1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_print.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_vblank.h>
50 #define HVS_FIFO_LATENCY_PIX 6
52 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
53 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
55 static const struct debugfs_reg32 crtc_regs[] = {
56 VC4_REG32(PV_CONTROL),
57 VC4_REG32(PV_V_CONTROL),
58 VC4_REG32(PV_VSYNCD_EVEN),
63 VC4_REG32(PV_VERTA_EVEN),
64 VC4_REG32(PV_VERTB_EVEN),
66 VC4_REG32(PV_INTSTAT),
68 VC4_REG32(PV_HACT_ACT),
72 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
74 struct vc4_hvs *hvs = vc4->hvs;
75 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
76 /* Top/base are supposed to be 4-pixel aligned, but the
77 * Raspberry Pi firmware fills the low bits (which are
78 * presumably ignored).
80 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
81 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
83 return top - base + 4;
86 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
89 ktime_t *stime, ktime_t *etime,
90 const struct drm_display_mode *mode)
92 struct drm_device *dev = crtc->dev;
93 struct vc4_dev *vc4 = to_vc4_dev(dev);
94 struct vc4_hvs *hvs = vc4->hvs;
95 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
96 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
97 unsigned int cob_size;
103 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
105 /* Get optional system timestamp before query. */
107 *stime = ktime_get();
110 * Read vertical scanline which is currently composed for our
111 * pixelvalve by the HVS, and also the scaler status.
113 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
115 /* Get optional system timestamp after query. */
117 *etime = ktime_get();
119 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
121 /* Vertical position of hvs composed scanline. */
122 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
125 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
128 /* Use hpos to correct for field offset in interlaced mode. */
129 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
130 *hpos += mode->crtc_htotal / 2;
133 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
134 /* This is the offset we need for translating hvs -> pv scanout pos. */
135 fifo_lines = cob_size / mode->crtc_hdisplay;
140 /* HVS more than fifo_lines into frame for compositing? */
141 if (*vpos > fifo_lines) {
143 * We are in active scanout and can get some meaningful results
144 * from HVS. The actual PV scanout can not trail behind more
145 * than fifo_lines as that is the fifo's capacity. Assume that
146 * in active scanout the HVS and PV work in lockstep wrt. HVS
147 * refilling the fifo and PV consuming from the fifo, ie.
148 * whenever the PV consumes and frees up a scanline in the
149 * fifo, the HVS will immediately refill it, therefore
150 * incrementing vpos. Therefore we choose HVS read position -
151 * fifo size in scanlines as a estimate of the real scanout
152 * position of the PV.
154 *vpos -= fifo_lines + 1;
160 * Less: This happens when we are in vblank and the HVS, after getting
161 * the VSTART restart signal from the PV, just started refilling its
162 * fifo with new lines from the top-most lines of the new framebuffers.
163 * The PV does not scan out in vblank, so does not remove lines from
164 * the fifo, so the fifo will be full quickly and the HVS has to pause.
165 * We can't get meaningful readings wrt. scanline position of the PV
166 * and need to make things up in a approximative but consistent way.
168 vblank_lines = mode->vtotal - mode->vdisplay;
172 * Assume the irq handler got called close to first
173 * line of vblank, so PV has about a full vblank
174 * scanlines to go, and as a base timestamp use the
175 * one taken at entry into vblank irq handler, so it
176 * is not affected by random delays due to lock
177 * contention on event_lock or vblank_time lock in
180 *vpos = -vblank_lines;
183 *stime = vc4_crtc->t_vblank;
185 *etime = vc4_crtc->t_vblank;
188 * If the HVS fifo is not yet full then we know for certain
189 * we are at the very beginning of vblank, as the hvs just
190 * started refilling, and the stime and etime timestamps
191 * truly correspond to start of vblank.
193 * Unfortunately there's no way to report this to upper levels
194 * and make it more useful.
198 * No clue where we are inside vblank. Return a vpos of zero,
199 * which will cause calling code to just return the etime
200 * timestamp uncorrected. At least this is no worse than the
209 void vc4_crtc_destroy(struct drm_crtc *crtc)
211 drm_crtc_cleanup(crtc);
214 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
216 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
217 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
218 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
219 u32 fifo_len_bytes = pv_data->fifo_depth;
222 * Pixels are pulled from the HVS if the number of bytes is
223 * lower than the FIFO full level.
