1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(&stats->bytes_rx, xfer->len);
338 u64_stats_update_end(&stats->syncp);
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
360 return spi_match_id(sdrv->id_table, sdev->modalias);
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
368 match = device_get_match_data(&sdev->dev);
372 return (const void *)spi_get_device_id(sdev)->driver_data;
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
390 if (acpi_driver_match_device(dev, drv))
394 return !!spi_match_id(sdrv->id_table, spi->modalias);
396 return strcmp(spi->modalias, drv->name) == 0;
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
401 const struct spi_device *spi = to_spi_device(dev);
404 rc = acpi_device_uevent_modalias(dev, env);
408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
411 static int spi_probe(struct device *dev)
413 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
417 ret = of_clk_set_defaults(dev->of_node, false);
422 spi->irq = of_irq_get(dev->of_node, 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
429 ret = dev_pm_domain_attach(dev, true);
434 ret = sdrv->probe(spi);
436 dev_pm_domain_detach(dev, true);
442 static void spi_remove(struct device *dev)
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
447 sdrv->remove(to_spi_device(dev));
449 dev_pm_domain_detach(dev, true);
452 static void spi_shutdown(struct device *dev)
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
458 sdrv->shutdown(to_spi_device(dev));
462 const struct bus_type spi_bus_type = {
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
471 EXPORT_SYMBOL_GPL(spi_bus_type);
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
479 * Return: zero on success, else a negative error code.
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
504 of_name = of_id->compatible;
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
509 spi_id = spi_match_id(sdrv->id_table, of_name);
513 if (strcmp(sdrv->driver.name, of_name) == 0)
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
522 return driver_register(&sdrv->driver);
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 /*-------------------------------------------------------------------------*/
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
536 struct list_head list;
537 struct spi_board_info board_info;
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
548 static DEFINE_MUTEX(board_lock);
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
565 * Return: a pointer to the new device, or NULL.
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 struct spi_device *spi;
571 if (!spi_controller_get(ctlr))
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 spi_controller_put(ctlr);
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
583 spi_controller_put(ctlr);
587 spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
593 device_initialize(&spi->dev);
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 static void spi_dev_set_name(struct spi_device *spi)
600 struct device *dev = &spi->dev;
601 struct fwnode_handle *fwnode = dev_fwnode(dev);
603 if (is_acpi_device_node(fwnode)) {
604 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
608 if (is_software_node(fwnode)) {
609 dev_set_name(dev, "spi-%pfwP", fwnode);
613 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
614 spi_get_chipselect(spi, 0));
618 * Zero(0) is a valid physical CS value and can be located at any
619 * logical CS in the spi->chip_select[]. If all the physical CS
620 * are initialized to 0 then It would be difficult to differentiate
621 * between a valid physical CS 0 & an unused logical CS whose physical
622 * CS can be 0. As a solution to this issue initialize all the CS to -1.
623 * Now all the unused logical CS will have -1 physical CS value & can be
624 * ignored while performing physical CS validity checks.
626 #define SPI_INVALID_CS ((s8)-1)
628 static inline bool is_valid_cs(s8 chip_select)
630 return chip_select != SPI_INVALID_CS;
633 static inline int spi_dev_check_cs(struct device *dev,
634 struct spi_device *spi, u8 idx,
635 struct spi_device *new_spi, u8 new_idx)
640 cs = spi_get_chipselect(spi, idx);
641 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
642 cs_new = spi_get_chipselect(new_spi, idx_new);
643 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
644 dev_err(dev, "chipselect %u already in use\n", cs_new);
651 static int spi_dev_check(struct device *dev, void *data)
653 struct spi_device *spi = to_spi_device(dev);
654 struct spi_device *new_spi = data;
657 if (spi->controller == new_spi->controller) {
658 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
659 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
667 static void spi_cleanup(struct spi_device *spi)
669 if (spi->controller->cleanup)
670 spi->controller->cleanup(spi);
673 static int __spi_add_device(struct spi_device *spi)
675 struct spi_controller *ctlr = spi->controller;
676 struct device *dev = ctlr->dev.parent;
680 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
681 /* Chipselects are numbered 0..max; validate. */
682 cs = spi_get_chipselect(spi, idx);
683 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
684 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
685 ctlr->num_chipselect);
691 * Make sure that multiple logical CS doesn't map to the same physical CS.
692 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
694 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
695 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
700 /* Set the bus ID string */
701 spi_dev_set_name(spi);
704 * We need to make sure there's no other device with this
705 * chipselect **BEFORE** we call setup(), else we'll trash
708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
712 /* Controller may unregister concurrently */
713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714 !device_is_registered(&ctlr->dev)) {
718 if (ctlr->cs_gpiods) {
721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722 cs = spi_get_chipselect(spi, idx);
724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
729 * Drivers may modify this initial i/o setup, but will
730 * normally rely on the device being setup. Devices
731 * using SPI_CS_HIGH can't coexist well otherwise...
733 status = spi_setup(spi);
735 dev_err(dev, "can't setup %s, status %d\n",
736 dev_name(&spi->dev), status);
740 /* Device may be bound to an active driver when this returns */
741 status = device_add(&spi->dev);
743 dev_err(dev, "can't add %s, status %d\n",
744 dev_name(&spi->dev), status);
747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
754 * spi_add_device - Add spi_device allocated with spi_alloc_device
755 * @spi: spi_device to register
757 * Companion function to spi_alloc_device. Devices allocated with
758 * spi_alloc_device can be added onto the SPI bus with this function.
760 * Return: 0 on success; negative errno on failure
762 int spi_add_device(struct spi_device *spi)
764 struct spi_controller *ctlr = spi->controller;
767 /* Set the bus ID string */
768 spi_dev_set_name(spi);
770 mutex_lock(&ctlr->add_lock);
771 status = __spi_add_device(spi);
772 mutex_unlock(&ctlr->add_lock);
775 EXPORT_SYMBOL_GPL(spi_add_device);
777 static void spi_set_all_cs_unused(struct spi_device *spi)
781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
786 * spi_new_device - instantiate one new SPI device
787 * @ctlr: Controller to which device is connected
788 * @chip: Describes the SPI device
791 * On typical mainboards, this is purely internal; and it's not needed
792 * after board init creates the hard-wired devices. Some development
793 * platforms may not be able to use spi_register_board_info though, and
794 * this is exported so that for example a USB or parport based adapter
795 * driver could add devices (which it would learn about out-of-band).
797 * Return: the new device, or NULL.
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800 struct spi_board_info *chip)
802 struct spi_device *proxy;
806 * NOTE: caller did any chip->bus_num checks necessary.
808 * Also, unless we change the return value convention to use
809 * error-or-pointer (not NULL-or-pointer), troubleshootability
810 * suggests syslogged diagnostics are best here (ugh).
813 proxy = spi_alloc_device(ctlr);
817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
819 /* Use provided chip-select for proxy device */
820 spi_set_all_cs_unused(proxy);
821 spi_set_chipselect(proxy, 0, chip->chip_select);
823 proxy->max_speed_hz = chip->max_speed_hz;
824 proxy->mode = chip->mode;
825 proxy->irq = chip->irq;
826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827 proxy->dev.platform_data = (void *) chip->platform_data;
828 proxy->controller_data = chip->controller_data;
829 proxy->controller_state = NULL;
831 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
832 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
833 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
834 * spi->chip_select[0] will give the physical CS.
835 * By default spi->chip_select[0] will hold the physical CS number so, set
836 * spi->cs_index_mask as 0x01.
838 proxy->cs_index_mask = 0x01;
841 status = device_add_software_node(&proxy->dev, chip->swnode);
843 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
844 chip->modalias, status);
849 status = spi_add_device(proxy);
856 device_remove_software_node(&proxy->dev);
860 EXPORT_SYMBOL_GPL(spi_new_device);
863 * spi_unregister_device - unregister a single SPI device
864 * @spi: spi_device to unregister
866 * Start making the passed SPI device vanish. Normally this would be handled
867 * by spi_unregister_controller().
869 void spi_unregister_device(struct spi_device *spi)
874 if (spi->dev.of_node) {
875 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
876 of_node_put(spi->dev.of_node);
878 if (ACPI_COMPANION(&spi->dev))
879 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
880 device_remove_software_node(&spi->dev);
881 device_del(&spi->dev);
883 put_device(&spi->dev);
885 EXPORT_SYMBOL_GPL(spi_unregister_device);
887 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
888 struct spi_board_info *bi)
890 struct spi_device *dev;
892 if (ctlr->bus_num != bi->bus_num)
895 dev = spi_new_device(ctlr, bi);
897 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
902 * spi_register_board_info - register SPI devices for a given board
903 * @info: array of chip descriptors
904 * @n: how many descriptors are provided
907 * Board-specific early init code calls this (probably during arch_initcall)
908 * with segments of the SPI device table. Any device nodes are created later,
909 * after the relevant parent SPI controller (bus_num) is defined. We keep
910 * this table of devices forever, so that reloading a controller driver will
911 * not make Linux forget about these hard-wired devices.
913 * Other code can also call this, e.g. a particular add-on board might provide
914 * SPI devices through its expansion connector, so code initializing that board
915 * would naturally declare its SPI devices.
917 * The board info passed can safely be __initdata ... but be careful of
918 * any embedded pointers (platform_data, etc), they're copied as-is.
920 * Return: zero on success, else a negative error code.
922 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
924 struct boardinfo *bi;
930 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
934 for (i = 0; i < n; i++, bi++, info++) {
935 struct spi_controller *ctlr;
937 memcpy(&bi->board_info, info, sizeof(*info));
939 mutex_lock(&board_lock);
940 list_add_tail(&bi->list, &board_list);
941 list_for_each_entry(ctlr, &spi_controller_list, list)
942 spi_match_controller_to_boardinfo(ctlr,
944 mutex_unlock(&board_lock);
950 /*-------------------------------------------------------------------------*/
952 /* Core methods for SPI resource management */
955 * spi_res_alloc - allocate a spi resource that is life-cycle managed
956 * during the processing of a spi_message while using
958 * @spi: the SPI device for which we allocate memory
959 * @release: the release code to execute for this resource
960 * @size: size to alloc and return
961 * @gfp: GFP allocation flags
963 * Return: the pointer to the allocated data
965 * This may get enhanced in the future to allocate from a memory pool
966 * of the @spi_device or @spi_controller to avoid repeated allocations.
968 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
969 size_t size, gfp_t gfp)
971 struct spi_res *sres;
973 sres = kzalloc(sizeof(*sres) + size, gfp);
977 INIT_LIST_HEAD(&sres->entry);
978 sres->release = release;
984 * spi_res_free - free an SPI resource
985 * @res: pointer to the custom data of a resource
987 static void spi_res_free(void *res)
989 struct spi_res *sres = container_of(res, struct spi_res, data);
994 WARN_ON(!list_empty(&sres->entry));
999 * spi_res_add - add a spi_res to the spi_message
1000 * @message: the SPI message
1001 * @res: the spi_resource
1003 static void spi_res_add(struct spi_message *message, void *res)
1005 struct spi_res *sres = container_of(res, struct spi_res, data);
1007 WARN_ON(!list_empty(&sres->entry));
1008 list_add_tail(&sres->entry, &message->resources);
1012 * spi_res_release - release all SPI resources for this message
1013 * @ctlr: the @spi_controller
1014 * @message: the @spi_message
1016 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1018 struct spi_res *res, *tmp;
1020 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1022 res->release(ctlr, message, res->data);
1024 list_del(&res->entry);
1030 /*-------------------------------------------------------------------------*/
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1036 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1037 if (spi->cs_index_mask & BIT(idx)) {
1038 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1046 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1048 bool activate = enable;
1052 * Avoid calling into the driver (or doing delays) if the chip select
1053 * isn't actually changing from the last time this was called.
1055 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1056 spi_is_last_cs(spi)) ||
1057 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1058 !spi_is_last_cs(spi))) &&
1059 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1062 trace_spi_set_cs(spi, activate);
1064 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1065 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1066 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1067 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1069 if (spi->mode & SPI_CS_HIGH)
1073 * Handle chip select delays for GPIO based CS or controllers without
1074 * programmable chip select timing.
