers,
3255  * and board-specific addressing for SPI devices combines those numbers
3256  * with chip select numbers.  Since SPI does not directly support dynamic
3257  * device identification, boards need configuration tables telling which
3258  * chip is at which address.
3259  *
3260  * This must be called from context that can sleep.  It returns zero on
3261  * success, else a negative error code (dropping the controller's refcount).
3262  * After a successful return, the caller is responsible for calling
3263  * spi_unregister_controller().
3264  *
3265  * Return: zero on success, else a negative error code.
3266  */
3267 int spi_register_controller(struct spi_controller *ctlr)
3268 {
3269         struct device           *dev = ctlr->dev.parent;
3270         struct boardinfo        *bi;
3271         int                     first_dynamic;
3272         int                     status;
3273         int                     idx;
3274
3275         if (!dev)
3276                 return -ENODEV;
3277
3278         /*
3279          * Make sure all necessary hooks are implemented before registering
3280          * the SPI controller.
3281          */
3282         status = spi_controller_check_ops(ctlr);
3283         if (status)
3284                 return status;
3285
3286         if (ctlr->bus_num < 0)
3287                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288         if (ctlr->bus_num >= 0) {
3289                 /* Devices with a fixed bus num must check-in with the num */
3290                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291                 if (status)
3292                         return status;
3293         }
3294         if (ctlr->bus_num < 0) {
3295                 first_dynamic = of_alias_get_highest_id("spi");
3296                 if (first_dynamic < 0)
3297                         first_dynamic = 0;
3298                 else
3299                         first_dynamic++;
3300
3301                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302                 if (status)
3303                         return status;
3304         }
3305         ctlr->bus_lock_flag = 0;
3306         init_completion(&ctlr->xfer_completion);
3307         init_completion(&ctlr->cur_msg_completion);
3308         if (!ctlr->max_dma_len)
3309                 ctlr->max_dma_len = INT_MAX;
3310
3311         /*
3312          * Register the device, then userspace will see it.
3313          * Registration fails if the bus ID is in use.
3314          */
3315         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3316
3317         if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318                 status = spi_get_gpio_descs(ctlr);
3319                 if (status)
3320                         goto free_bus_id;
3321                 /*
3322                  * A controller using GPIO descriptors always
3323                  * supports SPI_CS_HIGH if need be.
3324                  */
3325                 ctlr->mode_bits |= SPI_CS_HIGH;
3326         }
3327
3328         /*
3329          * Even if it's just one always-selected device, there must
3330          * be at least one chipselect.
3331          */
3332         if (!ctlr->num_chipselect) {
3333                 status = -EINVAL;
3334                 goto free_bus_id;
3335         }
3336
3337         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3340
3341         status = device_add(&ctlr->dev);
3342         if (status < 0)
3343                 goto free_bus_id;
3344         dev_dbg(dev, "registered %s %s\n",
3345                         spi_controller_is_target(ctlr) ? "target" : "host",
3346                         dev_name(&ctlr->dev));
3347
3348         /*
3349          * If we're using a queued driver, start the queue. Note that we don't
3350          * need the queueing logic if the driver is only supporting high-level
3351          * memory operations.
3352          */
3353         if (ctlr->transfer) {
3354                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3355         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356                 status = spi_controller_initialize_queue(ctlr);
3357                 if (status) {
3358                         device_del(&ctlr->dev);
3359                         goto free_bus_id;
3360                 }
3361         }
3362         /* Add statistics */
3363         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364         if (!ctlr->pcpu_statistics) {
3365                 dev_err(dev, "Error allocating per-cpu statistics\n");
3366                 status = -ENOMEM;
3367                 goto destroy_queue;
3368         }
3369
3370         mutex_lock(&board_lock);
3371         list_add_tail(&ctlr->list, &spi_controller_list);
3372         list_for_each_entry(bi, &board_list, list)
3373                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374         mutex_unlock(&board_lock);
3375
3376         /* Register devices from the device tree and ACPI */
3377         of_register_spi_devices(ctlr);
3378         acpi_register_spi_devices(ctlr);
3379         return status;
3380
3381 destroy_queue:
3382         spi_destroy_queue(ctlr);
3383 free_bus_id:
3384         mutex_lock(&board_lock);
3385         idr_remove(&spi_master_idr, ctlr->bus_num);
3386         mutex_unlock(&board_lock);
3387         return status;
3388 }
3389 EXPORT_SYMBOL_GPL(spi_register_controller);
3390
3391 static void devm_spi_unregister(struct device *dev, void *res)
3392 {
3393         spi_unregister_controller(*(struct spi_controller **)res);
3394 }
3395
3396 /**
3397  * devm_spi_register_controller - register managed SPI host or target
3398  *      controller
3399  * @dev:    device managing SPI controller
3400  * @ctlr: initialized controller, originally from spi_alloc_host() or
3401  *      spi_alloc_target()
3402  * Context: can sleep
3403  *
3404  * Register a SPI device as with spi_register_controller() which will
3405  * automatically be unregistered and freed.
3406  *
3407  * Return: zero on success, else a negative error code.
3408  */
3409 int devm_spi_register_controller(struct device *dev,
3410                                  struct spi_controller *ctlr)
3411 {
3412         struct spi_controller **ptr;
3413         int ret;
3414
3415         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416         if (!ptr)
3417                 return -ENOMEM;
3418
3419         ret = spi_register_controller(ctlr);
3420         if (!ret) {
3421                 *ptr = ctlr;
3422                 devres_add(dev, ptr);
3423         } else {
3424                 devres_free(ptr);
3425         }
3426
3427         return ret;
3428 }
3429 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430
3431 static int __unregister(struct device *dev, void *null)
3432 {
3433         spi_unregister_device(to_spi_device(dev));
3434         return 0;
3435 }
3436
3437 /**
3438  * spi_unregister_controller - unregister SPI master or slave controller
3439  * @ctlr: the controller being unregistered
3440  * Context: can sleep
3441  *
3442  * This call is used only by SPI controller drivers, which are the
3443  * only ones directly touching chip registers.
3444  *
3445  * This must be called from context that can sleep.
3446  *
3447  * Note that this function also drops a reference to the controller.
