]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
spi: cs42l43: Add bridged cs35l56 amplifiers
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 const struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct device *dev = &spi->dev;
601         struct fwnode_handle *fwnode = dev_fwnode(dev);
602
603         if (is_acpi_device_node(fwnode)) {
604                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
605                 return;
606         }
607
608         if (is_software_node(fwnode)) {
609                 dev_set_name(dev, "spi-%pfwP", fwnode);
610                 return;
611         }
612
613         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
614                      spi_get_chipselect(spi, 0));
615 }
616
617 /*
618  * Zero(0) is a valid physical CS value and can be located at any
619  * logical CS in the spi->chip_select[]. If all the physical CS
620  * are initialized to 0 then It would be difficult to differentiate
621  * between a valid physical CS 0 & an unused logical CS whose physical
622  * CS can be 0. As a solution to this issue initialize all the CS to -1.
623  * Now all the unused logical CS will have -1 physical CS value & can be
624  * ignored while performing physical CS validity checks.
625  */
626 #define SPI_INVALID_CS          ((s8)-1)
627
628 static inline bool is_valid_cs(s8 chip_select)
629 {
630         return chip_select != SPI_INVALID_CS;
631 }
632
633 static inline int spi_dev_check_cs(struct device *dev,
634                                    struct spi_device *spi, u8 idx,
635                                    struct spi_device *new_spi, u8 new_idx)
636 {
637         u8 cs, cs_new;
638         u8 idx_new;
639
640         cs = spi_get_chipselect(spi, idx);
641         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
642                 cs_new = spi_get_chipselect(new_spi, idx_new);
643                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
644                         dev_err(dev, "chipselect %u already in use\n", cs_new);
645                         return -EBUSY;
646                 }
647         }
648         return 0;
649 }
650
651 static int spi_dev_check(struct device *dev, void *data)
652 {
653         struct spi_device *spi = to_spi_device(dev);
654         struct spi_device *new_spi = data;
655         int status, idx;
656
657         if (spi->controller == new_spi->controller) {
658                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
659                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
660                         if (status)
661                                 return status;
662                 }
663         }
664         return 0;
665 }
666
667 static void spi_cleanup(struct spi_device *spi)
668 {
669         if (spi->controller->cleanup)
670                 spi->controller->cleanup(spi);
671 }
672
673 static int __spi_add_device(struct spi_device *spi)
674 {
675         struct spi_controller *ctlr = spi->controller;
676         struct device *dev = ctlr->dev.parent;
677         int status, idx;
678         u8 cs;
679
680         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
681                 /* Chipselects are numbered 0..max; validate. */
682                 cs = spi_get_chipselect(spi, idx);
683                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
684                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
685                                 ctlr->num_chipselect);
686                         return -EINVAL;
687                 }
688         }
689
690         /*
691          * Make sure that multiple logical CS doesn't map to the same physical CS.
692          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
693          */
694         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
695                 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
696                 if (status)
697                         return status;
698         }
699
700         /* Set the bus ID string */
701         spi_dev_set_name(spi);
702
703         /*
704          * We need to make sure there's no other device with this
705          * chipselect **BEFORE** we call setup(), else we'll trash
706          * its configuration.
707          */
708         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709         if (status)
710                 return status;
711
712         /* Controller may unregister concurrently */
713         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714             !device_is_registered(&ctlr->dev)) {
715                 return -ENODEV;
716         }
717
718         if (ctlr->cs_gpiods) {
719                 u8 cs;
720
721                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722                         cs = spi_get_chipselect(spi, idx);
723                         if (is_valid_cs(cs))
724                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725                 }
726         }
727
728         /*
729          * Drivers may modify this initial i/o setup, but will
730          * normally rely on the device being setup.  Devices
731          * using SPI_CS_HIGH can't coexist well otherwise...
732          */
733         status = spi_setup(spi);
734         if (status < 0) {
735                 dev_err(dev, "can't setup %s, status %d\n",
736                                 dev_name(&spi->dev), status);
737                 return status;
738         }
739
740         /* Device may be bound to an active driver when this returns */
741         status = device_add(&spi->dev);
742         if (status < 0) {
743                 dev_err(dev, "can't add %s, status %d\n",
744                                 dev_name(&spi->dev), status);
745                 spi_cleanup(spi);
746         } else {
747                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748         }
749
750         return status;
751 }
752
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764         struct spi_controller *ctlr = spi->controller;
765         int status;
766
767         /* Set the bus ID string */
768         spi_dev_set_name(spi);
769
770         mutex_lock(&ctlr->add_lock);
771         status = __spi_add_device(spi);
772         mutex_unlock(&ctlr->add_lock);
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779         u8 idx;
780
781         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800                                   struct spi_board_info *chip)
801 {
802         struct spi_device       *proxy;
803         int                     status;
804
805         /*
806          * NOTE:  caller did any chip->bus_num checks necessary.
807          *
808          * Also, unless we change the return value convention to use
809          * error-or-pointer (not NULL-or-pointer), troubleshootability
810          * suggests syslogged diagnostics are best here (ugh).
811          */
812
813         proxy = spi_alloc_device(ctlr);
814         if (!proxy)
815                 return NULL;
816
817         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819         /* Use provided chip-select for proxy device */
820         spi_set_all_cs_unused(proxy);
821         spi_set_chipselect(proxy, 0, chip->chip_select);
822
823         proxy->max_speed_hz = chip->max_speed_hz;
824         proxy->mode = chip->mode;
825         proxy->irq = chip->irq;
826         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827         proxy->dev.platform_data = (void *) chip->platform_data;
828         proxy->controller_data = chip->controller_data;
829         proxy->controller_state = NULL;
830         /*
831          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
832          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
833          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
834          * spi->chip_select[0] will give the physical CS.
835          * By default spi->chip_select[0] will hold the physical CS number so, set
836          * spi->cs_index_mask as 0x01.
837          */
838         proxy->cs_index_mask = 0x01;
839
840         if (chip->swnode) {
841                 status = device_add_software_node(&proxy->dev, chip->swnode);
842                 if (status) {
843                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
844                                 chip->modalias, status);
845                         goto err_dev_put;
846                 }
847         }
848
849         status = spi_add_device(proxy);
850         if (status < 0)
851                 goto err_dev_put;
852
853         return proxy;
854
855 err_dev_put:
856         device_remove_software_node(&proxy->dev);
857         spi_dev_put(proxy);
858         return NULL;
859 }
860 EXPORT_SYMBOL_GPL(spi_new_device);
861
862 /**
863  * spi_unregister_device - unregister a single SPI device
864  * @spi: spi_device to unregister
865  *
866  * Start making the passed SPI device vanish. Normally this would be handled
867  * by spi_unregister_controller().
868  */
869 void spi_unregister_device(struct spi_device *spi)
870 {
871         if (!spi)
872                 return;
873
874         if (spi->dev.of_node) {
875                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
876                 of_node_put(spi->dev.of_node);
877         }
878         if (ACPI_COMPANION(&spi->dev))
879                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
880         device_remove_software_node(&spi->dev);
881         device_del(&spi->dev);
882         spi_cleanup(spi);
883         put_device(&spi->dev);
884 }
885 EXPORT_SYMBOL_GPL(spi_unregister_device);
886
887 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
888                                               struct spi_board_info *bi)
889 {
890         struct spi_device *dev;
891
892         if (ctlr->bus_num != bi->bus_num)
893                 return;
894
895         dev = spi_new_device(ctlr, bi);
896         if (!dev)
897                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
898                         bi->modalias);
899 }
900
901 /**
902  * spi_register_board_info - register SPI devices for a given board
903  * @info: array of chip descriptors
904  * @n: how many descriptors are provided
905  * Context: can sleep
906  *
907  * Board-specific early init code calls this (probably during arch_initcall)
908  * with segments of the SPI device table.  Any device nodes are created later,
909  * after the relevant parent SPI controller (bus_num) is defined.  We keep
910  * this table of devices forever, so that reloading a controller driver will
911  * not make Linux forget about these hard-wired devices.
912  *
913  * Other code can also call this, e.g. a particular add-on board might provide
914  * SPI devices through its expansion connector, so code initializing that board
915  * would naturally declare its SPI devices.
916  *
917  * The board info passed can safely be __initdata ... but be careful of
918  * any embedded pointers (platform_data, etc), they're copied as-is.
919  *
920  * Return: zero on success, else a negative error code.
921  */
922 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
923 {
924         struct boardinfo *bi;
925         int i;
926
927         if (!n)
928                 return 0;
929
930         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
931         if (!bi)
932                 return -ENOMEM;
933
934         for (i = 0; i < n; i++, bi++, info++) {
935                 struct spi_controller *ctlr;
936
937                 memcpy(&bi->board_info, info, sizeof(*info));
938
939                 mutex_lock(&board_lock);
940                 list_add_tail(&bi->list, &board_list);
941                 list_for_each_entry(ctlr, &spi_controller_list, list)
942                         spi_match_controller_to_boardinfo(ctlr,
943                                                           &bi->board_info);
944                 mutex_unlock(&board_lock);
945         }
946
947         return 0;
948 }
949
950 /*-------------------------------------------------------------------------*/
951
952 /* Core methods for SPI resource management */
953
954 /**
955  * spi_res_alloc - allocate a spi resource that is life-cycle managed
956  *                 during the processing of a spi_message while using
957  *                 spi_transfer_one
958  * @spi:     the SPI device for which we allocate memory
959  * @release: the release code to execute for this resource
960  * @size:    size to alloc and return
961  * @gfp:     GFP allocation flags
962  *
963  * Return: the pointer to the allocated data
964  *
965  * This may get enhanced in the future to allocate from a memory pool
966  * of the @spi_device or @spi_controller to avoid repeated allocations.
967  */
968 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
969                            size_t size, gfp_t gfp)
970 {
971         struct spi_res *sres;
972
973         sres = kzalloc(sizeof(*sres) + size, gfp);
974         if (!sres)
975                 return NULL;
976
977         INIT_LIST_HEAD(&sres->entry);
978         sres->release = release;
979
980         return sres->data;
981 }
982
983 /**
984  * spi_res_free - free an SPI resource
985  * @res: pointer to the custom data of a resource
986  */
987 static void spi_res_free(void *res)
988 {
989         struct spi_res *sres = container_of(res, struct spi_res, data);
990
991         if (!res)
992                 return;
993
994         WARN_ON(!list_empty(&sres->entry));
995         kfree(sres);
996 }
997
998 /**
999  * spi_res_add - add a spi_res to the spi_message
1000  * @message: the SPI message
1001  * @res:     the spi_resource
1002  */
1003 static void spi_res_add(struct spi_message *message, void *res)
1004 {
1005         struct spi_res *sres = container_of(res, struct spi_res, data);
1006
1007         WARN_ON(!list_empty(&sres->entry));
1008         list_add_tail(&sres->entry, &message->resources);
1009 }
1010
1011 /**
1012  * spi_res_release - release all SPI resources for this message
1013  * @ctlr:  the @spi_controller
1014  * @message: the @spi_message
1015  */
1016 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1017 {
1018         struct spi_res *res, *tmp;
1019
1020         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1021                 if (res->release)
1022                         res->release(ctlr, message, res->data);
1023
1024                 list_del(&res->entry);
1025
1026                 kfree(res);
1027         }
1028 }
1029
1030 /*-------------------------------------------------------------------------*/
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033         u8 idx;
1034         bool last = false;
1035
1036         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1037                 if (spi->cs_index_mask & BIT(idx)) {
1038                         if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1039                                 last = true;
1040                 }
1041         }
1042         return last;
1043 }
1044
1045
1046 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1047 {
1048         bool activate = enable;
1049         u8 idx;
1050
1051         /*
1052          * Avoid calling into the driver (or doing delays) if the chip select
1053          * isn't actually changing from the last time this was called.
1054          */
1055         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1056                         spi_is_last_cs(spi)) ||
1057                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1058                         !spi_is_last_cs(spi))) &&
1059             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1060                 return;
1061
1062         trace_spi_set_cs(spi, activate);
1063
1064         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1065         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1066                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1067         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1068
1069         if (spi->mode & SPI_CS_HIGH)
1070                 enable = !enable;
1071
1072         /*
1073          * Handle chip select delays for GPIO based CS or controllers without
1074          * programmable chip select timing.
1075          */
1076         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1077                 spi_delay_exec(&spi->cs_hold, NULL);
1078
1079         if (spi_is_csgpiod(spi)) {
1080                 if (!(spi->mode & SPI_NO_CS)) {
1081                         /*
1082                          * Historically ACPI has no means of the GPIO polarity and
1083                          * thus the SPISerialBus() resource defines it on the per-chip
1084                          * basis. In order to avoid a chain of negations, the GPIO
1085                          * polarity is considered being Active High. Even for the cases
1086                          * when _DSD() is involved (in the updated versions of ACPI)
1087                          * the GPIO CS polarity must be defined Active High to avoid
1088                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1089                          * into account.
1090                          */
1091                         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1092                                 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1093                                         if (has_acpi_companion(&spi->dev))
1094                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1095                                                                          !enable);
1096                                         else
1097                                                 /* Polarity handled by GPIO library */
1098                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1099                                                                          activate);
1100
1101                                         if (activate)
1102                                                 spi_delay_exec(&spi->cs_setup, NULL);
1103                                         else
1104                                                 spi_delay_exec(&spi->cs_inactive, NULL);
1105                                 }
1106                         }
1107                 }
1108                 /* Some SPI masters need both GPIO CS & slave_select */
1109                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1110                     spi->controller->set_cs)
1111                         spi->controller->set_cs(spi, !enable);
1112         } else if (spi->controller->set_cs) {
1113                 spi->controller->set_cs(spi, !enable);
1114         }
1115
1116         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1117                 if (activate)
1118                         spi_delay_exec(&spi->cs_setup, NULL);
1119                 else
1120                         spi_delay_exec(&spi->cs_inactive, NULL);
1121         }
1122 }
1123
1124 #ifdef CONFIG_HAS_DMA
1125 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1126                              struct sg_table *sgt, void *buf, size_t len,
1127                              enum dma_data_direction dir, unsigned long attrs)
1128 {
1129         const bool vmalloced_buf = is_vmalloc_addr(buf);
1130         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1131 #ifdef CONFIG_HIGHMEM
1132         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1133                                 (unsigned long)buf < (PKMAP_BASE +
1134                                         (LAST_PKMAP * PAGE_SIZE)));
1135 #else
1136         const bool kmap_buf = false;
1137 #endif
1138         int desc_len;
1139         int sgs;
1140         struct page *vm_page;
1141         struct scatterlist *sg;
1142         void *sg_buf;
1143         size_t min;
1144         int i, ret;
1145
1146         if (vmalloced_buf || kmap_buf) {
1147                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1148                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1149         } else if (virt_addr_valid(buf)) {
1150                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1151                 sgs = DIV_ROUND_UP(len, desc_len);
1152         } else {
1153                 return -EINVAL;
1154         }
1155
1156         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1157         if (ret != 0)
1158                 return ret;
1159
1160         sg = &sgt->sgl[0];
1161         for (i = 0; i < sgs; i++) {
1162
1163                 if (vmalloced_buf || kmap_buf) {
1164                         /*
1165                          * Next scatterlist entry size is the minimum between
1166                          * the desc_len and the remaining buffer length that
1167                          * fits in a page.