225 * The latency of the pixel fetch mechanism is 6 pixels, so we
226 * need to convert those 6 pixels in bytes, depending on the
227 * format, and then subtract that from the length of the FIFO
228 * to make sure we never end up in a situation where the FIFO
232 case PV_CONTROL_FORMAT_DSIV_16:
233 case PV_CONTROL_FORMAT_DSIC_16:
234 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
235 case PV_CONTROL_FORMAT_DSIV_18:
236 return fifo_len_bytes - 14;
237 case PV_CONTROL_FORMAT_24:
238 case PV_CONTROL_FORMAT_DSIV_24:
241 * For some reason, the pixelvalve4 doesn't work with
242 * the usual formula and will only work with 32.
244 if (crtc_data->hvs_output == 5)
248 * It looks like in some situations, we will overflow
249 * the PixelValve FIFO (with the bit 10 of PV stat being
250 * set) and stall the HVS / PV, eventually resulting in
251 * a page flip timeout.
253 * Displaying the video overlay during a playback with
254 * Kodi on an RPi3 seems to be a great solution with a
255 * failure rate around 50%.
257 * Removing 1 from the FIFO full level however
258 * seems to completely remove that issue.
261 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
263 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
267 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
270 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
273 ret |= VC4_SET_FIELD((level >> 6),
274 PV5_CONTROL_FIFO_LEVEL_HIGH);
276 return ret | VC4_SET_FIELD(level & 0x3f,
277 PV_CONTROL_FIFO_LEVEL);
281 * Returns the encoder attached to the CRTC.
283 * VC4 can only scan out to one encoder at a time, while the DRM core
284 * allows drivers to push pixels to more than one encoder from the
287 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
288 struct drm_crtc_state *state)
290 struct drm_encoder *encoder;
292 WARN_ON(hweight32(state->encoder_mask) > 1);
294 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
300 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
302 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
304 /* The PV needs to be disabled before it can be flushed */
305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
306 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
309 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
310 struct drm_atomic_state *state)
312 struct drm_device *dev = crtc->dev;
313 struct vc4_dev *vc4 = to_vc4_dev(dev);
314 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
315 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
316 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
317 struct drm_crtc_state *crtc_state = crtc->state;
318 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
319 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
320 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
321 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
322 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
323 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
324 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
325 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
326 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
327 u8 ppc = pv_data->pixels_per_clock;
328 bool debug_dump_regs = false;
330 if (debug_dump_regs) {
331 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
332 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
333 drm_crtc_index(crtc));
334 drm_print_regset32(&p, &vc4_crtc->regset);
337 vc4_crtc_pixelvalve_reset(crtc);
340 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
342 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
346 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
348 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
352 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
355 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
358 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
360 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
363 CRTC_WRITE(PV_VERTA_EVEN,
364 VC4_SET_FIELD(mode->crtc_vtotal -
365 mode->crtc_vsync_end,
367 VC4_SET_FIELD(mode->crtc_vsync_end -
368 mode->crtc_vsync_start,
370 CRTC_WRITE(PV_VERTB_EVEN,
371 VC4_SET_FIELD(mode->crtc_vsync_start -
374 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
376 /* We set up first field even mode for HDMI. VEC's
377 * NTSC mode would want first field odd instead, once
378 * we support it (to do so, set ODD_FIRST and put the
379 * delay in VSYNCD_EVEN instead).
381 CRTC_WRITE(PV_V_CONTROL,
382 PV_VCONTROL_CONTINUOUS |
383 (is_dsi ? PV_VCONTROL_DSI : 0) |
384 PV_VCONTROL_INTERLACE |
385 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
386 PV_VCONTROL_ODD_DELAY));
387 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
389 CRTC_WRITE(PV_V_CONTROL,
390 PV_VCONTROL_CONTINUOUS |
391 (is_dsi ? PV_VCONTROL_DSI : 0));
395 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
398 CRTC_WRITE(PV_MUX_CFG,
399 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
400 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
402 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
403 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
404 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
405 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
406 PV_CONTROL_CLR_AT_START |
407 PV_CONTROL_TRIGGER_UNDERFLOW |
408 PV_CONTROL_WAIT_HSTART |
409 VC4_SET_FIELD(vc4_encoder->clock_select,
410 PV_CONTROL_CLK_SELECT));
412 if (debug_dump_regs) {
413 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
414 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
415 drm_crtc_index(crtc));
416 drm_print_regset32(&p, &vc4_crtc->regset);
420 static void require_hvs_enabled(struct drm_device *dev)
422 struct vc4_dev *vc4 = to_vc4_dev(dev);
423 struct vc4_hvs *hvs = vc4->hvs;
425 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
426 SCALER_DISPCTRL_ENABLE);
429 static int vc4_crtc_disable(struct drm_crtc *crtc,
430 struct drm_encoder *encoder,
431 struct drm_atomic_state *state,
432 unsigned int channel)
434 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
435 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
436 struct drm_device *dev = crtc->dev;
437 struct vc4_dev *vc4 = to_vc4_dev(dev);
440 CRTC_WRITE(PV_V_CONTROL,
441 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
442 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
443 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
446 * This delay is needed to avoid to get a pixel stuck in an
447 * unflushable FIFO between the pixelvalve and the HDMI
448 * controllers on the BCM2711.