3448  */
3449 void spi_unregister_controller(struct spi_controller *ctlr)
3450 {
3451         struct spi_controller *found;
3452         int id = ctlr->bus_num;
3453
3454         /* Prevent addition of new devices, unregister existing ones */
3455         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456                 mutex_lock(&ctlr->add_lock);
3457
3458         device_for_each_child(&ctlr->dev, NULL, __unregister);
3459
3460         /* First make sure that this controller was ever added */
3461         mutex_lock(&board_lock);
3462         found = idr_find(&spi_master_idr, id);
3463         mutex_unlock(&board_lock);
3464         if (ctlr->queued) {
3465                 if (spi_destroy_queue(ctlr))
3466                         dev_err(&ctlr->dev, "queue remove failed\n");
3467         }
3468         mutex_lock(&board_lock);
3469         list_del(&ctlr->list);
3470         mutex_unlock(&board_lock);
3471
3472         device_del(&ctlr->dev);
3473
3474         /* Free bus id */
3475         mutex_lock(&board_lock);
3476         if (found == ctlr)
3477                 idr_remove(&spi_master_idr, id);
3478         mutex_unlock(&board_lock);
3479
3480         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481                 mutex_unlock(&ctlr->add_lock);
3482
3483         /*
3484          * Release the last reference on the controller if its driver
3485          * has not yet been converted to devm_spi_alloc_host/target().
3486          */
3487         if (!ctlr->devm_allocated)
3488                 put_device(&ctlr->dev);
3489 }
3490 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3491
3492 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493 {
3494         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3495 }
3496
3497 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3498 {
3499         mutex_lock(&ctlr->bus_lock_mutex);
3500         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501         mutex_unlock(&ctlr->bus_lock_mutex);
3502 }
3503
3504 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3505 {
3506         mutex_lock(&ctlr->bus_lock_mutex);
3507         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508         mutex_unlock(&ctlr->bus_lock_mutex);
3509 }
3510
3511 int spi_controller_suspend(struct spi_controller *ctlr)
3512 {
3513         int ret = 0;
3514
3515         /* Basically no-ops for non-queued controllers */
3516         if (ctlr->queued) {
3517                 ret = spi_stop_queue(ctlr);
3518                 if (ret)
3519                         dev_err(&ctlr->dev, "queue stop failed\n");
3520         }
3521
3522         __spi_mark_suspended(ctlr);
3523         return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526
3527 int spi_controller_resume(struct spi_controller *ctlr)
3528 {
3529         int ret = 0;
3530
3531         __spi_mark_resumed(ctlr);
3532
3533         if (ctlr->queued) {
3534                 ret = spi_start_queue(ctlr);
3535                 if (ret)
3536                         dev_err(&ctlr->dev, "queue restart failed\n");
3537         }
3538         return ret;
3539 }
3540 EXPORT_SYMBOL_GPL(spi_controller_resume);
3541
3542 /*-------------------------------------------------------------------------*/
3543
3544 /* Core methods for spi_message alterations */
3545
3546 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547                                             struct spi_message *msg,
3548                                             void *res)
3549 {
3550         struct spi_replaced_transfers *rxfer = res;
3551         size_t i;
3552
3553         /* Call extra callback if requested */
3554         if (rxfer->release)
3555                 rxfer->release(ctlr, msg, res);
3556
3557         /* Insert replaced transfers back into the message */
3558         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559
3560         /* Remove the formerly inserted entries */
3561         for (i = 0; i < rxfer->inserted; i++)
3562                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3563 }
3564
3565 /**
3566  * spi_replace_transfers - replace transfers with several transfers
3567  *                         and register change with spi_message.resources
3568  * @msg:           the spi_message we work upon
3569  * @xfer_first:    the first spi_transfer we want to replace
3570  * @remove:        number of transfers to remove
3571  * @insert:        the number of transfers we want to insert instead
3572  * @release:       extra release code necessary in some circumstances
3573  * @extradatasize: extra data to allocate (with alignment guarantees
3574  *                 of struct @spi_transfer)
3575  * @gfp:           gfp flags
3576  *
3577  * Returns: pointer to @spi_replaced_transfers,
3578  *          PTR_ERR(...) in case of errors.
3579  */
3580 static struct spi_replaced_transfers *spi_replace_transfers(
3581         struct spi_message *msg,
3582         struct spi_transfer *xfer_first,
3583         size_t remove,
3584         size_t insert,
3585         spi_replaced_release_t release,
3586         size_t extradatasize,
3587         gfp_t gfp)
3588 {
3589         struct spi_replaced_transfers *rxfer;
3590         struct spi_transfer *xfer;
3591         size_t i;
3592
3593         /* Allocate the structure using spi_res */
3594         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595                               struct_size(rxfer, inserted_transfers, insert)
3596                               + extradatasize,
3597                               gfp);
3598         if (!rxfer)
3599                 return ERR_PTR(-ENOMEM);
3600
3601         /* The release code to invoke before running the generic release */
3602         rxfer->release = release;
3603
3604         /* Assign extradata */
3605         if (extradatasize)
3606                 rxfer->extradata =
3607                         &rxfer->inserted_transfers[insert];
3608
3609         /* Init the replaced_transfers list */
3610         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611
3612         /*
3613          * Assign the list_entry after which we should reinsert
3614          * the @replaced_transfers - it may be spi_message.messages!
3615          */
3616         rxfer->replaced_after = xfer_first->transfer_list.prev;
3617
3618         /* Remove the requested number of transfers */
3619         for (i = 0; i < remove; i++) {
3620                 /*
3621                  * If the entry after replaced_after it is msg->transfers
3622                  * then we have been requested to remove more transfers
3623                  * than are in the list.
3624                  */
3625                 if (rxfer->replaced_after->next == &msg->transfers) {
3626                         dev_err(&msg->spi->dev,
3627                                 "requested to remove more spi_transfers than are available\n");
3628                         /* Insert replaced transfers back into the message */
3629                         list_splice(&rxfer->replaced_transfers,
3630                                     rxfer->replaced_after);
3631
3632                         /* Free the spi_replace_transfer structure... */
3633                         spi_res_free(rxfer);
3634
3635                         /* ...and return with an error */
3636                         return ERR_PTR(-EINVAL);
3637                 }
3638
3639                 /*
3640                  * Remove the entry after replaced_after from list of
3641                  * transfers and add it to list of replaced_transfers.
3642                  */
3643                 list_move_tail(rxfer->replaced_after->next,
3644                                &rxfer->replaced_transfers);
3645         }
3646
3647         /*
3648          * Create copy of the given xfer with identical settings
3649          * based on the first transfer to get removed.