1168                          */
1169                         min = min_t(size_t, desc_len,
1170                                     min_t(size_t, len,
1171                                           PAGE_SIZE - offset_in_page(buf)));
1172                         if (vmalloced_buf)
1173                                 vm_page = vmalloc_to_page(buf);
1174                         else
1175                                 vm_page = kmap_to_page(buf);
1176                         if (!vm_page) {
1177                                 sg_free_table(sgt);
1178                                 return -ENOMEM;
1179                         }
1180                         sg_set_page(sg, vm_page,
1181                                     min, offset_in_page(buf));
1182                 } else {
1183                         min = min_t(size_t, len, desc_len);
1184                         sg_buf = buf;
1185                         sg_set_buf(sg, sg_buf, min);
1186                 }
1187
1188                 buf += min;
1189                 len -= min;
1190                 sg = sg_next(sg);
1191         }
1192
1193         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1194         if (ret < 0) {
1195                 sg_free_table(sgt);
1196                 return ret;
1197         }
1198
1199         return 0;
1200 }
1201
1202 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1203                 struct sg_table *sgt, void *buf, size_t len,
1204                 enum dma_data_direction dir)
1205 {
1206         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1207 }
1208
1209 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1210                                 struct device *dev, struct sg_table *sgt,
1211                                 enum dma_data_direction dir,
1212                                 unsigned long attrs)
1213 {
1214         if (sgt->orig_nents) {
1215                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1216                 sg_free_table(sgt);
1217                 sgt->orig_nents = 0;
1218                 sgt->nents = 0;
1219         }
1220 }
1221
1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1223                    struct sg_table *sgt, enum dma_data_direction dir)
1224 {
1225         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1226 }
1227
1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1229 {
1230         struct device *tx_dev, *rx_dev;
1231         struct spi_transfer *xfer;
1232         int ret;
1233
1234         if (!ctlr->can_dma)
1235                 return 0;
1236
1237         if (ctlr->dma_tx)
1238                 tx_dev = ctlr->dma_tx->device->dev;
1239         else if (ctlr->dma_map_dev)
1240                 tx_dev = ctlr->dma_map_dev;
1241         else
1242                 tx_dev = ctlr->dev.parent;
1243
1244         if (ctlr->dma_rx)
1245                 rx_dev = ctlr->dma_rx->device->dev;
1246         else if (ctlr->dma_map_dev)
1247                 rx_dev = ctlr->dma_map_dev;
1248         else
1249                 rx_dev = ctlr->dev.parent;
1250
1251         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1252                 /* The sync is done before each transfer. */
1253                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1254
1255                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1256                         continue;
1257
1258                 if (xfer->tx_buf != NULL) {
1259                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1260                                                 (void *)xfer->tx_buf,
1261                                                 xfer->len, DMA_TO_DEVICE,
1262                                                 attrs);
1263                         if (ret != 0)
1264                                 return ret;
1265                 }
1266
1267                 if (xfer->rx_buf != NULL) {
1268                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1269                                                 xfer->rx_buf, xfer->len,
1270                                                 DMA_FROM_DEVICE, attrs);
1271                         if (ret != 0) {
1272                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1273                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1274                                                 attrs);
1275
1276                                 return ret;
1277                         }
1278                 }
1279         }
1280
1281         ctlr->cur_rx_dma_dev = rx_dev;
1282         ctlr->cur_tx_dma_dev = tx_dev;
1283         ctlr->cur_msg_mapped = true;
1284
1285         return 0;
1286 }
1287
1288 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1289 {
1290         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1291         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1292         struct spi_transfer *xfer;
1293
1294         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1295                 return 0;
1296
1297         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298                 /* The sync has already been done after each transfer. */
1299                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1300
1301                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1302                         continue;
1303
1304                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1305                                     DMA_FROM_DEVICE, attrs);
1306                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1307                                     DMA_TO_DEVICE, attrs);
1308         }
1309
1310         ctlr->cur_msg_mapped = false;
1311
1312         return 0;
1313 }
1314
1315 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1316                                     struct spi_transfer *xfer)
1317 {
1318         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1319         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1320
1321         if (!ctlr->cur_msg_mapped)
1322                 return;
1323
1324         if (xfer->tx_sg.orig_nents)
1325                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1326         if (xfer->rx_sg.orig_nents)
1327                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1328 }
1329
1330 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1331                                  struct spi_transfer *xfer)
1332 {
1333         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1334         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1335
1336         if (!ctlr->cur_msg_mapped)
1337                 return;
1338
1339         if (xfer->rx_sg.orig_nents)
1340                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1341         if (xfer->tx_sg.orig_nents)
1342                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1343 }
1344 #else /* !CONFIG_HAS_DMA */
1345 static inline int __spi_map_msg(struct spi_controller *ctlr,
1346                                 struct spi_message *msg)
1347 {
1348         return 0;
1349 }
1350
1351 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1352                                   struct spi_message *msg)
1353 {
1354         return 0;
1355 }
1356
1357 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1358                                     struct spi_transfer *xfer)
1359 {
1360 }
1361
1362 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1363                                  struct spi_transfer *xfer)
1364 {
1365 }
1366 #endif /* !CONFIG_HAS_DMA */
1367
1368 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1369                                 struct spi_message *msg)
1370 {
1371         struct spi_transfer *xfer;
1372
1373         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1374                 /*
1375                  * Restore the original value of tx_buf or rx_buf if they are
1376                  * NULL.
1377                  */
1378                 if (xfer->tx_buf == ctlr->dummy_tx)
1379                         xfer->tx_buf = NULL;
1380                 if (xfer->rx_buf == ctlr->dummy_rx)
1381                         xfer->rx_buf = NULL;
1382         }
1383
1384         return __spi_unmap_msg(ctlr, msg);
1385 }
1386
1387 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1388 {
1389         struct spi_transfer *xfer;
1390         void *tmp;
1391         unsigned int max_tx, max_rx;
1392
1393         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1394                 && !(msg->spi->mode & SPI_3WIRE)) {
1395                 max_tx = 0;
1396                 max_rx = 0;
1397
1398                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1399                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1400                             !xfer->tx_buf)
1401                                 max_tx = max(xfer->len, max_tx);
1402                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1403                             !xfer->rx_buf)
1404                                 max_rx = max(xfer->len, max_rx);
1405                 }
1406
1407                 if (max_tx) {
1408                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1409                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1410                         if (!tmp)
1411                                 return -ENOMEM;
1412                         ctlr->dummy_tx = tmp;
1413                 }
1414
1415                 if (max_rx) {
1416                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1417                                        GFP_KERNEL | GFP_DMA);
1418                         if (!tmp)
1419                                 return -ENOMEM;
1420                         ctlr->dummy_rx = tmp;
1421                 }
1422
1423                 if (max_tx || max_rx) {
1424                         list_for_each_entry(xfer, &msg->transfers,
1425                                             transfer_list) {
1426                                 if (!xfer->len)
1427                                         continue;
1428                                 if (!xfer->tx_buf)
1429                                         xfer->tx_buf = ctlr->dummy_tx;
1430                                 if (!xfer->rx_buf)
1431                                         xfer->rx_buf = ctlr->dummy_rx;
1432                         }
1433                 }
1434         }
1435
1436         return __spi_map_msg(ctlr, msg);
1437 }
1438
1439 static int spi_transfer_wait(struct spi_controller *ctlr,
1440                              struct spi_message *msg,
1441                              struct spi_transfer *xfer)
1442 {
1443         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1444         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1445         u32 speed_hz = xfer->speed_hz;
1446         unsigned long long ms;
1447
1448         if (spi_controller_is_slave(ctlr)) {
1449                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1450                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1451                         return -EINTR;
1452                 }
1453         } else {
1454                 if (!speed_hz)
1455                         speed_hz = 100000;
1456
1457                 /*
1458                  * For each byte we wait for 8 cycles of the SPI clock.
1459                  * Since speed is defined in Hz and we want milliseconds,
1460                  * use respective multiplier, but before the division,
1461                  * otherwise we may get 0 for short transfers.
1462                  */
1463                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1464                 do_div(ms, speed_hz);
1465
1466                 /*
1467                  * Increase it twice and add 200 ms tolerance, use
1468                  * predefined maximum in case of overflow.
1469                  */
1470                 ms += ms + 200;
1471                 if (ms > UINT_MAX)
1472                         ms = UINT_MAX;
1473
1474                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1475                                                  msecs_to_jiffies(ms));
1476
1477                 if (ms == 0) {
1478                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1479                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1480                         dev_err(&msg->spi->dev,
1481                                 "SPI transfer timed out\n");
1482                         return -ETIMEDOUT;
1483                 }
1484
1485                 if (xfer->error & SPI_TRANS_FAIL_IO)
1486                         return -EIO;
1487         }
1488
1489         return 0;
1490 }
1491
1492 static void _spi_transfer_delay_ns(u32 ns)
1493 {
1494         if (!ns)
1495                 return;
1496         if (ns <= NSEC_PER_USEC) {
1497                 ndelay(ns);
1498         } else {
1499                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1500
1501                 if (us <= 10)
1502                         udelay(us);
1503                 else
1504                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1505         }
1506 }
1507
1508 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1509 {
1510         u32 delay = _delay->value;
1511         u32 unit = _delay->unit;
1512         u32 hz;
1513
1514         if (!delay)
1515                 return 0;
1516
1517         switch (unit) {
1518         case SPI_DELAY_UNIT_USECS:
1519                 delay *= NSEC_PER_USEC;
1520                 break;
1521         case SPI_DELAY_UNIT_NSECS:
1522                 /* Nothing to do here */
1523                 break;
1524         case SPI_DELAY_UNIT_SCK:
1525                 /* Clock cycles need to be obtained from spi_transfer */
1526                 if (!xfer)
1527                         return -EINVAL;
1528                 /*
1529                  * If there is unknown effective speed, approximate it
1530                  * by underestimating with half of the requested Hz.
1531                  */
1532                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1533                 if (!hz)
1534                         return -EINVAL;
1535
1536                 /* Convert delay to nanoseconds */
1537                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1538                 break;
1539         default:
1540                 return -EINVAL;
1541         }
1542
1543         return delay;
1544 }
1545 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1546
1547 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1548 {
1549         int delay;
1550
1551         might_sleep();
1552
1553         if (!_delay)
1554                 return -EINVAL;
1555
1556         delay = spi_delay_to_ns(_delay, xfer);
1557         if (delay < 0)
1558                 return delay;
1559
1560         _spi_transfer_delay_ns(delay);
1561
1562         return 0;
1563 }
1564 EXPORT_SYMBOL_GPL(spi_delay_exec);
1565
1566 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1567                                           struct spi_transfer *xfer)
1568 {
1569         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1570         u32 delay = xfer->cs_change_delay.value;
1571         u32 unit = xfer->cs_change_delay.unit;
1572         int ret;
1573
1574         /* Return early on "fast" mode - for everything but USECS */
1575         if (!delay) {
1576                 if (unit == SPI_DELAY_UNIT_USECS)
1577                         _spi_transfer_delay_ns(default_delay_ns);
1578                 return;
1579         }
1580
1581         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1582         if (ret) {
1583                 dev_err_once(&msg->spi->dev,
1584                              "Use of unsupported delay unit %i, using default of %luus\n",
1585                              unit, default_delay_ns / NSEC_PER_USEC);
1586                 _spi_transfer_delay_ns(default_delay_ns);
1587         }
1588 }
1589
1590 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1591                                                   struct spi_transfer *xfer)
1592 {
1593         _spi_transfer_cs_change_delay(msg, xfer);
1594 }
1595 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1596
1597 /*
1598  * spi_transfer_one_message - Default implementation of transfer_one_message()
1599  *
1600  * This is a standard implementation of transfer_one_message() for
1601  * drivers which implement a transfer_one() operation.  It provides
1602  * standard handling of delays and chip select management.
1603  */
1604 static int spi_transfer_one_message(struct spi_controller *ctlr,
1605                                     struct spi_message *msg)
1606 {
1607         struct spi_transfer *xfer;
1608         bool keep_cs = false;
1609         int ret = 0;
1610         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1611         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1612
1613         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1614         spi_set_cs(msg->spi, !xfer->cs_off, false);
1615
1616         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1617         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1618
1619         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1620                 trace_spi_transfer_start(msg, xfer);
1621
1622                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1623                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1624
1625                 if (!ctlr->ptp_sts_supported) {
1626                         xfer->ptp_sts_word_pre = 0;
1627                         ptp_read_system_prets(xfer->ptp_sts);
1628                 }
1629
1630                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1631                         reinit_completion(&ctlr->xfer_completion);
1632
1633 fallback_pio:
1634                         spi_dma_sync_for_device(ctlr, xfer);
1635                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1636                         if (ret < 0) {
1637                                 spi_dma_sync_for_cpu(ctlr, xfer);
1638
1639                                 if (ctlr->cur_msg_mapped &&
1640                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1641                                         __spi_unmap_msg(ctlr, msg);
1642                                         ctlr->fallback = true;
1643                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1644                                         goto fallback_pio;
1645                                 }
1646
1647                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1648                                                                errors);
1649                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1650                                                                errors);
1651                                 dev_err(&msg->spi->dev,
1652                                         "SPI transfer failed: %d\n", ret);
1653                                 goto out;
1654                         }
1655
1656                         if (ret > 0) {
1657                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1658                                 if (ret < 0)
1659                                         msg->status = ret;
1660                         }
1661
1662                         spi_dma_sync_for_cpu(ctlr, xfer);
1663                 } else {
1664                         if (xfer->len)
1665                                 dev_err(&msg->spi->dev,
1666                                         "Bufferless transfer has length %u\n",
1667                                         xfer->len);
1668                 }
1669
1670                 if (!ctlr->ptp_sts_supported) {
1671                         ptp_read_system_postts(xfer->ptp_sts);
1672                         xfer->ptp_sts_word_post = xfer->len;
1673                 }
1674
1675                 trace_spi_transfer_stop(msg, xfer);
1676
1677                 if (msg->status != -EINPROGRESS)
1678                         goto out;
1679
1680                 spi_transfer_delay_exec(xfer);
1681
1682                 if (xfer->cs_change) {
1683                         if (list_is_last(&xfer->transfer_list,
1684                                          &msg->transfers)) {
1685                                 keep_cs = true;
1686                         } else {
1687                                 if (!xfer->cs_off)
1688                                         spi_set_cs(msg->spi, false, false);
1689                                 _spi_transfer_cs_change_delay(msg, xfer);
1690                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1691                                         spi_set_cs(msg->spi, true, false);
1692                         }
1693                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1694                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1695                         spi_set_cs(msg->spi, xfer->cs_off, false);
1696                 }
1697
1698                 msg->actual_length += xfer->len;
1699         }
1700
1701 out:
1702         if (ret != 0 || !keep_cs)
1703                 spi_set_cs(msg->spi, false, false);
1704
1705         if (msg->status == -EINPROGRESS)
1706                 msg->status = ret;
1707
1708         if (msg->status && ctlr->handle_err)
1709                 ctlr->handle_err(ctlr, msg);
1710
1711         spi_finalize_current_message(ctlr);
1712
1713         return ret;
1714 }
1715
1716 /**
1717  * spi_finalize_current_transfer - report completion of a transfer
1718  * @ctlr: the controller reporting completion
1719  *
1720  * Called by SPI drivers using the core transfer_one_message()
1721  * implementation to notify it that the current interrupt driven
1722  * transfer has finished and the next one may be scheduled.