450 * Timing is fairly sensitive here, so mdelay is the safest
453 * If it was to be reworked, the stuck pixel happens on a
454 * BCM2711 when changing mode with a good probability, so a
455 * script that changes mode on a regular basis should trigger
456 * the bug after less than 10 attempts. It manifests itself with
457 * every pixels being shifted by one to the right, and thus the
458 * last pixel of a line actually being displayed as the first
459 * pixel on the next line.
463 if (vc4_encoder && vc4_encoder->post_crtc_disable)
464 vc4_encoder->post_crtc_disable(encoder, state);
466 vc4_crtc_pixelvalve_reset(crtc);
467 vc4_hvs_stop_channel(vc4->hvs, channel);
469 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
470 vc4_encoder->post_crtc_powerdown(encoder, state);
475 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
476 enum vc4_encoder_type type)
478 struct drm_encoder *encoder;
480 drm_for_each_encoder(encoder, crtc->dev) {
481 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
483 if (vc4_encoder->type == type)
490 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
492 struct drm_device *drm = crtc->dev;
493 struct vc4_dev *vc4 = to_vc4_dev(drm);
494 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495 enum vc4_encoder_type encoder_type;
496 const struct vc4_pv_data *pv_data;
497 struct drm_encoder *encoder;
498 struct vc4_hdmi *vc4_hdmi;
499 unsigned encoder_sel;
503 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
504 "brcm,bcm2711-pixelvalve2") ||
505 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
506 "brcm,bcm2711-pixelvalve4")))
509 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
512 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
515 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
519 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
520 if (WARN_ON(encoder_sel != 0))
523 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
524 encoder_type = pv_data->encoder_types[encoder_sel];
525 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
526 if (WARN_ON(!encoder))
529 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
530 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
534 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
539 * post_crtc_powerdown will have called pm_runtime_put, so we
540 * don't need it here otherwise we'll get the reference counting
547 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
548 struct drm_atomic_state *state)
550 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
552 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
553 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
554 struct drm_device *dev = crtc->dev;
556 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
557 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
559 require_hvs_enabled(dev);
561 /* Disable vblank irq handling before crtc is disabled. */
562 drm_crtc_vblank_off(crtc);
564 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
567 * Make sure we issue a vblank event after disabling the CRTC if
568 * someone was waiting it.
570 if (crtc->state->event) {
573 spin_lock_irqsave(&dev->event_lock, flags);
574 drm_crtc_send_vblank_event(crtc, crtc->state->event);
575 crtc->state->event = NULL;
576 spin_unlock_irqrestore(&dev->event_lock, flags);
580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
581 struct drm_atomic_state *state)
583 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
585 struct drm_device *dev = crtc->dev;
586 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
587 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
588 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
590 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
591 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
593 require_hvs_enabled(dev);
595 /* Enable vblank irq handling before crtc is started otherwise
596 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
598 drm_crtc_vblank_on(crtc);
600 vc4_hvs_atomic_enable(crtc, state);
602 if (vc4_encoder->pre_crtc_configure)
603 vc4_encoder->pre_crtc_configure(encoder, state);
605 vc4_crtc_config_pv(crtc, encoder, state);
607 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
609 if (vc4_encoder->pre_crtc_enable)
610 vc4_encoder->pre_crtc_enable(encoder, state);
612 /* When feeding the transposer block the pixelvalve is unneeded and
613 * should not be enabled.