3650          */
3651         for (i = 0; i < insert; i++) {
3652                 /* We need to run in reverse order */
3653                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654
3655                 /* Copy all spi_transfer data */
3656                 memcpy(xfer, xfer_first, sizeof(*xfer));
3657
3658                 /* Add to list */
3659                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3660
3661                 /* Clear cs_change and delay for all but the last */
3662                 if (i) {
3663                         xfer->cs_change = false;
3664                         xfer->delay.value = 0;
3665                 }
3666         }
3667
3668         /* Set up inserted... */
3669         rxfer->inserted = insert;
3670
3671         /* ...and register it with spi_res/spi_message */
3672         spi_res_add(msg, rxfer);
3673
3674         return rxfer;
3675 }
3676
3677 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678                                         struct spi_message *msg,
3679                                         struct spi_transfer **xferp,
3680                                         size_t maxsize)
3681 {
3682         struct spi_transfer *xfer = *xferp, *xfers;
3683         struct spi_replaced_transfers *srt;
3684         size_t offset;
3685         size_t count, i;
3686
3687         /* Calculate how many we have to replace */
3688         count = DIV_ROUND_UP(xfer->len, maxsize);
3689
3690         /* Create replacement */
3691         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692         if (IS_ERR(srt))
3693                 return PTR_ERR(srt);
3694         xfers = srt->inserted_transfers;
3695
3696         /*
3697          * Now handle each of those newly inserted spi_transfers.
3698          * Note that the replacements spi_transfers all are preset
3699          * to the same values as *xferp, so tx_buf, rx_buf and len
3700          * are all identical (as well as most others)
3701          * so we just have to fix up len and the pointers.
3702          */
3703
3704         /*
3705          * The first transfer just needs the length modified, so we
3706          * run it outside the loop.
3707          */
3708         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709
3710         /* All the others need rx_buf/tx_buf also set */
3711         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712                 /* Update rx_buf, tx_buf and DMA */
3713                 if (xfers[i].rx_buf)
3714                         xfers[i].rx_buf += offset;
3715                 if (xfers[i].tx_buf)
3716                         xfers[i].tx_buf += offset;
3717
3718                 /* Update length */
3719                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3720         }
3721
3722         /*
3723          * We set up xferp to the last entry we have inserted,
3724          * so that we skip those already split transfers.
3725          */
3726         *xferp = &xfers[count - 1];
3727
3728         /* Increment statistics counters */
3729         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730                                        transfers_split_maxsize);
3731         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732                                        transfers_split_maxsize);
3733
3734         return 0;
3735 }
3736
3737 /**
3738  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739  *                               when an individual transfer exceeds a
3740  *                               certain size
3741  * @ctlr:    the @spi_controller for this transfer
3742  * @msg:   the @spi_message to transform
3743  * @maxsize:  the maximum when to apply this
3744  *
3745  * This function allocates resources that are automatically freed during the
3746  * spi message unoptimize phase so this function should only be called from
3747  * optimize_message callbacks.
3748  *
3749  * Return: status of transformation
3750  */
3751 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752                                 struct spi_message *msg,
3753                                 size_t maxsize)
3754 {
3755         struct spi_transfer *xfer;
3756         int ret;
3757
3758         /*
3759          * Iterate over the transfer_list,
3760          * but note that xfer is advanced to the last transfer inserted
3761          * to avoid checking sizes again unnecessarily (also xfer does
3762          * potentially belong to a different list by the time the
3763          * replacement has happened).
3764          */
3765         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766                 if (xfer->len > maxsize) {
3767                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768                                                            maxsize);
3769                         if (ret)
3770                                 return ret;
3771                 }
3772         }
3773
3774         return 0;
3775 }
3776 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777
3778
3779 /**
3780  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781  *                                when an individual transfer exceeds a
3782  *                                certain number of SPI words
3783  * @ctlr:     the @spi_controller for this transfer
3784  * @msg:      the @spi_message to transform
3785  * @maxwords: the number of words to limit each transfer to
3786  *
3787  * This function allocates resources that are automatically freed during the
3788  * spi message unoptimize phase so this function should only be called from
3789  * optimize_message callbacks.
3790  *
3791  * Return: status of transformation
3792  */
3793 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794                                  struct spi_message *msg,
3795                                  size_t maxwords)
3796 {
3797         struct spi_transfer *xfer;
3798
3799         /*
3800          * Iterate over the transfer_list,
3801          * but note that xfer is advanced to the last transfer inserted
3802          * to avoid checking sizes again unnecessarily (also xfer does
3803          * potentially belong to a different list by the time the
3804          * replacement has happened).
3805          */
3806         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807                 size_t maxsize;
3808                 int ret;
3809
3810                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811                 if (xfer->len > maxsize) {
3812                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813                                                            maxsize);
3814                         if (ret)
3815                                 return ret;
3816                 }
3817         }
3818
3819         return 0;
3820 }
3821 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822
3823 /*-------------------------------------------------------------------------*/
3824
3825 /*
3826  * Core methods for SPI controller protocol drivers. Some of the
3827  * other core methods are currently defined as inline functions.
3828  */
3829
3830 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831                                         u8 bits_per_word)
3832 {
3833         if (ctlr->bits_per_word_mask) {
3834                 /* Only 32 bits fit in the mask */
3835                 if (bits_per_word > 32)
3836                         return -EINVAL;
3837                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3838                         return -EINVAL;
3839         }
3840
3841         return 0;
3842 }
3843
3844 /**
3845  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846  * @spi: the device that requires specific CS timing configuration
3847  *
3848  * Return: zero on success, else a negative error code.
3849  */
3850 static int spi_set_cs_timing(struct spi_device *spi)
3851 {
3852         struct device *parent = spi->controller->dev.parent;
3853         int status = 0;
3854
3855         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856                 if (spi->controller->auto_runtime_pm) {
3857                         status = pm_runtime_get_sync(parent);
3858                         if (status < 0) {
3859                                 pm_runtime_put_noidle(parent);
3860                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861                                         status);
3862                                 return status;
3863                         }
3864
3865                         status = spi->controller->set_cs_timing(spi);
3866                         pm_runtime_mark_last_busy(parent);
3867                         pm_runtime_put_autosuspend(parent);
3868                 } else {
3869                         status = spi->controller->set_cs_timing(spi);
3870                 }
3871         }
3872         return status;
3873 }
3874
3875 /**
3876  * spi_setup - setup SPI mode and clock rate
3877  * @spi: the device whose settings are being modified
3878  * Context: can sleep, and no requests are queued to the device
3879  *
3880  * SPI protocol drivers may need to update the transfer mode if the
3881  * device doesn't work with its default.  They may likewise need
3882  * to update clock rates or word sizes from initial values.  This function
3883  * changes those settings, and must be called from a context that can sleep.