1723  */
1724 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1725 {
1726         complete(&ctlr->xfer_completion);
1727 }
1728 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1729
1730 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1731 {
1732         if (ctlr->auto_runtime_pm) {
1733                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1734                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1735         }
1736 }
1737
1738 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1739                 struct spi_message *msg, bool was_busy)
1740 {
1741         struct spi_transfer *xfer;
1742         int ret;
1743
1744         if (!was_busy && ctlr->auto_runtime_pm) {
1745                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1746                 if (ret < 0) {
1747                         pm_runtime_put_noidle(ctlr->dev.parent);
1748                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1749                                 ret);
1750
1751                         msg->status = ret;
1752                         spi_finalize_current_message(ctlr);
1753
1754                         return ret;
1755                 }
1756         }
1757
1758         if (!was_busy)
1759                 trace_spi_controller_busy(ctlr);
1760
1761         if (!was_busy && ctlr->prepare_transfer_hardware) {
1762                 ret = ctlr->prepare_transfer_hardware(ctlr);
1763                 if (ret) {
1764                         dev_err(&ctlr->dev,
1765                                 "failed to prepare transfer hardware: %d\n",
1766                                 ret);
1767
1768                         if (ctlr->auto_runtime_pm)
1769                                 pm_runtime_put(ctlr->dev.parent);
1770
1771                         msg->status = ret;
1772                         spi_finalize_current_message(ctlr);
1773
1774                         return ret;
1775                 }
1776         }
1777
1778         trace_spi_message_start(msg);
1779
1780         if (ctlr->prepare_message) {
1781                 ret = ctlr->prepare_message(ctlr, msg);
1782                 if (ret) {
1783                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1784                                 ret);
1785                         msg->status = ret;
1786                         spi_finalize_current_message(ctlr);
1787                         return ret;
1788                 }
1789                 msg->prepared = true;
1790         }
1791
1792         ret = spi_map_msg(ctlr, msg);
1793         if (ret) {
1794                 msg->status = ret;
1795                 spi_finalize_current_message(ctlr);
1796                 return ret;
1797         }
1798
1799         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1800                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1801                         xfer->ptp_sts_word_pre = 0;
1802                         ptp_read_system_prets(xfer->ptp_sts);
1803                 }
1804         }
1805
1806         /*
1807          * Drivers implementation of transfer_one_message() must arrange for
1808          * spi_finalize_current_message() to get called. Most drivers will do
1809          * this in the calling context, but some don't. For those cases, a
1810          * completion is used to guarantee that this function does not return
1811          * until spi_finalize_current_message() is done accessing
1812          * ctlr->cur_msg.
1813          * Use of the following two flags enable to opportunistically skip the
1814          * use of the completion since its use involves expensive spin locks.
1815          * In case of a race with the context that calls
1816          * spi_finalize_current_message() the completion will always be used,
1817          * due to strict ordering of these flags using barriers.
1818          */
1819         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1820         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1821         reinit_completion(&ctlr->cur_msg_completion);
1822         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1823
1824         ret = ctlr->transfer_one_message(ctlr, msg);
1825         if (ret) {
1826                 dev_err(&ctlr->dev,
1827                         "failed to transfer one message from queue\n");
1828                 return ret;
1829         }
1830
1831         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1832         smp_mb(); /* See spi_finalize_current_message()... */
1833         if (READ_ONCE(ctlr->cur_msg_incomplete))
1834                 wait_for_completion(&ctlr->cur_msg_completion);
1835
1836         return 0;
1837 }
1838
1839 /**
1840  * __spi_pump_messages - function which processes SPI message queue
1841  * @ctlr: controller to process queue for
1842  * @in_kthread: true if we are in the context of the message pump thread
1843  *
1844  * This function checks if there is any SPI message in the queue that
1845  * needs processing and if so call out to the driver to initialize hardware
1846  * and transfer each message.
1847  *
1848  * Note that it is called both from the kthread itself and also from
1849  * inside spi_sync(); the queue extraction handling at the top of the
1850  * function should deal with this safely.
1851  */
1852 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1853 {
1854         struct spi_message *msg;
1855         bool was_busy = false;
1856         unsigned long flags;
1857         int ret;
1858
1859         /* Take the I/O mutex */
1860         mutex_lock(&ctlr->io_mutex);
1861
1862         /* Lock queue */
1863         spin_lock_irqsave(&ctlr->queue_lock, flags);
1864
1865         /* Make sure we are not already running a message */
1866         if (ctlr->cur_msg)
1867                 goto out_unlock;
1868
1869         /* Check if the queue is idle */
1870         if (list_empty(&ctlr->queue) || !ctlr->running) {
1871                 if (!ctlr->busy)
1872                         goto out_unlock;
1873
1874                 /* Defer any non-atomic teardown to the thread */
1875                 if (!in_kthread) {
1876                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1877                             !ctlr->unprepare_transfer_hardware) {
1878                                 spi_idle_runtime_pm(ctlr);
1879                                 ctlr->busy = false;
1880                                 ctlr->queue_empty = true;
1881                                 trace_spi_controller_idle(ctlr);
1882                         } else {
1883                                 kthread_queue_work(ctlr->kworker,
1884                                                    &ctlr->pump_messages);
1885                         }
1886                         goto out_unlock;
1887                 }
1888
1889                 ctlr->busy = false;
1890                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1891
1892                 kfree(ctlr->dummy_rx);
1893                 ctlr->dummy_rx = NULL;
1894                 kfree(ctlr->dummy_tx);
1895                 ctlr->dummy_tx = NULL;
1896                 if (ctlr->unprepare_transfer_hardware &&
1897                     ctlr->unprepare_transfer_hardware(ctlr))
1898                         dev_err(&ctlr->dev,
1899                                 "failed to unprepare transfer hardware\n");
1900                 spi_idle_runtime_pm(ctlr);
1901                 trace_spi_controller_idle(ctlr);
1902
1903                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1904                 ctlr->queue_empty = true;
1905                 goto out_unlock;
1906         }
1907
1908         /* Extract head of queue */
1909         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1910         ctlr->cur_msg = msg;
1911
1912         list_del_init(&msg->queue);
1913         if (ctlr->busy)
1914                 was_busy = true;
1915         else
1916                 ctlr->busy = true;
1917         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1918
1919         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1920         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1921
1922         ctlr->cur_msg = NULL;
1923         ctlr->fallback = false;
1924
1925         mutex_unlock(&ctlr->io_mutex);
1926
1927         /* Prod the scheduler in case transfer_one() was busy waiting */
1928         if (!ret)
1929                 cond_resched();
1930         return;
1931
1932 out_unlock:
1933         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1934         mutex_unlock(&ctlr->io_mutex);
1935 }
1936
1937 /**
1938  * spi_pump_messages - kthread work function which processes spi message queue
1939  * @work: pointer to kthread work struct contained in the controller struct
1940  */
1941 static void spi_pump_messages(struct kthread_work *work)
1942 {
1943         struct spi_controller *ctlr =
1944                 container_of(work, struct spi_controller, pump_messages);
1945
1946         __spi_pump_messages(ctlr, true);
1947 }
1948
1949 /**
1950  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1951  * @ctlr: Pointer to the spi_controller structure of the driver
1952  * @xfer: Pointer to the transfer being timestamped
1953  * @progress: How many words (not bytes) have been transferred so far
1954  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1955  *            transfer, for less jitter in time measurement. Only compatible
1956  *            with PIO drivers. If true, must follow up with
1957  *            spi_take_timestamp_post or otherwise system will crash.
1958  *            WARNING: for fully predictable results, the CPU frequency must
1959  *            also be under control (governor).
1960  *
1961  * This is a helper for drivers to collect the beginning of the TX timestamp
1962  * for the requested byte from the SPI transfer. The frequency with which this
1963  * function must be called (once per word, once for the whole transfer, once
1964  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1965  * greater than or equal to the requested byte at the time of the call. The
1966  * timestamp is only taken once, at the first such call. It is assumed that
1967  * the driver advances its @tx buffer pointer monotonically.
1968  */
1969 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1970                             struct spi_transfer *xfer,
1971                             size_t progress, bool irqs_off)
1972 {
1973         if (!xfer->ptp_sts)
1974                 return;
1975
1976         if (xfer->timestamped)
1977                 return;
1978
1979         if (progress > xfer->ptp_sts_word_pre)
1980                 return;
1981
1982         /* Capture the resolution of the timestamp */
1983         xfer->ptp_sts_word_pre = progress;
1984
1985         if (irqs_off) {
1986                 local_irq_save(ctlr->irq_flags);
1987                 preempt_disable();
1988         }
1989
1990         ptp_read_system_prets(xfer->ptp_sts);
1991 }
1992 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1993
1994 /**
1995  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1996  * @ctlr: Pointer to the spi_controller structure of the driver
1997  * @xfer: Pointer to the transfer being timestamped
1998  * @progress: How many words (not bytes) have been transferred so far
1999  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2000  *
2001  * This is a helper for drivers to collect the end of the TX timestamp for
2002  * the requested byte from the SPI transfer. Can be called with an arbitrary
2003  * frequency: only the first call where @tx exceeds or is equal to the
2004  * requested word will be timestamped.
2005  */
2006 void spi_take_timestamp_post(struct spi_controller *ctlr,
2007                              struct spi_transfer *xfer,
2008                              size_t progress, bool irqs_off)
2009 {
2010         if (!xfer->ptp_sts)
2011                 return;
2012
2013         if (xfer->timestamped)
2014                 return;
2015
2016         if (progress < xfer->ptp_sts_word_post)
2017                 return;
2018
2019         ptp_read_system_postts(xfer->ptp_sts);
2020
2021         if (irqs_off) {
2022                 local_irq_restore(ctlr->irq_flags);
2023                 preempt_enable();
2024         }
2025
2026         /* Capture the resolution of the timestamp */
2027         xfer->ptp_sts_word_post = progress;
2028
2029         xfer->timestamped = 1;
2030 }
2031 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2032
2033 /**
2034  * spi_set_thread_rt - set the controller to pump at realtime priority
2035  * @ctlr: controller to boost priority of
2036  *
2037  * This can be called because the controller requested realtime priority
2038  * (by setting the ->rt value before calling spi_register_controller()) or
2039  * because a device on the bus said that its transfers needed realtime
2040  * priority.
2041  *
2042  * NOTE: at the moment if any device on a bus says it needs realtime then
2043  * the thread will be at realtime priority for all transfers on that
2044  * controller.  If this eventually becomes a problem we may see if we can
2045  * find a way to boost the priority only temporarily during relevant
2046  * transfers.
2047  */
2048 static void spi_set_thread_rt(struct spi_controller *ctlr)
2049 {
2050         dev_info(&ctlr->dev,
2051                 "will run message pump with realtime priority\n");
2052         sched_set_fifo(ctlr->kworker->task);
2053 }
2054
2055 static int spi_init_queue(struct spi_controller *ctlr)
2056 {
2057         ctlr->running = false;
2058         ctlr->busy = false;
2059         ctlr->queue_empty = true;
2060
2061         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2062         if (IS_ERR(ctlr->kworker)) {
2063                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2064                 return PTR_ERR(ctlr->kworker);
2065         }
2066
2067         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2068
2069         /*
2070          * Controller config will indicate if this controller should run the
2071          * message pump with high (realtime) priority to reduce the transfer
2072          * latency on the bus by minimising the delay between a transfer
2073          * request and the scheduling of the message pump thread. Without this
2074          * setting the message pump thread will remain at default priority.
2075          */
2076         if (ctlr->rt)
2077                 spi_set_thread_rt(ctlr);
2078
2079         return 0;
2080 }
2081
2082 /**
2083  * spi_get_next_queued_message() - called by driver to check for queued
2084  * messages
2085  * @ctlr: the controller to check for queued messages
2086  *
2087  * If there are more messages in the queue, the next message is returned from
2088  * this call.
2089  *
2090  * Return: the next message in the queue, else NULL if the queue is empty.
2091  */
2092 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2093 {
2094         struct spi_message *next;
2095         unsigned long flags;
2096
2097         /* Get a pointer to the next message, if any */
2098         spin_lock_irqsave(&ctlr->queue_lock, flags);
2099         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2100                                         queue);
2101         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2102
2103         return next;
2104 }
2105 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2106
2107 /*
2108  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2109  *                            and spi_maybe_unoptimize_message()
2110  * @msg: the message to unoptimize
2111  *
2112  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2113  * core should use spi_maybe_unoptimize_message() rather than calling this
2114  * function directly.
2115  *
2116  * It is not valid to call this on a message that is not currently optimized.
2117  */
2118 static void __spi_unoptimize_message(struct spi_message *msg)
2119 {
2120         struct spi_controller *ctlr = msg->spi->controller;
2121
2122         if (ctlr->unoptimize_message)
2123                 ctlr->unoptimize_message(msg);
2124
2125         spi_res_release(ctlr, msg);
2126
2127         msg->optimized = false;
2128         msg->opt_state = NULL;
2129 }
2130
2131 /*
2132  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2133  * @msg: the message to unoptimize
2134  *
2135  * This function is used to unoptimize a message if and only if it was
2136  * optimized by the core (via spi_maybe_optimize_message()).
2137  */
2138 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2139 {
2140         if (!msg->pre_optimized && msg->optimized)
2141                 __spi_unoptimize_message(msg);
2142 }
2143
2144 /**
2145  * spi_finalize_current_message() - the current message is complete
2146  * @ctlr: the controller to return the message to
2147  *
2148  * Called by the driver to notify the core that the message in the front of the
2149  * queue is complete and can be removed from the queue.
2150  */
2151 void spi_finalize_current_message(struct spi_controller *ctlr)
2152 {
2153         struct spi_transfer *xfer;
2154         struct spi_message *mesg;
2155         int ret;
2156
2157         mesg = ctlr->cur_msg;
2158
2159         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2160                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2161                         ptp_read_system_postts(xfer->ptp_sts);
2162                         xfer->ptp_sts_word_post = xfer->len;
2163                 }
2164         }
2165
2166         if (unlikely(ctlr->ptp_sts_supported))
2167                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2168                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2169
2170         spi_unmap_msg(ctlr, mesg);
2171
2172         if (mesg->prepared && ctlr->unprepare_message) {
2173                 ret = ctlr->unprepare_message(ctlr, mesg);
2174                 if (ret) {
2175                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2176                                 ret);
2177                 }
2178         }
2179
2180         mesg->prepared = false;
2181
2182         spi_maybe_unoptimize_message(mesg);
2183
2184         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2185         smp_mb(); /* See __spi_pump_transfer_message()... */
2186         if (READ_ONCE(ctlr->cur_msg_need_completion))
2187                 complete(&ctlr->cur_msg_completion);
2188
2189         trace_spi_message_done(mesg);
2190
2191         mesg->state = NULL;
2192         if (mesg->complete)
2193                 mesg->complete(mesg->context);
2194 }
2195 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2196
2197 static int spi_start_queue(struct spi_controller *ctlr)
2198 {
2199         unsigned long flags;
2200
2201         spin_lock_irqsave(&ctlr->queue_lock, flags);
2202
2203         if (ctlr->running || ctlr->busy) {
2204                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2205                 return -EBUSY;
2206         }
2207
2208         ctlr->running = true;
2209         ctlr->cur_msg = NULL;
2210         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2211
2212         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2213
2214         return 0;
2215 }
2216
2217 static int spi_stop_queue(struct spi_controller *ctlr)
2218 {
2219         unsigned long flags;
2220         unsigned limit = 500;
2221         int ret = 0;
2222
2223         spin_lock_irqsave(&ctlr->queue_lock, flags);
2224
2225         /*
2226          * This is a bit lame, but is optimized for the common execution path.
2227          * A wait_queue on the ctlr->busy could be used, but then the common
2228          * execution path (pump_messages) would be required to call wake_up or
2229          * friends on every SPI message. Do this instead.
2230          */
2231         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2232                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2233                 usleep_range(10000, 11000);
2234                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2235         }
2236
2237         if (!list_empty(&ctlr->queue) || ctlr->busy)
2238                 ret = -EBUSY;
2239         else
2240                 ctlr->running = false;
2241
2242         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2243
2244         return ret;
2245 }
2246
2247 static int spi_destroy_queue(struct spi_controller *ctlr)
2248 {
2249         int ret;
2250
2251         ret = spi_stop_queue(ctlr);
2252
2253         /*
2254          * kthread_flush_worker will block until all work is done.
2255          * If the reason that stop_queue timed out is that the work will never
2256          * finish, then it does no good to call flush/stop thread, so
2257          * return anyway.
