1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
38 struct anon_vma_chain;
42 extern int sysctl_page_lock_unfairness;
44 void init_mm_internals(void);
46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
49 static inline void set_max_mapnr(unsigned long limit)
54 static inline void set_max_mapnr(unsigned long limit) { }
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
60 return (unsigned long)atomic_long_read(&_totalram_pages);
63 static inline void totalram_pages_inc(void)
65 atomic_long_inc(&_totalram_pages);
68 static inline void totalram_pages_dec(void)
70 atomic_long_dec(&_totalram_pages);
73 static inline void totalram_pages_add(long count)
75 atomic_long_add(count, &_totalram_pages);
78 extern void * high_memory;
79 extern int page_cluster;
82 extern int sysctl_legacy_va_layout;
84 #define sysctl_legacy_va_layout 0
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
99 #include <asm/processor.h>
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
106 * It's defined as noop for architectures that don't support memory tagging.
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121 #define lm_alias(x) __va(__pa_symbol(x))
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X) (0)
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statements if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
151 unsigned long *_pp = (void *)page;
153 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 80);
158 switch (sizeof(struct page)) {
179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183 * Default maximum number of active map areas, this limits the number of vmas
184 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * When a program's coredump is generated as ELF format, a section is created
188 * per a vma. In ELF, the number of sections is represented in unsigned short.
189 * This means the number of sections should be smaller than 65535 at coredump.
190 * Because the kernel adds some informative sections to a image of program at
191 * generating coredump, we need some margin. The number of extra sections is
192 * 1-3 now and depends on arch. We use "5" as safe margin, here.
194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195 * not a hard limit any more. Although some userspace tools can be surprised by
198 #define MAPCOUNT_ELF_CORE_MARGIN (5)
199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
201 extern int sysctl_max_map_count;
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 #define nth_page(page,n) ((page) + (n))
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
231 void setup_initial_init_mm(void *start_code, void *end_code,
232 void *end_data, void *brk);
235 * Linux kernel virtual memory manager primitives.
236 * The idea being to have a "virtual" mm in the same way
237 * we have a virtual fs - giving a cleaner interface to the
238 * mm details, and allowing different kinds of memory mappings
239 * (from shared memory to executable loading to arbitrary
243 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245 void vm_area_free(struct vm_area_struct *);
248 extern struct rb_root nommu_region_tree;
249 extern struct rw_semaphore nommu_region_sem;
251 extern unsigned int kobjsize(const void *objp);
255 * vm_flags in vm_area_struct, see mm_types.h.
256 * When changing, update also include/trace/events/mmflags.h
258 #define VM_NONE 0x00000000
260 #define VM_READ 0x00000001 /* currently active flags */
261 #define VM_WRITE 0x00000002
262 #define VM_EXEC 0x00000004
263 #define VM_SHARED 0x00000008
265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
266 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
267 #define VM_MAYWRITE 0x00000020
268 #define VM_MAYEXEC 0x00000040
269 #define VM_MAYSHARE 0x00000080
271 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
272 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
273 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
274 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
276 #define VM_LOCKED 0x00002000
277 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
279 /* Used by sys_madvise() */
280 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
281 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
283 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
284 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
285 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
286 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
287 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
288 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
289 #define VM_SYNC 0x00800000 /* Synchronous page faults */
290 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
291 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
292 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
297 # define VM_SOFTDIRTY 0
300 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
301 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
302 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
303 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
312 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
313 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
314 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
315 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
325 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
327 # define VM_PKEY_BIT4 0
329 #endif /* CONFIG_ARCH_HAS_PKEYS */
331 #if defined(CONFIG_X86)
332 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
333 #elif defined(CONFIG_PPC)
334 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
335 #elif defined(CONFIG_PARISC)
336 # define VM_GROWSUP VM_ARCH_1
337 #elif defined(CONFIG_IA64)
338 # define VM_GROWSUP VM_ARCH_1
339 #elif defined(CONFIG_SPARC64)
340 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
341 # define VM_ARCH_CLEAR VM_SPARC_ADI
342 #elif defined(CONFIG_ARM64)
343 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
344 # define VM_ARCH_CLEAR VM_ARM64_BTI
345 #elif !defined(CONFIG_MMU)
346 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
349 #if defined(CONFIG_ARM64_MTE)
350 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
351 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
353 # define VM_MTE VM_NONE
354 # define VM_MTE_ALLOWED VM_NONE
358 # define VM_GROWSUP VM_NONE
361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362 # define VM_UFFD_MINOR_BIT 37
363 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365 # define VM_UFFD_MINOR VM_NONE
366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
368 /* Bits set in the VMA until the stack is in its final location */
369 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
373 /* Common data flag combinations */
374 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
377 VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
381 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
382 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
385 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389 #ifdef CONFIG_STACK_GROWSUP
390 #define VM_STACK VM_GROWSUP
392 #define VM_STACK VM_GROWSDOWN
395 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
397 /* VMA basic access permission flags */
398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
402 * Special vmas that are non-mergable, non-mlock()able.
404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
406 /* This mask prevents VMA from being scanned with khugepaged */
407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
409 /* This mask defines which mm->def_flags a process can inherit its parent */
410 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
412 /* This mask is used to clear all the VMA flags used by mlock */
413 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
415 /* Arch-specific flags to clear when updating VM flags on protection change */
416 #ifndef VM_ARCH_CLEAR
417 # define VM_ARCH_CLEAR VM_NONE
419 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422 * mapping from the currently active vm_flags protection bits (the
423 * low four bits) to a page protection mask..
425 extern pgprot_t protection_map[16];
428 * enum fault_flag - Fault flag definitions.
429 * @FAULT_FLAG_WRITE: Fault was a write fault.
430 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
431 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
432 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
433 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
434 * @FAULT_FLAG_TRIED: The fault has been tried once.
435 * @FAULT_FLAG_USER: The fault originated in userspace.
436 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
437 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
438 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
440 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
441 * whether we would allow page faults to retry by specifying these two
442 * fault flags correctly. Currently there can be three legal combinations:
444 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
445 * this is the first try
447 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
448 * we've already tried at least once
450 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
452 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
453 * be used. Note that page faults can be allowed to retry for multiple times,
454 * in which case we'll have an initial fault with flags (a) then later on
455 * continuous faults with flags (b). We should always try to detect pending
456 * signals before a retry to make sure the continuous page faults can still be
457 * interrupted if necessary.
460 FAULT_FLAG_WRITE = 1 << 0,
461 FAULT_FLAG_MKWRITE = 1 << 1,
462 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
463 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
464 FAULT_FLAG_KILLABLE = 1 << 4,
465 FAULT_FLAG_TRIED = 1 << 5,
466 FAULT_FLAG_USER = 1 << 6,
467 FAULT_FLAG_REMOTE = 1 << 7,
468 FAULT_FLAG_INSTRUCTION = 1 << 8,
469 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
473 * The default fault flags that should be used by most of the
474 * arch-specific page fault handlers.
476 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
477 FAULT_FLAG_KILLABLE | \
478 FAULT_FLAG_INTERRUPTIBLE)
481 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
482 * @flags: Fault flags.
484 * This is mostly used for places where we want to try to avoid taking
485 * the mmap_lock for too long a time when waiting for another condition
486 * to change, in which case we can try to be polite to release the
487 * mmap_lock in the first round to avoid potential starvation of other
488 * processes that would also want the mmap_lock.
490 * Return: true if the page fault allows retry and this is the first
491 * attempt of the fault handling; false otherwise.
493 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
495 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
496 (!(flags & FAULT_FLAG_TRIED));
499 #define FAULT_FLAG_TRACE \
500 { FAULT_FLAG_WRITE, "WRITE" }, \
501 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
502 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
503 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
504 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
505 { FAULT_FLAG_TRIED, "TRIED" }, \
506 { FAULT_FLAG_USER, "USER" }, \
507 { FAULT_FLAG_REMOTE, "REMOTE" }, \
508 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
509 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
512 * vm_fault is filled by the pagefault handler and passed to the vma's
513 * ->fault function. The vma's ->fault is responsible for returning a bitmask
514 * of VM_FAULT_xxx flags that give details about how the fault was handled.
516 * MM layer fills up gfp_mask for page allocations but fault handler might
517 * alter it if its implementation requires a different allocation context.
519 * pgoff should be used in favour of virtual_address, if possible.
523 struct vm_area_struct *vma; /* Target VMA */
524 gfp_t gfp_mask; /* gfp mask to be used for allocations */
525 pgoff_t pgoff; /* Logical page offset based on vma */
526 unsigned long address; /* Faulting virtual address */
528 enum fault_flag flags; /* FAULT_FLAG_xxx flags
529 * XXX: should really be 'const' */
530 pmd_t *pmd; /* Pointer to pmd entry matching
532 pud_t *pud; /* Pointer to pud entry matching
536 pte_t orig_pte; /* Value of PTE at the time of fault */
537 pmd_t orig_pmd; /* Value of PMD at the time of fault,
538 * used by PMD fault only.
542 struct page *cow_page; /* Page handler may use for COW fault */
543 struct page *page; /* ->fault handlers should return a
544 * page here, unless VM_FAULT_NOPAGE
545 * is set (which is also implied by
548 /* These three entries are valid only while holding ptl lock */
549 pte_t *pte; /* Pointer to pte entry matching
550 * the 'address'. NULL if the page
551 * table hasn't been allocated.