1076 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1077 spi_delay_exec(&spi->cs_hold, NULL);
1079 if (spi_is_csgpiod(spi)) {
1080 if (!(spi->mode & SPI_NO_CS)) {
1082 * Historically ACPI has no means of the GPIO polarity and
1083 * thus the SPISerialBus() resource defines it on the per-chip
1084 * basis. In order to avoid a chain of negations, the GPIO
1085 * polarity is considered being Active High. Even for the cases
1086 * when _DSD() is involved (in the updated versions of ACPI)
1087 * the GPIO CS polarity must be defined Active High to avoid
1088 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1091 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1092 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1093 if (has_acpi_companion(&spi->dev))
1094 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1097 /* Polarity handled by GPIO library */
1098 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1102 spi_delay_exec(&spi->cs_setup, NULL);
1104 spi_delay_exec(&spi->cs_inactive, NULL);
1108 /* Some SPI masters need both GPIO CS & slave_select */
1109 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1110 spi->controller->set_cs)
1111 spi->controller->set_cs(spi, !enable);
1112 } else if (spi->controller->set_cs) {
1113 spi->controller->set_cs(spi, !enable);
1116 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1118 spi_delay_exec(&spi->cs_setup, NULL);
1120 spi_delay_exec(&spi->cs_inactive, NULL);
1124 #ifdef CONFIG_HAS_DMA
1125 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1126 struct sg_table *sgt, void *buf, size_t len,
1127 enum dma_data_direction dir, unsigned long attrs)
1129 const bool vmalloced_buf = is_vmalloc_addr(buf);
1130 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1131 #ifdef CONFIG_HIGHMEM
1132 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1133 (unsigned long)buf < (PKMAP_BASE +
1134 (LAST_PKMAP * PAGE_SIZE)));
1136 const bool kmap_buf = false;
1140 struct page *vm_page;
1141 struct scatterlist *sg;
1146 if (vmalloced_buf || kmap_buf) {
1147 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1148 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1149 } else if (virt_addr_valid(buf)) {
1150 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1151 sgs = DIV_ROUND_UP(len, desc_len);
1156 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1161 for (i = 0; i < sgs; i++) {
1163 if (vmalloced_buf || kmap_buf) {
1165 * Next scatterlist entry size is the minimum between
1166 * the desc_len and the remaining buffer length that
1169 min = min_t(size_t, desc_len,
1171 PAGE_SIZE - offset_in_page(buf)));
1173 vm_page = vmalloc_to_page(buf);
1175 vm_page = kmap_to_page(buf);
1180 sg_set_page(sg, vm_page,
1181 min, offset_in_page(buf));
1183 min = min_t(size_t, len, desc_len);
1185 sg_set_buf(sg, sg_buf, min);
1193 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1202 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1203 struct sg_table *sgt, void *buf, size_t len,
1204 enum dma_data_direction dir)
1206 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1209 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1210 struct device *dev, struct sg_table *sgt,
1211 enum dma_data_direction dir,
1212 unsigned long attrs)
1214 if (sgt->orig_nents) {
1215 dma_unmap_sgtable(dev, sgt, dir, attrs);
1217 sgt->orig_nents = 0;
1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1223 struct sg_table *sgt, enum dma_data_direction dir)
1225 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1230 struct device *tx_dev, *rx_dev;
1231 struct spi_transfer *xfer;
1238 tx_dev = ctlr->dma_tx->device->dev;
1239 else if (ctlr->dma_map_dev)
1240 tx_dev = ctlr->dma_map_dev;
1242 tx_dev = ctlr->dev.parent;
1245 rx_dev = ctlr->dma_rx->device->dev;
1246 else if (ctlr->dma_map_dev)
1247 rx_dev = ctlr->dma_map_dev;
1249 rx_dev = ctlr->dev.parent;
1251 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1252 /* The sync is done before each transfer. */
1253 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1255 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1258 if (xfer->tx_buf != NULL) {
1259 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1260 (void *)xfer->tx_buf,
1261 xfer->len, DMA_TO_DEVICE,
1267 if (xfer->rx_buf != NULL) {
1268 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1269 xfer->rx_buf, xfer->len,
1270 DMA_FROM_DEVICE, attrs);
1272 spi_unmap_buf_attrs(ctlr, tx_dev,
1273 &xfer->tx_sg, DMA_TO_DEVICE,
1281 ctlr->cur_rx_dma_dev = rx_dev;
1282 ctlr->cur_tx_dma_dev = tx_dev;
1283 ctlr->cur_msg_mapped = true;
1288 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1290 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1291 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1292 struct spi_transfer *xfer;
1294 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1297 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298 /* The sync has already been done after each transfer. */
1299 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1301 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1304 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1305 DMA_FROM_DEVICE, attrs);
1306 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1307 DMA_TO_DEVICE, attrs);
1310 ctlr->cur_msg_mapped = false;
1315 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1316 struct spi_transfer *xfer)
1318 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1319 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1321 if (!ctlr->cur_msg_mapped)
1324 if (xfer->tx_sg.orig_nents)
1325 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1326 if (xfer->rx_sg.orig_nents)
1327 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1330 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1331 struct spi_transfer *xfer)
1333 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1334 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1336 if (!ctlr->cur_msg_mapped)
1339 if (xfer->rx_sg.orig_nents)
1340 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1341 if (xfer->tx_sg.orig_nents)
1342 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1344 #else /* !CONFIG_HAS_DMA */
1345 static inline int __spi_map_msg(struct spi_controller *ctlr,
1346 struct spi_message *msg)
1351 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1352 struct spi_message *msg)
1357 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1358 struct spi_transfer *xfer)
1362 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1363 struct spi_transfer *xfer)
1366 #endif /* !CONFIG_HAS_DMA */
1368 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1369 struct spi_message *msg)
1371 struct spi_transfer *xfer;
1373 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1375 * Restore the original value of tx_buf or rx_buf if they are
1378 if (xfer->tx_buf == ctlr->dummy_tx)
1379 xfer->tx_buf = NULL;
1380 if (xfer->rx_buf == ctlr->dummy_rx)
1381 xfer->rx_buf = NULL;
1384 return __spi_unmap_msg(ctlr, msg);
1387 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1389 struct spi_transfer *xfer;
1391 unsigned int max_tx, max_rx;
1393 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1394 && !(msg->spi->mode & SPI_3WIRE)) {
1398 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1399 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1401 max_tx = max(xfer->len, max_tx);
1402 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1404 max_rx = max(xfer->len, max_rx);
1408 tmp = krealloc(ctlr->dummy_tx, max_tx,
1409 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412 ctlr->dummy_tx = tmp;
1416 tmp = krealloc(ctlr->dummy_rx, max_rx,
1417 GFP_KERNEL | GFP_DMA);
1420 ctlr->dummy_rx = tmp;
1423 if (max_tx || max_rx) {
1424 list_for_each_entry(xfer, &msg->transfers,
1429 xfer->tx_buf = ctlr->dummy_tx;
1431 xfer->rx_buf = ctlr->dummy_rx;
1436 return __spi_map_msg(ctlr, msg);
1439 static int spi_transfer_wait(struct spi_controller *ctlr,
1440 struct spi_message *msg,
1441 struct spi_transfer *xfer)
1443 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1444 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1445 u32 speed_hz = xfer->speed_hz;
1446 unsigned long long ms;
1448 if (spi_controller_is_slave(ctlr)) {
1449 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1450 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1458 * For each byte we wait for 8 cycles of the SPI clock.
1459 * Since speed is defined in Hz and we want milliseconds,
1460 * use respective multiplier, but before the division,
1461 * otherwise we may get 0 for short transfers.
1463 ms = 8LL * MSEC_PER_SEC * xfer->len;
1464 do_div(ms, speed_hz);
1467 * Increase it twice and add 200 ms tolerance, use
1468 * predefined maximum in case of overflow.
1474 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1475 msecs_to_jiffies(ms));
1478 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1479 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1480 dev_err(&msg->spi->dev,
1481 "SPI transfer timed out\n");
1485 if (xfer->error & SPI_TRANS_FAIL_IO)
1492 static void _spi_transfer_delay_ns(u32 ns)
1496 if (ns <= NSEC_PER_USEC) {
1499 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1504 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1508 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1510 u32 delay = _delay->value;
1511 u32 unit = _delay->unit;
1518 case SPI_DELAY_UNIT_USECS:
1519 delay *= NSEC_PER_USEC;
1521 case SPI_DELAY_UNIT_NSECS:
1522 /* Nothing to do here */
1524 case SPI_DELAY_UNIT_SCK:
1525 /* Clock cycles need to be obtained from spi_transfer */
1529 * If there is unknown effective speed, approximate it
1530 * by underestimating with half of the requested Hz.
1532 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1536 /* Convert delay to nanoseconds */
1537 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1545 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1547 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1556 delay = spi_delay_to_ns(_delay, xfer);
1560 _spi_transfer_delay_ns(delay);
1564 EXPORT_SYMBOL_GPL(spi_delay_exec);
1566 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1567 struct spi_transfer *xfer)
1569 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1570 u32 delay = xfer->cs_change_delay.value;
1571 u32 unit = xfer->cs_change_delay.unit;
1574 /* Return early on "fast" mode - for everything but USECS */
1576 if (unit == SPI_DELAY_UNIT_USECS)
1577 _spi_transfer_delay_ns(default_delay_ns);
1581 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1583 dev_err_once(&msg->spi->dev,
1584 "Use of unsupported delay unit %i, using default of %luus\n",
1585 unit, default_delay_ns / NSEC_PER_USEC);
1586 _spi_transfer_delay_ns(default_delay_ns);
1590 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1591 struct spi_transfer *xfer)
1593 _spi_transfer_cs_change_delay(msg, xfer);
1595 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598 * spi_transfer_one_message - Default implementation of transfer_one_message()
1600 * This is a standard implementation of transfer_one_message() for
1601 * drivers which implement a transfer_one() operation. It provides
1602 * standard handling of delays and chip select management.
1604 static int spi_transfer_one_message(struct spi_controller *ctlr,
1605 struct spi_message *msg)
1607 struct spi_transfer *xfer;
1608 bool keep_cs = false;
1610 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1611 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1613 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1614 spi_set_cs(msg->spi, !xfer->cs_off, false);
1616 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1617 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1619 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1620 trace_spi_transfer_start(msg, xfer);
1622 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1623 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1625 if (!ctlr->ptp_sts_supported) {
1626 xfer->ptp_sts_word_pre = 0;
1627 ptp_read_system_prets(xfer->ptp_sts);
1630 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1631 reinit_completion(&ctlr->xfer_completion);
1634 spi_dma_sync_for_device(ctlr, xfer);
1635 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1637 spi_dma_sync_for_cpu(ctlr, xfer);
1639 if (ctlr->cur_msg_mapped &&
1640 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1641 __spi_unmap_msg(ctlr, msg);
1642 ctlr->fallback = true;
1643 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1647 SPI_STATISTICS_INCREMENT_FIELD(statm,
1649 SPI_STATISTICS_INCREMENT_FIELD(stats,
1651 dev_err(&msg->spi->dev,
1652 "SPI transfer failed: %d\n", ret);
1657 ret = spi_transfer_wait(ctlr, msg, xfer);
1662 spi_dma_sync_for_cpu(ctlr, xfer);
1665 dev_err(&msg->spi->dev,
1666 "Bufferless transfer has length %u\n",
1670 if (!ctlr->ptp_sts_supported) {
1671 ptp_read_system_postts(xfer->ptp_sts);
1672 xfer->ptp_sts_word_post = xfer->len;
1675 trace_spi_transfer_stop(msg, xfer);
1677 if (msg->status != -EINPROGRESS)
1680 spi_transfer_delay_exec(xfer);
1682 if (xfer->cs_change) {
1683 if (list_is_last(&xfer->transfer_list,
1688 spi_set_cs(msg->spi, false, false);
1689 _spi_transfer_cs_change_delay(msg, xfer);
1690 if (!list_next_entry(xfer, transfer_list)->cs_off)
1691 spi_set_cs(msg->spi, true, false);
1693 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1694 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1695 spi_set_cs(msg->spi, xfer->cs_off, false);
1698 msg->actual_length += xfer->len;
1702 if (ret != 0 || !keep_cs)
1703 spi_set_cs(msg->spi, false, false);
1705 if (msg->status == -EINPROGRESS)
1708 if (msg->status && ctlr->handle_err)
1709 ctlr->handle_err(ctlr, msg);
1711 spi_finalize_current_message(ctlr);
1717 * spi_finalize_current_transfer - report completion of a transfer
1718 * @ctlr: the controller reporting completion
1720 * Called by SPI drivers using the core transfer_one_message()
1721 * implementation to notify it that the current interrupt driven
1722 * transfer has finished and the next one may be scheduled.