615 CRTC_WRITE(PV_V_CONTROL,
616 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
618 if (vc4_encoder->post_crtc_enable)
619 vc4_encoder->post_crtc_enable(encoder, state);
622 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
623 const struct drm_display_mode *mode)
625 /* Do not allow doublescan modes from user space */
626 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
627 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
629 return MODE_NO_DBLESCAN;
635 void vc4_crtc_get_margins(struct drm_crtc_state *state,
636 unsigned int *left, unsigned int *right,
637 unsigned int *top, unsigned int *bottom)
639 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
640 struct drm_connector_state *conn_state;
641 struct drm_connector *conn;
644 *left = vc4_state->margins.left;
645 *right = vc4_state->margins.right;
646 *top = vc4_state->margins.top;
647 *bottom = vc4_state->margins.bottom;
649 /* We have to interate over all new connector states because
650 * vc4_crtc_get_margins() might be called before
651 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
654 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
655 if (conn_state->crtc != state->crtc)
658 *left = conn_state->tv.margins.left;
659 *right = conn_state->tv.margins.right;
660 *top = conn_state->tv.margins.top;
661 *bottom = conn_state->tv.margins.bottom;
666 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
667 struct drm_atomic_state *state)
669 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
671 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
672 struct drm_connector *conn;
673 struct drm_connector_state *conn_state;
674 struct drm_encoder *encoder;
677 ret = vc4_hvs_atomic_check(crtc, state);
681 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
683 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
684 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
686 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
687 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
688 mode->clock * 9 / 10) * 1000;
690 vc4_state->hvs_load = mode->clock * 1000;
694 for_each_new_connector_in_state(state, conn, conn_state,
696 if (conn_state->crtc != crtc)
699 vc4_state->margins.left = conn_state->tv.margins.left;
700 vc4_state->margins.right = conn_state->tv.margins.right;
701 vc4_state->margins.top = conn_state->tv.margins.top;
702 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
709 static int vc4_enable_vblank(struct drm_crtc *crtc)
711 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
713 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
718 static void vc4_disable_vblank(struct drm_crtc *crtc)
720 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
722 CRTC_WRITE(PV_INTEN, 0);
725 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
727 struct drm_crtc *crtc = &vc4_crtc->base;
728 struct drm_device *dev = crtc->dev;
729 struct vc4_dev *vc4 = to_vc4_dev(dev);
730 struct vc4_hvs *hvs = vc4->hvs;
731 u32 chan = vc4_crtc->current_hvs_channel;
734 spin_lock_irqsave(&dev->event_lock, flags);
735 spin_lock(&vc4_crtc->irq_lock);
736 if (vc4_crtc->event &&
737 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
738 vc4_crtc->feeds_txp)) {
739 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
740 vc4_crtc->event = NULL;
741 drm_crtc_vblank_put(crtc);
743 /* Wait for the page flip to unmask the underrun to ensure that
744 * the display list was updated by the hardware. Before that
745 * happens, the HVS will be using the previous display list with
746 * the CRTC and encoder already reconfigured, leading to
747 * underruns. This can be seen when reconfiguring the CRTC.
749 vc4_hvs_unmask_underrun(hvs, chan);
751 spin_unlock(&vc4_crtc->irq_lock);
752 spin_unlock_irqrestore(&dev->event_lock, flags);
755 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
757 crtc->t_vblank = ktime_get();
758 drm_crtc_handle_vblank(&crtc->base);
759 vc4_crtc_handle_page_flip(crtc);
762 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
764 struct vc4_crtc *vc4_crtc = data;
765 u32 stat = CRTC_READ(PV_INTSTAT);
766 irqreturn_t ret = IRQ_NONE;
768 if (stat & PV_INT_VFP_START) {
769 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
770 vc4_crtc_handle_vblank(vc4_crtc);
777 struct vc4_async_flip_state {
778 struct drm_crtc *crtc;
779 struct drm_framebuffer *fb;
780 struct drm_framebuffer *old_fb;
781 struct drm_pending_vblank_event *event;
784 struct dma_fence_cb fence;
785 struct vc4_seqno_cb seqno;
789 /* Called when the V3D execution for the BO being flipped to is done, so that
790 * we can actually update the plane's address to point to it.