553 spinlock_t *ptl; /* Page table lock.
554 * Protects pte page table if 'pte'
555 * is not NULL, otherwise pmd.
557 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
558 * vm_ops->map_pages() sets up a page
559 * table from atomic context.
560 * do_fault_around() pre-allocates
561 * page table to avoid allocation from
566 /* page entry size for vm->huge_fault() */
567 enum page_entry_size {
574 * These are the virtual MM functions - opening of an area, closing and
575 * unmapping it (needed to keep files on disk up-to-date etc), pointer
576 * to the functions called when a no-page or a wp-page exception occurs.
578 struct vm_operations_struct {
579 void (*open)(struct vm_area_struct * area);
580 void (*close)(struct vm_area_struct * area);
581 /* Called any time before splitting to check if it's allowed */
582 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
583 int (*mremap)(struct vm_area_struct *area);
585 * Called by mprotect() to make driver-specific permission
586 * checks before mprotect() is finalised. The VMA must not
587 * be modified. Returns 0 if eprotect() can proceed.
589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
590 unsigned long end, unsigned long newflags);
591 vm_fault_t (*fault)(struct vm_fault *vmf);
592 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
593 enum page_entry_size pe_size);
594 vm_fault_t (*map_pages)(struct vm_fault *vmf,
595 pgoff_t start_pgoff, pgoff_t end_pgoff);
596 unsigned long (*pagesize)(struct vm_area_struct * area);
598 /* notification that a previously read-only page is about to become
599 * writable, if an error is returned it will cause a SIGBUS */
600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
605 /* called by access_process_vm when get_user_pages() fails, typically
606 * for use by special VMAs. See also generic_access_phys() for a generic
607 * implementation useful for any iomem mapping.
609 int (*access)(struct vm_area_struct *vma, unsigned long addr,
610 void *buf, int len, int write);
612 /* Called by the /proc/PID/maps code to ask the vma whether it
613 * has a special name. Returning non-NULL will also cause this
614 * vma to be dumped unconditionally. */
615 const char *(*name)(struct vm_area_struct *vma);
619 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 * to hold the policy upon return. Caller should pass NULL @new to
621 * remove a policy and fall back to surrounding context--i.e. do not
622 * install a MPOL_DEFAULT policy, nor the task or system default
625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
628 * get_policy() op must add reference [mpol_get()] to any policy at
629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
630 * in mm/mempolicy.c will do this automatically.
631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 * must return NULL--i.e., do not "fallback" to task or system default
637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
641 * Called by vm_normal_page() for special PTEs to find the
642 * page for @addr. This is useful if the default behavior
643 * (using pte_page()) would not find the correct page.
645 struct page *(*find_special_page)(struct vm_area_struct *vma,
649 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
651 static const struct vm_operations_struct dummy_vm_ops = {};
653 memset(vma, 0, sizeof(*vma));
655 vma->vm_ops = &dummy_vm_ops;
656 INIT_LIST_HEAD(&vma->anon_vma_chain);
659 static inline void vma_set_anonymous(struct vm_area_struct *vma)
664 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
669 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
677 VM_STACK_INCOMPLETE_SETUP)
683 static inline bool vma_is_foreign(struct vm_area_struct *vma)
688 if (current->mm != vma->vm_mm)
694 static inline bool vma_is_accessible(struct vm_area_struct *vma)
696 return vma->vm_flags & VM_ACCESS_FLAGS;
701 * The vma_is_shmem is not inline because it is used only by slow
702 * paths in userfault.
704 bool vma_is_shmem(struct vm_area_struct *vma);
706 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
709 int vma_is_stack_for_current(struct vm_area_struct *vma);
711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
717 #include <linux/huge_mm.h>
720 * Methods to modify the page usage count.
722 * What counts for a page usage:
723 * - cache mapping (page->mapping)
724 * - private data (page->private)
725 * - page mapped in a task's page tables, each mapping
726 * is counted separately
728 * Also, many kernel routines increase the page count before a critical
729 * routine so they can be sure the page doesn't go away from under them.
733 * Drop a ref, return true if the refcount fell to zero (the page has no users)
735 static inline int put_page_testzero(struct page *page)
737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
738 return page_ref_dec_and_test(page);
741 static inline int folio_put_testzero(struct folio *folio)
743 return put_page_testzero(&folio->page);
747 * Try to grab a ref unless the page has a refcount of zero, return false if
749 * This can be called when MMU is off so it must not access
750 * any of the virtual mappings.
752 static inline bool get_page_unless_zero(struct page *page)
754 return page_ref_add_unless(page, 1, 0);
757 extern int page_is_ram(unsigned long pfn);
765 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
768 /* Support for virtually mapped pages */
769 struct page *vmalloc_to_page(const void *addr);
770 unsigned long vmalloc_to_pfn(const void *addr);
773 * Determine if an address is within the vmalloc range
775 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
776 * is no special casing required.
779 #ifndef is_ioremap_addr
780 #define is_ioremap_addr(x) is_vmalloc_addr(x)
784 extern bool is_vmalloc_addr(const void *x);
785 extern int is_vmalloc_or_module_addr(const void *x);
787 static inline bool is_vmalloc_addr(const void *x)
791 static inline int is_vmalloc_or_module_addr(const void *x)
797 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
798 static inline void *kvmalloc(size_t size, gfp_t flags)
800 return kvmalloc_node(size, flags, NUMA_NO_NODE);
802 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
804 return kvmalloc_node(size, flags | __GFP_ZERO, node);
806 static inline void *kvzalloc(size_t size, gfp_t flags)
808 return kvmalloc(size, flags | __GFP_ZERO);
811 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
815 if (unlikely(check_mul_overflow(n, size, &bytes)))
818 return kvmalloc(bytes, flags);
821 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
823 return kvmalloc_array(n, size, flags | __GFP_ZERO);
826 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
828 extern void kvfree(const void *addr);
829 extern void kvfree_sensitive(const void *addr, size_t len);
831 static inline int head_compound_mapcount(struct page *head)
833 return atomic_read(compound_mapcount_ptr(head)) + 1;
837 * Mapcount of compound page as a whole, does not include mapped sub-pages.
839 * Must be called only for compound pages or any their tail sub-pages.
841 static inline int compound_mapcount(struct page *page)
843 VM_BUG_ON_PAGE(!PageCompound(page), page);
844 page = compound_head(page);
845 return head_compound_mapcount(page);
849 * The atomic page->_mapcount, starts from -1: so that transitions
850 * both from it and to it can be tracked, using atomic_inc_and_test
851 * and atomic_add_negative(-1).
853 static inline void page_mapcount_reset(struct page *page)
855 atomic_set(&(page)->_mapcount, -1);
858 int __page_mapcount(struct page *page);
861 * Mapcount of 0-order page; when compound sub-page, includes
862 * compound_mapcount().
864 * Result is undefined for pages which cannot be mapped into userspace.
865 * For example SLAB or special types of pages. See function page_has_type().
866 * They use this place in struct page differently.
868 static inline int page_mapcount(struct page *page)
870 if (unlikely(PageCompound(page)))
871 return __page_mapcount(page);
872 return atomic_read(&page->_mapcount) + 1;
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 int total_mapcount(struct page *page);
877 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
879 static inline int total_mapcount(struct page *page)
881 return page_mapcount(page);
883 static inline int page_trans_huge_mapcount(struct page *page,
886 int mapcount = page_mapcount(page);
888 *total_mapcount = mapcount;
893 static inline struct page *virt_to_head_page(const void *x)
895 struct page *page = virt_to_page(x);
897 return compound_head(page);
900 void __put_page(struct page *page);
902 void put_pages_list(struct list_head *pages);
904 void split_page(struct page *page, unsigned int order);
905 void folio_copy(struct folio *dst, struct folio *src);
908 * Compound pages have a destructor function. Provide a
909 * prototype for that function and accessor functions.
910 * These are _only_ valid on the head of a compound page.
912 typedef void compound_page_dtor(struct page *);
914 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
915 enum compound_dtor_id {
918 #ifdef CONFIG_HUGETLB_PAGE
921 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
926 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
928 static inline void set_compound_page_dtor(struct page *page,
929 enum compound_dtor_id compound_dtor)
931 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
932 page[1].compound_dtor = compound_dtor;
935 static inline void destroy_compound_page(struct page *page)
937 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
938 compound_page_dtors[page[1].compound_dtor](page);
941 static inline unsigned int compound_order(struct page *page)
945 return page[1].compound_order;
949 * folio_order - The allocation order of a folio.
952 * A folio is composed of 2^order pages. See get_order() for the definition
955 * Return: The order of the folio.
957 static inline unsigned int folio_order(struct folio *folio)
959 return compound_order(&folio->page);
962 static inline bool hpage_pincount_available(struct page *page)
965 * Can the page->hpage_pinned_refcount field be used? That field is in
966 * the 3rd page of the compound page, so the smallest (2-page) compound
967 * pages cannot support it.