3884  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885  * effect the next time the device is selected and data is transferred to
3886  * or from it.  When this function returns, the SPI device is deselected.
3887  *
3888  * Note that this call will fail if the protocol driver specifies an option
3889  * that the underlying controller or its driver does not support.  For
3890  * example, not all hardware supports wire transfers using nine bit words,
3891  * LSB-first wire encoding, or active-high chipselects.
3892  *
3893  * Return: zero on success, else a negative error code.
3894  */
3895 int spi_setup(struct spi_device *spi)
3896 {
3897         unsigned        bad_bits, ugly_bits;
3898         int             status;
3899
3900         /*
3901          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902          * are set at the same time.
3903          */
3904         if ((hweight_long(spi->mode &
3905                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906             (hweight_long(spi->mode &
3907                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908                 dev_err(&spi->dev,
3909                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910                 return -EINVAL;
3911         }
3912         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3913         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916                 return -EINVAL;
3917         /* Check against conflicting MOSI idle configuration */
3918         if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919                 dev_err(&spi->dev,
3920                         "setup: MOSI configured to idle low and high at the same time.\n");
3921                 return -EINVAL;
3922         }
3923         /*
3924          * Help drivers fail *cleanly* when they need options
3925          * that aren't supported with their current controller.
3926          * SPI_CS_WORD has a fallback software implementation,
3927          * so it is ignored here.
3928          */
3929         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930                                  SPI_NO_TX | SPI_NO_RX);
3931         ugly_bits = bad_bits &
3932                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934         if (ugly_bits) {
3935                 dev_warn(&spi->dev,
3936                          "setup: ignoring unsupported mode bits %x\n",
3937                          ugly_bits);
3938                 spi->mode &= ~ugly_bits;
3939                 bad_bits &= ~ugly_bits;
3940         }
3941         if (bad_bits) {
3942                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943                         bad_bits);
3944                 return -EINVAL;
3945         }
3946
3947         if (!spi->bits_per_word) {
3948                 spi->bits_per_word = 8;
3949         } else {
3950                 /*
3951                  * Some controllers may not support the default 8 bits-per-word
3952                  * so only perform the check when this is explicitly provided.
3953                  */
3954                 status = __spi_validate_bits_per_word(spi->controller,
3955                                                       spi->bits_per_word);
3956                 if (status)
3957                         return status;
3958         }
3959
3960         if (spi->controller->max_speed_hz &&
3961             (!spi->max_speed_hz ||
3962              spi->max_speed_hz > spi->controller->max_speed_hz))
3963                 spi->max_speed_hz = spi->controller->max_speed_hz;
3964
3965         mutex_lock(&spi->controller->io_mutex);
3966
3967         if (spi->controller->setup) {
3968                 status = spi->controller->setup(spi);
3969                 if (status) {
3970                         mutex_unlock(&spi->controller->io_mutex);
3971                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972                                 status);
3973                         return status;
3974                 }
3975         }
3976
3977         status = spi_set_cs_timing(spi);
3978         if (status) {
3979                 mutex_unlock(&spi->controller->io_mutex);
3980                 return status;
3981         }
3982
3983         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985                 if (status < 0) {
3986                         mutex_unlock(&spi->controller->io_mutex);
3987                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988                                 status);
3989                         return status;
3990                 }
3991
3992                 /*
3993                  * We do not want to return positive value from pm_runtime_get,
3994                  * there are many instances of devices calling spi_setup() and
3995                  * checking for a non-zero return value instead of a negative
3996                  * return value.
3997                  */
3998                 status = 0;
3999
4000                 spi_set_cs(spi, false, true);
4001                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003         } else {
4004                 spi_set_cs(spi, false, true);
4005         }
4006
4007         mutex_unlock(&spi->controller->io_mutex);
4008
4009         if (spi->rt && !spi->controller->rt) {
4010                 spi->controller->rt = true;
4011                 spi_set_thread_rt(spi->controller);
4012         }
4013
4014         trace_spi_setup(spi, status);
4015
4016         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017                         spi->mode & SPI_MODE_X_MASK,
4018                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4022                         spi->bits_per_word, spi->max_speed_hz,
4023                         status);
4024
4025         return status;
4026 }
4027 EXPORT_SYMBOL_GPL(spi_setup);
4028
4029 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030                                        struct spi_device *spi)
4031 {
4032         int delay1, delay2;
4033
4034         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035         if (delay1 < 0)
4036                 return delay1;
4037
4038         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039         if (delay2 < 0)
4040                 return delay2;
4041
4042         if (delay1 < delay2)
4043                 memcpy(&xfer->word_delay, &spi->word_delay,
4044                        sizeof(xfer->word_delay));
4045
4046         return 0;
4047 }
4048
4049 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050 {
4051         struct spi_controller *ctlr = spi->controller;
4052         struct spi_transfer *xfer;
4053         int w_size;
4054
4055         if (list_empty(&message->transfers))
4056                 return -EINVAL;
4057
4058         message->spi = spi;
4059
4060         /*
4061          * Half-duplex links include original MicroWire, and ones with
4062          * only one data pin like SPI_3WIRE (switches direction) or where
4063          * either MOSI or MISO is missing.  They can also be caused by
4064          * software limitations.
4065          */
4066         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067             (spi->mode & SPI_3WIRE)) {
4068                 unsigned flags = ctlr->flags;
4069
4070                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071                         if (xfer->rx_buf && xfer->tx_buf)
4072                                 return -EINVAL;
4073                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074                                 return -EINVAL;
4075                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076                                 return -EINVAL;
4077                 }
4078         }
4079
4080         /*
4081          * Set transfer bits_per_word and max speed as spi device default if
4082          * it is not set for this transfer.
4083          * Set transfer tx_nbits and rx_nbits as single transfer default
4084          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085          * Ensure transfer word_delay is at least as long as that required by
4086          * device itself.
4087          */
4088         message->frame_length = 0;
4089         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090                 xfer->effective_speed_hz = 0;
4091                 message->frame_length += xfer->len;
4092                 if (!xfer->bits_per_word)
4093                         xfer->bits_per_word = spi->bits_per_word;
4094
4095                 if (!xfer->speed_hz)
4096                         xfer->speed_hz = spi->max_speed_hz;
4097
4098                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099                         xfer->speed_hz = ctlr->max_speed_hz;
4100
4101                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102                         return -EINVAL;
4103
4104                 /*
4105                  * SPI transfer length should be multiple of SPI word size
4106                  * where SPI word size should be power-of-two multiple.