793 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
795 struct drm_crtc *crtc = flip_state->crtc;
796 struct drm_device *dev = crtc->dev;
797 struct drm_plane *plane = crtc->primary;
799 vc4_plane_async_set_fb(plane, flip_state->fb);
800 if (flip_state->event) {
803 spin_lock_irqsave(&dev->event_lock, flags);
804 drm_crtc_send_vblank_event(crtc, flip_state->event);
805 spin_unlock_irqrestore(&dev->event_lock, flags);
808 drm_crtc_vblank_put(crtc);
809 drm_framebuffer_put(flip_state->fb);
811 if (flip_state->old_fb)
812 drm_framebuffer_put(flip_state->old_fb);
817 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
819 struct vc4_async_flip_state *flip_state =
820 container_of(cb, struct vc4_async_flip_state, cb.seqno);
821 struct vc4_bo *bo = NULL;
823 if (flip_state->old_fb) {
824 struct drm_gem_cma_object *cma_bo =
825 drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
826 bo = to_vc4_bo(&cma_bo->base);
829 vc4_async_page_flip_complete(flip_state);
832 * Decrement the BO usecnt in order to keep the inc/dec
833 * calls balanced when the planes are updated through
834 * the async update path.
836 * FIXME: we should move to generic async-page-flip when
837 * it's available, so that we can get rid of this
838 * hand-made cleanup_fb() logic.
841 vc4_bo_dec_usecnt(bo);
844 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
845 struct dma_fence_cb *cb)
847 struct vc4_async_flip_state *flip_state =
848 container_of(cb, struct vc4_async_flip_state, cb.fence);
850 vc4_async_page_flip_complete(flip_state);
851 dma_fence_put(fence);
854 static int vc4_async_set_fence_cb(struct drm_device *dev,
855 struct vc4_async_flip_state *flip_state)
857 struct drm_framebuffer *fb = flip_state->fb;
858 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
859 struct vc4_dev *vc4 = to_vc4_dev(dev);
860 struct dma_fence *fence;
864 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
866 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
867 vc4_async_page_flip_seqno_complete);
870 ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
874 /* If there's no fence, complete the page flip immediately */
876 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
880 /* If the fence has already been completed, complete the page flip */
881 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
882 vc4_async_page_flip_fence_complete))
883 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
889 vc4_async_page_flip_common(struct drm_crtc *crtc,
890 struct drm_framebuffer *fb,
891 struct drm_pending_vblank_event *event,
894 struct drm_device *dev = crtc->dev;
895 struct drm_plane *plane = crtc->primary;
896 struct vc4_async_flip_state *flip_state;
898 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
902 drm_framebuffer_get(fb);
904 flip_state->crtc = crtc;
905 flip_state->event = event;
907 /* Save the current FB before it's replaced by the new one in
908 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
909 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
911 * FIXME: we should move to generic async-page-flip when it's
912 * available, so that we can get rid of this hand-made cleanup_fb()
915 flip_state->old_fb = plane->state->fb;
916 if (flip_state->old_fb)
917 drm_framebuffer_get(flip_state->old_fb);
919 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
921 /* Immediately update the plane's legacy fb pointer, so that later
922 * modeset prep sees the state that will be present when the semaphore
925 drm_atomic_set_fb_for_plane(plane->state, fb);
927 vc4_async_set_fence_cb(dev, flip_state);
929 /* Driver takes ownership of state on successful async commit. */
933 /* Implements async (non-vblank-synced) page flips.
935 * The page flip ioctl needs to return immediately, so we grab the
936 * modeset semaphore on the pipe, and queue the address update for
937 * when V3D is done with the BO being flipped to.
939 static int vc4_async_page_flip(struct drm_crtc *crtc,
940 struct drm_framebuffer *fb,
941 struct drm_pending_vblank_event *event,
944 struct drm_device *dev = crtc->dev;
945 struct vc4_dev *vc4 = to_vc4_dev(dev);
946 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
947 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
950 if (WARN_ON_ONCE(vc4->is_vc5))
954 * Increment the BO usecnt here, so that we never end up with an
955 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
956 * plane is later updated through the non-async path.
958 * FIXME: we should move to generic async-page-flip when
959 * it's available, so that we can get rid of this
960 * hand-made prepare_fb() logic.