969 page = compound_head(page);
970 return PageCompound(page) && compound_order(page) > 1;
973 static inline int head_compound_pincount(struct page *head)
975 return atomic_read(compound_pincount_ptr(head));
978 static inline int compound_pincount(struct page *page)
980 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
981 page = compound_head(page);
982 return head_compound_pincount(page);
985 static inline void set_compound_order(struct page *page, unsigned int order)
987 page[1].compound_order = order;
988 page[1].compound_nr = 1U << order;
991 /* Returns the number of pages in this potentially compound page. */
992 static inline unsigned long compound_nr(struct page *page)
996 return page[1].compound_nr;
999 /* Returns the number of bytes in this potentially compound page. */
1000 static inline unsigned long page_size(struct page *page)
1002 return PAGE_SIZE << compound_order(page);
1005 /* Returns the number of bits needed for the number of bytes in a page */
1006 static inline unsigned int page_shift(struct page *page)
1008 return PAGE_SHIFT + compound_order(page);
1011 void free_compound_page(struct page *page);
1015 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1016 * servicing faults for write access. In the normal case, do always want
1017 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1018 * that do not have writing enabled, when used by access_process_vm.
1020 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1022 if (likely(vma->vm_flags & VM_WRITE))
1023 pte = pte_mkwrite(pte);
1027 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1028 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1030 vm_fault_t finish_fault(struct vm_fault *vmf);
1031 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1035 * Multiple processes may "see" the same page. E.g. for untouched
1036 * mappings of /dev/null, all processes see the same page full of
1037 * zeroes, and text pages of executables and shared libraries have
1038 * only one copy in memory, at most, normally.
1040 * For the non-reserved pages, page_count(page) denotes a reference count.
1041 * page_count() == 0 means the page is free. page->lru is then used for
1042 * freelist management in the buddy allocator.
1043 * page_count() > 0 means the page has been allocated.
1045 * Pages are allocated by the slab allocator in order to provide memory
1046 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1047 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1048 * unless a particular usage is carefully commented. (the responsibility of
1049 * freeing the kmalloc memory is the caller's, of course).
1051 * A page may be used by anyone else who does a __get_free_page().
1052 * In this case, page_count still tracks the references, and should only
1053 * be used through the normal accessor functions. The top bits of page->flags
1054 * and page->virtual store page management information, but all other fields
1055 * are unused and could be used privately, carefully. The management of this
1056 * page is the responsibility of the one who allocated it, and those who have
1057 * subsequently been given references to it.
1059 * The other pages (we may call them "pagecache pages") are completely
1060 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1061 * The following discussion applies only to them.
1063 * A pagecache page contains an opaque `private' member, which belongs to the
1064 * page's address_space. Usually, this is the address of a circular list of
1065 * the page's disk buffers. PG_private must be set to tell the VM to call
1066 * into the filesystem to release these pages.
1068 * A page may belong to an inode's memory mapping. In this case, page->mapping
1069 * is the pointer to the inode, and page->index is the file offset of the page,
1070 * in units of PAGE_SIZE.
1072 * If pagecache pages are not associated with an inode, they are said to be
1073 * anonymous pages. These may become associated with the swapcache, and in that
1074 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1076 * In either case (swapcache or inode backed), the pagecache itself holds one
1077 * reference to the page. Setting PG_private should also increment the
1078 * refcount. The each user mapping also has a reference to the page.
1080 * The pagecache pages are stored in a per-mapping radix tree, which is
1081 * rooted at mapping->i_pages, and indexed by offset.
1082 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1083 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1085 * All pagecache pages may be subject to I/O:
1086 * - inode pages may need to be read from disk,
1087 * - inode pages which have been modified and are MAP_SHARED may need
1088 * to be written back to the inode on disk,
1089 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1090 * modified may need to be swapped out to swap space and (later) to be read
1095 * The zone field is never updated after free_area_init_core()
1096 * sets it, so none of the operations on it need to be atomic.
1099 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1100 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1101 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1102 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1103 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1104 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1107 * Define the bit shifts to access each section. For non-existent
1108 * sections we define the shift as 0; that plus a 0 mask ensures
1109 * the compiler will optimise away reference to them.
1111 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1112 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1113 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1114 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1115 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1117 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1118 #ifdef NODE_NOT_IN_PAGE_FLAGS
1119 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1120 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1121 SECTIONS_PGOFF : ZONES_PGOFF)
1123 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1124 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1125 NODES_PGOFF : ZONES_PGOFF)
1128 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1130 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1131 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1132 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1133 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1134 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1135 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1137 static inline enum zone_type page_zonenum(const struct page *page)
1139 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1140 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1143 static inline enum zone_type folio_zonenum(const struct folio *folio)
1145 return page_zonenum(&folio->page);
1148 #ifdef CONFIG_ZONE_DEVICE
1149 static inline bool is_zone_device_page(const struct page *page)
1151 return page_zonenum(page) == ZONE_DEVICE;
1153 extern void memmap_init_zone_device(struct zone *, unsigned long,
1154 unsigned long, struct dev_pagemap *);
1156 static inline bool is_zone_device_page(const struct page *page)
1162 static inline bool is_zone_movable_page(const struct page *page)
1164 return page_zonenum(page) == ZONE_MOVABLE;
1167 #ifdef CONFIG_DEV_PAGEMAP_OPS
1168 void free_devmap_managed_page(struct page *page);
1169 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1171 static inline bool page_is_devmap_managed(struct page *page)
1173 if (!static_branch_unlikely(&devmap_managed_key))
1175 if (!is_zone_device_page(page))
1177 switch (page->pgmap->type) {
1178 case MEMORY_DEVICE_PRIVATE:
1179 case MEMORY_DEVICE_FS_DAX:
1187 void put_devmap_managed_page(struct page *page);
1189 #else /* CONFIG_DEV_PAGEMAP_OPS */
1190 static inline bool page_is_devmap_managed(struct page *page)
1195 static inline void put_devmap_managed_page(struct page *page)
1198 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1200 static inline bool is_device_private_page(const struct page *page)
1202 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1203 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1204 is_zone_device_page(page) &&
1205 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1208 static inline bool is_pci_p2pdma_page(const struct page *page)
1210 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1211 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1212 is_zone_device_page(page) &&
1213 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1216 /* 127: arbitrary random number, small enough to assemble well */
1217 #define folio_ref_zero_or_close_to_overflow(folio) \
1218 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1221 * folio_get - Increment the reference count on a folio.
1222 * @folio: The folio.
1224 * Context: May be called in any context, as long as you know that
1225 * you have a refcount on the folio. If you do not already have one,
1226 * folio_try_get() may be the right interface for you to use.
1228 static inline void folio_get(struct folio *folio)
1230 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1231 folio_ref_inc(folio);
1234 static inline void get_page(struct page *page)
1236 folio_get(page_folio(page));
1239 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1240 struct page *try_grab_compound_head(struct page *page, int refs,
1241 unsigned int flags);
1244 static inline __must_check bool try_get_page(struct page *page)
1246 page = compound_head(page);
1247 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1254 * folio_put - Decrement the reference count on a folio.
1255 * @folio: The folio.
1257 * If the folio's reference count reaches zero, the memory will be
1258 * released back to the page allocator and may be used by another
1259 * allocation immediately. Do not access the memory or the struct folio
1260 * after calling folio_put() unless you can be sure that it wasn't the
1263 * Context: May be called in process or interrupt context, but not in NMI
1264 * context. May be called while holding a spinlock.
1266 static inline void folio_put(struct folio *folio)
1268 if (folio_put_testzero(folio))
1269 __put_page(&folio->page);
1272 static inline void put_page(struct page *page)
1274 struct folio *folio = page_folio(page);
1277 * For devmap managed pages we need to catch refcount transition from
1278 * 2 to 1, when refcount reach one it means the page is free and we
1279 * need to inform the device driver through callback. See
1280 * include/linux/memremap.h and HMM for details.
1282 if (page_is_devmap_managed(&folio->page)) {
1283 put_devmap_managed_page(&folio->page);
1291 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1292 * the page's refcount so that two separate items are tracked: the original page
1293 * reference count, and also a new count of how many pin_user_pages() calls were
1294 * made against the page. ("gup-pinned" is another term for the latter).
1296 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1297 * distinct from normal pages. As such, the unpin_user_page() call (and its
1298 * variants) must be used in order to release gup-pinned pages.
1302 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1303 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1304 * simpler, due to the fact that adding an even power of two to the page
1305 * refcount has the effect of using only the upper N bits, for the code that
1306 * counts up using the bias value. This means that the lower bits are left for
1307 * the exclusive use of the original code that increments and decrements by one
1308 * (or at least, by much smaller values than the bias value).
1310 * Of course, once the lower bits overflow into the upper bits (and this is
1311 * OK, because subtraction recovers the original values), then visual inspection
1312 * no longer suffices to directly view the separate counts. However, for normal
1313 * applications that don't have huge page reference counts, this won't be an
1316 * Locking: the lockless algorithm described in page_cache_get_speculative()
1317 * and page_cache_gup_pin_speculative() provides safe operation for
1318 * get_user_pages and page_mkclean and other calls that race to set up page
1321 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1323 void unpin_user_page(struct page *page);
1324 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1326 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1328 void unpin_user_pages(struct page **pages, unsigned long npages);
1331 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1334 * This function checks if a page has been pinned via a call to
1335 * a function in the pin_user_pages() family.
1337 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1338 * because it means "definitely not pinned for DMA", but true means "probably
1339 * pinned for DMA, but possibly a false positive due to having at least
1340 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1342 * False positives are OK, because: a) it's unlikely for a page to get that many
1343 * refcounts, and b) all the callers of this routine are expected to be able to
1344 * deal gracefully with a false positive.