4107                  */
4108                 if (xfer->bits_per_word <= 8)
4109                         w_size = 1;
4110                 else if (xfer->bits_per_word <= 16)
4111                         w_size = 2;
4112                 else
4113                         w_size = 4;
4114
4115                 /* No partial transfers accepted */
4116                 if (xfer->len % w_size)
4117                         return -EINVAL;
4118
4119                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4120                     xfer->speed_hz < ctlr->min_speed_hz)
4121                         return -EINVAL;
4122
4123                 if (xfer->tx_buf && !xfer->tx_nbits)
4124                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4125                 if (xfer->rx_buf && !xfer->rx_nbits)
4126                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4127                 /*
4128                  * Check transfer tx/rx_nbits:
4129                  * 1. check the value matches one of single, dual and quad
4130                  * 2. check tx/rx_nbits match the mode in spi_device
4131                  */
4132                 if (xfer->tx_buf) {
4133                         if (spi->mode & SPI_NO_TX)
4134                                 return -EINVAL;
4135                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4137                                 xfer->tx_nbits != SPI_NBITS_QUAD &&
4138                                 xfer->tx_nbits != SPI_NBITS_OCTAL)
4139                                 return -EINVAL;
4140                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142                                 return -EINVAL;
4143                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144                                 !(spi->mode & SPI_TX_QUAD))
4145                                 return -EINVAL;
4146                 }
4147                 /* Check transfer rx_nbits */
4148                 if (xfer->rx_buf) {
4149                         if (spi->mode & SPI_NO_RX)
4150                                 return -EINVAL;
4151                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4153                                 xfer->rx_nbits != SPI_NBITS_QUAD &&
4154                                 xfer->rx_nbits != SPI_NBITS_OCTAL)
4155                                 return -EINVAL;
4156                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158                                 return -EINVAL;
4159                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160                                 !(spi->mode & SPI_RX_QUAD))
4161                                 return -EINVAL;
4162                 }
4163
4164                 if (_spi_xfer_word_delay_update(xfer, spi))
4165                         return -EINVAL;
4166         }
4167
4168         message->status = -EINPROGRESS;
4169
4170         return 0;
4171 }
4172
4173 /*
4174  * spi_split_transfers - generic handling of transfer splitting
4175  * @msg: the message to split
4176  *
4177  * Under certain conditions, a SPI controller may not support arbitrary
4178  * transfer sizes or other features required by a peripheral. This function
4179  * will split the transfers in the message into smaller transfers that are
4180  * supported by the controller.
4181  *
4182  * Controllers with special requirements not covered here can also split
4183  * transfers in the optimize_message() callback.
4184  *
4185  * Context: can sleep
4186  * Return: zero on success, else a negative error code
4187  */
4188 static int spi_split_transfers(struct spi_message *msg)
4189 {
4190         struct spi_controller *ctlr = msg->spi->controller;
4191         struct spi_transfer *xfer;
4192         int ret;
4193
4194         /*
4195          * If an SPI controller does not support toggling the CS line on each
4196          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197          * for the CS line, we can emulate the CS-per-word hardware function by
4198          * splitting transfers into one-word transfers and ensuring that
4199          * cs_change is set for each transfer.
4200          */
4201         if ((msg->spi->mode & SPI_CS_WORD) &&
4202             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204                 if (ret)
4205                         return ret;
4206
4207                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208                         /* Don't change cs_change on the last entry in the list */
4209                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210                                 break;
4211
4212                         xfer->cs_change = 1;
4213                 }
4214         } else {
4215                 ret = spi_split_transfers_maxsize(ctlr, msg,
4216                                                   spi_max_transfer_size(msg->spi));
4217                 if (ret)
4218                         return ret;
4219         }
4220
4221         return 0;
4222 }
4223
4224 /*
4225  * __spi_optimize_message - shared implementation for spi_optimize_message()
4226  *                          and spi_maybe_optimize_message()
4227  * @spi: the device that will be used for the message
4228  * @msg: the message to optimize
4229  *
4230  * Peripheral drivers will call spi_optimize_message() and the spi core will
4231  * call spi_maybe_optimize_message() instead of calling this directly.
4232  *
4233  * It is not valid to call this on a message that has already been optimized.
4234  *
4235  * Return: zero on success, else a negative error code
4236  */
4237 static int __spi_optimize_message(struct spi_device *spi,
4238                                   struct spi_message *msg)
4239 {
4240         struct spi_controller *ctlr = spi->controller;
4241         int ret;
4242
4243         ret = __spi_validate(spi, msg);
4244         if (ret)
4245                 return ret;
4246
4247         ret = spi_split_transfers(msg);
4248         if (ret)
4249                 return ret;
4250
4251         if (ctlr->optimize_message) {
4252                 ret = ctlr->optimize_message(msg);
4253                 if (ret) {
4254                         spi_res_release(ctlr, msg);
4255                         return ret;
4256                 }
4257         }
4258
4259         msg->optimized = true;
4260
4261         return 0;
4262 }
4263
4264 /*
4265  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266  * @spi: the device that will be used for the message
4267  * @msg: the message to optimize
4268  * Return: zero on success, else a negative error code
4269  */
4270 static int spi_maybe_optimize_message(struct spi_device *spi,
4271                                       struct spi_message *msg)
4272 {
4273         if (spi->controller->defer_optimize_message) {
4274                 msg->spi = spi;
4275                 return 0;
4276         }
4277
4278         if (msg->pre_optimized)
4279                 return 0;
4280
4281         return __spi_optimize_message(spi, msg);
4282 }
4283
4284 /**
4285  * spi_optimize_message - do any one-time validation and setup for a SPI message
4286  * @spi: the device that will be used for the message
4287  * @msg: the message to optimize
4288  *
4289  * Peripheral drivers that reuse the same message repeatedly may call this to
4290  * perform as much message prep as possible once, rather than repeating it each
4291  * time a message transfer is performed to improve throughput and reduce CPU
4292  * usage.
4293  *
4294  * Once a message has been optimized, it cannot be modified with the exception
4295  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296  * only the data in the memory it points to).
4297  *
4298  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299  * to avoid leaking resources.
4300  *
4301  * Context: can sleep
4302  * Return: zero on success, else a negative error code
4303  */
4304 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305 {
4306         int ret;
4307
4308         /*
4309          * Pre-optimization is not supported and optimization is deferred e.g.
4310          * when using spi-mux.