1724 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1726 complete(&ctlr->xfer_completion);
1728 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1730 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1732 if (ctlr->auto_runtime_pm) {
1733 pm_runtime_mark_last_busy(ctlr->dev.parent);
1734 pm_runtime_put_autosuspend(ctlr->dev.parent);
1738 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1739 struct spi_message *msg, bool was_busy)
1741 struct spi_transfer *xfer;
1744 if (!was_busy && ctlr->auto_runtime_pm) {
1745 ret = pm_runtime_get_sync(ctlr->dev.parent);
1747 pm_runtime_put_noidle(ctlr->dev.parent);
1748 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1752 spi_finalize_current_message(ctlr);
1759 trace_spi_controller_busy(ctlr);
1761 if (!was_busy && ctlr->prepare_transfer_hardware) {
1762 ret = ctlr->prepare_transfer_hardware(ctlr);
1765 "failed to prepare transfer hardware: %d\n",
1768 if (ctlr->auto_runtime_pm)
1769 pm_runtime_put(ctlr->dev.parent);
1772 spi_finalize_current_message(ctlr);
1778 trace_spi_message_start(msg);
1780 if (ctlr->prepare_message) {
1781 ret = ctlr->prepare_message(ctlr, msg);
1783 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786 spi_finalize_current_message(ctlr);
1789 msg->prepared = true;
1792 ret = spi_map_msg(ctlr, msg);
1795 spi_finalize_current_message(ctlr);
1799 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1800 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1801 xfer->ptp_sts_word_pre = 0;
1802 ptp_read_system_prets(xfer->ptp_sts);
1807 * Drivers implementation of transfer_one_message() must arrange for
1808 * spi_finalize_current_message() to get called. Most drivers will do
1809 * this in the calling context, but some don't. For those cases, a
1810 * completion is used to guarantee that this function does not return
1811 * until spi_finalize_current_message() is done accessing
1813 * Use of the following two flags enable to opportunistically skip the
1814 * use of the completion since its use involves expensive spin locks.
1815 * In case of a race with the context that calls
1816 * spi_finalize_current_message() the completion will always be used,
1817 * due to strict ordering of these flags using barriers.
1819 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1820 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1821 reinit_completion(&ctlr->cur_msg_completion);
1822 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1824 ret = ctlr->transfer_one_message(ctlr, msg);
1827 "failed to transfer one message from queue\n");
1831 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1832 smp_mb(); /* See spi_finalize_current_message()... */
1833 if (READ_ONCE(ctlr->cur_msg_incomplete))
1834 wait_for_completion(&ctlr->cur_msg_completion);
1840 * __spi_pump_messages - function which processes SPI message queue
1841 * @ctlr: controller to process queue for
1842 * @in_kthread: true if we are in the context of the message pump thread
1844 * This function checks if there is any SPI message in the queue that
1845 * needs processing and if so call out to the driver to initialize hardware
1846 * and transfer each message.
1848 * Note that it is called both from the kthread itself and also from
1849 * inside spi_sync(); the queue extraction handling at the top of the
1850 * function should deal with this safely.
1852 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1854 struct spi_message *msg;
1855 bool was_busy = false;
1856 unsigned long flags;
1859 /* Take the I/O mutex */
1860 mutex_lock(&ctlr->io_mutex);
1863 spin_lock_irqsave(&ctlr->queue_lock, flags);
1865 /* Make sure we are not already running a message */
1869 /* Check if the queue is idle */
1870 if (list_empty(&ctlr->queue) || !ctlr->running) {
1874 /* Defer any non-atomic teardown to the thread */
1876 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1877 !ctlr->unprepare_transfer_hardware) {
1878 spi_idle_runtime_pm(ctlr);
1880 ctlr->queue_empty = true;
1881 trace_spi_controller_idle(ctlr);
1883 kthread_queue_work(ctlr->kworker,
1884 &ctlr->pump_messages);
1890 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1892 kfree(ctlr->dummy_rx);
1893 ctlr->dummy_rx = NULL;
1894 kfree(ctlr->dummy_tx);
1895 ctlr->dummy_tx = NULL;
1896 if (ctlr->unprepare_transfer_hardware &&
1897 ctlr->unprepare_transfer_hardware(ctlr))
1899 "failed to unprepare transfer hardware\n");
1900 spi_idle_runtime_pm(ctlr);
1901 trace_spi_controller_idle(ctlr);
1903 spin_lock_irqsave(&ctlr->queue_lock, flags);
1904 ctlr->queue_empty = true;
1908 /* Extract head of queue */
1909 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1910 ctlr->cur_msg = msg;
1912 list_del_init(&msg->queue);
1917 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1919 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1920 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1922 ctlr->cur_msg = NULL;
1923 ctlr->fallback = false;
1925 mutex_unlock(&ctlr->io_mutex);
1927 /* Prod the scheduler in case transfer_one() was busy waiting */
1933 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1934 mutex_unlock(&ctlr->io_mutex);
1938 * spi_pump_messages - kthread work function which processes spi message queue
1939 * @work: pointer to kthread work struct contained in the controller struct
1941 static void spi_pump_messages(struct kthread_work *work)
1943 struct spi_controller *ctlr =
1944 container_of(work, struct spi_controller, pump_messages);
1946 __spi_pump_messages(ctlr, true);
1950 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1951 * @ctlr: Pointer to the spi_controller structure of the driver
1952 * @xfer: Pointer to the transfer being timestamped
1953 * @progress: How many words (not bytes) have been transferred so far
1954 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1955 * transfer, for less jitter in time measurement. Only compatible
1956 * with PIO drivers. If true, must follow up with
1957 * spi_take_timestamp_post or otherwise system will crash.
1958 * WARNING: for fully predictable results, the CPU frequency must
1959 * also be under control (governor).
1961 * This is a helper for drivers to collect the beginning of the TX timestamp
1962 * for the requested byte from the SPI transfer. The frequency with which this
1963 * function must be called (once per word, once for the whole transfer, once
1964 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1965 * greater than or equal to the requested byte at the time of the call. The
1966 * timestamp is only taken once, at the first such call. It is assumed that
1967 * the driver advances its @tx buffer pointer monotonically.
1969 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1970 struct spi_transfer *xfer,
1971 size_t progress, bool irqs_off)
1976 if (xfer->timestamped)
1979 if (progress > xfer->ptp_sts_word_pre)
1982 /* Capture the resolution of the timestamp */
1983 xfer->ptp_sts_word_pre = progress;
1986 local_irq_save(ctlr->irq_flags);
1990 ptp_read_system_prets(xfer->ptp_sts);
1992 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1996 * @ctlr: Pointer to the spi_controller structure of the driver
1997 * @xfer: Pointer to the transfer being timestamped
1998 * @progress: How many words (not bytes) have been transferred so far
1999 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2001 * This is a helper for drivers to collect the end of the TX timestamp for
2002 * the requested byte from the SPI transfer. Can be called with an arbitrary
2003 * frequency: only the first call where @tx exceeds or is equal to the
2004 * requested word will be timestamped.
2006 void spi_take_timestamp_post(struct spi_controller *ctlr,
2007 struct spi_transfer *xfer,
2008 size_t progress, bool irqs_off)
2013 if (xfer->timestamped)
2016 if (progress < xfer->ptp_sts_word_post)
2019 ptp_read_system_postts(xfer->ptp_sts);
2022 local_irq_restore(ctlr->irq_flags);
2026 /* Capture the resolution of the timestamp */
2027 xfer->ptp_sts_word_post = progress;
2029 xfer->timestamped = 1;
2031 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034 * spi_set_thread_rt - set the controller to pump at realtime priority
2035 * @ctlr: controller to boost priority of
2037 * This can be called because the controller requested realtime priority
2038 * (by setting the ->rt value before calling spi_register_controller()) or
2039 * because a device on the bus said that its transfers needed realtime
2042 * NOTE: at the moment if any device on a bus says it needs realtime then
2043 * the thread will be at realtime priority for all transfers on that
2044 * controller. If this eventually becomes a problem we may see if we can
2045 * find a way to boost the priority only temporarily during relevant
2048 static void spi_set_thread_rt(struct spi_controller *ctlr)
2050 dev_info(&ctlr->dev,
2051 "will run message pump with realtime priority\n");
2052 sched_set_fifo(ctlr->kworker->task);
2055 static int spi_init_queue(struct spi_controller *ctlr)
2057 ctlr->running = false;
2059 ctlr->queue_empty = true;
2061 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2062 if (IS_ERR(ctlr->kworker)) {
2063 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2064 return PTR_ERR(ctlr->kworker);
2067 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070 * Controller config will indicate if this controller should run the
2071 * message pump with high (realtime) priority to reduce the transfer
2072 * latency on the bus by minimising the delay between a transfer
2073 * request and the scheduling of the message pump thread. Without this
2074 * setting the message pump thread will remain at default priority.
2077 spi_set_thread_rt(ctlr);
2083 * spi_get_next_queued_message() - called by driver to check for queued
2085 * @ctlr: the controller to check for queued messages
2087 * If there are more messages in the queue, the next message is returned from
2090 * Return: the next message in the queue, else NULL if the queue is empty.
2092 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2094 struct spi_message *next;
2095 unsigned long flags;
2097 /* Get a pointer to the next message, if any */
2098 spin_lock_irqsave(&ctlr->queue_lock, flags);
2099 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2101 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2105 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2109 * and spi_maybe_unoptimize_message()
2110 * @msg: the message to unoptimize
2112 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2113 * core should use spi_maybe_unoptimize_message() rather than calling this
2114 * function directly.
2116 * It is not valid to call this on a message that is not currently optimized.
2118 static void __spi_unoptimize_message(struct spi_message *msg)
2120 struct spi_controller *ctlr = msg->spi->controller;
2122 if (ctlr->unoptimize_message)
2123 ctlr->unoptimize_message(msg);
2125 spi_res_release(ctlr, msg);
2127 msg->optimized = false;
2128 msg->opt_state = NULL;
2132 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2133 * @msg: the message to unoptimize
2135 * This function is used to unoptimize a message if and only if it was
2136 * optimized by the core (via spi_maybe_optimize_message()).
2138 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2140 if (!msg->pre_optimized && msg->optimized)
2141 __spi_unoptimize_message(msg);
2145 * spi_finalize_current_message() - the current message is complete
2146 * @ctlr: the controller to return the message to
2148 * Called by the driver to notify the core that the message in the front of the
2149 * queue is complete and can be removed from the queue.
2151 void spi_finalize_current_message(struct spi_controller *ctlr)
2153 struct spi_transfer *xfer;
2154 struct spi_message *mesg;
2157 mesg = ctlr->cur_msg;
2159 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2160 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2161 ptp_read_system_postts(xfer->ptp_sts);
2162 xfer->ptp_sts_word_post = xfer->len;
2166 if (unlikely(ctlr->ptp_sts_supported))
2167 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2168 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2170 spi_unmap_msg(ctlr, mesg);
2172 if (mesg->prepared && ctlr->unprepare_message) {
2173 ret = ctlr->unprepare_message(ctlr, mesg);
2175 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2180 mesg->prepared = false;
2182 spi_maybe_unoptimize_message(mesg);
2184 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2185 smp_mb(); /* See __spi_pump_transfer_message()... */
2186 if (READ_ONCE(ctlr->cur_msg_need_completion))
2187 complete(&ctlr->cur_msg_completion);
2189 trace_spi_message_done(mesg);
2193 mesg->complete(mesg->context);
2195 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2197 static int spi_start_queue(struct spi_controller *ctlr)
2199 unsigned long flags;
2201 spin_lock_irqsave(&ctlr->queue_lock, flags);
2203 if (ctlr->running || ctlr->busy) {
2204 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208 ctlr->running = true;
2209 ctlr->cur_msg = NULL;
2210 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2212 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2217 static int spi_stop_queue(struct spi_controller *ctlr)
2219 unsigned long flags;
2220 unsigned limit = 500;
2223 spin_lock_irqsave(&ctlr->queue_lock, flags);
2226 * This is a bit lame, but is optimized for the common execution path.