1346 * For huge pages, the result will be exactly correct. That's because we have
1347 * more tracking data available: the 3rd struct page in the compound page is
1348 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1351 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1353 * Return: True, if it is likely that the page has been "dma-pinned".
1354 * False, if the page is definitely not dma-pinned.
1356 static inline bool page_maybe_dma_pinned(struct page *page)
1358 if (hpage_pincount_available(page))
1359 return compound_pincount(page) > 0;
1362 * page_ref_count() is signed. If that refcount overflows, then
1363 * page_ref_count() returns a negative value, and callers will avoid
1364 * further incrementing the refcount.
1366 * Here, for that overflow case, use the signed bit to count a little
1367 * bit higher via unsigned math, and thus still get an accurate result.
1369 return ((unsigned int)page_ref_count(compound_head(page))) >=
1370 GUP_PIN_COUNTING_BIAS;
1373 static inline bool is_cow_mapping(vm_flags_t flags)
1375 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1379 * This should most likely only be called during fork() to see whether we
1380 * should break the cow immediately for a page on the src mm.
1382 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1385 if (!is_cow_mapping(vma->vm_flags))
1388 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1391 return page_maybe_dma_pinned(page);
1394 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1395 #define SECTION_IN_PAGE_FLAGS
1399 * The identification function is mainly used by the buddy allocator for
1400 * determining if two pages could be buddies. We are not really identifying
1401 * the zone since we could be using the section number id if we do not have
1402 * node id available in page flags.
1403 * We only guarantee that it will return the same value for two combinable
1406 static inline int page_zone_id(struct page *page)
1408 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1411 #ifdef NODE_NOT_IN_PAGE_FLAGS
1412 extern int page_to_nid(const struct page *page);
1414 static inline int page_to_nid(const struct page *page)
1416 struct page *p = (struct page *)page;
1418 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1422 static inline int folio_nid(const struct folio *folio)
1424 return page_to_nid(&folio->page);
1427 #ifdef CONFIG_NUMA_BALANCING
1428 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1430 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1433 static inline int cpupid_to_pid(int cpupid)
1435 return cpupid & LAST__PID_MASK;
1438 static inline int cpupid_to_cpu(int cpupid)
1440 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1443 static inline int cpupid_to_nid(int cpupid)
1445 return cpu_to_node(cpupid_to_cpu(cpupid));
1448 static inline bool cpupid_pid_unset(int cpupid)
1450 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1453 static inline bool cpupid_cpu_unset(int cpupid)
1455 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1458 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1460 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1463 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1464 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1465 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1467 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1470 static inline int page_cpupid_last(struct page *page)
1472 return page->_last_cpupid;
1474 static inline void page_cpupid_reset_last(struct page *page)
1476 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1479 static inline int page_cpupid_last(struct page *page)
1481 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1484 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1486 static inline void page_cpupid_reset_last(struct page *page)
1488 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1490 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1491 #else /* !CONFIG_NUMA_BALANCING */
1492 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1494 return page_to_nid(page); /* XXX */
1497 static inline int page_cpupid_last(struct page *page)
1499 return page_to_nid(page); /* XXX */
1502 static inline int cpupid_to_nid(int cpupid)
1507 static inline int cpupid_to_pid(int cpupid)
1512 static inline int cpupid_to_cpu(int cpupid)
1517 static inline int cpu_pid_to_cpupid(int nid, int pid)
1522 static inline bool cpupid_pid_unset(int cpupid)
1527 static inline void page_cpupid_reset_last(struct page *page)
1531 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1535 #endif /* CONFIG_NUMA_BALANCING */
1537 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1540 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1541 * setting tags for all pages to native kernel tag value 0xff, as the default
1542 * value 0x00 maps to 0xff.
1545 static inline u8 page_kasan_tag(const struct page *page)
1549 if (kasan_enabled()) {
1550 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1557 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1559 if (kasan_enabled()) {
1561 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1562 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1566 static inline void page_kasan_tag_reset(struct page *page)
1568 if (kasan_enabled())
1569 page_kasan_tag_set(page, 0xff);
1572 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1574 static inline u8 page_kasan_tag(const struct page *page)
1579 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1580 static inline void page_kasan_tag_reset(struct page *page) { }
1582 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1584 static inline struct zone *page_zone(const struct page *page)
1586 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1589 static inline pg_data_t *page_pgdat(const struct page *page)
1591 return NODE_DATA(page_to_nid(page));
1594 static inline struct zone *folio_zone(const struct folio *folio)
1596 return page_zone(&folio->page);
1599 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1601 return page_pgdat(&folio->page);
1604 #ifdef SECTION_IN_PAGE_FLAGS
1605 static inline void set_page_section(struct page *page, unsigned long section)
1607 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1608 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1611 static inline unsigned long page_to_section(const struct page *page)
1613 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1618 * folio_pfn - Return the Page Frame Number of a folio.
1619 * @folio: The folio.
1621 * A folio may contain multiple pages. The pages have consecutive
1622 * Page Frame Numbers.
1624 * Return: The Page Frame Number of the first page in the folio.
1626 static inline unsigned long folio_pfn(struct folio *folio)
1628 return page_to_pfn(&folio->page);
1631 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1632 #ifdef CONFIG_MIGRATION
1633 static inline bool is_pinnable_page(struct page *page)
1635 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1636 is_zero_pfn(page_to_pfn(page));
1639 static inline bool is_pinnable_page(struct page *page)
1645 static inline void set_page_zone(struct page *page, enum zone_type zone)
1647 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1648 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1651 static inline void set_page_node(struct page *page, unsigned long node)
1653 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1654 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1657 static inline void set_page_links(struct page *page, enum zone_type zone,
1658 unsigned long node, unsigned long pfn)
1660 set_page_zone(page, zone);
1661 set_page_node(page, node);
1662 #ifdef SECTION_IN_PAGE_FLAGS
1663 set_page_section(page, pfn_to_section_nr(pfn));
1668 * folio_nr_pages - The number of pages in the folio.
1669 * @folio: The folio.
1671 * Return: A positive power of two.
1673 static inline long folio_nr_pages(struct folio *folio)
1675 return compound_nr(&folio->page);
1679 * folio_next - Move to the next physical folio.
1680 * @folio: The folio we're currently operating on.
1682 * If you have physically contiguous memory which may span more than
1683 * one folio (eg a &struct bio_vec), use this function to move from one
1684 * folio to the next. Do not use it if the memory is only virtually
1685 * contiguous as the folios are almost certainly not adjacent to each
1686 * other. This is the folio equivalent to writing ``page++``.
1688 * Context: We assume that the folios are refcounted and/or locked at a
1689 * higher level and do not adjust the reference counts.
1690 * Return: The next struct folio.
1692 static inline struct folio *folio_next(struct folio *folio)
1694 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1698 * folio_shift - The size of the memory described by this folio.
1699 * @folio: The folio.
1701 * A folio represents a number of bytes which is a power-of-two in size.
1702 * This function tells you which power-of-two the folio is. See also
1703 * folio_size() and folio_order().
1705 * Context: The caller should have a reference on the folio to prevent
1706 * it from being split. It is not necessary for the folio to be locked.
1707 * Return: The base-2 logarithm of the size of this folio.
1709 static inline unsigned int folio_shift(struct folio *folio)
1711 return PAGE_SHIFT + folio_order(folio);
1715 * folio_size - The number of bytes in a folio.
1716 * @folio: The folio.
1718 * Context: The caller should have a reference on the folio to prevent
1719 * it from being split. It is not necessary for the folio to be locked.
1720 * Return: The number of bytes in this folio.
1722 static inline size_t folio_size(struct folio *folio)
1724 return PAGE_SIZE << folio_order(folio);
1727 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1728 static inline int arch_make_page_accessible(struct page *page)
1734 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1735 static inline int arch_make_folio_accessible(struct folio *folio)
1738 long i, nr = folio_nr_pages(folio);
1740 for (i = 0; i < nr; i++) {
1741 ret = arch_make_page_accessible(folio_page(folio, i));
1751 * Some inline functions in vmstat.h depend on page_zone()
1753 #include <linux/vmstat.h>
1755 static __always_inline void *lowmem_page_address(const struct page *page)
1757 return page_to_virt(page);
1760 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1761 #define HASHED_PAGE_VIRTUAL
1764 #if defined(WANT_PAGE_VIRTUAL)
1765 static inline void *page_address(const struct page *page)
1767 return page->virtual;
1769 static inline void set_page_address(struct page *page, void *address)
1771 page->virtual = address;
1773 #define page_address_init() do { } while(0)
1776 #if defined(HASHED_PAGE_VIRTUAL)
1777 void *page_address(const struct page *page);
1778 void set_page_address(struct page *page, void *virtual);
1779 void page_address_init(void);
1782 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1783 #define page_address(page) lowmem_page_address(page)
1784 #define set_page_address(page, address) do { } while(0)
1785 #define page_address_init() do { } while(0)
1788 extern void *page_rmapping(struct page *page);
1789 extern struct anon_vma *page_anon_vma(struct page *page);
1790 extern pgoff_t __page_file_index(struct page *page);
1793 * Return the pagecache index of the passed page. Regular pagecache pages
1794 * use ->index whereas swapcache pages use swp_offset(->private)
1796 static inline pgoff_t page_index(struct page *page)
1798 if (unlikely(PageSwapCache(page)))
1799 return __page_file_index(page);
1803 bool page_mapped(struct page *page);
1804 bool folio_mapped(struct folio *folio);
1807 * Return true only if the page has been allocated with
1808 * ALLOC_NO_WATERMARKS and the low watermark was not
1809 * met implying that the system is under some pressure.