4311          */
4312         if (spi->controller->defer_optimize_message)
4313                 return 0;
4314
4315         ret = __spi_optimize_message(spi, msg);
4316         if (ret)
4317                 return ret;
4318
4319         /*
4320          * This flag indicates that the peripheral driver called spi_optimize_message()
4321          * and therefore we shouldn't unoptimize message automatically when finalizing
4322          * the message but rather wait until spi_unoptimize_message() is called
4323          * by the peripheral driver.
4324          */
4325         msg->pre_optimized = true;
4326
4327         return 0;
4328 }
4329 EXPORT_SYMBOL_GPL(spi_optimize_message);
4330
4331 /**
4332  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333  * @msg: the message to unoptimize
4334  *
4335  * Calls to this function must be balanced with calls to spi_optimize_message().
4336  *
4337  * Context: can sleep
4338  */
4339 void spi_unoptimize_message(struct spi_message *msg)
4340 {
4341         if (msg->spi->controller->defer_optimize_message)
4342                 return;
4343
4344         __spi_unoptimize_message(msg);
4345         msg->pre_optimized = false;
4346 }
4347 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350 {
4351         struct spi_controller *ctlr = spi->controller;
4352         struct spi_transfer *xfer;
4353
4354         /*
4355          * Some controllers do not support doing regular SPI transfers. Return
4356          * ENOTSUPP when this is the case.
4357          */
4358         if (!ctlr->transfer)
4359                 return -ENOTSUPP;
4360
4361         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363
4364         trace_spi_message_submit(message);
4365
4366         if (!ctlr->ptp_sts_supported) {
4367                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368                         xfer->ptp_sts_word_pre = 0;
4369                         ptp_read_system_prets(xfer->ptp_sts);
4370                 }
4371         }
4372
4373         return ctlr->transfer(spi, message);
4374 }
4375
4376 static void devm_spi_unoptimize_message(void *msg)
4377 {
4378         spi_unoptimize_message(msg);
4379 }
4380
4381 /**
4382  * devm_spi_optimize_message - managed version of spi_optimize_message()
4383  * @dev: the device that manages @msg (usually @spi->dev)
4384  * @spi: the device that will be used for the message
4385  * @msg: the message to optimize
4386  * Return: zero on success, else a negative error code
4387  *
4388  * spi_unoptimize_message() will automatically be called when the device is
4389  * removed.
4390  */
4391 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392                               struct spi_message *msg)
4393 {
4394         int ret;
4395
4396         ret = spi_optimize_message(spi, msg);
4397         if (ret)
4398                 return ret;
4399
4400         return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401 }
4402 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403
4404 /**
4405  * spi_async - asynchronous SPI transfer
4406  * @spi: device with which data will be exchanged
4407  * @message: describes the data transfers, including completion callback
4408  * Context: any (IRQs may be blocked, etc)
4409  *
4410  * This call may be used in_irq and other contexts which can't sleep,
4411  * as well as from task contexts which can sleep.
4412  *
4413  * The completion callback is invoked in a context which can't sleep.
4414  * Before that invocation, the value of message->status is undefined.
4415  * When the callback is issued, message->status holds either zero (to
4416  * indicate complete success) or a negative error code.  After that
4417  * callback returns, the driver which issued the transfer request may
4418  * deallocate the associated memory; it's no longer in use by any SPI
4419  * core or controller driver code.
4420  *
4421  * Note that although all messages to a spi_device are handled in
4422  * FIFO order, messages may go to different devices in other orders.
4423  * Some device might be higher priority, or have various "hard" access
4424  * time requirements, for example.
4425  *
4426  * On detection of any fault during the transfer, processing of
4427  * the entire message is aborted, and the device is deselected.
4428  * Until returning from the associated message completion callback,
4429  * no other spi_message queued to that device will be processed.
4430  * (This rule applies equally to all the synchronous transfer calls,
4431  * which are wrappers around this core asynchronous primitive.)
4432  *
4433  * Return: zero on success, else a negative error code.
4434  */
4435 int spi_async(struct spi_device *spi, struct spi_message *message)
4436 {
4437         struct spi_controller *ctlr = spi->controller;
4438         int ret;
4439         unsigned long flags;
4440
4441         ret = spi_maybe_optimize_message(spi, message);
4442         if (ret)
4443                 return ret;
4444
4445         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446
4447         if (ctlr->bus_lock_flag)
4448                 ret = -EBUSY;
4449         else
4450                 ret = __spi_async(spi, message);
4451
4452         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4453
4454         return ret;
4455 }
4456 EXPORT_SYMBOL_GPL(spi_async);
4457
4458 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4459 {
4460         bool was_busy;
4461         int ret;
4462
4463         mutex_lock(&ctlr->io_mutex);
4464
4465         was_busy = ctlr->busy;
4466
4467         ctlr->cur_msg = msg;
4468         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469         if (ret)
4470                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471         ctlr->cur_msg = NULL;
4472         ctlr->fallback = false;
4473
4474         if (!was_busy) {
4475                 kfree(ctlr->dummy_rx);
4476                 ctlr->dummy_rx = NULL;
4477                 kfree(ctlr->dummy_tx);
4478                 ctlr->dummy_tx = NULL;
4479                 if (ctlr->unprepare_transfer_hardware &&
4480                     ctlr->unprepare_transfer_hardware(ctlr))
4481                         dev_err(&ctlr->dev,
4482                                 "failed to unprepare transfer hardware\n");
4483                 spi_idle_runtime_pm(ctlr);
4484         }
4485
4486         mutex_unlock(&ctlr->io_mutex);
4487 }
4488
4489 /*-------------------------------------------------------------------------*/
4490
4491 /*
4492  * Utility methods for SPI protocol drivers, layered on
4493  * top of the core.  Some other utility methods are defined as
4494  * inline functions.
4495  */
4496
4497 static void spi_complete(void *arg)
4498 {
4499         complete(arg);
4500 }
4501
4502 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4503 {
4504         DECLARE_COMPLETION_ONSTACK(done);
4505         unsigned long flags;
4506         int status;
4507         struct spi_controller *ctlr = spi->controller;
4508
4509         if (__spi_check_suspended(ctlr)) {
4510                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511                 return -ESHUTDOWN;
4512         }
4513
4514         status = spi_maybe_optimize_message(spi, message);
4515         if (status)
4516                 return status;
4517
4518         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4520
4521         /*
4522          * Checking queue_empty here only guarantees async/sync message
4523          * ordering when coming from the same context. It does not need to
4524          * guard against reentrancy from a different context. The io_mutex
4525          * will catch those cases.