2227 * A wait_queue on the ctlr->busy could be used, but then the common
2228 * execution path (pump_messages) would be required to call wake_up or
2229 * friends on every SPI message. Do this instead.
2231 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2232 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2233 usleep_range(10000, 11000);
2234 spin_lock_irqsave(&ctlr->queue_lock, flags);
2237 if (!list_empty(&ctlr->queue) || ctlr->busy)
2240 ctlr->running = false;
2242 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2247 static int spi_destroy_queue(struct spi_controller *ctlr)
2251 ret = spi_stop_queue(ctlr);
2254 * kthread_flush_worker will block until all work is done.
2255 * If the reason that stop_queue timed out is that the work will never
2256 * finish, then it does no good to call flush/stop thread, so
2260 dev_err(&ctlr->dev, "problem destroying queue\n");
2264 kthread_destroy_worker(ctlr->kworker);
2269 static int __spi_queued_transfer(struct spi_device *spi,
2270 struct spi_message *msg,
2273 struct spi_controller *ctlr = spi->controller;
2274 unsigned long flags;
2276 spin_lock_irqsave(&ctlr->queue_lock, flags);
2278 if (!ctlr->running) {
2279 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282 msg->actual_length = 0;
2283 msg->status = -EINPROGRESS;
2285 list_add_tail(&msg->queue, &ctlr->queue);
2286 ctlr->queue_empty = false;
2287 if (!ctlr->busy && need_pump)
2288 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2290 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2295 * spi_queued_transfer - transfer function for queued transfers
2296 * @spi: SPI device which is requesting transfer
2297 * @msg: SPI message which is to handled is queued to driver queue
2299 * Return: zero on success, else a negative error code.
2301 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2303 return __spi_queued_transfer(spi, msg, true);
2306 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2310 ctlr->transfer = spi_queued_transfer;
2311 if (!ctlr->transfer_one_message)
2312 ctlr->transfer_one_message = spi_transfer_one_message;
2314 /* Initialize and start queue */
2315 ret = spi_init_queue(ctlr);
2317 dev_err(&ctlr->dev, "problem initializing queue\n");
2318 goto err_init_queue;
2320 ctlr->queued = true;
2321 ret = spi_start_queue(ctlr);
2323 dev_err(&ctlr->dev, "problem starting queue\n");
2324 goto err_start_queue;
2330 spi_destroy_queue(ctlr);
2336 * spi_flush_queue - Send all pending messages in the queue from the callers'
2338 * @ctlr: controller to process queue for
2340 * This should be used when one wants to ensure all pending messages have been
2341 * sent before doing something. Is used by the spi-mem code to make sure SPI
2342 * memory operations do not preempt regular SPI transfers that have been queued
2343 * before the spi-mem operation.
2345 void spi_flush_queue(struct spi_controller *ctlr)
2347 if (ctlr->transfer == spi_queued_transfer)
2348 __spi_pump_messages(ctlr, false);
2351 /*-------------------------------------------------------------------------*/
2353 #if defined(CONFIG_OF)
2354 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2355 struct spi_delay *delay, const char *prop)
2359 if (!of_property_read_u32(nc, prop, &value)) {
2360 if (value > U16_MAX) {
2361 delay->value = DIV_ROUND_UP(value, 1000);
2362 delay->unit = SPI_DELAY_UNIT_USECS;
2364 delay->value = value;
2365 delay->unit = SPI_DELAY_UNIT_NSECS;
2370 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2371 struct device_node *nc)
2373 u32 value, cs[SPI_CS_CNT_MAX];
2376 /* Mode (clock phase/polarity/etc.) */
2377 if (of_property_read_bool(nc, "spi-cpha"))
2378 spi->mode |= SPI_CPHA;
2379 if (of_property_read_bool(nc, "spi-cpol"))
2380 spi->mode |= SPI_CPOL;
2381 if (of_property_read_bool(nc, "spi-3wire"))
2382 spi->mode |= SPI_3WIRE;
2383 if (of_property_read_bool(nc, "spi-lsb-first"))
2384 spi->mode |= SPI_LSB_FIRST;
2385 if (of_property_read_bool(nc, "spi-cs-high"))
2386 spi->mode |= SPI_CS_HIGH;
2388 /* Device DUAL/QUAD mode */
2389 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2392 spi->mode |= SPI_NO_TX;
2397 spi->mode |= SPI_TX_DUAL;
2400 spi->mode |= SPI_TX_QUAD;
2403 spi->mode |= SPI_TX_OCTAL;
2406 dev_warn(&ctlr->dev,
2407 "spi-tx-bus-width %d not supported\n",
2413 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2416 spi->mode |= SPI_NO_RX;
2421 spi->mode |= SPI_RX_DUAL;
2424 spi->mode |= SPI_RX_QUAD;
2427 spi->mode |= SPI_RX_OCTAL;
2430 dev_warn(&ctlr->dev,
2431 "spi-rx-bus-width %d not supported\n",
2437 if (spi_controller_is_slave(ctlr)) {
2438 if (!of_node_name_eq(nc, "slave")) {
2439 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2446 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2447 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2451 spi_set_all_cs_unused(spi);
2453 /* Device address */
2454 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2457 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2461 if (rc > ctlr->num_chipselect) {
2462 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2466 if ((of_property_read_bool(nc, "parallel-memories")) &&
2467 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2468 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2471 for (idx = 0; idx < rc; idx++)
2472 spi_set_chipselect(spi, idx, cs[idx]);
2475 * By default spi->chip_select[0] will hold the physical CS number,
2476 * so set bit 0 in spi->cs_index_mask.
2478 spi->cs_index_mask = BIT(0);
2481 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2482 spi->max_speed_hz = value;
2484 /* Device CS delays */
2485 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2486 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2487 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2492 static struct spi_device *
2493 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2495 struct spi_device *spi;
2498 /* Alloc an spi_device */
2499 spi = spi_alloc_device(ctlr);
2501 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2506 /* Select device driver */
2507 rc = of_alias_from_compatible(nc, spi->modalias,
2508 sizeof(spi->modalias));
2510 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2514 rc = of_spi_parse_dt(ctlr, spi, nc);
2518 /* Store a pointer to the node in the device structure */
2521 device_set_node(&spi->dev, of_fwnode_handle(nc));
2523 /* Register the new device */
2524 rc = spi_add_device(spi);
2526 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2527 goto err_of_node_put;
2540 * of_register_spi_devices() - Register child devices onto the SPI bus
2541 * @ctlr: Pointer to spi_controller device
2543 * Registers an spi_device for each child node of controller node which
2544 * represents a valid SPI slave.
2546 static void of_register_spi_devices(struct spi_controller *ctlr)
2548 struct spi_device *spi;
2549 struct device_node *nc;
2551 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2552 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2554 spi = of_register_spi_device(ctlr, nc);
2556 dev_warn(&ctlr->dev,
2557 "Failed to create SPI device for %pOF\n", nc);
2558 of_node_clear_flag(nc, OF_POPULATED);
2563 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2567 * spi_new_ancillary_device() - Register ancillary SPI device
2568 * @spi: Pointer to the main SPI device registering the ancillary device
2569 * @chip_select: Chip Select of the ancillary device
2571 * Register an ancillary SPI device; for example some chips have a chip-select
2572 * for normal device usage and another one for setup/firmware upload.
2574 * This may only be called from main SPI device's probe routine.
2576 * Return: 0 on success; negative errno on failure
2578 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2581 struct spi_controller *ctlr = spi->controller;
2582 struct spi_device *ancillary;
2585 /* Alloc an spi_device */
2586 ancillary = spi_alloc_device(ctlr);
2592 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2594 /* Use provided chip-select for ancillary device */
2595 spi_set_all_cs_unused(ancillary);
2596 spi_set_chipselect(ancillary, 0, chip_select);
2598 /* Take over SPI mode/speed from SPI main device */
2599 ancillary->max_speed_hz = spi->max_speed_hz;
2600 ancillary->mode = spi->mode;
2602 * By default spi->chip_select[0] will hold the physical CS number,
2603 * so set bit 0 in spi->cs_index_mask.
2605 ancillary->cs_index_mask = BIT(0);
2607 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2609 /* Register the new device */
2610 rc = __spi_add_device(ancillary);
2612 dev_err(&spi->dev, "failed to register ancillary device\n");
2619 spi_dev_put(ancillary);
2622 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2625 struct acpi_spi_lookup {
2626 struct spi_controller *ctlr;
2636 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2638 struct acpi_resource_spi_serialbus *sb;
2641 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2644 sb = &ares->data.spi_serial_bus;
2645 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2648 *count = *count + 1;
2654 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2655 * @adev: ACPI device
2657 * Return: the number of SpiSerialBus resources in the ACPI-device's
2658 * resource-list; or a negative error code.
2660 int acpi_spi_count_resources(struct acpi_device *adev)
2666 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2670 acpi_dev_free_resource_list(&r);
2674 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2676 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2677 struct acpi_spi_lookup *lookup)
2679 const union acpi_object *obj;
2681 if (!x86_apple_machine)
2684 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2685 && obj->buffer.length >= 4)
2686 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2688 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2689 && obj->buffer.length == 8)
2690 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2692 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2693 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2694 lookup->mode |= SPI_LSB_FIRST;
2696 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2697 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2698 lookup->mode |= SPI_CPOL;
2700 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2701 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2702 lookup->mode |= SPI_CPHA;
2705 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2707 struct acpi_spi_lookup *lookup = data;
2708 struct spi_controller *ctlr = lookup->ctlr;
2710 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2711 struct acpi_resource_spi_serialbus *sb;
2712 acpi_handle parent_handle;
2715 sb = &ares->data.spi_serial_bus;
2716 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2718 if (lookup->index != -1 && lookup->n++ != lookup->index)
2721 status = acpi_get_handle(NULL,
2722 sb->resource_source.string_ptr,
2725 if (ACPI_FAILURE(status))
2729 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2732 struct acpi_device *adev;
2734 adev = acpi_fetch_acpi_dev(parent_handle);
2738 ctlr = acpi_spi_find_controller_by_adev(adev);
2740 return -EPROBE_DEFER;
2742 lookup->ctlr = ctlr;
2746 * ACPI DeviceSelection numbering is handled by the
2747 * host controller driver in Windows and can vary
2748 * from driver to driver. In Linux we always expect
2749 * 0 .. max - 1 so we need to ask the driver to
2750 * translate between the two schemes.
2752 if (ctlr->fw_translate_cs) {
2753 int cs = ctlr->fw_translate_cs(ctlr,
2754 sb->device_selection);
2757 lookup->chip_select = cs;
2759 lookup->chip_select = sb->device_selection;
2762 lookup->max_speed_hz = sb->connection_speed;
2763 lookup->bits_per_word = sb->data_bit_length;
2765 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2766 lookup->mode |= SPI_CPHA;
2767 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2768 lookup->mode |= SPI_CPOL;
2769 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2770 lookup->mode |= SPI_CS_HIGH;
2772 } else if (lookup->irq < 0) {
2775 if (acpi_dev_resource_interrupt(ares, 0, &r))
2776 lookup->irq = r.start;
2779 /* Always tell the ACPI core to skip this resource */
2784 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2785 * @ctlr: controller to which the spi device belongs
2786 * @adev: ACPI Device for the spi device
2787 * @index: Index of the spi resource inside the ACPI Node
2789 * This should be used to allocate a new SPI device from and ACPI Device node.