2258          */
2259         if (ret) {
2260                 dev_err(&ctlr->dev, "problem destroying queue\n");
2261                 return ret;
2262         }
2263
2264         kthread_destroy_worker(ctlr->kworker);
2265
2266         return 0;
2267 }
2268
2269 static int __spi_queued_transfer(struct spi_device *spi,
2270                                  struct spi_message *msg,
2271                                  bool need_pump)
2272 {
2273         struct spi_controller *ctlr = spi->controller;
2274         unsigned long flags;
2275
2276         spin_lock_irqsave(&ctlr->queue_lock, flags);
2277
2278         if (!ctlr->running) {
2279                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2280                 return -ESHUTDOWN;
2281         }
2282         msg->actual_length = 0;
2283         msg->status = -EINPROGRESS;
2284
2285         list_add_tail(&msg->queue, &ctlr->queue);
2286         ctlr->queue_empty = false;
2287         if (!ctlr->busy && need_pump)
2288                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2289
2290         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2291         return 0;
2292 }
2293
2294 /**
2295  * spi_queued_transfer - transfer function for queued transfers
2296  * @spi: SPI device which is requesting transfer
2297  * @msg: SPI message which is to handled is queued to driver queue
2298  *
2299  * Return: zero on success, else a negative error code.
2300  */
2301 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2302 {
2303         return __spi_queued_transfer(spi, msg, true);
2304 }
2305
2306 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2307 {
2308         int ret;
2309
2310         ctlr->transfer = spi_queued_transfer;
2311         if (!ctlr->transfer_one_message)
2312                 ctlr->transfer_one_message = spi_transfer_one_message;
2313
2314         /* Initialize and start queue */
2315         ret = spi_init_queue(ctlr);
2316         if (ret) {
2317                 dev_err(&ctlr->dev, "problem initializing queue\n");
2318                 goto err_init_queue;
2319         }
2320         ctlr->queued = true;
2321         ret = spi_start_queue(ctlr);
2322         if (ret) {
2323                 dev_err(&ctlr->dev, "problem starting queue\n");
2324                 goto err_start_queue;
2325         }
2326
2327         return 0;
2328
2329 err_start_queue:
2330         spi_destroy_queue(ctlr);
2331 err_init_queue:
2332         return ret;
2333 }
2334
2335 /**
2336  * spi_flush_queue - Send all pending messages in the queue from the callers'
2337  *                   context
2338  * @ctlr: controller to process queue for
2339  *
2340  * This should be used when one wants to ensure all pending messages have been
2341  * sent before doing something. Is used by the spi-mem code to make sure SPI
2342  * memory operations do not preempt regular SPI transfers that have been queued
2343  * before the spi-mem operation.
2344  */
2345 void spi_flush_queue(struct spi_controller *ctlr)
2346 {
2347         if (ctlr->transfer == spi_queued_transfer)
2348                 __spi_pump_messages(ctlr, false);
2349 }
2350
2351 /*-------------------------------------------------------------------------*/
2352
2353 #if defined(CONFIG_OF)
2354 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2355                                      struct spi_delay *delay, const char *prop)
2356 {
2357         u32 value;
2358
2359         if (!of_property_read_u32(nc, prop, &value)) {
2360                 if (value > U16_MAX) {
2361                         delay->value = DIV_ROUND_UP(value, 1000);
2362                         delay->unit = SPI_DELAY_UNIT_USECS;
2363                 } else {
2364                         delay->value = value;
2365                         delay->unit = SPI_DELAY_UNIT_NSECS;
2366                 }
2367         }
2368 }
2369
2370 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2371                            struct device_node *nc)
2372 {
2373         u32 value, cs[SPI_CS_CNT_MAX];
2374         int rc, idx;
2375
2376         /* Mode (clock phase/polarity/etc.) */
2377         if (of_property_read_bool(nc, "spi-cpha"))
2378                 spi->mode |= SPI_CPHA;
2379         if (of_property_read_bool(nc, "spi-cpol"))
2380                 spi->mode |= SPI_CPOL;
2381         if (of_property_read_bool(nc, "spi-3wire"))
2382                 spi->mode |= SPI_3WIRE;
2383         if (of_property_read_bool(nc, "spi-lsb-first"))
2384                 spi->mode |= SPI_LSB_FIRST;
2385         if (of_property_read_bool(nc, "spi-cs-high"))
2386                 spi->mode |= SPI_CS_HIGH;
2387
2388         /* Device DUAL/QUAD mode */
2389         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2390                 switch (value) {
2391                 case 0:
2392                         spi->mode |= SPI_NO_TX;
2393                         break;
2394                 case 1:
2395                         break;
2396                 case 2:
2397                         spi->mode |= SPI_TX_DUAL;
2398                         break;
2399                 case 4:
2400                         spi->mode |= SPI_TX_QUAD;
2401                         break;
2402                 case 8:
2403                         spi->mode |= SPI_TX_OCTAL;
2404                         break;
2405                 default:
2406                         dev_warn(&ctlr->dev,
2407                                 "spi-tx-bus-width %d not supported\n",
2408                                 value);
2409                         break;
2410                 }
2411         }
2412
2413         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2414                 switch (value) {
2415                 case 0:
2416                         spi->mode |= SPI_NO_RX;
2417                         break;
2418                 case 1:
2419                         break;
2420                 case 2:
2421                         spi->mode |= SPI_RX_DUAL;
2422                         break;
2423                 case 4:
2424                         spi->mode |= SPI_RX_QUAD;
2425                         break;
2426                 case 8:
2427                         spi->mode |= SPI_RX_OCTAL;
2428                         break;
2429                 default:
2430                         dev_warn(&ctlr->dev,
2431                                 "spi-rx-bus-width %d not supported\n",
2432                                 value);
2433                         break;
2434                 }
2435         }
2436
2437         if (spi_controller_is_slave(ctlr)) {
2438                 if (!of_node_name_eq(nc, "slave")) {
2439                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2440                                 nc);
2441                         return -EINVAL;
2442                 }
2443                 return 0;
2444         }
2445
2446         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2447                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2448                 return -EINVAL;
2449         }
2450
2451         spi_set_all_cs_unused(spi);
2452
2453         /* Device address */
2454         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2455                                                  SPI_CS_CNT_MAX);
2456         if (rc < 0) {
2457                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2458                         nc, rc);
2459                 return rc;
2460         }
2461         if (rc > ctlr->num_chipselect) {
2462                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2463                         nc, rc);
2464                 return rc;
2465         }
2466         if ((of_property_read_bool(nc, "parallel-memories")) &&
2467             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2468                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2469                 return -EINVAL;
2470         }
2471         for (idx = 0; idx < rc; idx++)
2472                 spi_set_chipselect(spi, idx, cs[idx]);
2473
2474         /*
2475          * By default spi->chip_select[0] will hold the physical CS number,
2476          * so set bit 0 in spi->cs_index_mask.
2477          */
2478         spi->cs_index_mask = BIT(0);
2479
2480         /* Device speed */
2481         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2482                 spi->max_speed_hz = value;
2483
2484         /* Device CS delays */
2485         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2486         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2487         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2488
2489         return 0;
2490 }
2491
2492 static struct spi_device *
2493 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2494 {
2495         struct spi_device *spi;
2496         int rc;
2497
2498         /* Alloc an spi_device */
2499         spi = spi_alloc_device(ctlr);
2500         if (!spi) {
2501                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2502                 rc = -ENOMEM;
2503                 goto err_out;
2504         }
2505
2506         /* Select device driver */
2507         rc = of_alias_from_compatible(nc, spi->modalias,
2508                                       sizeof(spi->modalias));
2509         if (rc < 0) {
2510                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2511                 goto err_out;
2512         }
2513
2514         rc = of_spi_parse_dt(ctlr, spi, nc);
2515         if (rc)
2516                 goto err_out;
2517
2518         /* Store a pointer to the node in the device structure */
2519         of_node_get(nc);
2520
2521         device_set_node(&spi->dev, of_fwnode_handle(nc));
2522
2523         /* Register the new device */
2524         rc = spi_add_device(spi);
2525         if (rc) {
2526                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2527                 goto err_of_node_put;
2528         }
2529
2530         return spi;
2531
2532 err_of_node_put:
2533         of_node_put(nc);
2534 err_out:
2535         spi_dev_put(spi);
2536         return ERR_PTR(rc);
2537 }
2538
2539 /**
2540  * of_register_spi_devices() - Register child devices onto the SPI bus
2541  * @ctlr:       Pointer to spi_controller device
2542  *
2543  * Registers an spi_device for each child node of controller node which
2544  * represents a valid SPI slave.
2545  */
2546 static void of_register_spi_devices(struct spi_controller *ctlr)
2547 {
2548         struct spi_device *spi;
2549         struct device_node *nc;
2550
2551         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2552                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2553                         continue;
2554                 spi = of_register_spi_device(ctlr, nc);
2555                 if (IS_ERR(spi)) {
2556                         dev_warn(&ctlr->dev,
2557                                  "Failed to create SPI device for %pOF\n", nc);
2558                         of_node_clear_flag(nc, OF_POPULATED);
2559                 }
2560         }
2561 }
2562 #else
2563 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2564 #endif
2565
2566 /**
2567  * spi_new_ancillary_device() - Register ancillary SPI device
2568  * @spi:         Pointer to the main SPI device registering the ancillary device
2569  * @chip_select: Chip Select of the ancillary device
2570  *
2571  * Register an ancillary SPI device; for example some chips have a chip-select
2572  * for normal device usage and another one for setup/firmware upload.
2573  *
2574  * This may only be called from main SPI device's probe routine.
2575  *
2576  * Return: 0 on success; negative errno on failure
2577  */
2578 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2579                                              u8 chip_select)
2580 {
2581         struct spi_controller *ctlr = spi->controller;
2582         struct spi_device *ancillary;
2583         int rc = 0;
2584
2585         /* Alloc an spi_device */
2586         ancillary = spi_alloc_device(ctlr);
2587         if (!ancillary) {
2588                 rc = -ENOMEM;
2589                 goto err_out;
2590         }
2591
2592         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2593
2594         /* Use provided chip-select for ancillary device */
2595         spi_set_all_cs_unused(ancillary);
2596         spi_set_chipselect(ancillary, 0, chip_select);
2597
2598         /* Take over SPI mode/speed from SPI main device */
2599         ancillary->max_speed_hz = spi->max_speed_hz;
2600         ancillary->mode = spi->mode;
2601         /*
2602          * By default spi->chip_select[0] will hold the physical CS number,
2603          * so set bit 0 in spi->cs_index_mask.
2604          */
2605         ancillary->cs_index_mask = BIT(0);
2606
2607         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2608
2609         /* Register the new device */
2610         rc = __spi_add_device(ancillary);
2611         if (rc) {
2612                 dev_err(&spi->dev, "failed to register ancillary device\n");
2613                 goto err_out;
2614         }
2615
2616         return ancillary;
2617
2618 err_out:
2619         spi_dev_put(ancillary);
2620         return ERR_PTR(rc);
2621 }
2622 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2623
2624 #ifdef CONFIG_ACPI
2625 struct acpi_spi_lookup {
2626         struct spi_controller   *ctlr;
2627         u32                     max_speed_hz;
2628         u32                     mode;
2629         int                     irq;
2630         u8                      bits_per_word;
2631         u8                      chip_select;
2632         int                     n;
2633         int                     index;
2634 };
2635
2636 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2637 {
2638         struct acpi_resource_spi_serialbus *sb;
2639         int *count = data;
2640
2641         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2642                 return 1;
2643
2644         sb = &ares->data.spi_serial_bus;
2645         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2646                 return 1;
2647
2648         *count = *count + 1;
2649
2650         return 1;
2651 }
2652
2653 /**
2654  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2655  * @adev:       ACPI device
2656  *
2657  * Return: the number of SpiSerialBus resources in the ACPI-device's
2658  * resource-list; or a negative error code.
2659  */
2660 int acpi_spi_count_resources(struct acpi_device *adev)
2661 {
2662         LIST_HEAD(r);
2663         int count = 0;
2664         int ret;
2665
2666         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2667         if (ret < 0)
2668                 return ret;
2669
2670         acpi_dev_free_resource_list(&r);
2671
2672         return count;
2673 }
2674 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2675
2676 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2677                                             struct acpi_spi_lookup *lookup)
2678 {
2679         const union acpi_object *obj;
2680
2681         if (!x86_apple_machine)
2682                 return;
2683
2684         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2685             && obj->buffer.length >= 4)
2686                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2687
2688         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2689             && obj->buffer.length == 8)
2690                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2691
2692         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2693             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2694                 lookup->mode |= SPI_LSB_FIRST;
2695
2696         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2697             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2698                 lookup->mode |= SPI_CPOL;
2699
2700         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2701             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2702                 lookup->mode |= SPI_CPHA;
2703 }
2704
2705 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2706 {
2707         struct acpi_spi_lookup *lookup = data;
2708         struct spi_controller *ctlr = lookup->ctlr;
2709
2710         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2711                 struct acpi_resource_spi_serialbus *sb;
2712                 acpi_handle parent_handle;
2713                 acpi_status status;
2714
2715                 sb = &ares->data.spi_serial_bus;
2716                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2717
2718                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2719                                 return 1;
2720
2721                         status = acpi_get_handle(NULL,
2722                                                  sb->resource_source.string_ptr,
2723                                                  &parent_handle);
2724
2725                         if (ACPI_FAILURE(status))
2726                                 return -ENODEV;
2727
2728                         if (ctlr) {
2729                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2730                                         return -ENODEV;
2731                         } else {
2732                                 struct acpi_device *adev;
2733
2734                                 adev = acpi_fetch_acpi_dev(parent_handle);
2735                                 if (!adev)
2736                                         return -ENODEV;
2737
2738                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2739                                 if (!ctlr)
2740                                         return -EPROBE_DEFER;
2741
2742                                 lookup->ctlr = ctlr;
2743                         }
2744
2745                         /*
2746                          * ACPI DeviceSelection numbering is handled by the
2747                          * host controller driver in Windows and can vary
2748                          * from driver to driver. In Linux we always expect
2749                          * 0 .. max - 1 so we need to ask the driver to
2750                          * translate between the two schemes.
2751                          */
2752                         if (ctlr->fw_translate_cs) {
2753                                 int cs = ctlr->fw_translate_cs(ctlr,
2754                                                 sb->device_selection);
2755                                 if (cs < 0)
2756                                         return cs;
2757                                 lookup->chip_select = cs;
2758                         } else {
2759                                 lookup->chip_select = sb->device_selection;
2760                         }
2761
2762                         lookup->max_speed_hz = sb->connection_speed;
2763                         lookup->bits_per_word = sb->data_bit_length;
2764
2765                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2766                                 lookup->mode |= SPI_CPHA;
2767                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2768                                 lookup->mode |= SPI_CPOL;
2769                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2770                                 lookup->mode |= SPI_CS_HIGH;
2771                 }
2772         } else if (lookup->irq < 0) {
2773                 struct resource r;
2774
2775                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2776                         lookup->irq = r.start;
2777         }
2778
2779         /* Always tell the ACPI core to skip this resource */
2780         return 1;
2781 }
2782
2783 /**
2784  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2785  * @ctlr: controller to which the spi device belongs
2786  * @adev: ACPI Device for the spi device
2787  * @index: Index of the spi resource inside the ACPI Node
2788  *
2789  * This should be used to allocate a new SPI device from and ACPI Device node.
2790  * The caller is responsible for calling spi_add_device to register the SPI device.
2791  *
2792  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2793  * using the resource.
2794  * If index is set to -1, index is not used.
2795  * Note: If index is -1, ctlr must be set.
2796  *
2797  * Return: a pointer to the new device, or ERR_PTR on error.