962 ret = vc4_bo_inc_usecnt(bo);
966 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
968 vc4_bo_dec_usecnt(bo);
975 static int vc5_async_page_flip(struct drm_crtc *crtc,
976 struct drm_framebuffer *fb,
977 struct drm_pending_vblank_event *event,
980 return vc4_async_page_flip_common(crtc, fb, event, flags);
983 int vc4_page_flip(struct drm_crtc *crtc,
984 struct drm_framebuffer *fb,
985 struct drm_pending_vblank_event *event,
987 struct drm_modeset_acquire_ctx *ctx)
989 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
990 struct drm_device *dev = crtc->dev;
991 struct vc4_dev *vc4 = to_vc4_dev(dev);
994 return vc5_async_page_flip(crtc, fb, event, flags);
996 return vc4_async_page_flip(crtc, fb, event, flags);
998 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1002 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1004 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1006 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1010 old_vc4_state = to_vc4_crtc_state(crtc->state);
1011 vc4_state->margins = old_vc4_state->margins;
1012 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1014 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1015 return &vc4_state->base;
1018 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1019 struct drm_crtc_state *state)
1021 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1022 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1024 if (drm_mm_node_allocated(&vc4_state->mm)) {
1025 unsigned long flags;
1027 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1028 drm_mm_remove_node(&vc4_state->mm);
1029 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1033 drm_atomic_helper_crtc_destroy_state(crtc, state);
1036 void vc4_crtc_reset(struct drm_crtc *crtc)
1038 struct vc4_crtc_state *vc4_crtc_state;
1041 vc4_crtc_destroy_state(crtc, crtc->state);
1043 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1044 if (!vc4_crtc_state) {
1049 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1050 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1053 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1054 .set_config = drm_atomic_helper_set_config,
1055 .destroy = vc4_crtc_destroy,
1056 .page_flip = vc4_page_flip,
1057 .set_property = NULL,
1058 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1059 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1060 .reset = vc4_crtc_reset,
1061 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1062 .atomic_destroy_state = vc4_crtc_destroy_state,
1063 .enable_vblank = vc4_enable_vblank,
1064 .disable_vblank = vc4_disable_vblank,
1065 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1068 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1069 .mode_valid = vc4_crtc_mode_valid,
1070 .atomic_check = vc4_crtc_atomic_check,
1071 .atomic_begin = vc4_hvs_atomic_begin,
1072 .atomic_flush = vc4_hvs_atomic_flush,
1073 .atomic_enable = vc4_crtc_atomic_enable,
1074 .atomic_disable = vc4_crtc_atomic_disable,
1075 .get_scanout_position = vc4_crtc_get_scanout_position,
1078 static const struct vc4_pv_data bcm2835_pv0_data = {
1080 .hvs_available_channels = BIT(0),
1083 .debugfs_name = "crtc0_regs",
1085 .pixels_per_clock = 1,
1087 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1088 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1092 static const struct vc4_pv_data bcm2835_pv1_data = {
1094 .hvs_available_channels = BIT(2),
1097 .debugfs_name = "crtc1_regs",
1099 .pixels_per_clock = 1,
1101 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1102 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1106 static const struct vc4_pv_data bcm2835_pv2_data = {
1108 .hvs_available_channels = BIT(1),
1111 .debugfs_name = "crtc2_regs",
1113 .pixels_per_clock = 1,
1115 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1116 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1120 static const struct vc4_pv_data bcm2711_pv0_data = {
1122 .hvs_available_channels = BIT(0),
1125 .debugfs_name = "crtc0_regs",
1127 .pixels_per_clock = 1,
1129 [0] = VC4_ENCODER_TYPE_DSI0,
1130 [1] = VC4_ENCODER_TYPE_DPI,
1134 static const struct vc4_pv_data bcm2711_pv1_data = {
1136 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1139 .debugfs_name = "crtc1_regs",
1141 .pixels_per_clock = 1,
1143 [0] = VC4_ENCODER_TYPE_DSI1,
1144 [1] = VC4_ENCODER_TYPE_SMI,
1148 static const struct vc4_pv_data bcm2711_pv2_data = {
1150 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1153 .debugfs_name = "crtc2_regs",
1155 .pixels_per_clock = 2,
1157 [0] = VC4_ENCODER_TYPE_HDMI0,
1161 static const struct vc4_pv_data bcm2711_pv3_data = {
1163 .hvs_available_channels = BIT(1),
1166 .debugfs_name = "crtc3_regs",
1168 .pixels_per_clock = 1,
1170 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1174 static const struct vc4_pv_data bcm2711_pv4_data = {
1176 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1179 .debugfs_name = "crtc4_regs",