2790 * The caller is responsible for calling spi_add_device to register the SPI device.
2792 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2793 * using the resource.
2794 * If index is set to -1, index is not used.
2795 * Note: If index is -1, ctlr must be set.
2797 * Return: a pointer to the new device, or ERR_PTR on error.
2799 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2800 struct acpi_device *adev,
2803 acpi_handle parent_handle = NULL;
2804 struct list_head resource_list;
2805 struct acpi_spi_lookup lookup = {};
2806 struct spi_device *spi;
2809 if (!ctlr && index == -1)
2810 return ERR_PTR(-EINVAL);
2814 lookup.index = index;
2817 INIT_LIST_HEAD(&resource_list);
2818 ret = acpi_dev_get_resources(adev, &resource_list,
2819 acpi_spi_add_resource, &lookup);
2820 acpi_dev_free_resource_list(&resource_list);
2823 /* Found SPI in _CRS but it points to another controller */
2824 return ERR_PTR(ret);
2826 if (!lookup.max_speed_hz &&
2827 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2828 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2829 /* Apple does not use _CRS but nested devices for SPI slaves */
2830 acpi_spi_parse_apple_properties(adev, &lookup);
2833 if (!lookup.max_speed_hz)
2834 return ERR_PTR(-ENODEV);
2836 spi = spi_alloc_device(lookup.ctlr);
2838 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2839 dev_name(&adev->dev));
2840 return ERR_PTR(-ENOMEM);
2843 spi_set_all_cs_unused(spi);
2844 spi_set_chipselect(spi, 0, lookup.chip_select);
2846 ACPI_COMPANION_SET(&spi->dev, adev);
2847 spi->max_speed_hz = lookup.max_speed_hz;
2848 spi->mode |= lookup.mode;
2849 spi->irq = lookup.irq;
2850 spi->bits_per_word = lookup.bits_per_word;
2852 * By default spi->chip_select[0] will hold the physical CS number,
2853 * so set bit 0 in spi->cs_index_mask.
2855 spi->cs_index_mask = BIT(0);
2859 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2861 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2862 struct acpi_device *adev)
2864 struct spi_device *spi;
2866 if (acpi_bus_get_status(adev) || !adev->status.present ||
2867 acpi_device_enumerated(adev))
2870 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2872 if (PTR_ERR(spi) == -ENOMEM)
2873 return AE_NO_MEMORY;
2878 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2879 sizeof(spi->modalias));
2882 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2884 acpi_device_set_enumerated(adev);
2886 adev->power.flags.ignore_parent = true;
2887 if (spi_add_device(spi)) {
2888 adev->power.flags.ignore_parent = false;
2889 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2890 dev_name(&adev->dev));
2897 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2898 void *data, void **return_value)
2900 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2901 struct spi_controller *ctlr = data;
2906 return acpi_register_spi_device(ctlr, adev);
2909 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2911 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2916 handle = ACPI_HANDLE(ctlr->dev.parent);
2920 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2921 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2922 acpi_spi_add_device, NULL, ctlr, NULL);
2923 if (ACPI_FAILURE(status))
2924 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2927 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2928 #endif /* CONFIG_ACPI */
2930 static void spi_controller_release(struct device *dev)
2932 struct spi_controller *ctlr;
2934 ctlr = container_of(dev, struct spi_controller, dev);
2938 static struct class spi_master_class = {
2939 .name = "spi_master",
2940 .dev_release = spi_controller_release,
2941 .dev_groups = spi_master_groups,
2944 #ifdef CONFIG_SPI_SLAVE
2946 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2948 * @spi: device used for the current transfer
2950 int spi_slave_abort(struct spi_device *spi)
2952 struct spi_controller *ctlr = spi->controller;
2954 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2955 return ctlr->slave_abort(ctlr);
2959 EXPORT_SYMBOL_GPL(spi_slave_abort);
2961 int spi_target_abort(struct spi_device *spi)
2963 struct spi_controller *ctlr = spi->controller;
2965 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2966 return ctlr->target_abort(ctlr);
2970 EXPORT_SYMBOL_GPL(spi_target_abort);
2972 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2975 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2977 struct device *child;
2979 child = device_find_any_child(&ctlr->dev);
2980 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2983 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2984 const char *buf, size_t count)
2986 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2988 struct spi_device *spi;
2989 struct device *child;
2993 rc = sscanf(buf, "%31s", name);
2994 if (rc != 1 || !name[0])
2997 child = device_find_any_child(&ctlr->dev);
2999 /* Remove registered slave */
3000 device_unregister(child);
3004 if (strcmp(name, "(null)")) {
3005 /* Register new slave */
3006 spi = spi_alloc_device(ctlr);
3010 strscpy(spi->modalias, name, sizeof(spi->modalias));
3012 rc = spi_add_device(spi);
3022 static DEVICE_ATTR_RW(slave);
3024 static struct attribute *spi_slave_attrs[] = {
3025 &dev_attr_slave.attr,
3029 static const struct attribute_group spi_slave_group = {
3030 .attrs = spi_slave_attrs,
3033 static const struct attribute_group *spi_slave_groups[] = {
3034 &spi_controller_statistics_group,
3039 static struct class spi_slave_class = {
3040 .name = "spi_slave",
3041 .dev_release = spi_controller_release,
3042 .dev_groups = spi_slave_groups,
3045 extern struct class spi_slave_class; /* dummy */
3049 * __spi_alloc_controller - allocate an SPI master or slave controller
3050 * @dev: the controller, possibly using the platform_bus
3051 * @size: how much zeroed driver-private data to allocate; the pointer to this
3052 * memory is in the driver_data field of the returned device, accessible
3053 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3054 * drivers granting DMA access to portions of their private data need to
3055 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3056 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3057 * slave (true) controller
3058 * Context: can sleep
3060 * This call is used only by SPI controller drivers, which are the
3061 * only ones directly touching chip registers. It's how they allocate
3062 * an spi_controller structure, prior to calling spi_register_controller().
3064 * This must be called from context that can sleep.
3066 * The caller is responsible for assigning the bus number and initializing the
3067 * controller's methods before calling spi_register_controller(); and (after
3068 * errors adding the device) calling spi_controller_put() to prevent a memory
3071 * Return: the SPI controller structure on success, else NULL.
3073 struct spi_controller *__spi_alloc_controller(struct device *dev,
3074 unsigned int size, bool slave)
3076 struct spi_controller *ctlr;
3077 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3082 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3086 device_initialize(&ctlr->dev);
3087 INIT_LIST_HEAD(&ctlr->queue);
3088 spin_lock_init(&ctlr->queue_lock);
3089 spin_lock_init(&ctlr->bus_lock_spinlock);
3090 mutex_init(&ctlr->bus_lock_mutex);
3091 mutex_init(&ctlr->io_mutex);
3092 mutex_init(&ctlr->add_lock);
3094 ctlr->num_chipselect = 1;
3095 ctlr->slave = slave;
3096 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3097 ctlr->dev.class = &spi_slave_class;
3099 ctlr->dev.class = &spi_master_class;
3100 ctlr->dev.parent = dev;
3101 pm_suspend_ignore_children(&ctlr->dev, true);
3102 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3106 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3108 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3110 spi_controller_put(*(struct spi_controller **)ctlr);
3114 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3115 * @dev: physical device of SPI controller
3116 * @size: how much zeroed driver-private data to allocate
3117 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3118 * Context: can sleep
3120 * Allocate an SPI controller and automatically release a reference on it
3121 * when @dev is unbound from its driver. Drivers are thus relieved from
3122 * having to call spi_controller_put().
3124 * The arguments to this function are identical to __spi_alloc_controller().
3126 * Return: the SPI controller structure on success, else NULL.
3128 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3132 struct spi_controller **ptr, *ctlr;
3134 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3139 ctlr = __spi_alloc_controller(dev, size, slave);
3141 ctlr->devm_allocated = true;
3143 devres_add(dev, ptr);
3150 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3153 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3154 * @ctlr: The SPI master to grab GPIO descriptors for
3156 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3159 struct gpio_desc **cs;
3160 struct device *dev = &ctlr->dev;
3161 unsigned long native_cs_mask = 0;
3162 unsigned int num_cs_gpios = 0;
3164 nb = gpiod_count(dev, "cs");
3166 /* No GPIOs at all is fine, else return the error */
3172 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3174 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3178 ctlr->cs_gpiods = cs;
3180 for (i = 0; i < nb; i++) {
3182 * Most chipselects are active low, the inverted
3183 * semantics are handled by special quirks in gpiolib,
3184 * so initializing them GPIOD_OUT_LOW here means
3185 * "unasserted", in most cases this will drive the physical
3188 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3191 return PTR_ERR(cs[i]);
3195 * If we find a CS GPIO, name it after the device and
3200 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3204 gpiod_set_consumer_name(cs[i], gpioname);
3209 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3210 dev_err(dev, "Invalid native chip select %d\n", i);
3213 native_cs_mask |= BIT(i);
3216 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3218 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3219 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3220 dev_err(dev, "No unused native chip select available\n");
3227 static int spi_controller_check_ops(struct spi_controller *ctlr)
3230 * The controller may implement only the high-level SPI-memory like
3231 * operations if it does not support regular SPI transfers, and this is
3233 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3234 * one of the ->transfer_xxx() method be implemented.
3236 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3237 if (!ctlr->transfer && !ctlr->transfer_one &&
3238 !ctlr->transfer_one_message) {
3246 /* Allocate dynamic bus number using Linux idr */
3247 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3251 mutex_lock(&board_lock);
3252 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3253 mutex_unlock(&board_lock);
3254 if (WARN(id < 0, "couldn't get idr"))
3255 return id == -ENOSPC ? -EBUSY : id;
3261 * spi_register_controller - register SPI master or slave controller
3262 * @ctlr: initialized master, originally from spi_alloc_master() or
3264 * Context: can sleep
3266 * SPI controllers connect to their drivers using some non-SPI bus,
3267 * such as the platform bus. The final stage of probe() in that code
3268 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3270 * SPI controllers use board specific (often SOC specific) bus numbers,
3271 * and board-specific addressing for SPI devices combines those numbers
3272 * with chip select numbers. Since SPI does not directly support dynamic
3273 * device identification, boards need configuration tables telling which
3274 * chip is at which address.
3276 * This must be called from context that can sleep. It returns zero on
3277 * success, else a negative error code (dropping the controller's refcount).
3278 * After a successful return, the caller is responsible for calling
3279 * spi_unregister_controller().
3281 * Return: zero on success, else a negative error code.
3283 int spi_register_controller(struct spi_controller *ctlr)
3285 struct device *dev = ctlr->dev.parent;
3286 struct boardinfo *bi;
3295 * Make sure all necessary hooks are implemented before registering
3296 * the SPI controller.
3298 status = spi_controller_check_ops(ctlr);
3302 if (ctlr->bus_num < 0)
3303 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3304 if (ctlr->bus_num >= 0) {
3305 /* Devices with a fixed bus num must check-in with the num */
3306 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3310 if (ctlr->bus_num < 0) {
3311 first_dynamic = of_alias_get_highest_id("spi");
3312 if (first_dynamic < 0)
3317 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3321 ctlr->bus_lock_flag = 0;
3322 init_completion(&ctlr->xfer_completion);
3323 init_completion(&ctlr->cur_msg_completion);
3324 if (!ctlr->max_dma_len)
3325 ctlr->max_dma_len = INT_MAX;
3328 * Register the device, then userspace will see it.
3329 * Registration fails if the bus ID is in use.
3331 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3333 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3334 status = spi_get_gpio_descs(ctlr);
3338 * A controller using GPIO descriptors always
3339 * supports SPI_CS_HIGH if need be.
3341 ctlr->mode_bits |= SPI_CS_HIGH;
3345 * Even if it's just one always-selected device, there must
3346 * be at least one chipselect.