2798  */
2799 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2800                                          struct acpi_device *adev,
2801                                          int index)
2802 {
2803         acpi_handle parent_handle = NULL;
2804         struct list_head resource_list;
2805         struct acpi_spi_lookup lookup = {};
2806         struct spi_device *spi;
2807         int ret;
2808
2809         if (!ctlr && index == -1)
2810                 return ERR_PTR(-EINVAL);
2811
2812         lookup.ctlr             = ctlr;
2813         lookup.irq              = -1;
2814         lookup.index            = index;
2815         lookup.n                = 0;
2816
2817         INIT_LIST_HEAD(&resource_list);
2818         ret = acpi_dev_get_resources(adev, &resource_list,
2819                                      acpi_spi_add_resource, &lookup);
2820         acpi_dev_free_resource_list(&resource_list);
2821
2822         if (ret < 0)
2823                 /* Found SPI in _CRS but it points to another controller */
2824                 return ERR_PTR(ret);
2825
2826         if (!lookup.max_speed_hz &&
2827             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2828             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2829                 /* Apple does not use _CRS but nested devices for SPI slaves */
2830                 acpi_spi_parse_apple_properties(adev, &lookup);
2831         }
2832
2833         if (!lookup.max_speed_hz)
2834                 return ERR_PTR(-ENODEV);
2835
2836         spi = spi_alloc_device(lookup.ctlr);
2837         if (!spi) {
2838                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2839                         dev_name(&adev->dev));
2840                 return ERR_PTR(-ENOMEM);
2841         }
2842
2843         spi_set_all_cs_unused(spi);
2844         spi_set_chipselect(spi, 0, lookup.chip_select);
2845
2846         ACPI_COMPANION_SET(&spi->dev, adev);
2847         spi->max_speed_hz       = lookup.max_speed_hz;
2848         spi->mode               |= lookup.mode;
2849         spi->irq                = lookup.irq;
2850         spi->bits_per_word      = lookup.bits_per_word;
2851         /*
2852          * By default spi->chip_select[0] will hold the physical CS number,
2853          * so set bit 0 in spi->cs_index_mask.
2854          */
2855         spi->cs_index_mask      = BIT(0);
2856
2857         return spi;
2858 }
2859 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2860
2861 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2862                                             struct acpi_device *adev)
2863 {
2864         struct spi_device *spi;
2865
2866         if (acpi_bus_get_status(adev) || !adev->status.present ||
2867             acpi_device_enumerated(adev))
2868                 return AE_OK;
2869
2870         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2871         if (IS_ERR(spi)) {
2872                 if (PTR_ERR(spi) == -ENOMEM)
2873                         return AE_NO_MEMORY;
2874                 else
2875                         return AE_OK;
2876         }
2877
2878         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2879                           sizeof(spi->modalias));
2880
2881         if (spi->irq < 0)
2882                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2883
2884         acpi_device_set_enumerated(adev);
2885
2886         adev->power.flags.ignore_parent = true;
2887         if (spi_add_device(spi)) {
2888                 adev->power.flags.ignore_parent = false;
2889                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2890                         dev_name(&adev->dev));
2891                 spi_dev_put(spi);
2892         }
2893
2894         return AE_OK;
2895 }
2896
2897 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2898                                        void *data, void **return_value)
2899 {
2900         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2901         struct spi_controller *ctlr = data;
2902
2903         if (!adev)
2904                 return AE_OK;
2905
2906         return acpi_register_spi_device(ctlr, adev);
2907 }
2908
2909 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2910
2911 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2912 {
2913         acpi_status status;
2914         acpi_handle handle;
2915
2916         handle = ACPI_HANDLE(ctlr->dev.parent);
2917         if (!handle)
2918                 return;
2919
2920         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2921                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2922                                      acpi_spi_add_device, NULL, ctlr, NULL);
2923         if (ACPI_FAILURE(status))
2924                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2925 }
2926 #else
2927 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2928 #endif /* CONFIG_ACPI */
2929
2930 static void spi_controller_release(struct device *dev)
2931 {
2932         struct spi_controller *ctlr;
2933
2934         ctlr = container_of(dev, struct spi_controller, dev);
2935         kfree(ctlr);
2936 }
2937
2938 static struct class spi_master_class = {
2939         .name           = "spi_master",
2940         .dev_release    = spi_controller_release,
2941         .dev_groups     = spi_master_groups,
2942 };
2943
2944 #ifdef CONFIG_SPI_SLAVE
2945 /**
2946  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2947  *                   controller
2948  * @spi: device used for the current transfer
2949  */
2950 int spi_slave_abort(struct spi_device *spi)
2951 {
2952         struct spi_controller *ctlr = spi->controller;
2953
2954         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2955                 return ctlr->slave_abort(ctlr);
2956
2957         return -ENOTSUPP;
2958 }
2959 EXPORT_SYMBOL_GPL(spi_slave_abort);
2960
2961 int spi_target_abort(struct spi_device *spi)
2962 {
2963         struct spi_controller *ctlr = spi->controller;
2964
2965         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2966                 return ctlr->target_abort(ctlr);
2967
2968         return -ENOTSUPP;
2969 }
2970 EXPORT_SYMBOL_GPL(spi_target_abort);
2971
2972 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2973                           char *buf)
2974 {
2975         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2976                                                    dev);
2977         struct device *child;
2978
2979         child = device_find_any_child(&ctlr->dev);
2980         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2981 }
2982
2983 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2984                            const char *buf, size_t count)
2985 {
2986         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2987                                                    dev);
2988         struct spi_device *spi;
2989         struct device *child;
2990         char name[32];
2991         int rc;
2992
2993         rc = sscanf(buf, "%31s", name);
2994         if (rc != 1 || !name[0])
2995                 return -EINVAL;
2996
2997         child = device_find_any_child(&ctlr->dev);
2998         if (child) {
2999                 /* Remove registered slave */
3000                 device_unregister(child);
3001                 put_device(child);
3002         }
3003
3004         if (strcmp(name, "(null)")) {
3005                 /* Register new slave */
3006                 spi = spi_alloc_device(ctlr);
3007                 if (!spi)
3008                         return -ENOMEM;
3009
3010                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3011
3012                 rc = spi_add_device(spi);
3013                 if (rc) {
3014                         spi_dev_put(spi);
3015                         return rc;
3016                 }
3017         }
3018
3019         return count;
3020 }
3021
3022 static DEVICE_ATTR_RW(slave);
3023
3024 static struct attribute *spi_slave_attrs[] = {
3025         &dev_attr_slave.attr,
3026         NULL,
3027 };
3028
3029 static const struct attribute_group spi_slave_group = {
3030         .attrs = spi_slave_attrs,
3031 };
3032
3033 static const struct attribute_group *spi_slave_groups[] = {
3034         &spi_controller_statistics_group,
3035         &spi_slave_group,
3036         NULL,
3037 };
3038
3039 static struct class spi_slave_class = {
3040         .name           = "spi_slave",
3041         .dev_release    = spi_controller_release,
3042         .dev_groups     = spi_slave_groups,
3043 };
3044 #else
3045 extern struct class spi_slave_class;    /* dummy */
3046 #endif
3047
3048 /**
3049  * __spi_alloc_controller - allocate an SPI master or slave controller
3050  * @dev: the controller, possibly using the platform_bus
3051  * @size: how much zeroed driver-private data to allocate; the pointer to this
3052  *      memory is in the driver_data field of the returned device, accessible
3053  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3054  *      drivers granting DMA access to portions of their private data need to
3055  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3056  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3057  *      slave (true) controller
3058  * Context: can sleep
3059  *
3060  * This call is used only by SPI controller drivers, which are the
3061  * only ones directly touching chip registers.  It's how they allocate
3062  * an spi_controller structure, prior to calling spi_register_controller().
3063  *
3064  * This must be called from context that can sleep.
3065  *
3066  * The caller is responsible for assigning the bus number and initializing the
3067  * controller's methods before calling spi_register_controller(); and (after
3068  * errors adding the device) calling spi_controller_put() to prevent a memory
3069  * leak.
3070  *
3071  * Return: the SPI controller structure on success, else NULL.
3072  */
3073 struct spi_controller *__spi_alloc_controller(struct device *dev,
3074                                               unsigned int size, bool slave)
3075 {
3076         struct spi_controller   *ctlr;
3077         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3078
3079         if (!dev)
3080                 return NULL;
3081
3082         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3083         if (!ctlr)
3084                 return NULL;
3085
3086         device_initialize(&ctlr->dev);
3087         INIT_LIST_HEAD(&ctlr->queue);
3088         spin_lock_init(&ctlr->queue_lock);
3089         spin_lock_init(&ctlr->bus_lock_spinlock);
3090         mutex_init(&ctlr->bus_lock_mutex);
3091         mutex_init(&ctlr->io_mutex);
3092         mutex_init(&ctlr->add_lock);
3093         ctlr->bus_num = -1;
3094         ctlr->num_chipselect = 1;
3095         ctlr->slave = slave;
3096         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3097                 ctlr->dev.class = &spi_slave_class;
3098         else
3099                 ctlr->dev.class = &spi_master_class;
3100         ctlr->dev.parent = dev;
3101         pm_suspend_ignore_children(&ctlr->dev, true);
3102         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3103
3104         return ctlr;
3105 }
3106 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3107
3108 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3109 {
3110         spi_controller_put(*(struct spi_controller **)ctlr);
3111 }
3112
3113 /**
3114  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3115  * @dev: physical device of SPI controller
3116  * @size: how much zeroed driver-private data to allocate
3117  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3118  * Context: can sleep
3119  *
3120  * Allocate an SPI controller and automatically release a reference on it
3121  * when @dev is unbound from its driver.  Drivers are thus relieved from
3122  * having to call spi_controller_put().
3123  *
3124  * The arguments to this function are identical to __spi_alloc_controller().
3125  *
3126  * Return: the SPI controller structure on success, else NULL.
3127  */
3128 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3129                                                    unsigned int size,
3130                                                    bool slave)
3131 {
3132         struct spi_controller **ptr, *ctlr;
3133
3134         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3135                            GFP_KERNEL);
3136         if (!ptr)
3137                 return NULL;
3138
3139         ctlr = __spi_alloc_controller(dev, size, slave);
3140         if (ctlr) {
3141                 ctlr->devm_allocated = true;
3142                 *ptr = ctlr;
3143                 devres_add(dev, ptr);
3144         } else {
3145                 devres_free(ptr);
3146         }
3147
3148         return ctlr;
3149 }
3150 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3151
3152 /**
3153  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3154  * @ctlr: The SPI master to grab GPIO descriptors for
3155  */
3156 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3157 {
3158         int nb, i;
3159         struct gpio_desc **cs;
3160         struct device *dev = &ctlr->dev;
3161         unsigned long native_cs_mask = 0;
3162         unsigned int num_cs_gpios = 0;
3163
3164         nb = gpiod_count(dev, "cs");
3165         if (nb < 0) {
3166                 /* No GPIOs at all is fine, else return the error */
3167                 if (nb == -ENOENT)
3168                         return 0;
3169                 return nb;
3170         }
3171
3172         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3173
3174         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3175                           GFP_KERNEL);
3176         if (!cs)
3177                 return -ENOMEM;
3178         ctlr->cs_gpiods = cs;
3179
3180         for (i = 0; i < nb; i++) {
3181                 /*
3182                  * Most chipselects are active low, the inverted
3183                  * semantics are handled by special quirks in gpiolib,
3184                  * so initializing them GPIOD_OUT_LOW here means
3185                  * "unasserted", in most cases this will drive the physical
3186                  * line high.
3187                  */
3188                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3189                                                       GPIOD_OUT_LOW);
3190                 if (IS_ERR(cs[i]))
3191                         return PTR_ERR(cs[i]);
3192
3193                 if (cs[i]) {
3194                         /*
3195                          * If we find a CS GPIO, name it after the device and
3196                          * chip select line.
3197                          */
3198                         char *gpioname;
3199
3200                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3201                                                   dev_name(dev), i);
3202                         if (!gpioname)
3203                                 return -ENOMEM;
3204                         gpiod_set_consumer_name(cs[i], gpioname);
3205                         num_cs_gpios++;
3206                         continue;
3207                 }
3208
3209                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3210                         dev_err(dev, "Invalid native chip select %d\n", i);
3211                         return -EINVAL;
3212                 }
3213                 native_cs_mask |= BIT(i);
3214         }
3215
3216         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3217
3218         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3219             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3220                 dev_err(dev, "No unused native chip select available\n");
3221                 return -EINVAL;
3222         }
3223
3224         return 0;
3225 }
3226
3227 static int spi_controller_check_ops(struct spi_controller *ctlr)
3228 {
3229         /*
3230          * The controller may implement only the high-level SPI-memory like
3231          * operations if it does not support regular SPI transfers, and this is
3232          * valid use case.
3233          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3234          * one of the ->transfer_xxx() method be implemented.
3235          */
3236         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3237                 if (!ctlr->transfer && !ctlr->transfer_one &&
3238                    !ctlr->transfer_one_message) {
3239                         return -EINVAL;
3240                 }
3241         }
3242
3243         return 0;
3244 }
3245
3246 /* Allocate dynamic bus number using Linux idr */
3247 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3248 {
3249         int id;
3250
3251         mutex_lock(&board_lock);
3252         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3253         mutex_unlock(&board_lock);
3254         if (WARN(id < 0, "couldn't get idr"))
3255                 return id == -ENOSPC ? -EBUSY : id;
3256         ctlr->bus_num = id;
3257         return 0;
3258 }
3259
3260 /**
3261  * spi_register_controller - register SPI master or slave controller
3262  * @ctlr: initialized master, originally from spi_alloc_master() or
3263  *      spi_alloc_slave()
3264  * Context: can sleep
3265  *
3266  * SPI controllers connect to their drivers using some non-SPI bus,
3267  * such as the platform bus.  The final stage of probe() in that code
3268  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3269  *
3270  * SPI controllers use board specific (often SOC specific) bus numbers,
3271  * and board-specific addressing for SPI devices combines those numbers
3272  * with chip select numbers.  Since SPI does not directly support dynamic
3273  * device identification, boards need configuration tables telling which
3274  * chip is at which address.
3275  *
3276  * This must be called from context that can sleep.  It returns zero on
3277  * success, else a negative error code (dropping the controller's refcount).
3278  * After a successful return, the caller is responsible for calling
3279  * spi_unregister_controller().
3280  *
3281  * Return: zero on success, else a negative error code.
3282  */
3283 int spi_register_controller(struct spi_controller *ctlr)
3284 {
3285         struct device           *dev = ctlr->dev.parent;
3286         struct boardinfo        *bi;
3287         int                     first_dynamic;
3288         int                     status;
3289         int                     idx;
3290
3291         if (!dev)
3292                 return -ENODEV;
3293
3294         /*
3295          * Make sure all necessary hooks are implemented before registering
3296          * the SPI controller.
3297          */
3298         status = spi_controller_check_ops(ctlr);
3299         if (status)
3300                 return status;
3301
3302         if (ctlr->bus_num < 0)
3303                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3304         if (ctlr->bus_num >= 0) {
3305                 /* Devices with a fixed bus num must check-in with the num */
3306                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3307                 if (status)
3308                         return status;
3309         }
3310         if (ctlr->bus_num < 0) {
3311                 first_dynamic = of_alias_get_highest_id("spi");
3312                 if (first_dynamic < 0)
3313                         first_dynamic = 0;
3314                 else
3315                         first_dynamic++;
3316
3317                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3318                 if (status)
3319                         return status;
3320         }
3321         ctlr->bus_lock_flag = 0;
3322         init_completion(&ctlr->xfer_completion);
3323         init_completion(&ctlr->cur_msg_completion);
3324         if (!ctlr->max_dma_len)
3325                 ctlr->max_dma_len = INT_MAX;
3326
3327         /*
3328          * Register the device, then userspace will see it.
3329          * Registration fails if the bus ID is in use.
3330          */
3331         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3332
3333         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3334                 status = spi_get_gpio_descs(ctlr);
3335                 if (status)
3336                         goto free_bus_id;
3337                 /*
3338                  * A controller using GPIO descriptors always
3339                  * supports SPI_CS_HIGH if need be.
3340                  */
3341                 ctlr->mode_bits |= SPI_CS_HIGH;
3342         }
3343
3344         /*
3345          * Even if it's just one always-selected device, there must
3346          * be at least one chipselect.