4526          */
4527         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528                 message->actual_length = 0;
4529                 message->status = -EINPROGRESS;
4530
4531                 trace_spi_message_submit(message);
4532
4533                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535
4536                 __spi_transfer_message_noqueue(ctlr, message);
4537
4538                 return message->status;
4539         }
4540
4541         /*
4542          * There are messages in the async queue that could have originated
4543          * from the same context, so we need to preserve ordering.
4544          * Therefor we send the message to the async queue and wait until they
4545          * are completed.
4546          */
4547         message->complete = spi_complete;
4548         message->context = &done;
4549
4550         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551         status = __spi_async(spi, message);
4552         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553
4554         if (status == 0) {
4555                 wait_for_completion(&done);
4556                 status = message->status;
4557         }
4558         message->complete = NULL;
4559         message->context = NULL;
4560
4561         return status;
4562 }
4563
4564 /**
4565  * spi_sync - blocking/synchronous SPI data transfers
4566  * @spi: device with which data will be exchanged
4567  * @message: describes the data transfers
4568  * Context: can sleep
4569  *
4570  * This call may only be used from a context that may sleep.  The sleep
4571  * is non-interruptible, and has no timeout.  Low-overhead controller
4572  * drivers may DMA directly into and out of the message buffers.
4573  *
4574  * Note that the SPI device's chip select is active during the message,
4575  * and then is normally disabled between messages.  Drivers for some
4576  * frequently-used devices may want to minimize costs of selecting a chip,
4577  * by leaving it selected in anticipation that the next message will go
4578  * to the same chip.  (That may increase power usage.)
4579  *
4580  * Also, the caller is guaranteeing that the memory associated with the
4581  * message will not be freed before this call returns.
4582  *
4583  * Return: zero on success, else a negative error code.
4584  */
4585 int spi_sync(struct spi_device *spi, struct spi_message *message)
4586 {
4587         int ret;
4588
4589         mutex_lock(&spi->controller->bus_lock_mutex);
4590         ret = __spi_sync(spi, message);
4591         mutex_unlock(&spi->controller->bus_lock_mutex);
4592
4593         return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(spi_sync);
4596
4597 /**
4598  * spi_sync_locked - version of spi_sync with exclusive bus usage
4599  * @spi: device with which data will be exchanged
4600  * @message: describes the data transfers
4601  * Context: can sleep
4602  *
4603  * This call may only be used from a context that may sleep.  The sleep
4604  * is non-interruptible, and has no timeout.  Low-overhead controller
4605  * drivers may DMA directly into and out of the message buffers.
4606  *
4607  * This call should be used by drivers that require exclusive access to the
4608  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609  * be released by a spi_bus_unlock call when the exclusive access is over.
4610  *
4611  * Return: zero on success, else a negative error code.
4612  */
4613 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614 {
4615         return __spi_sync(spi, message);
4616 }
4617 EXPORT_SYMBOL_GPL(spi_sync_locked);
4618
4619 /**
4620  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621  * @ctlr: SPI bus master that should be locked for exclusive bus access
4622  * Context: can sleep
4623  *
4624  * This call may only be used from a context that may sleep.  The sleep
4625  * is non-interruptible, and has no timeout.
4626  *
4627  * This call should be used by drivers that require exclusive access to the
4628  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629  * exclusive access is over. Data transfer must be done by spi_sync_locked
4630  * and spi_async_locked calls when the SPI bus lock is held.
4631  *
4632  * Return: always zero.
4633  */
4634 int spi_bus_lock(struct spi_controller *ctlr)
4635 {
4636         unsigned long flags;
4637
4638         mutex_lock(&ctlr->bus_lock_mutex);
4639
4640         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641         ctlr->bus_lock_flag = 1;
4642         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643
4644         /* Mutex remains locked until spi_bus_unlock() is called */
4645
4646         return 0;
4647 }
4648 EXPORT_SYMBOL_GPL(spi_bus_lock);
4649
4650 /**
4651  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652  * @ctlr: SPI bus master that was locked for exclusive bus access
4653  * Context: can sleep
4654  *
4655  * This call may only be used from a context that may sleep.  The sleep
4656  * is non-interruptible, and has no timeout.
4657  *
4658  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659  * call.
4660  *
4661  * Return: always zero.
4662  */
4663 int spi_bus_unlock(struct spi_controller *ctlr)
4664 {
4665         ctlr->bus_lock_flag = 0;
4666
4667         mutex_unlock(&ctlr->bus_lock_mutex);
4668
4669         return 0;
4670 }
4671 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672
4673 /* Portable code must never pass more than 32 bytes */
4674 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4675
4676 static u8       *buf;
4677
4678 /**
4679  * spi_write_then_read - SPI synchronous write followed by read
4680  * @spi: device with which data will be exchanged
4681  * @txbuf: data to be written (need not be DMA-safe)
4682  * @n_tx: size of txbuf, in bytes
4683  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684  * @n_rx: size of rxbuf, in bytes
4685  * Context: can sleep
4686  *
4687  * This performs a half duplex MicroWire style transaction with the
4688  * device, sending txbuf and then reading rxbuf.  The return value
4689  * is zero for success, else a negative errno status code.
4690  * This call may only be used from a context that may sleep.
4691  *
4692  * Parameters to this routine are always copied using a small buffer.
4693  * Performance-sensitive or bulk transfer code should instead use
4694  * spi_{async,sync}() calls with DMA-safe buffers.
4695  *
4696  * Return: zero on success, else a negative error code.
4697  */
4698 int spi_write_then_read(struct spi_device *spi,
4699                 const void *txbuf, unsigned n_tx,
4700                 void *rxbuf, unsigned n_rx)
4701 {
4702         static DEFINE_MUTEX(lock);
4703
4704         int                     status;
4705         struct spi_message      message;
4706         struct spi_transfer     x[2];
4707         u8                      *local_buf;
4708
4709         /*
4710          * Use preallocated DMA-safe buffer if we can. We can't avoid
4711          * copying here, (as a pure convenience thing), but we can
4712          * keep heap costs out of the hot path unless someone else is
4713          * using the pre-allocated buffer or the transfer is too large.