1811 static inline bool page_is_pfmemalloc(const struct page *page)
1814 * lru.next has bit 1 set if the page is allocated from the
1815 * pfmemalloc reserves. Callers may simply overwrite it if
1816 * they do not need to preserve that information.
1818 return (uintptr_t)page->lru.next & BIT(1);
1822 * Only to be called by the page allocator on a freshly allocated
1825 static inline void set_page_pfmemalloc(struct page *page)
1827 page->lru.next = (void *)BIT(1);
1830 static inline void clear_page_pfmemalloc(struct page *page)
1832 page->lru.next = NULL;
1836 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1838 extern void pagefault_out_of_memory(void);
1840 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1841 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1842 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1845 * Flags passed to show_mem() and show_free_areas() to suppress output in
1848 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1850 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1853 extern bool can_do_mlock(void);
1855 static inline bool can_do_mlock(void) { return false; }
1857 extern int user_shm_lock(size_t, struct ucounts *);
1858 extern void user_shm_unlock(size_t, struct ucounts *);
1861 * Parameter block passed down to zap_pte_range in exceptional cases.
1863 struct zap_details {
1864 struct address_space *check_mapping; /* Check page->mapping if set */
1865 pgoff_t first_index; /* Lowest page->index to unmap */
1866 pgoff_t last_index; /* Highest page->index to unmap */
1867 struct page *single_page; /* Locked page to be unmapped */
1870 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1872 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1875 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1876 unsigned long size);
1877 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1878 unsigned long size);
1879 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1880 unsigned long start, unsigned long end);
1882 struct mmu_notifier_range;
1884 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1885 unsigned long end, unsigned long floor, unsigned long ceiling);
1887 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1888 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1889 struct mmu_notifier_range *range, pte_t **ptepp,
1890 pmd_t **pmdpp, spinlock_t **ptlp);
1891 int follow_pte(struct mm_struct *mm, unsigned long address,
1892 pte_t **ptepp, spinlock_t **ptlp);
1893 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1894 unsigned long *pfn);
1895 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1896 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1897 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1898 void *buf, int len, int write);
1900 extern void truncate_pagecache(struct inode *inode, loff_t new);
1901 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1902 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1903 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1904 int truncate_inode_page(struct address_space *mapping, struct page *page);
1905 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1906 int invalidate_inode_page(struct page *page);
1909 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1910 unsigned long address, unsigned int flags,
1911 struct pt_regs *regs);
1912 extern int fixup_user_fault(struct mm_struct *mm,
1913 unsigned long address, unsigned int fault_flags,
1915 void unmap_mapping_page(struct page *page);
1916 void unmap_mapping_pages(struct address_space *mapping,
1917 pgoff_t start, pgoff_t nr, bool even_cows);
1918 void unmap_mapping_range(struct address_space *mapping,
1919 loff_t const holebegin, loff_t const holelen, int even_cows);
1921 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1922 unsigned long address, unsigned int flags,
1923 struct pt_regs *regs)
1925 /* should never happen if there's no MMU */
1927 return VM_FAULT_SIGBUS;
1929 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1930 unsigned int fault_flags, bool *unlocked)
1932 /* should never happen if there's no MMU */
1936 static inline void unmap_mapping_page(struct page *page) { }
1937 static inline void unmap_mapping_pages(struct address_space *mapping,
1938 pgoff_t start, pgoff_t nr, bool even_cows) { }
1939 static inline void unmap_mapping_range(struct address_space *mapping,
1940 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1943 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1944 loff_t const holebegin, loff_t const holelen)
1946 unmap_mapping_range(mapping, holebegin, holelen, 0);
1949 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1950 void *buf, int len, unsigned int gup_flags);
1951 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1952 void *buf, int len, unsigned int gup_flags);
1953 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1954 void *buf, int len, unsigned int gup_flags);
1956 long get_user_pages_remote(struct mm_struct *mm,
1957 unsigned long start, unsigned long nr_pages,
1958 unsigned int gup_flags, struct page **pages,
1959 struct vm_area_struct **vmas, int *locked);
1960 long pin_user_pages_remote(struct mm_struct *mm,
1961 unsigned long start, unsigned long nr_pages,
1962 unsigned int gup_flags, struct page **pages,
1963 struct vm_area_struct **vmas, int *locked);
1964 long get_user_pages(unsigned long start, unsigned long nr_pages,
1965 unsigned int gup_flags, struct page **pages,
1966 struct vm_area_struct **vmas);
1967 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1968 unsigned int gup_flags, struct page **pages,
1969 struct vm_area_struct **vmas);
1970 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1971 unsigned int gup_flags, struct page **pages, int *locked);
1972 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1973 unsigned int gup_flags, struct page **pages, int *locked);
1974 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1975 struct page **pages, unsigned int gup_flags);
1976 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1977 struct page **pages, unsigned int gup_flags);
1979 int get_user_pages_fast(unsigned long start, int nr_pages,
1980 unsigned int gup_flags, struct page **pages);
1981 int pin_user_pages_fast(unsigned long start, int nr_pages,
1982 unsigned int gup_flags, struct page **pages);
1984 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1985 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1986 struct task_struct *task, bool bypass_rlim);
1989 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1990 struct page **pages);
1991 struct page *get_dump_page(unsigned long addr);
1993 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1994 extern void do_invalidatepage(struct page *page, unsigned int offset,
1995 unsigned int length);
1997 bool folio_mark_dirty(struct folio *folio);
1998 bool set_page_dirty(struct page *page);
1999 int set_page_dirty_lock(struct page *page);
2001 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2003 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2004 unsigned long old_addr, struct vm_area_struct *new_vma,
2005 unsigned long new_addr, unsigned long len,
2006 bool need_rmap_locks);
2009 * Flags used by change_protection(). For now we make it a bitmap so
2010 * that we can pass in multiple flags just like parameters. However
2011 * for now all the callers are only use one of the flags at the same
2014 /* Whether we should allow dirty bit accounting */
2015 #define MM_CP_DIRTY_ACCT (1UL << 0)
2016 /* Whether this protection change is for NUMA hints */
2017 #define MM_CP_PROT_NUMA (1UL << 1)
2018 /* Whether this change is for write protecting */
2019 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2020 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2021 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2022 MM_CP_UFFD_WP_RESOLVE)
2024 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
2025 unsigned long end, pgprot_t newprot,
2026 unsigned long cp_flags);
2027 extern int mprotect_fixup(struct vm_area_struct *vma,
2028 struct vm_area_struct **pprev, unsigned long start,
2029 unsigned long end, unsigned long newflags);
2032 * doesn't attempt to fault and will return short.
2034 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2035 unsigned int gup_flags, struct page **pages);
2036 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2037 unsigned int gup_flags, struct page **pages);
2039 static inline bool get_user_page_fast_only(unsigned long addr,
2040 unsigned int gup_flags, struct page **pagep)
2042 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2045 * per-process(per-mm_struct) statistics.
2047 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2049 long val = atomic_long_read(&mm->rss_stat.count[member]);
2051 #ifdef SPLIT_RSS_COUNTING
2053 * counter is updated in asynchronous manner and may go to minus.
2054 * But it's never be expected number for users.