3347          */
3348         if (!ctlr->num_chipselect) {
3349                 status = -EINVAL;
3350                 goto free_bus_id;
3351         }
3352
3353         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3354         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3355                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3356
3357         status = device_add(&ctlr->dev);
3358         if (status < 0)
3359                 goto free_bus_id;
3360         dev_dbg(dev, "registered %s %s\n",
3361                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3362                         dev_name(&ctlr->dev));
3363
3364         /*
3365          * If we're using a queued driver, start the queue. Note that we don't
3366          * need the queueing logic if the driver is only supporting high-level
3367          * memory operations.
3368          */
3369         if (ctlr->transfer) {
3370                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3371         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3372                 status = spi_controller_initialize_queue(ctlr);
3373                 if (status) {
3374                         device_del(&ctlr->dev);
3375                         goto free_bus_id;
3376                 }
3377         }
3378         /* Add statistics */
3379         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3380         if (!ctlr->pcpu_statistics) {
3381                 dev_err(dev, "Error allocating per-cpu statistics\n");
3382                 status = -ENOMEM;
3383                 goto destroy_queue;
3384         }
3385
3386         mutex_lock(&board_lock);
3387         list_add_tail(&ctlr->list, &spi_controller_list);
3388         list_for_each_entry(bi, &board_list, list)
3389                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3390         mutex_unlock(&board_lock);
3391
3392         /* Register devices from the device tree and ACPI */
3393         of_register_spi_devices(ctlr);
3394         acpi_register_spi_devices(ctlr);
3395         return status;
3396
3397 destroy_queue:
3398         spi_destroy_queue(ctlr);
3399 free_bus_id:
3400         mutex_lock(&board_lock);
3401         idr_remove(&spi_master_idr, ctlr->bus_num);
3402         mutex_unlock(&board_lock);
3403         return status;
3404 }
3405 EXPORT_SYMBOL_GPL(spi_register_controller);
3406
3407 static void devm_spi_unregister(struct device *dev, void *res)
3408 {
3409         spi_unregister_controller(*(struct spi_controller **)res);
3410 }
3411
3412 /**
3413  * devm_spi_register_controller - register managed SPI master or slave
3414  *      controller
3415  * @dev:    device managing SPI controller
3416  * @ctlr: initialized controller, originally from spi_alloc_master() or
3417  *      spi_alloc_slave()
3418  * Context: can sleep
3419  *
3420  * Register a SPI device as with spi_register_controller() which will
3421  * automatically be unregistered and freed.
3422  *
3423  * Return: zero on success, else a negative error code.
3424  */
3425 int devm_spi_register_controller(struct device *dev,
3426                                  struct spi_controller *ctlr)
3427 {
3428         struct spi_controller **ptr;
3429         int ret;
3430
3431         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3432         if (!ptr)
3433                 return -ENOMEM;
3434
3435         ret = spi_register_controller(ctlr);
3436         if (!ret) {
3437                 *ptr = ctlr;
3438                 devres_add(dev, ptr);
3439         } else {
3440                 devres_free(ptr);
3441         }
3442
3443         return ret;
3444 }
3445 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3446
3447 static int __unregister(struct device *dev, void *null)
3448 {
3449         spi_unregister_device(to_spi_device(dev));
3450         return 0;
3451 }
3452
3453 /**
3454  * spi_unregister_controller - unregister SPI master or slave controller
3455  * @ctlr: the controller being unregistered
3456  * Context: can sleep
3457  *
3458  * This call is used only by SPI controller drivers, which are the
3459  * only ones directly touching chip registers.
3460  *
3461  * This must be called from context that can sleep.
3462  *
3463  * Note that this function also drops a reference to the controller.
3464  */
3465 void spi_unregister_controller(struct spi_controller *ctlr)
3466 {
3467         struct spi_controller *found;
3468         int id = ctlr->bus_num;
3469
3470         /* Prevent addition of new devices, unregister existing ones */
3471         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3472                 mutex_lock(&ctlr->add_lock);
3473
3474         device_for_each_child(&ctlr->dev, NULL, __unregister);
3475
3476         /* First make sure that this controller was ever added */
3477         mutex_lock(&board_lock);
3478         found = idr_find(&spi_master_idr, id);
3479         mutex_unlock(&board_lock);
3480         if (ctlr->queued) {
3481                 if (spi_destroy_queue(ctlr))
3482                         dev_err(&ctlr->dev, "queue remove failed\n");
3483         }
3484         mutex_lock(&board_lock);
3485         list_del(&ctlr->list);
3486         mutex_unlock(&board_lock);
3487
3488         device_del(&ctlr->dev);
3489
3490         /* Free bus id */
3491         mutex_lock(&board_lock);
3492         if (found == ctlr)
3493                 idr_remove(&spi_master_idr, id);
3494         mutex_unlock(&board_lock);
3495
3496         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3497                 mutex_unlock(&ctlr->add_lock);
3498
3499         /*
3500          * Release the last reference on the controller if its driver
3501          * has not yet been converted to devm_spi_alloc_master/slave().
3502          */
3503         if (!ctlr->devm_allocated)
3504                 put_device(&ctlr->dev);
3505 }
3506 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3507
3508 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3509 {
3510         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3511 }
3512
3513 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3514 {
3515         mutex_lock(&ctlr->bus_lock_mutex);
3516         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3517         mutex_unlock(&ctlr->bus_lock_mutex);
3518 }
3519
3520 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3521 {
3522         mutex_lock(&ctlr->bus_lock_mutex);
3523         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3524         mutex_unlock(&ctlr->bus_lock_mutex);
3525 }
3526
3527 int spi_controller_suspend(struct spi_controller *ctlr)
3528 {
3529         int ret = 0;
3530
3531         /* Basically no-ops for non-queued controllers */
3532         if (ctlr->queued) {
3533                 ret = spi_stop_queue(ctlr);
3534                 if (ret)
3535                         dev_err(&ctlr->dev, "queue stop failed\n");
3536         }
3537
3538         __spi_mark_suspended(ctlr);
3539         return ret;
3540 }
3541 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3542
3543 int spi_controller_resume(struct spi_controller *ctlr)
3544 {
3545         int ret = 0;
3546
3547         __spi_mark_resumed(ctlr);
3548
3549         if (ctlr->queued) {
3550                 ret = spi_start_queue(ctlr);
3551                 if (ret)
3552                         dev_err(&ctlr->dev, "queue restart failed\n");
3553         }
3554         return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(spi_controller_resume);
3557
3558 /*-------------------------------------------------------------------------*/
3559
3560 /* Core methods for spi_message alterations */
3561
3562 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3563                                             struct spi_message *msg,
3564                                             void *res)
3565 {
3566         struct spi_replaced_transfers *rxfer = res;
3567         size_t i;
3568
3569         /* Call extra callback if requested */
3570         if (rxfer->release)
3571                 rxfer->release(ctlr, msg, res);
3572
3573         /* Insert replaced transfers back into the message */
3574         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3575
3576         /* Remove the formerly inserted entries */
3577         for (i = 0; i < rxfer->inserted; i++)
3578                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3579 }
3580
3581 /**
3582  * spi_replace_transfers - replace transfers with several transfers
3583  *                         and register change with spi_message.resources
3584  * @msg:           the spi_message we work upon
3585  * @xfer_first:    the first spi_transfer we want to replace
3586  * @remove:        number of transfers to remove
3587  * @insert:        the number of transfers we want to insert instead
3588  * @release:       extra release code necessary in some circumstances
3589  * @extradatasize: extra data to allocate (with alignment guarantees
3590  *                 of struct @spi_transfer)
3591  * @gfp:           gfp flags
3592  *
3593  * Returns: pointer to @spi_replaced_transfers,
3594  *          PTR_ERR(...) in case of errors.
3595  */
3596 static struct spi_replaced_transfers *spi_replace_transfers(
3597         struct spi_message *msg,
3598         struct spi_transfer *xfer_first,
3599         size_t remove,
3600         size_t insert,
3601         spi_replaced_release_t release,
3602         size_t extradatasize,
3603         gfp_t gfp)
3604 {
3605         struct spi_replaced_transfers *rxfer;
3606         struct spi_transfer *xfer;
3607         size_t i;
3608
3609         /* Allocate the structure using spi_res */
3610         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3611                               struct_size(rxfer, inserted_transfers, insert)
3612                               + extradatasize,
3613                               gfp);
3614         if (!rxfer)
3615                 return ERR_PTR(-ENOMEM);
3616
3617         /* The release code to invoke before running the generic release */
3618         rxfer->release = release;
3619
3620         /* Assign extradata */
3621         if (extradatasize)
3622                 rxfer->extradata =
3623                         &rxfer->inserted_transfers[insert];
3624
3625         /* Init the replaced_transfers list */
3626         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3627
3628         /*
3629          * Assign the list_entry after which we should reinsert
3630          * the @replaced_transfers - it may be spi_message.messages!
3631          */
3632         rxfer->replaced_after = xfer_first->transfer_list.prev;
3633
3634         /* Remove the requested number of transfers */
3635         for (i = 0; i < remove; i++) {
3636                 /*
3637                  * If the entry after replaced_after it is msg->transfers
3638                  * then we have been requested to remove more transfers
3639                  * than are in the list.
3640                  */
3641                 if (rxfer->replaced_after->next == &msg->transfers) {
3642                         dev_err(&msg->spi->dev,
3643                                 "requested to remove more spi_transfers than are available\n");
3644                         /* Insert replaced transfers back into the message */
3645                         list_splice(&rxfer->replaced_transfers,
3646                                     rxfer->replaced_after);
3647
3648                         /* Free the spi_replace_transfer structure... */
3649                         spi_res_free(rxfer);
3650
3651                         /* ...and return with an error */
3652                         return ERR_PTR(-EINVAL);
3653                 }
3654
3655                 /*
3656                  * Remove the entry after replaced_after from list of
3657                  * transfers and add it to list of replaced_transfers.
3658                  */
3659                 list_move_tail(rxfer->replaced_after->next,
3660                                &rxfer->replaced_transfers);
3661         }
3662
3663         /*
3664          * Create copy of the given xfer with identical settings
3665          * based on the first transfer to get removed.
3666          */
3667         for (i = 0; i < insert; i++) {
3668                 /* We need to run in reverse order */
3669                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3670
3671                 /* Copy all spi_transfer data */
3672                 memcpy(xfer, xfer_first, sizeof(*xfer));
3673
3674                 /* Add to list */
3675                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3676
3677                 /* Clear cs_change and delay for all but the last */
3678                 if (i) {
3679                         xfer->cs_change = false;
3680                         xfer->delay.value = 0;
3681                 }
3682         }
3683
3684         /* Set up inserted... */
3685         rxfer->inserted = insert;
3686
3687         /* ...and register it with spi_res/spi_message */
3688         spi_res_add(msg, rxfer);
3689
3690         return rxfer;
3691 }
3692
3693 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3694                                         struct spi_message *msg,
3695                                         struct spi_transfer **xferp,
3696                                         size_t maxsize)
3697 {
3698         struct spi_transfer *xfer = *xferp, *xfers;
3699         struct spi_replaced_transfers *srt;
3700         size_t offset;
3701         size_t count, i;
3702
3703         /* Calculate how many we have to replace */
3704         count = DIV_ROUND_UP(xfer->len, maxsize);
3705
3706         /* Create replacement */
3707         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3708         if (IS_ERR(srt))
3709                 return PTR_ERR(srt);
3710         xfers = srt->inserted_transfers;
3711
3712         /*
3713          * Now handle each of those newly inserted spi_transfers.
3714          * Note that the replacements spi_transfers all are preset
3715          * to the same values as *xferp, so tx_buf, rx_buf and len
3716          * are all identical (as well as most others)
3717          * so we just have to fix up len and the pointers.
3718          *
3719          * This also includes support for the depreciated
3720          * spi_message.is_dma_mapped interface.
3721          */
3722
3723         /*
3724          * The first transfer just needs the length modified, so we
3725          * run it outside the loop.
3726          */
3727         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3728
3729         /* All the others need rx_buf/tx_buf also set */
3730         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3731                 /* Update rx_buf, tx_buf and DMA */
3732                 if (xfers[i].rx_buf)
3733                         xfers[i].rx_buf += offset;
3734                 if (xfers[i].rx_dma)
3735                         xfers[i].rx_dma += offset;
3736                 if (xfers[i].tx_buf)
3737                         xfers[i].tx_buf += offset;
3738                 if (xfers[i].tx_dma)
3739                         xfers[i].tx_dma += offset;
3740
3741                 /* Update length */
3742                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3743         }
3744
3745         /*
3746          * We set up xferp to the last entry we have inserted,
3747          * so that we skip those already split transfers.
3748          */
3749         *xferp = &xfers[count - 1];
3750
3751         /* Increment statistics counters */
3752         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3753                                        transfers_split_maxsize);
3754         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3755                                        transfers_split_maxsize);
3756
3757         return 0;
3758 }
3759
3760 /**
3761  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3762  *                               when an individual transfer exceeds a
3763  *                               certain size
3764  * @ctlr:    the @spi_controller for this transfer
3765  * @msg:   the @spi_message to transform
3766  * @maxsize:  the maximum when to apply this
3767  *
3768  * This function allocates resources that are automatically freed during the
3769  * spi message unoptimize phase so this function should only be called from
3770  * optimize_message callbacks.
3771  *
3772  * Return: status of transformation
3773  */
3774 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3775                                 struct spi_message *msg,
3776                                 size_t maxsize)
3777 {
3778         struct spi_transfer *xfer;
3779         int ret;
3780
3781         /*
3782          * Iterate over the transfer_list,
3783          * but note that xfer is advanced to the last transfer inserted
3784          * to avoid checking sizes again unnecessarily (also xfer does
3785          * potentially belong to a different list by the time the
3786          * replacement has happened).
3787          */
3788         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3789                 if (xfer->len > maxsize) {
3790                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3791                                                            maxsize);
3792                         if (ret)
3793                                 return ret;
3794                 }
3795         }
3796
3797         return 0;
3798 }
3799 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3800
3801
3802 /**
3803  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3804  *                                when an individual transfer exceeds a
3805  *                                certain number of SPI words
3806  * @ctlr:     the @spi_controller for this transfer
3807  * @msg:      the @spi_message to transform
3808  * @maxwords: the number of words to limit each transfer to
3809  *
3810  * This function allocates resources that are automatically freed during the
3811  * spi message unoptimize phase so this function should only be called from
3812  * optimize_message callbacks.
3813  *
3814  * Return: status of transformation
3815  */
3816 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3817                                  struct spi_message *msg,
3818                                  size_t maxwords)
3819 {
3820         struct spi_transfer *xfer;
3821
3822         /*
3823          * Iterate over the transfer_list,
3824          * but note that xfer is advanced to the last transfer inserted
3825          * to avoid checking sizes again unnecessarily (also xfer does
3826          * potentially belong to a different list by the time the
3827          * replacement has happened).
3828          */
3829         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3830                 size_t maxsize;
3831                 int ret;
3832
3833                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3834                 if (xfer->len > maxsize) {
3835                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3836                                                            maxsize);
3837                         if (ret)
3838                                 return ret;
3839                 }
3840         }
3841
3842         return 0;
3843 }
3844 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3845
3846 /*-------------------------------------------------------------------------*/
3847
3848 /*
3849  * Core methods for SPI controller protocol drivers. Some of the
3850  * other core methods are currently defined as inline functions.
3851  */
3852
3853 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3854                                         u8 bits_per_word)
3855 {
3856         if (ctlr->bits_per_word_mask) {
3857                 /* Only 32 bits fit in the mask */
3858                 if (bits_per_word > 32)
3859                         return -EINVAL;
3860                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3861                         return -EINVAL;
3862         }
3863
3864         return 0;
3865 }
3866
3867 /**
3868  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3869  * @spi: the device that requires specific CS timing configuration
3870  *
3871  * Return: zero on success, else a negative error code.