4714          */
4715         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717                                     GFP_KERNEL | GFP_DMA);
4718                 if (!local_buf)
4719                         return -ENOMEM;
4720         } else {
4721                 local_buf = buf;
4722         }
4723
4724         spi_message_init(&message);
4725         memset(x, 0, sizeof(x));
4726         if (n_tx) {
4727                 x[0].len = n_tx;
4728                 spi_message_add_tail(&x[0], &message);
4729         }
4730         if (n_rx) {
4731                 x[1].len = n_rx;
4732                 spi_message_add_tail(&x[1], &message);
4733         }
4734
4735         memcpy(local_buf, txbuf, n_tx);
4736         x[0].tx_buf = local_buf;
4737         x[1].rx_buf = local_buf + n_tx;
4738
4739         /* Do the I/O */
4740         status = spi_sync(spi, &message);
4741         if (status == 0)
4742                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4743
4744         if (x[0].tx_buf == buf)
4745                 mutex_unlock(&lock);
4746         else
4747                 kfree(local_buf);
4748
4749         return status;
4750 }
4751 EXPORT_SYMBOL_GPL(spi_write_then_read);
4752
4753 /*-------------------------------------------------------------------------*/
4754
4755 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756 /* Must call put_device() when done with returned spi_device device */
4757 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758 {
4759         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4760
4761         return dev ? to_spi_device(dev) : NULL;
4762 }
4763
4764 /* The spi controllers are not using spi_bus, so we find it with another way */
4765 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4766 {
4767         struct device *dev;
4768
4769         dev = class_find_device_by_of_node(&spi_master_class, node);
4770         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4772         if (!dev)
4773                 return NULL;
4774
4775         /* Reference got in class_find_device */
4776         return container_of(dev, struct spi_controller, dev);
4777 }
4778
4779 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780                          void *arg)
4781 {
4782         struct of_reconfig_data *rd = arg;
4783         struct spi_controller *ctlr;
4784         struct spi_device *spi;
4785
4786         switch (of_reconfig_get_state_change(action, arg)) {
4787         case OF_RECONFIG_CHANGE_ADD:
4788                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789                 if (ctlr == NULL)
4790                         return NOTIFY_OK;       /* Not for us */
4791
4792                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793                         put_device(&ctlr->dev);
4794                         return NOTIFY_OK;
4795                 }
4796
4797                 /*
4798                  * Clear the flag before adding the device so that fw_devlink
4799                  * doesn't skip adding consumers to this device.
4800                  */
4801                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802                 spi = of_register_spi_device(ctlr, rd->dn);
4803                 put_device(&ctlr->dev);
4804
4805                 if (IS_ERR(spi)) {
4806                         pr_err("%s: failed to create for '%pOF'\n",
4807                                         __func__, rd->dn);
4808                         of_node_clear_flag(rd->dn, OF_POPULATED);
4809                         return notifier_from_errno(PTR_ERR(spi));
4810                 }
4811                 break;
4812
4813         case OF_RECONFIG_CHANGE_REMOVE:
4814                 /* Already depopulated? */
4815                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816                         return NOTIFY_OK;
4817
4818                 /* Find our device by node */
4819                 spi = of_find_spi_device_by_node(rd->dn);
4820                 if (spi == NULL)
4821                         return NOTIFY_OK;       /* No? not meant for us */
4822
4823                 /* Unregister takes one ref away */
4824                 spi_unregister_device(spi);
4825
4826                 /* And put the reference of the find */
4827                 put_device(&spi->dev);
4828                 break;
4829         }
4830
4831         return NOTIFY_OK;
4832 }
4833
4834 static struct notifier_block spi_of_notifier = {
4835         .notifier_call = of_spi_notify,
4836 };
4837 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838 extern struct notifier_block spi_of_notifier;
4839 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840
4841 #if IS_ENABLED(CONFIG_ACPI)
4842 static int spi_acpi_controller_match(struct device *dev, const void *data)
4843 {
4844         return ACPI_COMPANION(dev->parent) == data;
4845 }
4846
4847 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848 {
4849         struct device *dev;
4850
4851         dev = class_find_device(&spi_master_class, NULL, adev,
4852                                 spi_acpi_controller_match);
4853         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854                 dev = class_find_device(&spi_slave_class, NULL, adev,
4855                                         spi_acpi_controller_match);
4856         if (!dev)
4857                 return NULL;
4858
4859         return container_of(dev, struct spi_controller, dev);
4860 }
4861 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862
4863 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864 {
4865         struct device *dev;
4866
4867         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868         return to_spi_device(dev);
4869 }
4870
4871 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872                            void *arg)
4873 {
4874         struct acpi_device *adev = arg;
4875         struct spi_controller *ctlr;
4876         struct spi_device *spi;
4877
4878         switch (value) {
4879         case ACPI_RECONFIG_DEVICE_ADD:
4880                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881                 if (!ctlr)
4882                         break;
4883
4884                 acpi_register_spi_device(ctlr, adev);
4885                 put_device(&ctlr->dev);
4886                 break;
4887         case ACPI_RECONFIG_DEVICE_REMOVE:
4888                 if (!acpi_device_enumerated(adev))
4889                         break;
4890
4891                 spi = acpi_spi_find_device_by_adev(adev);
4892                 if (!spi)
4893                         break;
4894
4895                 spi_unregister_device(spi);
4896                 put_device(&spi->dev);
4897                 break;
4898         }
4899
4900         return NOTIFY_OK;
4901 }
4902
4903 static struct notifier_block spi_acpi_notifier = {
4904         .notifier_call = acpi_spi_notify,
4905 };
4906 #else
4907 extern struct notifier_block spi_acpi_notifier;
4908 #endif
4909
4910 static int __init spi_init(void)
4911 {
4912         int     status;
4913
4914         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915         if (!buf) {
4916                 status = -ENOMEM;
4917                 goto err0;
4918         }
4919
4920         status = bus_register(&spi_bus_type);
4921         if (status < 0)
4922                 goto err1;
4923
4924         status = class_register(&spi_master_class);
4925         if (status < 0)
4926                 goto err2;
4927
4928         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929                 status = class_register(&spi_slave_class);
4930                 if (status < 0)
4931                         goto err3;
4932         }
4933
4934         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936         if (IS_ENABLED(CONFIG_ACPI))
4937                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938
4939         return 0;
4940
4941 err3:
4942         class_unregister(&spi_master_class);
4943 err2:
4944         bus_unregister(&spi_bus_type);
4945 err1:
4946         kfree(buf);
4947         buf = NULL;
4948 err0:
4949         return status;
4950 }
4951
4952 /*
4953  * A board_info is normally registered in arch_initcall(),
4954  * but even essential drivers wait till later.
4955  *
4956  * REVISIT only boardinfo really needs static linking. The rest (device and
4957  * driver registration) _could_ be dynamically linked (modular) ... Costs
4958  * include needing to have boardinfo data structures be much more public.
4959  */
4960 postcore_initcall(spi_init);
This page took 0.313958 seconds and 4 git commands to generate.