3348 if (!ctlr->num_chipselect) {
3353 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3354 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3355 ctlr->last_cs[idx] = SPI_INVALID_CS;
3357 status = device_add(&ctlr->dev);
3360 dev_dbg(dev, "registered %s %s\n",
3361 spi_controller_is_slave(ctlr) ? "slave" : "master",
3362 dev_name(&ctlr->dev));
3365 * If we're using a queued driver, start the queue. Note that we don't
3366 * need the queueing logic if the driver is only supporting high-level
3367 * memory operations.
3369 if (ctlr->transfer) {
3370 dev_info(dev, "controller is unqueued, this is deprecated\n");
3371 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3372 status = spi_controller_initialize_queue(ctlr);
3374 device_del(&ctlr->dev);
3378 /* Add statistics */
3379 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3380 if (!ctlr->pcpu_statistics) {
3381 dev_err(dev, "Error allocating per-cpu statistics\n");
3386 mutex_lock(&board_lock);
3387 list_add_tail(&ctlr->list, &spi_controller_list);
3388 list_for_each_entry(bi, &board_list, list)
3389 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3390 mutex_unlock(&board_lock);
3392 /* Register devices from the device tree and ACPI */
3393 of_register_spi_devices(ctlr);
3394 acpi_register_spi_devices(ctlr);
3398 spi_destroy_queue(ctlr);
3400 mutex_lock(&board_lock);
3401 idr_remove(&spi_master_idr, ctlr->bus_num);
3402 mutex_unlock(&board_lock);
3405 EXPORT_SYMBOL_GPL(spi_register_controller);
3407 static void devm_spi_unregister(struct device *dev, void *res)
3409 spi_unregister_controller(*(struct spi_controller **)res);
3413 * devm_spi_register_controller - register managed SPI master or slave
3415 * @dev: device managing SPI controller
3416 * @ctlr: initialized controller, originally from spi_alloc_master() or
3418 * Context: can sleep
3420 * Register a SPI device as with spi_register_controller() which will
3421 * automatically be unregistered and freed.
3423 * Return: zero on success, else a negative error code.
3425 int devm_spi_register_controller(struct device *dev,
3426 struct spi_controller *ctlr)
3428 struct spi_controller **ptr;
3431 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3435 ret = spi_register_controller(ctlr);
3438 devres_add(dev, ptr);
3445 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3447 static int __unregister(struct device *dev, void *null)
3449 spi_unregister_device(to_spi_device(dev));
3454 * spi_unregister_controller - unregister SPI master or slave controller
3455 * @ctlr: the controller being unregistered
3456 * Context: can sleep
3458 * This call is used only by SPI controller drivers, which are the
3459 * only ones directly touching chip registers.
3461 * This must be called from context that can sleep.
3463 * Note that this function also drops a reference to the controller.
3465 void spi_unregister_controller(struct spi_controller *ctlr)
3467 struct spi_controller *found;
3468 int id = ctlr->bus_num;
3470 /* Prevent addition of new devices, unregister existing ones */
3471 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3472 mutex_lock(&ctlr->add_lock);
3474 device_for_each_child(&ctlr->dev, NULL, __unregister);
3476 /* First make sure that this controller was ever added */
3477 mutex_lock(&board_lock);
3478 found = idr_find(&spi_master_idr, id);
3479 mutex_unlock(&board_lock);
3481 if (spi_destroy_queue(ctlr))
3482 dev_err(&ctlr->dev, "queue remove failed\n");
3484 mutex_lock(&board_lock);
3485 list_del(&ctlr->list);
3486 mutex_unlock(&board_lock);
3488 device_del(&ctlr->dev);
3491 mutex_lock(&board_lock);
3493 idr_remove(&spi_master_idr, id);
3494 mutex_unlock(&board_lock);
3496 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3497 mutex_unlock(&ctlr->add_lock);
3500 * Release the last reference on the controller if its driver
3501 * has not yet been converted to devm_spi_alloc_master/slave().
3503 if (!ctlr->devm_allocated)
3504 put_device(&ctlr->dev);
3506 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3508 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3510 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3513 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3515 mutex_lock(&ctlr->bus_lock_mutex);
3516 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3517 mutex_unlock(&ctlr->bus_lock_mutex);
3520 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3522 mutex_lock(&ctlr->bus_lock_mutex);
3523 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3524 mutex_unlock(&ctlr->bus_lock_mutex);
3527 int spi_controller_suspend(struct spi_controller *ctlr)
3531 /* Basically no-ops for non-queued controllers */
3533 ret = spi_stop_queue(ctlr);
3535 dev_err(&ctlr->dev, "queue stop failed\n");
3538 __spi_mark_suspended(ctlr);
3541 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3543 int spi_controller_resume(struct spi_controller *ctlr)
3547 __spi_mark_resumed(ctlr);
3550 ret = spi_start_queue(ctlr);
3552 dev_err(&ctlr->dev, "queue restart failed\n");
3556 EXPORT_SYMBOL_GPL(spi_controller_resume);
3558 /*-------------------------------------------------------------------------*/
3560 /* Core methods for spi_message alterations */
3562 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3563 struct spi_message *msg,
3566 struct spi_replaced_transfers *rxfer = res;
3569 /* Call extra callback if requested */
3571 rxfer->release(ctlr, msg, res);
3573 /* Insert replaced transfers back into the message */
3574 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3576 /* Remove the formerly inserted entries */
3577 for (i = 0; i < rxfer->inserted; i++)
3578 list_del(&rxfer->inserted_transfers[i].transfer_list);
3582 * spi_replace_transfers - replace transfers with several transfers
3583 * and register change with spi_message.resources
3584 * @msg: the spi_message we work upon
3585 * @xfer_first: the first spi_transfer we want to replace
3586 * @remove: number of transfers to remove
3587 * @insert: the number of transfers we want to insert instead
3588 * @release: extra release code necessary in some circumstances
3589 * @extradatasize: extra data to allocate (with alignment guarantees
3590 * of struct @spi_transfer)
3593 * Returns: pointer to @spi_replaced_transfers,
3594 * PTR_ERR(...) in case of errors.
3596 static struct spi_replaced_transfers *spi_replace_transfers(
3597 struct spi_message *msg,
3598 struct spi_transfer *xfer_first,
3601 spi_replaced_release_t release,
3602 size_t extradatasize,
3605 struct spi_replaced_transfers *rxfer;
3606 struct spi_transfer *xfer;
3609 /* Allocate the structure using spi_res */
3610 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3611 struct_size(rxfer, inserted_transfers, insert)
3615 return ERR_PTR(-ENOMEM);
3617 /* The release code to invoke before running the generic release */
3618 rxfer->release = release;
3620 /* Assign extradata */
3623 &rxfer->inserted_transfers[insert];
3625 /* Init the replaced_transfers list */
3626 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3629 * Assign the list_entry after which we should reinsert
3630 * the @replaced_transfers - it may be spi_message.messages!
3632 rxfer->replaced_after = xfer_first->transfer_list.prev;
3634 /* Remove the requested number of transfers */
3635 for (i = 0; i < remove; i++) {
3637 * If the entry after replaced_after it is msg->transfers
3638 * then we have been requested to remove more transfers
3639 * than are in the list.
3641 if (rxfer->replaced_after->next == &msg->transfers) {
3642 dev_err(&msg->spi->dev,
3643 "requested to remove more spi_transfers than are available\n");
3644 /* Insert replaced transfers back into the message */
3645 list_splice(&rxfer->replaced_transfers,
3646 rxfer->replaced_after);
3648 /* Free the spi_replace_transfer structure... */
3649 spi_res_free(rxfer);
3651 /* ...and return with an error */
3652 return ERR_PTR(-EINVAL);
3656 * Remove the entry after replaced_after from list of
3657 * transfers and add it to list of replaced_transfers.
3659 list_move_tail(rxfer->replaced_after->next,
3660 &rxfer->replaced_transfers);
3664 * Create copy of the given xfer with identical settings
3665 * based on the first transfer to get removed.
3667 for (i = 0; i < insert; i++) {
3668 /* We need to run in reverse order */
3669 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3671 /* Copy all spi_transfer data */
3672 memcpy(xfer, xfer_first, sizeof(*xfer));
3675 list_add(&xfer->transfer_list, rxfer->replaced_after);
3677 /* Clear cs_change and delay for all but the last */
3679 xfer->cs_change = false;
3680 xfer->delay.value = 0;
3684 /* Set up inserted... */
3685 rxfer->inserted = insert;
3687 /* ...and register it with spi_res/spi_message */
3688 spi_res_add(msg, rxfer);
3693 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3694 struct spi_message *msg,
3695 struct spi_transfer **xferp,
3698 struct spi_transfer *xfer = *xferp, *xfers;
3699 struct spi_replaced_transfers *srt;
3703 /* Calculate how many we have to replace */
3704 count = DIV_ROUND_UP(xfer->len, maxsize);
3706 /* Create replacement */
3707 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3709 return PTR_ERR(srt);
3710 xfers = srt->inserted_transfers;
3713 * Now handle each of those newly inserted spi_transfers.
3714 * Note that the replacements spi_transfers all are preset
3715 * to the same values as *xferp, so tx_buf, rx_buf and len
3716 * are all identical (as well as most others)
3717 * so we just have to fix up len and the pointers.
3719 * This also includes support for the depreciated
3720 * spi_message.is_dma_mapped interface.
3724 * The first transfer just needs the length modified, so we
3725 * run it outside the loop.
3727 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3729 /* All the others need rx_buf/tx_buf also set */
3730 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3731 /* Update rx_buf, tx_buf and DMA */
3732 if (xfers[i].rx_buf)
3733 xfers[i].rx_buf += offset;
3734 if (xfers[i].rx_dma)
3735 xfers[i].rx_dma += offset;
3736 if (xfers[i].tx_buf)
3737 xfers[i].tx_buf += offset;
3738 if (xfers[i].tx_dma)
3739 xfers[i].tx_dma += offset;
3742 xfers[i].len = min(maxsize, xfers[i].len - offset);
3746 * We set up xferp to the last entry we have inserted,
3747 * so that we skip those already split transfers.
3749 *xferp = &xfers[count - 1];
3751 /* Increment statistics counters */
3752 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3753 transfers_split_maxsize);
3754 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3755 transfers_split_maxsize);
3761 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3762 * when an individual transfer exceeds a
3764 * @ctlr: the @spi_controller for this transfer
3765 * @msg: the @spi_message to transform
3766 * @maxsize: the maximum when to apply this
3768 * This function allocates resources that are automatically freed during the
3769 * spi message unoptimize phase so this function should only be called from
3770 * optimize_message callbacks.
3772 * Return: status of transformation
3774 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3775 struct spi_message *msg,
3778 struct spi_transfer *xfer;
3782 * Iterate over the transfer_list,
3783 * but note that xfer is advanced to the last transfer inserted
3784 * to avoid checking sizes again unnecessarily (also xfer does
3785 * potentially belong to a different list by the time the
3786 * replacement has happened).
3788 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3789 if (xfer->len > maxsize) {
3790 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3799 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3803 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3804 * when an individual transfer exceeds a
3805 * certain number of SPI words
3806 * @ctlr: the @spi_controller for this transfer
3807 * @msg: the @spi_message to transform
3808 * @maxwords: the number of words to limit each transfer to
3810 * This function allocates resources that are automatically freed during the
3811 * spi message unoptimize phase so this function should only be called from
3812 * optimize_message callbacks.
3814 * Return: status of transformation
3816 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3817 struct spi_message *msg,
3820 struct spi_transfer *xfer;
3823 * Iterate over the transfer_list,
3824 * but note that xfer is advanced to the last transfer inserted
3825 * to avoid checking sizes again unnecessarily (also xfer does
3826 * potentially belong to a different list by the time the
3827 * replacement has happened).
3829 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3833 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3834 if (xfer->len > maxsize) {
3835 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3844 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3846 /*-------------------------------------------------------------------------*/
3849 * Core methods for SPI controller protocol drivers. Some of the
3850 * other core methods are currently defined as inline functions.
3853 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3856 if (ctlr->bits_per_word_mask) {
3857 /* Only 32 bits fit in the mask */
3858 if (bits_per_word > 32)
3860 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3868 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3869 * @spi: the device that requires specific CS timing configuration
3871 * Return: zero on success, else a negative error code.