3872  */
3873 static int spi_set_cs_timing(struct spi_device *spi)
3874 {
3875         struct device *parent = spi->controller->dev.parent;
3876         int status = 0;
3877
3878         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3879                 if (spi->controller->auto_runtime_pm) {
3880                         status = pm_runtime_get_sync(parent);
3881                         if (status < 0) {
3882                                 pm_runtime_put_noidle(parent);
3883                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3884                                         status);
3885                                 return status;
3886                         }
3887
3888                         status = spi->controller->set_cs_timing(spi);
3889                         pm_runtime_mark_last_busy(parent);
3890                         pm_runtime_put_autosuspend(parent);
3891                 } else {
3892                         status = spi->controller->set_cs_timing(spi);
3893                 }
3894         }
3895         return status;
3896 }
3897
3898 /**
3899  * spi_setup - setup SPI mode and clock rate
3900  * @spi: the device whose settings are being modified
3901  * Context: can sleep, and no requests are queued to the device
3902  *
3903  * SPI protocol drivers may need to update the transfer mode if the
3904  * device doesn't work with its default.  They may likewise need
3905  * to update clock rates or word sizes from initial values.  This function
3906  * changes those settings, and must be called from a context that can sleep.
3907  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3908  * effect the next time the device is selected and data is transferred to
3909  * or from it.  When this function returns, the SPI device is deselected.
3910  *
3911  * Note that this call will fail if the protocol driver specifies an option
3912  * that the underlying controller or its driver does not support.  For
3913  * example, not all hardware supports wire transfers using nine bit words,
3914  * LSB-first wire encoding, or active-high chipselects.
3915  *
3916  * Return: zero on success, else a negative error code.
3917  */
3918 int spi_setup(struct spi_device *spi)
3919 {
3920         unsigned        bad_bits, ugly_bits;
3921         int             status = 0;
3922
3923         /*
3924          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3925          * are set at the same time.
3926          */
3927         if ((hweight_long(spi->mode &
3928                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3929             (hweight_long(spi->mode &
3930                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3931                 dev_err(&spi->dev,
3932                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3933                 return -EINVAL;
3934         }
3935         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3936         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3937                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3938                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3939                 return -EINVAL;
3940         /*
3941          * Help drivers fail *cleanly* when they need options
3942          * that aren't supported with their current controller.
3943          * SPI_CS_WORD has a fallback software implementation,
3944          * so it is ignored here.
3945          */
3946         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3947                                  SPI_NO_TX | SPI_NO_RX);
3948         ugly_bits = bad_bits &
3949                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3950                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3951         if (ugly_bits) {
3952                 dev_warn(&spi->dev,
3953                          "setup: ignoring unsupported mode bits %x\n",
3954                          ugly_bits);
3955                 spi->mode &= ~ugly_bits;
3956                 bad_bits &= ~ugly_bits;
3957         }
3958         if (bad_bits) {
3959                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3960                         bad_bits);
3961                 return -EINVAL;
3962         }
3963
3964         if (!spi->bits_per_word) {
3965                 spi->bits_per_word = 8;
3966         } else {
3967                 /*
3968                  * Some controllers may not support the default 8 bits-per-word
3969                  * so only perform the check when this is explicitly provided.
3970                  */
3971                 status = __spi_validate_bits_per_word(spi->controller,
3972                                                       spi->bits_per_word);
3973                 if (status)
3974                         return status;
3975         }
3976
3977         if (spi->controller->max_speed_hz &&
3978             (!spi->max_speed_hz ||
3979              spi->max_speed_hz > spi->controller->max_speed_hz))
3980                 spi->max_speed_hz = spi->controller->max_speed_hz;
3981
3982         mutex_lock(&spi->controller->io_mutex);
3983
3984         if (spi->controller->setup) {
3985                 status = spi->controller->setup(spi);
3986                 if (status) {
3987                         mutex_unlock(&spi->controller->io_mutex);
3988                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3989                                 status);
3990                         return status;
3991                 }
3992         }
3993
3994         status = spi_set_cs_timing(spi);
3995         if (status) {
3996                 mutex_unlock(&spi->controller->io_mutex);
3997                 return status;
3998         }
3999
4000         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
4001                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4002                 if (status < 0) {
4003                         mutex_unlock(&spi->controller->io_mutex);
4004                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4005                                 status);
4006                         return status;
4007                 }
4008
4009                 /*
4010                  * We do not want to return positive value from pm_runtime_get,
4011                  * there are many instances of devices calling spi_setup() and
4012                  * checking for a non-zero return value instead of a negative
4013                  * return value.
4014                  */
4015                 status = 0;
4016
4017                 spi_set_cs(spi, false, true);
4018                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4019                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4020         } else {
4021                 spi_set_cs(spi, false, true);
4022         }
4023
4024         mutex_unlock(&spi->controller->io_mutex);
4025
4026         if (spi->rt && !spi->controller->rt) {
4027                 spi->controller->rt = true;
4028                 spi_set_thread_rt(spi->controller);
4029         }
4030
4031         trace_spi_setup(spi, status);
4032
4033         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4034                         spi->mode & SPI_MODE_X_MASK,
4035                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4036                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4037                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4038                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4039                         spi->bits_per_word, spi->max_speed_hz,
4040                         status);
4041
4042         return status;
4043 }
4044 EXPORT_SYMBOL_GPL(spi_setup);
4045
4046 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4047                                        struct spi_device *spi)
4048 {
4049         int delay1, delay2;
4050
4051         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4052         if (delay1 < 0)
4053                 return delay1;
4054
4055         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4056         if (delay2 < 0)
4057                 return delay2;
4058
4059         if (delay1 < delay2)
4060                 memcpy(&xfer->word_delay, &spi->word_delay,
4061                        sizeof(xfer->word_delay));
4062
4063         return 0;
4064 }
4065
4066 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4067 {
4068         struct spi_controller *ctlr = spi->controller;
4069         struct spi_transfer *xfer;
4070         int w_size;
4071
4072         if (list_empty(&message->transfers))
4073                 return -EINVAL;
4074
4075         message->spi = spi;
4076
4077         /*
4078          * Half-duplex links include original MicroWire, and ones with
4079          * only one data pin like SPI_3WIRE (switches direction) or where
4080          * either MOSI or MISO is missing.  They can also be caused by
4081          * software limitations.
4082          */
4083         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4084             (spi->mode & SPI_3WIRE)) {
4085                 unsigned flags = ctlr->flags;
4086
4087                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4088                         if (xfer->rx_buf && xfer->tx_buf)
4089                                 return -EINVAL;
4090                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4091                                 return -EINVAL;
4092                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4093                                 return -EINVAL;
4094                 }
4095         }
4096
4097         /*
4098          * Set transfer bits_per_word and max speed as spi device default if
4099          * it is not set for this transfer.
4100          * Set transfer tx_nbits and rx_nbits as single transfer default
4101          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4102          * Ensure transfer word_delay is at least as long as that required by
4103          * device itself.
4104          */
4105         message->frame_length = 0;
4106         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4107                 xfer->effective_speed_hz = 0;
4108                 message->frame_length += xfer->len;
4109                 if (!xfer->bits_per_word)
4110                         xfer->bits_per_word = spi->bits_per_word;
4111
4112                 if (!xfer->speed_hz)
4113                         xfer->speed_hz = spi->max_speed_hz;
4114
4115                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4116                         xfer->speed_hz = ctlr->max_speed_hz;
4117
4118                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4119                         return -EINVAL;
4120
4121                 /*
4122                  * SPI transfer length should be multiple of SPI word size
4123                  * where SPI word size should be power-of-two multiple.
4124                  */
4125                 if (xfer->bits_per_word <= 8)
4126                         w_size = 1;
4127                 else if (xfer->bits_per_word <= 16)
4128                         w_size = 2;
4129                 else
4130                         w_size = 4;
4131
4132                 /* No partial transfers accepted */
4133                 if (xfer->len % w_size)
4134                         return -EINVAL;
4135
4136                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4137                     xfer->speed_hz < ctlr->min_speed_hz)
4138                         return -EINVAL;
4139
4140                 if (xfer->tx_buf && !xfer->tx_nbits)
4141                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4142                 if (xfer->rx_buf && !xfer->rx_nbits)
4143                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4144                 /*
4145                  * Check transfer tx/rx_nbits:
4146                  * 1. check the value matches one of single, dual and quad
4147                  * 2. check tx/rx_nbits match the mode in spi_device
4148                  */
4149                 if (xfer->tx_buf) {
4150                         if (spi->mode & SPI_NO_TX)
4151                                 return -EINVAL;
4152                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4153                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4154                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4155                                 return -EINVAL;
4156                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4157                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4158                                 return -EINVAL;
4159                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4160                                 !(spi->mode & SPI_TX_QUAD))
4161                                 return -EINVAL;
4162                 }
4163                 /* Check transfer rx_nbits */
4164                 if (xfer->rx_buf) {
4165                         if (spi->mode & SPI_NO_RX)
4166                                 return -EINVAL;
4167                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4168                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4169                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4170                                 return -EINVAL;
4171                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4172                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4173                                 return -EINVAL;
4174                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4175                                 !(spi->mode & SPI_RX_QUAD))
4176                                 return -EINVAL;
4177                 }
4178
4179                 if (_spi_xfer_word_delay_update(xfer, spi))
4180                         return -EINVAL;
4181         }
4182
4183         message->status = -EINPROGRESS;
4184
4185         return 0;
4186 }
4187
4188 /*
4189  * spi_split_transfers - generic handling of transfer splitting
4190  * @msg: the message to split
4191  *
4192  * Under certain conditions, a SPI controller may not support arbitrary
4193  * transfer sizes or other features required by a peripheral. This function
4194  * will split the transfers in the message into smaller transfers that are
4195  * supported by the controller.
4196  *
4197  * Controllers with special requirements not covered here can also split
4198  * transfers in the optimize_message() callback.
4199  *
4200  * Context: can sleep
4201  * Return: zero on success, else a negative error code
4202  */
4203 static int spi_split_transfers(struct spi_message *msg)
4204 {
4205         struct spi_controller *ctlr = msg->spi->controller;
4206         struct spi_transfer *xfer;
4207         int ret;
4208
4209         /*
4210          * If an SPI controller does not support toggling the CS line on each
4211          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4212          * for the CS line, we can emulate the CS-per-word hardware function by
4213          * splitting transfers into one-word transfers and ensuring that
4214          * cs_change is set for each transfer.
4215          */
4216         if ((msg->spi->mode & SPI_CS_WORD) &&
4217             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4218                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4219                 if (ret)
4220                         return ret;
4221
4222                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4223                         /* Don't change cs_change on the last entry in the list */
4224                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4225                                 break;
4226
4227                         xfer->cs_change = 1;
4228                 }
4229         } else {
4230                 ret = spi_split_transfers_maxsize(ctlr, msg,
4231                                                   spi_max_transfer_size(msg->spi));
4232                 if (ret)
4233                         return ret;
4234         }
4235
4236         return 0;
4237 }
4238
4239 /*
4240  * __spi_optimize_message - shared implementation for spi_optimize_message()
4241  *                          and spi_maybe_optimize_message()
4242  * @spi: the device that will be used for the message
4243  * @msg: the message to optimize
4244  *
4245  * Peripheral drivers will call spi_optimize_message() and the spi core will
4246  * call spi_maybe_optimize_message() instead of calling this directly.
4247  *
4248  * It is not valid to call this on a message that has already been optimized.
4249  *
4250  * Return: zero on success, else a negative error code
4251  */
4252 static int __spi_optimize_message(struct spi_device *spi,
4253                                   struct spi_message *msg)
4254 {
4255         struct spi_controller *ctlr = spi->controller;
4256         int ret;
4257
4258         ret = __spi_validate(spi, msg);
4259         if (ret)
4260                 return ret;
4261
4262         ret = spi_split_transfers(msg);
4263         if (ret)
4264                 return ret;
4265
4266         if (ctlr->optimize_message) {
4267                 ret = ctlr->optimize_message(msg);
4268                 if (ret) {
4269                         spi_res_release(ctlr, msg);
4270                         return ret;
4271                 }
4272         }
4273
4274         msg->optimized = true;
4275
4276         return 0;
4277 }
4278
4279 /*
4280  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4281  * @spi: the device that will be used for the message
4282  * @msg: the message to optimize
4283  * Return: zero on success, else a negative error code
4284  */
4285 static int spi_maybe_optimize_message(struct spi_device *spi,
4286                                       struct spi_message *msg)
4287 {
4288         if (msg->pre_optimized)
4289                 return 0;
4290
4291         return __spi_optimize_message(spi, msg);
4292 }
4293
4294 /**
4295  * spi_optimize_message - do any one-time validation and setup for a SPI message
4296  * @spi: the device that will be used for the message
4297  * @msg: the message to optimize
4298  *
4299  * Peripheral drivers that reuse the same message repeatedly may call this to
4300  * perform as much message prep as possible once, rather than repeating it each
4301  * time a message transfer is performed to improve throughput and reduce CPU
4302  * usage.
4303  *
4304  * Once a message has been optimized, it cannot be modified with the exception
4305  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4306  * only the data in the memory it points to).
4307  *
4308  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4309  * to avoid leaking resources.
4310  *
4311  * Context: can sleep
4312  * Return: zero on success, else a negative error code
4313  */
4314 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4315 {
4316         int ret;
4317
4318         ret = __spi_optimize_message(spi, msg);
4319         if (ret)
4320                 return ret;
4321
4322         /*
4323          * This flag indicates that the peripheral driver called spi_optimize_message()
4324          * and therefore we shouldn't unoptimize message automatically when finalizing
4325          * the message but rather wait until spi_unoptimize_message() is called
4326          * by the peripheral driver.
4327          */
4328         msg->pre_optimized = true;
4329
4330         return 0;
4331 }
4332 EXPORT_SYMBOL_GPL(spi_optimize_message);
4333
4334 /**
4335  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4336  * @msg: the message to unoptimize
4337  *
4338  * Calls to this function must be balanced with calls to spi_optimize_message().
4339  *
4340  * Context: can sleep
4341  */
4342 void spi_unoptimize_message(struct spi_message *msg)
4343 {
4344         __spi_unoptimize_message(msg);
4345         msg->pre_optimized = false;
4346 }
4347 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350 {
4351         struct spi_controller *ctlr = spi->controller;
4352         struct spi_transfer *xfer;
4353
4354         /*
4355          * Some controllers do not support doing regular SPI transfers. Return
4356          * ENOTSUPP when this is the case.
4357          */
4358         if (!ctlr->transfer)
4359                 return -ENOTSUPP;
4360
4361         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363
4364         trace_spi_message_submit(message);
4365
4366         if (!ctlr->ptp_sts_supported) {
4367                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368                         xfer->ptp_sts_word_pre = 0;
4369                         ptp_read_system_prets(xfer->ptp_sts);
4370                 }
4371         }
4372
4373         return ctlr->transfer(spi, message);
4374 }
4375
4376 /**
4377  * spi_async - asynchronous SPI transfer
4378  * @spi: device with which data will be exchanged
4379  * @message: describes the data transfers, including completion callback
4380  * Context: any (IRQs may be blocked, etc)
4381  *
4382  * This call may be used in_irq and other contexts which can't sleep,
4383  * as well as from task contexts which can sleep.
4384  *
4385  * The completion callback is invoked in a context which can't sleep.
4386  * Before that invocation, the value of message->status is undefined.
4387  * When the callback is issued, message->status holds either zero (to
4388  * indicate complete success) or a negative error code.  After that
4389  * callback returns, the driver which issued the transfer request may
4390  * deallocate the associated memory; it's no longer in use by any SPI
4391  * core or controller driver code.
4392  *
4393  * Note that although all messages to a spi_device are handled in
4394  * FIFO order, messages may go to different devices in other orders.
4395  * Some device might be higher priority, or have various "hard" access
4396  * time requirements, for example.
4397  *
4398  * On detection of any fault during the transfer, processing of
4399  * the entire message is aborted, and the device is deselected.