2059 return (unsigned long)val;
2062 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2064 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2066 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2068 mm_trace_rss_stat(mm, member, count);
2071 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2073 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2075 mm_trace_rss_stat(mm, member, count);
2078 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2080 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2082 mm_trace_rss_stat(mm, member, count);
2085 /* Optimized variant when page is already known not to be PageAnon */
2086 static inline int mm_counter_file(struct page *page)
2088 if (PageSwapBacked(page))
2089 return MM_SHMEMPAGES;
2090 return MM_FILEPAGES;
2093 static inline int mm_counter(struct page *page)
2096 return MM_ANONPAGES;
2097 return mm_counter_file(page);
2100 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2102 return get_mm_counter(mm, MM_FILEPAGES) +
2103 get_mm_counter(mm, MM_ANONPAGES) +
2104 get_mm_counter(mm, MM_SHMEMPAGES);
2107 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2109 return max(mm->hiwater_rss, get_mm_rss(mm));
2112 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2114 return max(mm->hiwater_vm, mm->total_vm);
2117 static inline void update_hiwater_rss(struct mm_struct *mm)
2119 unsigned long _rss = get_mm_rss(mm);
2121 if ((mm)->hiwater_rss < _rss)
2122 (mm)->hiwater_rss = _rss;
2125 static inline void update_hiwater_vm(struct mm_struct *mm)
2127 if (mm->hiwater_vm < mm->total_vm)
2128 mm->hiwater_vm = mm->total_vm;
2131 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2133 mm->hiwater_rss = get_mm_rss(mm);
2136 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2137 struct mm_struct *mm)
2139 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2141 if (*maxrss < hiwater_rss)
2142 *maxrss = hiwater_rss;
2145 #if defined(SPLIT_RSS_COUNTING)
2146 void sync_mm_rss(struct mm_struct *mm);
2148 static inline void sync_mm_rss(struct mm_struct *mm)
2153 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2154 static inline int pte_special(pte_t pte)
2159 static inline pte_t pte_mkspecial(pte_t pte)
2165 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2166 static inline int pte_devmap(pte_t pte)
2172 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2174 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2176 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2180 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2184 #ifdef __PAGETABLE_P4D_FOLDED
2185 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2186 unsigned long address)
2191 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2194 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2195 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2196 unsigned long address)
2200 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2201 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2204 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2206 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2208 if (mm_pud_folded(mm))
2210 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2213 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2215 if (mm_pud_folded(mm))
2217 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2221 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2222 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2223 unsigned long address)
2228 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2229 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2232 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2234 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2236 if (mm_pmd_folded(mm))
2238 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2241 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2243 if (mm_pmd_folded(mm))
2245 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2250 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2252 atomic_long_set(&mm->pgtables_bytes, 0);
2255 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2257 return atomic_long_read(&mm->pgtables_bytes);
2260 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2262 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2265 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2267 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2271 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2272 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2277 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2278 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2281 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2282 int __pte_alloc_kernel(pmd_t *pmd);
2284 #if defined(CONFIG_MMU)
2286 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2287 unsigned long address)
2289 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2290 NULL : p4d_offset(pgd, address);
2293 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2294 unsigned long address)
2296 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2297 NULL : pud_offset(p4d, address);
2300 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2302 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2303 NULL: pmd_offset(pud, address);
2305 #endif /* CONFIG_MMU */
2307 #if USE_SPLIT_PTE_PTLOCKS
2308 #if ALLOC_SPLIT_PTLOCKS
2309 void __init ptlock_cache_init(void);
2310 extern bool ptlock_alloc(struct page *page);
2311 extern void ptlock_free(struct page *page);
2313 static inline spinlock_t *ptlock_ptr(struct page *page)
2317 #else /* ALLOC_SPLIT_PTLOCKS */
2318 static inline void ptlock_cache_init(void)
2322 static inline bool ptlock_alloc(struct page *page)
2327 static inline void ptlock_free(struct page *page)
2331 static inline spinlock_t *ptlock_ptr(struct page *page)
2335 #endif /* ALLOC_SPLIT_PTLOCKS */
2337 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2339 return ptlock_ptr(pmd_page(*pmd));
2342 static inline bool ptlock_init(struct page *page)
2345 * prep_new_page() initialize page->private (and therefore page->ptl)
2346 * with 0. Make sure nobody took it in use in between.
2348 * It can happen if arch try to use slab for page table allocation:
2349 * slab code uses page->slab_cache, which share storage with page->ptl.
2351 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2352 if (!ptlock_alloc(page))
2354 spin_lock_init(ptlock_ptr(page));
2358 #else /* !USE_SPLIT_PTE_PTLOCKS */
2360 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2362 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2364 return &mm->page_table_lock;
2366 static inline void ptlock_cache_init(void) {}
2367 static inline bool ptlock_init(struct page *page) { return true; }
2368 static inline void ptlock_free(struct page *page) {}
2369 #endif /* USE_SPLIT_PTE_PTLOCKS */
2371 static inline void pgtable_init(void)
2373 ptlock_cache_init();
2374 pgtable_cache_init();
2377 static inline bool pgtable_pte_page_ctor(struct page *page)
2379 if (!ptlock_init(page))
2381 __SetPageTable(page);
2382 inc_lruvec_page_state(page, NR_PAGETABLE);
2386 static inline void pgtable_pte_page_dtor(struct page *page)
2389 __ClearPageTable(page);
2390 dec_lruvec_page_state(page, NR_PAGETABLE);
2393 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2395 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2396 pte_t *__pte = pte_offset_map(pmd, address); \
2402 #define pte_unmap_unlock(pte, ptl) do { \
2407 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2409 #define pte_alloc_map(mm, pmd, address) \
2410 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2412 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2413 (pte_alloc(mm, pmd) ? \
2414 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2416 #define pte_alloc_kernel(pmd, address) \
2417 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2418 NULL: pte_offset_kernel(pmd, address))
2420 #if USE_SPLIT_PMD_PTLOCKS
2422 static struct page *pmd_to_page(pmd_t *pmd)
2424 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2425 return virt_to_page((void *)((unsigned long) pmd & mask));
2428 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2430 return ptlock_ptr(pmd_to_page(pmd));
2433 static inline bool pmd_ptlock_init(struct page *page)
2435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2436 page->pmd_huge_pte = NULL;
2438 return ptlock_init(page);
2441 static inline void pmd_ptlock_free(struct page *page)
2443 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2444 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2449 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2453 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2455 return &mm->page_table_lock;
2458 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2459 static inline void pmd_ptlock_free(struct page *page) {}
2461 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2465 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2467 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2472 static inline bool pgtable_pmd_page_ctor(struct page *page)
2474 if (!pmd_ptlock_init(page))
2476 __SetPageTable(page);
2477 inc_lruvec_page_state(page, NR_PAGETABLE);
2481 static inline void pgtable_pmd_page_dtor(struct page *page)
2483 pmd_ptlock_free(page);
2484 __ClearPageTable(page);
2485 dec_lruvec_page_state(page, NR_PAGETABLE);
2489 * No scalability reason to split PUD locks yet, but follow the same pattern
2490 * as the PMD locks to make it easier if we decide to. The VM should not be
2491 * considered ready to switch to split PUD locks yet; there may be places
2492 * which need to be converted from page_table_lock.
2494 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2496 return &mm->page_table_lock;
2499 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2501 spinlock_t *ptl = pud_lockptr(mm, pud);
2507 extern void __init pagecache_init(void);
2508 extern void __init free_area_init_memoryless_node(int nid);
2509 extern void free_initmem(void);
2512 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2513 * into the buddy system. The freed pages will be poisoned with pattern
2514 * "poison" if it's within range [0, UCHAR_MAX].
2515 * Return pages freed into the buddy system.
2517 extern unsigned long free_reserved_area(void *start, void *end,
2518 int poison, const char *s);
2520 extern void adjust_managed_page_count(struct page *page, long count);
2521 extern void mem_init_print_info(void);
2523 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2525 /* Free the reserved page into the buddy system, so it gets managed. */
2526 static inline void free_reserved_page(struct page *page)
2528 ClearPageReserved(page);
2529 init_page_count(page);
2531 adjust_managed_page_count(page, 1);
2533 #define free_highmem_page(page) free_reserved_page(page)
2535 static inline void mark_page_reserved(struct page *page)
2537 SetPageReserved(page);
2538 adjust_managed_page_count(page, -1);
2542 * Default method to free all the __init memory into the buddy system.
2543 * The freed pages will be poisoned with pattern "poison" if it's within
2544 * range [0, UCHAR_MAX].
2545 * Return pages freed into the buddy system.
2547 static inline unsigned long free_initmem_default(int poison)
2549 extern char __init_begin[], __init_end[];
2551 return free_reserved_area(&__init_begin, &__init_end,
2552 poison, "unused kernel image (initmem)");
2555 static inline unsigned long get_num_physpages(void)
2558 unsigned long phys_pages = 0;
2560 for_each_online_node(nid)
2561 phys_pages += node_present_pages(nid);
2567 * Using memblock node mappings, an architecture may initialise its
2568 * zones, allocate the backing mem_map and account for memory holes in an
2569 * architecture independent manner.