3873 static int spi_set_cs_timing(struct spi_device *spi)
3875 struct device *parent = spi->controller->dev.parent;
3878 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3879 if (spi->controller->auto_runtime_pm) {
3880 status = pm_runtime_get_sync(parent);
3882 pm_runtime_put_noidle(parent);
3883 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3888 status = spi->controller->set_cs_timing(spi);
3889 pm_runtime_mark_last_busy(parent);
3890 pm_runtime_put_autosuspend(parent);
3892 status = spi->controller->set_cs_timing(spi);
3899 * spi_setup - setup SPI mode and clock rate
3900 * @spi: the device whose settings are being modified
3901 * Context: can sleep, and no requests are queued to the device
3903 * SPI protocol drivers may need to update the transfer mode if the
3904 * device doesn't work with its default. They may likewise need
3905 * to update clock rates or word sizes from initial values. This function
3906 * changes those settings, and must be called from a context that can sleep.
3907 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3908 * effect the next time the device is selected and data is transferred to
3909 * or from it. When this function returns, the SPI device is deselected.
3911 * Note that this call will fail if the protocol driver specifies an option
3912 * that the underlying controller or its driver does not support. For
3913 * example, not all hardware supports wire transfers using nine bit words,
3914 * LSB-first wire encoding, or active-high chipselects.
3916 * Return: zero on success, else a negative error code.
3918 int spi_setup(struct spi_device *spi)
3920 unsigned bad_bits, ugly_bits;
3924 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3925 * are set at the same time.
3927 if ((hweight_long(spi->mode &
3928 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3929 (hweight_long(spi->mode &
3930 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3932 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3935 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3936 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3937 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3938 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3941 * Help drivers fail *cleanly* when they need options
3942 * that aren't supported with their current controller.
3943 * SPI_CS_WORD has a fallback software implementation,
3944 * so it is ignored here.
3946 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3947 SPI_NO_TX | SPI_NO_RX);
3948 ugly_bits = bad_bits &
3949 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3950 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3953 "setup: ignoring unsupported mode bits %x\n",
3955 spi->mode &= ~ugly_bits;
3956 bad_bits &= ~ugly_bits;
3959 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3964 if (!spi->bits_per_word) {
3965 spi->bits_per_word = 8;
3968 * Some controllers may not support the default 8 bits-per-word
3969 * so only perform the check when this is explicitly provided.
3971 status = __spi_validate_bits_per_word(spi->controller,
3972 spi->bits_per_word);
3977 if (spi->controller->max_speed_hz &&
3978 (!spi->max_speed_hz ||
3979 spi->max_speed_hz > spi->controller->max_speed_hz))
3980 spi->max_speed_hz = spi->controller->max_speed_hz;
3982 mutex_lock(&spi->controller->io_mutex);
3984 if (spi->controller->setup) {
3985 status = spi->controller->setup(spi);
3987 mutex_unlock(&spi->controller->io_mutex);
3988 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3994 status = spi_set_cs_timing(spi);
3996 mutex_unlock(&spi->controller->io_mutex);
4000 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
4001 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4003 mutex_unlock(&spi->controller->io_mutex);
4004 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4010 * We do not want to return positive value from pm_runtime_get,
4011 * there are many instances of devices calling spi_setup() and
4012 * checking for a non-zero return value instead of a negative
4017 spi_set_cs(spi, false, true);
4018 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4019 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4021 spi_set_cs(spi, false, true);
4024 mutex_unlock(&spi->controller->io_mutex);
4026 if (spi->rt && !spi->controller->rt) {
4027 spi->controller->rt = true;
4028 spi_set_thread_rt(spi->controller);
4031 trace_spi_setup(spi, status);
4033 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4034 spi->mode & SPI_MODE_X_MASK,
4035 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4036 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4037 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4038 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4039 spi->bits_per_word, spi->max_speed_hz,
4044 EXPORT_SYMBOL_GPL(spi_setup);
4046 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4047 struct spi_device *spi)
4051 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4055 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4059 if (delay1 < delay2)
4060 memcpy(&xfer->word_delay, &spi->word_delay,
4061 sizeof(xfer->word_delay));
4066 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4068 struct spi_controller *ctlr = spi->controller;
4069 struct spi_transfer *xfer;
4072 if (list_empty(&message->transfers))
4078 * Half-duplex links include original MicroWire, and ones with
4079 * only one data pin like SPI_3WIRE (switches direction) or where
4080 * either MOSI or MISO is missing. They can also be caused by
4081 * software limitations.
4083 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4084 (spi->mode & SPI_3WIRE)) {
4085 unsigned flags = ctlr->flags;
4087 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4088 if (xfer->rx_buf && xfer->tx_buf)
4090 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4092 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4098 * Set transfer bits_per_word and max speed as spi device default if
4099 * it is not set for this transfer.
4100 * Set transfer tx_nbits and rx_nbits as single transfer default
4101 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4102 * Ensure transfer word_delay is at least as long as that required by
4105 message->frame_length = 0;
4106 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4107 xfer->effective_speed_hz = 0;
4108 message->frame_length += xfer->len;
4109 if (!xfer->bits_per_word)
4110 xfer->bits_per_word = spi->bits_per_word;
4112 if (!xfer->speed_hz)
4113 xfer->speed_hz = spi->max_speed_hz;
4115 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4116 xfer->speed_hz = ctlr->max_speed_hz;
4118 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4122 * SPI transfer length should be multiple of SPI word size
4123 * where SPI word size should be power-of-two multiple.
4125 if (xfer->bits_per_word <= 8)
4127 else if (xfer->bits_per_word <= 16)
4132 /* No partial transfers accepted */
4133 if (xfer->len % w_size)
4136 if (xfer->speed_hz && ctlr->min_speed_hz &&
4137 xfer->speed_hz < ctlr->min_speed_hz)
4140 if (xfer->tx_buf && !xfer->tx_nbits)
4141 xfer->tx_nbits = SPI_NBITS_SINGLE;
4142 if (xfer->rx_buf && !xfer->rx_nbits)
4143 xfer->rx_nbits = SPI_NBITS_SINGLE;
4145 * Check transfer tx/rx_nbits:
4146 * 1. check the value matches one of single, dual and quad
4147 * 2. check tx/rx_nbits match the mode in spi_device
4150 if (spi->mode & SPI_NO_TX)
4152 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4153 xfer->tx_nbits != SPI_NBITS_DUAL &&
4154 xfer->tx_nbits != SPI_NBITS_QUAD)
4156 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4157 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4159 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4160 !(spi->mode & SPI_TX_QUAD))
4163 /* Check transfer rx_nbits */
4165 if (spi->mode & SPI_NO_RX)
4167 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4168 xfer->rx_nbits != SPI_NBITS_DUAL &&
4169 xfer->rx_nbits != SPI_NBITS_QUAD)
4171 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4172 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4174 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4175 !(spi->mode & SPI_RX_QUAD))
4179 if (_spi_xfer_word_delay_update(xfer, spi))
4183 message->status = -EINPROGRESS;
4189 * spi_split_transfers - generic handling of transfer splitting
4190 * @msg: the message to split
4192 * Under certain conditions, a SPI controller may not support arbitrary
4193 * transfer sizes or other features required by a peripheral. This function
4194 * will split the transfers in the message into smaller transfers that are
4195 * supported by the controller.
4197 * Controllers with special requirements not covered here can also split
4198 * transfers in the optimize_message() callback.
4200 * Context: can sleep
4201 * Return: zero on success, else a negative error code
4203 static int spi_split_transfers(struct spi_message *msg)
4205 struct spi_controller *ctlr = msg->spi->controller;
4206 struct spi_transfer *xfer;
4210 * If an SPI controller does not support toggling the CS line on each
4211 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4212 * for the CS line, we can emulate the CS-per-word hardware function by
4213 * splitting transfers into one-word transfers and ensuring that
4214 * cs_change is set for each transfer.
4216 if ((msg->spi->mode & SPI_CS_WORD) &&
4217 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4218 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4222 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4223 /* Don't change cs_change on the last entry in the list */
4224 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4227 xfer->cs_change = 1;
4230 ret = spi_split_transfers_maxsize(ctlr, msg,
4231 spi_max_transfer_size(msg->spi));
4240 * __spi_optimize_message - shared implementation for spi_optimize_message()
4241 * and spi_maybe_optimize_message()
4242 * @spi: the device that will be used for the message
4243 * @msg: the message to optimize
4245 * Peripheral drivers will call spi_optimize_message() and the spi core will
4246 * call spi_maybe_optimize_message() instead of calling this directly.
4248 * It is not valid to call this on a message that has already been optimized.
4250 * Return: zero on success, else a negative error code
4252 static int __spi_optimize_message(struct spi_device *spi,
4253 struct spi_message *msg)
4255 struct spi_controller *ctlr = spi->controller;
4258 ret = __spi_validate(spi, msg);
4262 ret = spi_split_transfers(msg);
4266 if (ctlr->optimize_message) {
4267 ret = ctlr->optimize_message(msg);
4269 spi_res_release(ctlr, msg);
4274 msg->optimized = true;
4280 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4281 * @spi: the device that will be used for the message
4282 * @msg: the message to optimize
4283 * Return: zero on success, else a negative error code
4285 static int spi_maybe_optimize_message(struct spi_device *spi,
4286 struct spi_message *msg)
4288 if (msg->pre_optimized)
4291 return __spi_optimize_message(spi, msg);
4295 * spi_optimize_message - do any one-time validation and setup for a SPI message
4296 * @spi: the device that will be used for the message
4297 * @msg: the message to optimize
4299 * Peripheral drivers that reuse the same message repeatedly may call this to
4300 * perform as much message prep as possible once, rather than repeating it each
4301 * time a message transfer is performed to improve throughput and reduce CPU
4304 * Once a message has been optimized, it cannot be modified with the exception
4305 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4306 * only the data in the memory it points to).
4308 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4309 * to avoid leaking resources.
4311 * Context: can sleep
4312 * Return: zero on success, else a negative error code
4314 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4318 ret = __spi_optimize_message(spi, msg);
4323 * This flag indicates that the peripheral driver called spi_optimize_message()
4324 * and therefore we shouldn't unoptimize message automatically when finalizing
4325 * the message but rather wait until spi_unoptimize_message() is called
4326 * by the peripheral driver.
4328 msg->pre_optimized = true;
4332 EXPORT_SYMBOL_GPL(spi_optimize_message);
4335 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4336 * @msg: the message to unoptimize
4338 * Calls to this function must be balanced with calls to spi_optimize_message().
4340 * Context: can sleep
4342 void spi_unoptimize_message(struct spi_message *msg)
4344 __spi_unoptimize_message(msg);
4345 msg->pre_optimized = false;
4347 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4351 struct spi_controller *ctlr = spi->controller;
4352 struct spi_transfer *xfer;
4355 * Some controllers do not support doing regular SPI transfers. Return
4356 * ENOTSUPP when this is the case.
4358 if (!ctlr->transfer)
4361 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4364 trace_spi_message_submit(message);
4366 if (!ctlr->ptp_sts_supported) {
4367 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368 xfer->ptp_sts_word_pre = 0;
4369 ptp_read_system_prets(xfer->ptp_sts);
4373 return ctlr->transfer(spi, message);
4377 * spi_async - asynchronous SPI transfer
4378 * @spi: device with which data will be exchanged
4379 * @message: describes the data transfers, including completion callback
4380 * Context: any (IRQs may be blocked, etc)
4382 * This call may be used in_irq and other contexts which can't sleep,
4383 * as well as from task contexts which can sleep.
4385 * The completion callback is invoked in a context which can't sleep.
4386 * Before that invocation, the value of message->status is undefined.
4387 * When the callback is issued, message->status holds either zero (to
4388 * indicate complete success) or a negative error code. After that
4389 * callback returns, the driver which issued the transfer request may
4390 * deallocate the associated memory; it's no longer in use by any SPI
4391 * core or controller driver code.
4393 * Note that although all messages to a spi_device are handled in
4394 * FIFO order, messages may go to different devices in other orders.
4395 * Some device might be higher priority, or have various "hard" access
4396 * time requirements, for example.