4400  * Until returning from the associated message completion callback,
4401  * no other spi_message queued to that device will be processed.
4402  * (This rule applies equally to all the synchronous transfer calls,
4403  * which are wrappers around this core asynchronous primitive.)
4404  *
4405  * Return: zero on success, else a negative error code.
4406  */
4407 int spi_async(struct spi_device *spi, struct spi_message *message)
4408 {
4409         struct spi_controller *ctlr = spi->controller;
4410         int ret;
4411         unsigned long flags;
4412
4413         ret = spi_maybe_optimize_message(spi, message);
4414         if (ret)
4415                 return ret;
4416
4417         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4418
4419         if (ctlr->bus_lock_flag)
4420                 ret = -EBUSY;
4421         else
4422                 ret = __spi_async(spi, message);
4423
4424         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4425
4426         spi_maybe_unoptimize_message(message);
4427
4428         return ret;
4429 }
4430 EXPORT_SYMBOL_GPL(spi_async);
4431
4432 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4433 {
4434         bool was_busy;
4435         int ret;
4436
4437         mutex_lock(&ctlr->io_mutex);
4438
4439         was_busy = ctlr->busy;
4440
4441         ctlr->cur_msg = msg;
4442         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4443         if (ret)
4444                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4445         ctlr->cur_msg = NULL;
4446         ctlr->fallback = false;
4447
4448         if (!was_busy) {
4449                 kfree(ctlr->dummy_rx);
4450                 ctlr->dummy_rx = NULL;
4451                 kfree(ctlr->dummy_tx);
4452                 ctlr->dummy_tx = NULL;
4453                 if (ctlr->unprepare_transfer_hardware &&
4454                     ctlr->unprepare_transfer_hardware(ctlr))
4455                         dev_err(&ctlr->dev,
4456                                 "failed to unprepare transfer hardware\n");
4457                 spi_idle_runtime_pm(ctlr);
4458         }
4459
4460         mutex_unlock(&ctlr->io_mutex);
4461 }
4462
4463 /*-------------------------------------------------------------------------*/
4464
4465 /*
4466  * Utility methods for SPI protocol drivers, layered on
4467  * top of the core.  Some other utility methods are defined as
4468  * inline functions.
4469  */
4470
4471 static void spi_complete(void *arg)
4472 {
4473         complete(arg);
4474 }
4475
4476 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4477 {
4478         DECLARE_COMPLETION_ONSTACK(done);
4479         unsigned long flags;
4480         int status;
4481         struct spi_controller *ctlr = spi->controller;
4482
4483         if (__spi_check_suspended(ctlr)) {
4484                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4485                 return -ESHUTDOWN;
4486         }
4487
4488         status = spi_maybe_optimize_message(spi, message);
4489         if (status)
4490                 return status;
4491
4492         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4493         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4494
4495         /*
4496          * Checking queue_empty here only guarantees async/sync message
4497          * ordering when coming from the same context. It does not need to
4498          * guard against reentrancy from a different context. The io_mutex
4499          * will catch those cases.
4500          */
4501         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4502                 message->actual_length = 0;
4503                 message->status = -EINPROGRESS;
4504
4505                 trace_spi_message_submit(message);
4506
4507                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4508                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4509
4510                 __spi_transfer_message_noqueue(ctlr, message);
4511
4512                 return message->status;
4513         }
4514
4515         /*
4516          * There are messages in the async queue that could have originated
4517          * from the same context, so we need to preserve ordering.
4518          * Therefor we send the message to the async queue and wait until they
4519          * are completed.
4520          */
4521         message->complete = spi_complete;
4522         message->context = &done;
4523
4524         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4525         status = __spi_async(spi, message);
4526         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4527
4528         if (status == 0) {
4529                 wait_for_completion(&done);
4530                 status = message->status;
4531         }
4532         message->context = NULL;
4533
4534         return status;
4535 }
4536
4537 /**
4538  * spi_sync - blocking/synchronous SPI data transfers
4539  * @spi: device with which data will be exchanged
4540  * @message: describes the data transfers
4541  * Context: can sleep
4542  *
4543  * This call may only be used from a context that may sleep.  The sleep
4544  * is non-interruptible, and has no timeout.  Low-overhead controller
4545  * drivers may DMA directly into and out of the message buffers.
4546  *
4547  * Note that the SPI device's chip select is active during the message,
4548  * and then is normally disabled between messages.  Drivers for some
4549  * frequently-used devices may want to minimize costs of selecting a chip,
4550  * by leaving it selected in anticipation that the next message will go
4551  * to the same chip.  (That may increase power usage.)
4552  *
4553  * Also, the caller is guaranteeing that the memory associated with the
4554  * message will not be freed before this call returns.
4555  *
4556  * Return: zero on success, else a negative error code.
4557  */
4558 int spi_sync(struct spi_device *spi, struct spi_message *message)
4559 {
4560         int ret;
4561
4562         mutex_lock(&spi->controller->bus_lock_mutex);
4563         ret = __spi_sync(spi, message);
4564         mutex_unlock(&spi->controller->bus_lock_mutex);
4565
4566         return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(spi_sync);
4569
4570 /**
4571  * spi_sync_locked - version of spi_sync with exclusive bus usage
4572  * @spi: device with which data will be exchanged
4573  * @message: describes the data transfers
4574  * Context: can sleep
4575  *
4576  * This call may only be used from a context that may sleep.  The sleep
4577  * is non-interruptible, and has no timeout.  Low-overhead controller
4578  * drivers may DMA directly into and out of the message buffers.
4579  *
4580  * This call should be used by drivers that require exclusive access to the
4581  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4582  * be released by a spi_bus_unlock call when the exclusive access is over.
4583  *
4584  * Return: zero on success, else a negative error code.
4585  */
4586 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4587 {
4588         return __spi_sync(spi, message);
4589 }
4590 EXPORT_SYMBOL_GPL(spi_sync_locked);
4591
4592 /**
4593  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4594  * @ctlr: SPI bus master that should be locked for exclusive bus access
4595  * Context: can sleep
4596  *
4597  * This call may only be used from a context that may sleep.  The sleep
4598  * is non-interruptible, and has no timeout.
4599  *
4600  * This call should be used by drivers that require exclusive access to the
4601  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4602  * exclusive access is over. Data transfer must be done by spi_sync_locked
4603  * and spi_async_locked calls when the SPI bus lock is held.
4604  *
4605  * Return: always zero.
4606  */
4607 int spi_bus_lock(struct spi_controller *ctlr)
4608 {
4609         unsigned long flags;
4610
4611         mutex_lock(&ctlr->bus_lock_mutex);
4612
4613         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4614         ctlr->bus_lock_flag = 1;
4615         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4616
4617         /* Mutex remains locked until spi_bus_unlock() is called */
4618
4619         return 0;
4620 }
4621 EXPORT_SYMBOL_GPL(spi_bus_lock);
4622
4623 /**
4624  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4625  * @ctlr: SPI bus master that was locked for exclusive bus access
4626  * Context: can sleep
4627  *
4628  * This call may only be used from a context that may sleep.  The sleep
4629  * is non-interruptible, and has no timeout.
4630  *
4631  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4632  * call.
4633  *
4634  * Return: always zero.
4635  */
4636 int spi_bus_unlock(struct spi_controller *ctlr)
4637 {
4638         ctlr->bus_lock_flag = 0;
4639
4640         mutex_unlock(&ctlr->bus_lock_mutex);
4641
4642         return 0;
4643 }
4644 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4645
4646 /* Portable code must never pass more than 32 bytes */
4647 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4648
4649 static u8       *buf;
4650
4651 /**
4652  * spi_write_then_read - SPI synchronous write followed by read
4653  * @spi: device with which data will be exchanged
4654  * @txbuf: data to be written (need not be DMA-safe)
4655  * @n_tx: size of txbuf, in bytes
4656  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4657  * @n_rx: size of rxbuf, in bytes
4658  * Context: can sleep
4659  *
4660  * This performs a half duplex MicroWire style transaction with the
4661  * device, sending txbuf and then reading rxbuf.  The return value
4662  * is zero for success, else a negative errno status code.
4663  * This call may only be used from a context that may sleep.
4664  *
4665  * Parameters to this routine are always copied using a small buffer.
4666  * Performance-sensitive or bulk transfer code should instead use
4667  * spi_{async,sync}() calls with DMA-safe buffers.
4668  *
4669  * Return: zero on success, else a negative error code.
4670  */
4671 int spi_write_then_read(struct spi_device *spi,
4672                 const void *txbuf, unsigned n_tx,
4673                 void *rxbuf, unsigned n_rx)
4674 {
4675         static DEFINE_MUTEX(lock);
4676
4677         int                     status;
4678         struct spi_message      message;
4679         struct spi_transfer     x[2];
4680         u8                      *local_buf;
4681
4682         /*
4683          * Use preallocated DMA-safe buffer if we can. We can't avoid
4684          * copying here, (as a pure convenience thing), but we can
4685          * keep heap costs out of the hot path unless someone else is
4686          * using the pre-allocated buffer or the transfer is too large.
4687          */
4688         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4689                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4690                                     GFP_KERNEL | GFP_DMA);
4691                 if (!local_buf)
4692                         return -ENOMEM;
4693         } else {
4694                 local_buf = buf;
4695         }
4696
4697         spi_message_init(&message);
4698         memset(x, 0, sizeof(x));
4699         if (n_tx) {
4700                 x[0].len = n_tx;
4701                 spi_message_add_tail(&x[0], &message);
4702         }
4703         if (n_rx) {
4704                 x[1].len = n_rx;
4705                 spi_message_add_tail(&x[1], &message);
4706         }
4707
4708         memcpy(local_buf, txbuf, n_tx);
4709         x[0].tx_buf = local_buf;
4710         x[1].rx_buf = local_buf + n_tx;
4711
4712         /* Do the I/O */
4713         status = spi_sync(spi, &message);
4714         if (status == 0)
4715                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4716
4717         if (x[0].tx_buf == buf)
4718                 mutex_unlock(&lock);
4719         else
4720                 kfree(local_buf);
4721
4722         return status;
4723 }
4724 EXPORT_SYMBOL_GPL(spi_write_then_read);
4725
4726 /*-------------------------------------------------------------------------*/
4727
4728 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4729 /* Must call put_device() when done with returned spi_device device */
4730 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4731 {
4732         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4733
4734         return dev ? to_spi_device(dev) : NULL;
4735 }
4736
4737 /* The spi controllers are not using spi_bus, so we find it with another way */
4738 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4739 {
4740         struct device *dev;
4741
4742         dev = class_find_device_by_of_node(&spi_master_class, node);
4743         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4744                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4745         if (!dev)
4746                 return NULL;
4747
4748         /* Reference got in class_find_device */
4749         return container_of(dev, struct spi_controller, dev);
4750 }
4751
4752 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4753                          void *arg)
4754 {
4755         struct of_reconfig_data *rd = arg;
4756         struct spi_controller *ctlr;
4757         struct spi_device *spi;
4758
4759         switch (of_reconfig_get_state_change(action, arg)) {
4760         case OF_RECONFIG_CHANGE_ADD:
4761                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4762                 if (ctlr == NULL)
4763                         return NOTIFY_OK;       /* Not for us */
4764
4765                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4766                         put_device(&ctlr->dev);
4767                         return NOTIFY_OK;
4768                 }
4769
4770                 /*
4771                  * Clear the flag before adding the device so that fw_devlink
4772                  * doesn't skip adding consumers to this device.
4773                  */
4774                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4775                 spi = of_register_spi_device(ctlr, rd->dn);
4776                 put_device(&ctlr->dev);
4777
4778                 if (IS_ERR(spi)) {
4779                         pr_err("%s: failed to create for '%pOF'\n",
4780                                         __func__, rd->dn);
4781                         of_node_clear_flag(rd->dn, OF_POPULATED);
4782                         return notifier_from_errno(PTR_ERR(spi));
4783                 }
4784                 break;
4785
4786         case OF_RECONFIG_CHANGE_REMOVE:
4787                 /* Already depopulated? */
4788                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4789                         return NOTIFY_OK;
4790
4791                 /* Find our device by node */
4792                 spi = of_find_spi_device_by_node(rd->dn);
4793                 if (spi == NULL)
4794                         return NOTIFY_OK;       /* No? not meant for us */
4795
4796                 /* Unregister takes one ref away */
4797                 spi_unregister_device(spi);
4798
4799                 /* And put the reference of the find */
4800                 put_device(&spi->dev);
4801                 break;
4802         }
4803
4804         return NOTIFY_OK;
4805 }
4806
4807 static struct notifier_block spi_of_notifier = {
4808         .notifier_call = of_spi_notify,
4809 };
4810 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4811 extern struct notifier_block spi_of_notifier;
4812 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4813
4814 #if IS_ENABLED(CONFIG_ACPI)
4815 static int spi_acpi_controller_match(struct device *dev, const void *data)
4816 {
4817         return ACPI_COMPANION(dev->parent) == data;
4818 }
4819
4820 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4821 {
4822         struct device *dev;
4823
4824         dev = class_find_device(&spi_master_class, NULL, adev,
4825                                 spi_acpi_controller_match);
4826         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4827                 dev = class_find_device(&spi_slave_class, NULL, adev,
4828                                         spi_acpi_controller_match);
4829         if (!dev)
4830                 return NULL;
4831
4832         return container_of(dev, struct spi_controller, dev);
4833 }
4834 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4835
4836 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4837 {
4838         struct device *dev;
4839
4840         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4841         return to_spi_device(dev);
4842 }
4843
4844 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4845                            void *arg)
4846 {
4847         struct acpi_device *adev = arg;
4848         struct spi_controller *ctlr;
4849         struct spi_device *spi;
4850
4851         switch (value) {
4852         case ACPI_RECONFIG_DEVICE_ADD:
4853                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4854                 if (!ctlr)
4855                         break;
4856
4857                 acpi_register_spi_device(ctlr, adev);
4858                 put_device(&ctlr->dev);
4859                 break;
4860         case ACPI_RECONFIG_DEVICE_REMOVE:
4861                 if (!acpi_device_enumerated(adev))
4862                         break;
4863
4864                 spi = acpi_spi_find_device_by_adev(adev);
4865                 if (!spi)
4866                         break;
4867
4868                 spi_unregister_device(spi);
4869                 put_device(&spi->dev);
4870                 break;
4871         }
4872
4873         return NOTIFY_OK;
4874 }
4875
4876 static struct notifier_block spi_acpi_notifier = {
4877         .notifier_call = acpi_spi_notify,
4878 };
4879 #else
4880 extern struct notifier_block spi_acpi_notifier;
4881 #endif
4882
4883 static int __init spi_init(void)
4884 {
4885         int     status;
4886
4887         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4888         if (!buf) {
4889                 status = -ENOMEM;
4890                 goto err0;
4891         }
4892
4893         status = bus_register(&spi_bus_type);
4894         if (status < 0)
4895                 goto err1;
4896
4897         status = class_register(&spi_master_class);
4898         if (status < 0)
4899                 goto err2;
4900
4901         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4902                 status = class_register(&spi_slave_class);
4903                 if (status < 0)
4904                         goto err3;
4905         }
4906
4907         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4908                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4909         if (IS_ENABLED(CONFIG_ACPI))
4910                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4911
4912         return 0;
4913
4914 err3:
4915         class_unregister(&spi_master_class);
4916 err2:
4917         bus_unregister(&spi_bus_type);
4918 err1:
4919         kfree(buf);
4920         buf = NULL;
4921 err0:
4922         return status;
4923 }
4924
4925 /*
4926  * A board_info is normally registered in arch_initcall(),
4927  * but even essential drivers wait till later.
4928  *
4929  * REVISIT only boardinfo really needs static linking. The rest (device and
4930  * driver registration) _could_ be dynamically linked (modular) ... Costs
4931  * include needing to have boardinfo data structures be much more public.
4932  */
4933 postcore_initcall(spi_init);
This page took 0.327212 seconds and 4 git commands to generate.