2571 * An architecture is expected to register range of page frames backed by
2572 * physical memory with memblock_add[_node]() before calling
2573 * free_area_init() passing in the PFN each zone ends at. At a basic
2574 * usage, an architecture is expected to do something like
2576 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2578 * for_each_valid_physical_page_range()
2579 * memblock_add_node(base, size, nid)
2580 * free_area_init(max_zone_pfns);
2582 void free_area_init(unsigned long *max_zone_pfn);
2583 unsigned long node_map_pfn_alignment(void);
2584 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2585 unsigned long end_pfn);
2586 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2587 unsigned long end_pfn);
2588 extern void get_pfn_range_for_nid(unsigned int nid,
2589 unsigned long *start_pfn, unsigned long *end_pfn);
2590 extern unsigned long find_min_pfn_with_active_regions(void);
2593 static inline int early_pfn_to_nid(unsigned long pfn)
2598 /* please see mm/page_alloc.c */
2599 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2602 extern void set_dma_reserve(unsigned long new_dma_reserve);
2603 extern void memmap_init_range(unsigned long, int, unsigned long,
2604 unsigned long, unsigned long, enum meminit_context,
2605 struct vmem_altmap *, int migratetype);
2606 extern void setup_per_zone_wmarks(void);
2607 extern int __meminit init_per_zone_wmark_min(void);
2608 extern void mem_init(void);
2609 extern void __init mmap_init(void);
2610 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2611 extern long si_mem_available(void);
2612 extern void si_meminfo(struct sysinfo * val);
2613 extern void si_meminfo_node(struct sysinfo *val, int nid);
2614 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2615 extern unsigned long arch_reserved_kernel_pages(void);
2618 extern __printf(3, 4)
2619 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2621 extern void setup_per_cpu_pageset(void);
2624 extern int min_free_kbytes;
2625 extern int watermark_boost_factor;
2626 extern int watermark_scale_factor;
2627 extern bool arch_has_descending_max_zone_pfns(void);
2630 extern atomic_long_t mmap_pages_allocated;
2631 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2633 /* interval_tree.c */
2634 void vma_interval_tree_insert(struct vm_area_struct *node,
2635 struct rb_root_cached *root);
2636 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2637 struct vm_area_struct *prev,
2638 struct rb_root_cached *root);
2639 void vma_interval_tree_remove(struct vm_area_struct *node,
2640 struct rb_root_cached *root);
2641 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2642 unsigned long start, unsigned long last);
2643 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2644 unsigned long start, unsigned long last);
2646 #define vma_interval_tree_foreach(vma, root, start, last) \
2647 for (vma = vma_interval_tree_iter_first(root, start, last); \
2648 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2650 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2651 struct rb_root_cached *root);
2652 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2653 struct rb_root_cached *root);
2654 struct anon_vma_chain *
2655 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2656 unsigned long start, unsigned long last);
2657 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2658 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2659 #ifdef CONFIG_DEBUG_VM_RB
2660 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2663 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2664 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2665 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2668 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2669 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2670 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2671 struct vm_area_struct *expand);
2672 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2673 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2675 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2677 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2678 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2679 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2680 struct mempolicy *, struct vm_userfaultfd_ctx);
2681 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2682 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2683 unsigned long addr, int new_below);
2684 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2685 unsigned long addr, int new_below);
2686 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2687 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2688 struct rb_node **, struct rb_node *);
2689 extern void unlink_file_vma(struct vm_area_struct *);
2690 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2691 unsigned long addr, unsigned long len, pgoff_t pgoff,
2692 bool *need_rmap_locks);
2693 extern void exit_mmap(struct mm_struct *);
2695 static inline int check_data_rlimit(unsigned long rlim,
2697 unsigned long start,
2698 unsigned long end_data,
2699 unsigned long start_data)
2701 if (rlim < RLIM_INFINITY) {
2702 if (((new - start) + (end_data - start_data)) > rlim)
2709 extern int mm_take_all_locks(struct mm_struct *mm);
2710 extern void mm_drop_all_locks(struct mm_struct *mm);
2712 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2713 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2714 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2715 extern struct file *get_task_exe_file(struct task_struct *task);
2717 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2718 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2720 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2721 const struct vm_special_mapping *sm);
2722 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2723 unsigned long addr, unsigned long len,
2724 unsigned long flags,
2725 const struct vm_special_mapping *spec);
2726 /* This is an obsolete alternative to _install_special_mapping. */
2727 extern int install_special_mapping(struct mm_struct *mm,
2728 unsigned long addr, unsigned long len,
2729 unsigned long flags, struct page **pages);
2731 unsigned long randomize_stack_top(unsigned long stack_top);
2733 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2735 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2736 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2737 struct list_head *uf);
2738 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2739 unsigned long len, unsigned long prot, unsigned long flags,
2740 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2741 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2742 struct list_head *uf, bool downgrade);
2743 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2744 struct list_head *uf);
2745 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2748 extern int __mm_populate(unsigned long addr, unsigned long len,
2750 static inline void mm_populate(unsigned long addr, unsigned long len)
2753 (void) __mm_populate(addr, len, 1);
2756 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2759 /* These take the mm semaphore themselves */
2760 extern int __must_check vm_brk(unsigned long, unsigned long);
2761 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2762 extern int vm_munmap(unsigned long, size_t);
2763 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2764 unsigned long, unsigned long,
2765 unsigned long, unsigned long);
2767 struct vm_unmapped_area_info {
2768 #define VM_UNMAPPED_AREA_TOPDOWN 1
2769 unsigned long flags;
2770 unsigned long length;
2771 unsigned long low_limit;
2772 unsigned long high_limit;
2773 unsigned long align_mask;
2774 unsigned long align_offset;
2777 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2780 extern void truncate_inode_pages(struct address_space *, loff_t);
2781 extern void truncate_inode_pages_range(struct address_space *,
2782 loff_t lstart, loff_t lend);
2783 extern void truncate_inode_pages_final(struct address_space *);
2785 /* generic vm_area_ops exported for stackable file systems */
2786 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2787 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2788 pgoff_t start_pgoff, pgoff_t end_pgoff);
2789 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2791 extern unsigned long stack_guard_gap;
2792 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2793 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2795 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2796 extern int expand_downwards(struct vm_area_struct *vma,
2797 unsigned long address);
2799 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2801 #define expand_upwards(vma, address) (0)
2804 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2805 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2806 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2807 struct vm_area_struct **pprev);
2810 * find_vma_intersection() - Look up the first VMA which intersects the interval
2811 * @mm: The process address space.
2812 * @start_addr: The inclusive start user address.
2813 * @end_addr: The exclusive end user address.
2815 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2816 * start_addr < end_addr.
2819 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2820 unsigned long start_addr,
2821 unsigned long end_addr)
2823 struct vm_area_struct *vma = find_vma(mm, start_addr);
2825 if (vma && end_addr <= vma->vm_start)
2831 * vma_lookup() - Find a VMA at a specific address
2832 * @mm: The process address space.
2833 * @addr: The user address.
2835 * Return: The vm_area_struct at the given address, %NULL otherwise.
2838 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2840 struct vm_area_struct *vma = find_vma(mm, addr);
2842 if (vma && addr < vma->vm_start)
2848 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2850 unsigned long vm_start = vma->vm_start;
2852 if (vma->vm_flags & VM_GROWSDOWN) {
2853 vm_start -= stack_guard_gap;
2854 if (vm_start > vma->vm_start)
2860 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2862 unsigned long vm_end = vma->vm_end;
2864 if (vma->vm_flags & VM_GROWSUP) {
2865 vm_end += stack_guard_gap;
2866 if (vm_end < vma->vm_end)
2867 vm_end = -PAGE_SIZE;
2872 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2874 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2877 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2878 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2879 unsigned long vm_start, unsigned long vm_end)
2881 struct vm_area_struct *vma = find_vma(mm, vm_start);
2883 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2889 static inline bool range_in_vma(struct vm_area_struct *vma,
2890 unsigned long start, unsigned long end)
2892 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2896 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2897 void vma_set_page_prot(struct vm_area_struct *vma);
2899 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2903 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2905 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2909 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2911 #ifdef CONFIG_NUMA_BALANCING
2912 unsigned long change_prot_numa(struct vm_area_struct *vma,
2913 unsigned long start, unsigned long end);
2916 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2917 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2918 unsigned long pfn, unsigned long size, pgprot_t);
2919 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2920 unsigned long pfn, unsigned long size, pgprot_t prot);
2921 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2922 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2923 struct page **pages, unsigned long *num);
2924 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2926 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2928 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2930 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2931 unsigned long pfn, pgprot_t pgprot);
2932 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2934 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2935 pfn_t pfn, pgprot_t pgprot);
2936 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2937 unsigned long addr, pfn_t pfn);
2938 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2940 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2941 unsigned long addr, struct page *page)
2943 int err = vm_insert_page(vma, addr, page);
2946 return VM_FAULT_OOM;
2947 if (err < 0 && err != -EBUSY)
2948 return VM_FAULT_SIGBUS;
2950 return VM_FAULT_NOPAGE;
2953 #ifndef io_remap_pfn_range
2954 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2955 unsigned long addr, unsigned long pfn,
2956 unsigned long size, pgprot_t prot)
2958 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2962 static inline vm_fault_t vmf_error(int err)
2965 return VM_FAULT_OOM;
2966 return VM_FAULT_SIGBUS;
2969 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2970 unsigned int foll_flags);
2972 #define FOLL_WRITE 0x01 /* check pte is writable */
2973 #define FOLL_TOUCH 0x02 /* mark page accessed */
2974 #define FOLL_GET 0x04 /* do get_page on page */
2975 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2976 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2977 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2978 * and return without waiting upon it */
2979 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2980 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2981 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2982 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2983 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2984 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2985 #define FOLL_MLOCK 0x1000 /* lock present pages */
2986 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2987 #define FOLL_COW 0x4000 /* internal GUP flag */
2988 #define FOLL_ANON 0x8000 /* don't do file mappings */
2989 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2990 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2991 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2992 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2995 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2996 * other. Here is what they mean, and how to use them:
2998 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2999 * period _often_ under userspace control. This is in contrast to
3000 * iov_iter_get_pages(), whose usages are transient.
3002 * FIXME: For pages which are part of a filesystem, mappings are subject to the
3003 * lifetime enforced by the filesystem and we need guarantees that longterm
3004 * users like RDMA and V4L2 only establish mappings which coordinate usage with
3005 * the filesystem. Ideas for this coordination include revoking the longterm
3006 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
3007 * added after the problem with filesystems was found FS DAX VMAs are
3008 * specifically failed. Filesystem pages are still subject to bugs and use of
3009 * FOLL_LONGTERM should be avoided on those pages.
3011 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3012 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3013 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3014 * is due to an incompatibility with the FS DAX check and
3015 * FAULT_FLAG_ALLOW_RETRY.
3017 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3018 * that region. And so, CMA attempts to migrate the page before pinning, when
3019 * FOLL_LONGTERM is specified.
3021 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3022 * but an additional pin counting system) will be invoked. This is intended for
3023 * anything that gets a page reference and then touches page data (for example,
3024 * Direct IO). This lets the filesystem know that some non-file-system entity is
3025 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3026 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3027 * a call to unpin_user_page().
3029 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3030 * and separate refcounting mechanisms, however, and that means that each has
3031 * its own acquire and release mechanisms:
3033 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3035 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3037 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3038 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3039 * calls applied to them, and that's perfectly OK. This is a constraint on the
3040 * callers, not on the pages.)
3042 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3043 * directly by the caller. That's in order to help avoid mismatches when
3044 * releasing pages: get_user_pages*() pages must be released via put_page(),
3045 * while pin_user_pages*() pages must be released via unpin_user_page().