4398 * On detection of any fault during the transfer, processing of
4399 * the entire message is aborted, and the device is deselected.
4400 * Until returning from the associated message completion callback,
4401 * no other spi_message queued to that device will be processed.
4402 * (This rule applies equally to all the synchronous transfer calls,
4403 * which are wrappers around this core asynchronous primitive.)
4405 * Return: zero on success, else a negative error code.
4407 int spi_async(struct spi_device *spi, struct spi_message *message)
4409 struct spi_controller *ctlr = spi->controller;
4411 unsigned long flags;
4413 ret = spi_maybe_optimize_message(spi, message);
4417 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4419 if (ctlr->bus_lock_flag)
4422 ret = __spi_async(spi, message);
4424 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4426 spi_maybe_unoptimize_message(message);
4430 EXPORT_SYMBOL_GPL(spi_async);
4432 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4437 mutex_lock(&ctlr->io_mutex);
4439 was_busy = ctlr->busy;
4441 ctlr->cur_msg = msg;
4442 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4444 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4445 ctlr->cur_msg = NULL;
4446 ctlr->fallback = false;
4449 kfree(ctlr->dummy_rx);
4450 ctlr->dummy_rx = NULL;
4451 kfree(ctlr->dummy_tx);
4452 ctlr->dummy_tx = NULL;
4453 if (ctlr->unprepare_transfer_hardware &&
4454 ctlr->unprepare_transfer_hardware(ctlr))
4456 "failed to unprepare transfer hardware\n");
4457 spi_idle_runtime_pm(ctlr);
4460 mutex_unlock(&ctlr->io_mutex);
4463 /*-------------------------------------------------------------------------*/
4466 * Utility methods for SPI protocol drivers, layered on
4467 * top of the core. Some other utility methods are defined as
4471 static void spi_complete(void *arg)
4476 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4478 DECLARE_COMPLETION_ONSTACK(done);
4479 unsigned long flags;
4481 struct spi_controller *ctlr = spi->controller;
4483 if (__spi_check_suspended(ctlr)) {
4484 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4488 status = spi_maybe_optimize_message(spi, message);
4492 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4493 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4496 * Checking queue_empty here only guarantees async/sync message
4497 * ordering when coming from the same context. It does not need to
4498 * guard against reentrancy from a different context. The io_mutex
4499 * will catch those cases.
4501 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4502 message->actual_length = 0;
4503 message->status = -EINPROGRESS;
4505 trace_spi_message_submit(message);
4507 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4508 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4510 __spi_transfer_message_noqueue(ctlr, message);
4512 return message->status;
4516 * There are messages in the async queue that could have originated
4517 * from the same context, so we need to preserve ordering.
4518 * Therefor we send the message to the async queue and wait until they
4521 message->complete = spi_complete;
4522 message->context = &done;
4524 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4525 status = __spi_async(spi, message);
4526 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4529 wait_for_completion(&done);
4530 status = message->status;
4532 message->context = NULL;
4538 * spi_sync - blocking/synchronous SPI data transfers
4539 * @spi: device with which data will be exchanged
4540 * @message: describes the data transfers
4541 * Context: can sleep
4543 * This call may only be used from a context that may sleep. The sleep
4544 * is non-interruptible, and has no timeout. Low-overhead controller
4545 * drivers may DMA directly into and out of the message buffers.
4547 * Note that the SPI device's chip select is active during the message,
4548 * and then is normally disabled between messages. Drivers for some
4549 * frequently-used devices may want to minimize costs of selecting a chip,
4550 * by leaving it selected in anticipation that the next message will go
4551 * to the same chip. (That may increase power usage.)
4553 * Also, the caller is guaranteeing that the memory associated with the
4554 * message will not be freed before this call returns.
4556 * Return: zero on success, else a negative error code.
4558 int spi_sync(struct spi_device *spi, struct spi_message *message)
4562 mutex_lock(&spi->controller->bus_lock_mutex);
4563 ret = __spi_sync(spi, message);
4564 mutex_unlock(&spi->controller->bus_lock_mutex);
4568 EXPORT_SYMBOL_GPL(spi_sync);
4571 * spi_sync_locked - version of spi_sync with exclusive bus usage
4572 * @spi: device with which data will be exchanged
4573 * @message: describes the data transfers
4574 * Context: can sleep
4576 * This call may only be used from a context that may sleep. The sleep
4577 * is non-interruptible, and has no timeout. Low-overhead controller
4578 * drivers may DMA directly into and out of the message buffers.
4580 * This call should be used by drivers that require exclusive access to the
4581 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4582 * be released by a spi_bus_unlock call when the exclusive access is over.
4584 * Return: zero on success, else a negative error code.
4586 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4588 return __spi_sync(spi, message);
4590 EXPORT_SYMBOL_GPL(spi_sync_locked);
4593 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4594 * @ctlr: SPI bus master that should be locked for exclusive bus access
4595 * Context: can sleep
4597 * This call may only be used from a context that may sleep. The sleep
4598 * is non-interruptible, and has no timeout.
4600 * This call should be used by drivers that require exclusive access to the
4601 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4602 * exclusive access is over. Data transfer must be done by spi_sync_locked
4603 * and spi_async_locked calls when the SPI bus lock is held.
4605 * Return: always zero.
4607 int spi_bus_lock(struct spi_controller *ctlr)
4609 unsigned long flags;
4611 mutex_lock(&ctlr->bus_lock_mutex);
4613 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4614 ctlr->bus_lock_flag = 1;
4615 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4617 /* Mutex remains locked until spi_bus_unlock() is called */
4621 EXPORT_SYMBOL_GPL(spi_bus_lock);
4624 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4625 * @ctlr: SPI bus master that was locked for exclusive bus access
4626 * Context: can sleep
4628 * This call may only be used from a context that may sleep. The sleep
4629 * is non-interruptible, and has no timeout.
4631 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4634 * Return: always zero.
4636 int spi_bus_unlock(struct spi_controller *ctlr)
4638 ctlr->bus_lock_flag = 0;
4640 mutex_unlock(&ctlr->bus_lock_mutex);
4644 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4646 /* Portable code must never pass more than 32 bytes */
4647 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4652 * spi_write_then_read - SPI synchronous write followed by read
4653 * @spi: device with which data will be exchanged
4654 * @txbuf: data to be written (need not be DMA-safe)
4655 * @n_tx: size of txbuf, in bytes
4656 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4657 * @n_rx: size of rxbuf, in bytes
4658 * Context: can sleep
4660 * This performs a half duplex MicroWire style transaction with the
4661 * device, sending txbuf and then reading rxbuf. The return value
4662 * is zero for success, else a negative errno status code.
4663 * This call may only be used from a context that may sleep.
4665 * Parameters to this routine are always copied using a small buffer.
4666 * Performance-sensitive or bulk transfer code should instead use
4667 * spi_{async,sync}() calls with DMA-safe buffers.
4669 * Return: zero on success, else a negative error code.
4671 int spi_write_then_read(struct spi_device *spi,
4672 const void *txbuf, unsigned n_tx,
4673 void *rxbuf, unsigned n_rx)
4675 static DEFINE_MUTEX(lock);
4678 struct spi_message message;
4679 struct spi_transfer x[2];
4683 * Use preallocated DMA-safe buffer if we can. We can't avoid
4684 * copying here, (as a pure convenience thing), but we can
4685 * keep heap costs out of the hot path unless someone else is
4686 * using the pre-allocated buffer or the transfer is too large.
4688 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4689 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4690 GFP_KERNEL | GFP_DMA);
4697 spi_message_init(&message);
4698 memset(x, 0, sizeof(x));
4701 spi_message_add_tail(&x[0], &message);
4705 spi_message_add_tail(&x[1], &message);
4708 memcpy(local_buf, txbuf, n_tx);
4709 x[0].tx_buf = local_buf;
4710 x[1].rx_buf = local_buf + n_tx;
4713 status = spi_sync(spi, &message);
4715 memcpy(rxbuf, x[1].rx_buf, n_rx);
4717 if (x[0].tx_buf == buf)
4718 mutex_unlock(&lock);
4724 EXPORT_SYMBOL_GPL(spi_write_then_read);
4726 /*-------------------------------------------------------------------------*/
4728 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4729 /* Must call put_device() when done with returned spi_device device */
4730 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4732 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4734 return dev ? to_spi_device(dev) : NULL;
4737 /* The spi controllers are not using spi_bus, so we find it with another way */
4738 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4742 dev = class_find_device_by_of_node(&spi_master_class, node);
4743 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4744 dev = class_find_device_by_of_node(&spi_slave_class, node);
4748 /* Reference got in class_find_device */
4749 return container_of(dev, struct spi_controller, dev);
4752 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4755 struct of_reconfig_data *rd = arg;
4756 struct spi_controller *ctlr;
4757 struct spi_device *spi;
4759 switch (of_reconfig_get_state_change(action, arg)) {
4760 case OF_RECONFIG_CHANGE_ADD:
4761 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4763 return NOTIFY_OK; /* Not for us */
4765 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4766 put_device(&ctlr->dev);
4771 * Clear the flag before adding the device so that fw_devlink
4772 * doesn't skip adding consumers to this device.
4774 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4775 spi = of_register_spi_device(ctlr, rd->dn);
4776 put_device(&ctlr->dev);
4779 pr_err("%s: failed to create for '%pOF'\n",
4781 of_node_clear_flag(rd->dn, OF_POPULATED);
4782 return notifier_from_errno(PTR_ERR(spi));
4786 case OF_RECONFIG_CHANGE_REMOVE:
4787 /* Already depopulated? */
4788 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4791 /* Find our device by node */
4792 spi = of_find_spi_device_by_node(rd->dn);
4794 return NOTIFY_OK; /* No? not meant for us */
4796 /* Unregister takes one ref away */
4797 spi_unregister_device(spi);
4799 /* And put the reference of the find */
4800 put_device(&spi->dev);
4807 static struct notifier_block spi_of_notifier = {
4808 .notifier_call = of_spi_notify,
4810 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4811 extern struct notifier_block spi_of_notifier;
4812 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4814 #if IS_ENABLED(CONFIG_ACPI)
4815 static int spi_acpi_controller_match(struct device *dev, const void *data)
4817 return ACPI_COMPANION(dev->parent) == data;
4820 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4824 dev = class_find_device(&spi_master_class, NULL, adev,
4825 spi_acpi_controller_match);
4826 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4827 dev = class_find_device(&spi_slave_class, NULL, adev,
4828 spi_acpi_controller_match);
4832 return container_of(dev, struct spi_controller, dev);
4834 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4836 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4840 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4841 return to_spi_device(dev);
4844 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4847 struct acpi_device *adev = arg;
4848 struct spi_controller *ctlr;
4849 struct spi_device *spi;
4852 case ACPI_RECONFIG_DEVICE_ADD:
4853 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4857 acpi_register_spi_device(ctlr, adev);
4858 put_device(&ctlr->dev);
4860 case ACPI_RECONFIG_DEVICE_REMOVE:
4861 if (!acpi_device_enumerated(adev))
4864 spi = acpi_spi_find_device_by_adev(adev);
4868 spi_unregister_device(spi);
4869 put_device(&spi->dev);
4876 static struct notifier_block spi_acpi_notifier = {
4877 .notifier_call = acpi_spi_notify,
4880 extern struct notifier_block spi_acpi_notifier;
4883 static int __init spi_init(void)
4887 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4893 status = bus_register(&spi_bus_type);
4897 status = class_register(&spi_master_class);
4901 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4902 status = class_register(&spi_slave_class);
4907 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4908 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4909 if (IS_ENABLED(CONFIG_ACPI))
4910 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4915 class_unregister(&spi_master_class);
4917 bus_unregister(&spi_bus_type);
4926 * A board_info is normally registered in arch_initcall(),
4927 * but even essential drivers wait till later.
4929 * REVISIT only boardinfo really needs static linking. The rest (device and
4930 * driver registration) _could_ be dynamically linked (modular) ... Costs
4931 * include needing to have boardinfo data structures be much more public.
4933 postcore_initcall(spi_init);