1181 .pixels_per_clock = 2,
1183 [0] = VC4_ENCODER_TYPE_HDMI1,
1187 static const struct of_device_id vc4_crtc_dt_match[] = {
1188 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1189 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1190 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1191 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1192 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1193 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1194 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1195 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1199 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1200 struct drm_crtc *crtc)
1202 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1203 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1204 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1205 struct drm_encoder *encoder;
1207 drm_for_each_encoder(encoder, drm) {
1208 struct vc4_encoder *vc4_encoder;
1211 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1214 vc4_encoder = to_vc4_encoder(encoder);
1215 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1216 if (vc4_encoder->type == encoder_types[i]) {
1217 vc4_encoder->clock_select = i;
1218 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1225 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1226 const struct drm_crtc_funcs *crtc_funcs,
1227 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1229 struct vc4_dev *vc4 = to_vc4_dev(drm);
1230 struct drm_crtc *crtc = &vc4_crtc->base;
1231 struct drm_plane *primary_plane;
1234 /* For now, we create just the primary and the legacy cursor
1235 * planes. We should be able to stack more planes on easily,
1236 * but to do that we would need to compute the bandwidth
1237 * requirement of the plane configuration, and reject ones
1238 * that will take too much.
1240 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1241 if (IS_ERR(primary_plane)) {
1242 dev_err(drm->dev, "failed to construct primary plane\n");
1243 return PTR_ERR(primary_plane);
1246 spin_lock_init(&vc4_crtc->irq_lock);
1247 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1249 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1252 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1254 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1256 /* We support CTM, but only for one CRTC at a time. It's therefore
1257 * implemented as private driver state in vc4_kms, not here.
1259 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1262 for (i = 0; i < crtc->gamma_size; i++) {
1263 vc4_crtc->lut_r[i] = i;
1264 vc4_crtc->lut_g[i] = i;
1265 vc4_crtc->lut_b[i] = i;
1271 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1273 struct platform_device *pdev = to_platform_device(dev);
1274 struct drm_device *drm = dev_get_drvdata(master);
1275 const struct vc4_pv_data *pv_data;
1276 struct vc4_crtc *vc4_crtc;
1277 struct drm_crtc *crtc;
1278 struct drm_plane *destroy_plane, *temp;
1281 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1284 crtc = &vc4_crtc->base;
1286 pv_data = of_device_get_match_data(dev);
1289 vc4_crtc->data = &pv_data->base;
1290 vc4_crtc->pdev = pdev;
1292 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1293 if (IS_ERR(vc4_crtc->regs))
1294 return PTR_ERR(vc4_crtc->regs);
1296 vc4_crtc->regset.base = vc4_crtc->regs;
1297 vc4_crtc->regset.regs = crtc_regs;
1298 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1300 ret = vc4_crtc_init(drm, vc4_crtc,
1301 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1304 vc4_set_crtc_possible_masks(drm, crtc);
1306 CRTC_WRITE(PV_INTEN, 0);
1307 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1308 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1309 vc4_crtc_irq_handler,
1311 "vc4 crtc", vc4_crtc);
1313 goto err_destroy_planes;
1315 platform_set_drvdata(pdev, vc4_crtc);
1317 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1323 list_for_each_entry_safe(destroy_plane, temp,
1324 &drm->mode_config.plane_list, head) {
1325 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1326 destroy_plane->funcs->destroy(destroy_plane);
1332 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1335 struct platform_device *pdev = to_platform_device(dev);
1336 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1338 vc4_crtc_destroy(&vc4_crtc->base);
1340 CRTC_WRITE(PV_INTEN, 0);
1342 platform_set_drvdata(pdev, NULL);
1345 static const struct component_ops vc4_crtc_ops = {
1346 .bind = vc4_crtc_bind,
1347 .unbind = vc4_crtc_unbind,
1350 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1352 return component_add(&pdev->dev, &vc4_crtc_ops);
1355 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1357 component_del(&pdev->dev, &vc4_crtc_ops);
1361 struct platform_driver vc4_crtc_driver = {
1362 .probe = vc4_crtc_dev_probe,
1363 .remove = vc4_crtc_dev_remove,
1366 .of_match_table = vc4_crtc_dt_match,