3047 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3050 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3052 if (vm_fault & VM_FAULT_OOM)
3054 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3055 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3056 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3061 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3062 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3063 unsigned long size, pte_fn_t fn, void *data);
3064 extern int apply_to_existing_page_range(struct mm_struct *mm,
3065 unsigned long address, unsigned long size,
3066 pte_fn_t fn, void *data);
3068 extern void init_mem_debugging_and_hardening(void);
3069 #ifdef CONFIG_PAGE_POISONING
3070 extern void __kernel_poison_pages(struct page *page, int numpages);
3071 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3072 extern bool _page_poisoning_enabled_early;
3073 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3074 static inline bool page_poisoning_enabled(void)
3076 return _page_poisoning_enabled_early;
3079 * For use in fast paths after init_mem_debugging() has run, or when a
3080 * false negative result is not harmful when called too early.
3082 static inline bool page_poisoning_enabled_static(void)
3084 return static_branch_unlikely(&_page_poisoning_enabled);
3086 static inline void kernel_poison_pages(struct page *page, int numpages)
3088 if (page_poisoning_enabled_static())
3089 __kernel_poison_pages(page, numpages);
3091 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3093 if (page_poisoning_enabled_static())
3094 __kernel_unpoison_pages(page, numpages);
3097 static inline bool page_poisoning_enabled(void) { return false; }
3098 static inline bool page_poisoning_enabled_static(void) { return false; }
3099 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3100 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3101 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3104 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3105 static inline bool want_init_on_alloc(gfp_t flags)
3107 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3110 return flags & __GFP_ZERO;
3113 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3114 static inline bool want_init_on_free(void)
3116 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3120 extern bool _debug_pagealloc_enabled_early;
3121 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3123 static inline bool debug_pagealloc_enabled(void)
3125 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3126 _debug_pagealloc_enabled_early;
3130 * For use in fast paths after init_debug_pagealloc() has run, or when a
3131 * false negative result is not harmful when called too early.
3133 static inline bool debug_pagealloc_enabled_static(void)
3135 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3138 return static_branch_unlikely(&_debug_pagealloc_enabled);
3141 #ifdef CONFIG_DEBUG_PAGEALLOC
3143 * To support DEBUG_PAGEALLOC architecture must ensure that
3144 * __kernel_map_pages() never fails
3146 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3148 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3150 if (debug_pagealloc_enabled_static())
3151 __kernel_map_pages(page, numpages, 1);
3154 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3156 if (debug_pagealloc_enabled_static())
3157 __kernel_map_pages(page, numpages, 0);
3159 #else /* CONFIG_DEBUG_PAGEALLOC */
3160 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3161 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3162 #endif /* CONFIG_DEBUG_PAGEALLOC */
3164 #ifdef __HAVE_ARCH_GATE_AREA
3165 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3166 extern int in_gate_area_no_mm(unsigned long addr);
3167 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3169 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3173 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3174 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3178 #endif /* __HAVE_ARCH_GATE_AREA */
3180 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3182 #ifdef CONFIG_SYSCTL
3183 extern int sysctl_drop_caches;
3184 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3188 void drop_slab(void);
3189 void drop_slab_node(int nid);
3192 #define randomize_va_space 0
3194 extern int randomize_va_space;
3197 const char * arch_vma_name(struct vm_area_struct *vma);
3199 void print_vma_addr(char *prefix, unsigned long rip);
3201 static inline void print_vma_addr(char *prefix, unsigned long rip)
3206 int vmemmap_remap_free(unsigned long start, unsigned long end,
3207 unsigned long reuse);
3208 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3209 unsigned long reuse, gfp_t gfp_mask);
3211 void *sparse_buffer_alloc(unsigned long size);
3212 struct page * __populate_section_memmap(unsigned long pfn,
3213 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3214 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3215 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3216 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3217 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3218 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3219 struct vmem_altmap *altmap);
3220 void *vmemmap_alloc_block(unsigned long size, int node);
3222 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3223 struct vmem_altmap *altmap);
3224 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3225 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3226 int node, struct vmem_altmap *altmap);
3227 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3228 struct vmem_altmap *altmap);
3229 void vmemmap_populate_print_last(void);
3230 #ifdef CONFIG_MEMORY_HOTPLUG
3231 void vmemmap_free(unsigned long start, unsigned long end,
3232 struct vmem_altmap *altmap);
3234 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3235 unsigned long nr_pages);
3238 MF_COUNT_INCREASED = 1 << 0,
3239 MF_ACTION_REQUIRED = 1 << 1,
3240 MF_MUST_KILL = 1 << 2,
3241 MF_SOFT_OFFLINE = 1 << 3,
3243 extern int memory_failure(unsigned long pfn, int flags);
3244 extern void memory_failure_queue(unsigned long pfn, int flags);
3245 extern void memory_failure_queue_kick(int cpu);
3246 extern int unpoison_memory(unsigned long pfn);
3247 extern int sysctl_memory_failure_early_kill;
3248 extern int sysctl_memory_failure_recovery;
3249 extern void shake_page(struct page *p);
3250 extern atomic_long_t num_poisoned_pages __read_mostly;
3251 extern int soft_offline_page(unsigned long pfn, int flags);
3255 * Error handlers for various types of pages.
3258 MF_IGNORED, /* Error: cannot be handled */
3259 MF_FAILED, /* Error: handling failed */
3260 MF_DELAYED, /* Will be handled later */
3261 MF_RECOVERED, /* Successfully recovered */
3264 enum mf_action_page_type {
3266 MF_MSG_KERNEL_HIGH_ORDER,
3268 MF_MSG_DIFFERENT_COMPOUND,
3269 MF_MSG_POISONED_HUGE,
3272 MF_MSG_NON_PMD_HUGE,
3273 MF_MSG_UNMAP_FAILED,
3274 MF_MSG_DIRTY_SWAPCACHE,
3275 MF_MSG_CLEAN_SWAPCACHE,
3276 MF_MSG_DIRTY_MLOCKED_LRU,
3277 MF_MSG_CLEAN_MLOCKED_LRU,
3278 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3279 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3282 MF_MSG_TRUNCATED_LRU,
3290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3291 extern void clear_huge_page(struct page *page,
3292 unsigned long addr_hint,
3293 unsigned int pages_per_huge_page);
3294 extern void copy_user_huge_page(struct page *dst, struct page *src,
3295 unsigned long addr_hint,
3296 struct vm_area_struct *vma,
3297 unsigned int pages_per_huge_page);
3298 extern long copy_huge_page_from_user(struct page *dst_page,
3299 const void __user *usr_src,
3300 unsigned int pages_per_huge_page,
3301 bool allow_pagefault);
3304 * vma_is_special_huge - Are transhuge page-table entries considered special?
3305 * @vma: Pointer to the struct vm_area_struct to consider
3307 * Whether transhuge page-table entries are considered "special" following
3308 * the definition in vm_normal_page().
3310 * Return: true if transhuge page-table entries should be considered special,
3313 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3315 return vma_is_dax(vma) || (vma->vm_file &&
3316 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3319 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3321 #ifdef CONFIG_DEBUG_PAGEALLOC
3322 extern unsigned int _debug_guardpage_minorder;
3323 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3325 static inline unsigned int debug_guardpage_minorder(void)
3327 return _debug_guardpage_minorder;
3330 static inline bool debug_guardpage_enabled(void)
3332 return static_branch_unlikely(&_debug_guardpage_enabled);
3335 static inline bool page_is_guard(struct page *page)
3337 if (!debug_guardpage_enabled())
3340 return PageGuard(page);
3343 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3344 static inline bool debug_guardpage_enabled(void) { return false; }
3345 static inline bool page_is_guard(struct page *page) { return false; }
3346 #endif /* CONFIG_DEBUG_PAGEALLOC */
3348 #if MAX_NUMNODES > 1
3349 void __init setup_nr_node_ids(void);
3351 static inline void setup_nr_node_ids(void) {}
3354 extern int memcmp_pages(struct page *page1, struct page *page2);
3356 static inline int pages_identical(struct page *page1, struct page *page2)
3358 return !memcmp_pages(page1, page2);
3361 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3362 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3363 pgoff_t first_index, pgoff_t nr,
3364 pgoff_t bitmap_pgoff,
3365 unsigned long *bitmap,
3369 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3370 pgoff_t first_index, pgoff_t nr);
3373 extern int sysctl_nr_trim_pages;
3375 #ifdef CONFIG_PRINTK
3376 void mem_dump_obj(void *object);
3378 static inline void mem_dump_obj(void *object) {}
3382 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3383 * @seals: the seals to check
3384 * @vma: the vma to operate on
3386 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3387 * the vma flags. Return 0 if check pass, or <0 for errors.
3389 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3391 if (seals & F_SEAL_FUTURE_WRITE) {
3393 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3394 * "future write" seal active.
3396 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3400 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3401 * MAP_SHARED and read-only, take care to not allow mprotect to
3402 * revert protections on such mappings. Do this only for shared
3403 * mappings. For private mappings, don't need to mask
3404 * VM_MAYWRITE as we still want them to be COW-writable.
3406 if (vma->vm_flags & VM_SHARED)
3407 vma->vm_flags &= ~(VM_MAYWRITE);
3413 #endif /* __KERNEL__ */
3414 #endif /* _LINUX_MM_H */