1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(&stats->bytes_rx, xfer->len);
338 u64_stats_update_end(&stats->syncp);
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
360 return spi_match_id(sdrv->id_table, sdev->modalias);
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
368 match = device_get_match_data(&sdev->dev);
372 return (const void *)spi_get_device_id(sdev)->driver_data;
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
390 if (acpi_driver_match_device(dev, drv))
394 return !!spi_match_id(sdrv->id_table, spi->modalias);
396 return strcmp(spi->modalias, drv->name) == 0;
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
401 const struct spi_device *spi = to_spi_device(dev);
404 rc = acpi_device_uevent_modalias(dev, env);
408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
411 static int spi_probe(struct device *dev)
413 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
417 ret = of_clk_set_defaults(dev->of_node, false);
422 spi->irq = of_irq_get(dev->of_node, 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
429 ret = dev_pm_domain_attach(dev, true);
434 ret = sdrv->probe(spi);
436 dev_pm_domain_detach(dev, true);
442 static void spi_remove(struct device *dev)
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
447 sdrv->remove(to_spi_device(dev));
449 dev_pm_domain_detach(dev, true);
452 static void spi_shutdown(struct device *dev)
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
458 sdrv->shutdown(to_spi_device(dev));
462 const struct bus_type spi_bus_type = {
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
471 EXPORT_SYMBOL_GPL(spi_bus_type);
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
479 * Return: zero on success, else a negative error code.
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
504 of_name = of_id->compatible;
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
509 spi_id = spi_match_id(sdrv->id_table, of_name);
513 if (strcmp(sdrv->driver.name, of_name) == 0)
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
522 return driver_register(&sdrv->driver);
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 /*-------------------------------------------------------------------------*/
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
536 struct list_head list;
537 struct spi_board_info board_info;
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
548 static DEFINE_MUTEX(board_lock);
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
565 * Return: a pointer to the new device, or NULL.
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 struct spi_device *spi;
571 if (!spi_controller_get(ctlr))
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 spi_controller_put(ctlr);
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
583 spi_controller_put(ctlr);
587 spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
593 device_initialize(&spi->dev);
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 static void spi_dev_set_name(struct spi_device *spi)
600 struct device *dev = &spi->dev;
601 struct fwnode_handle *fwnode = dev_fwnode(dev);
603 if (is_acpi_device_node(fwnode)) {
604 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
608 if (is_software_node(fwnode)) {
609 dev_set_name(dev, "spi-%pfwP", fwnode);
613 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
614 spi_get_chipselect(spi, 0));
618 * Zero(0) is a valid physical CS value and can be located at any
619 * logical CS in the spi->chip_select[]. If all the physical CS
620 * are initialized to 0 then It would be difficult to differentiate
621 * between a valid physical CS 0 & an unused logical CS whose physical
622 * CS can be 0. As a solution to this issue initialize all the CS to -1.
623 * Now all the unused logical CS will have -1 physical CS value & can be
624 * ignored while performing physical CS validity checks.
626 #define SPI_INVALID_CS ((s8)-1)
628 static inline bool is_valid_cs(s8 chip_select)
630 return chip_select != SPI_INVALID_CS;
633 static inline int spi_dev_check_cs(struct device *dev,
634 struct spi_device *spi, u8 idx,
635 struct spi_device *new_spi, u8 new_idx)
640 cs = spi_get_chipselect(spi, idx);
641 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
642 cs_new = spi_get_chipselect(new_spi, idx_new);
643 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
644 dev_err(dev, "chipselect %u already in use\n", cs_new);
651 static int spi_dev_check(struct device *dev, void *data)
653 struct spi_device *spi = to_spi_device(dev);
654 struct spi_device *new_spi = data;
657 if (spi->controller == new_spi->controller) {
658 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
659 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
667 static void spi_cleanup(struct spi_device *spi)
669 if (spi->controller->cleanup)
670 spi->controller->cleanup(spi);
673 static int __spi_add_device(struct spi_device *spi)
675 struct spi_controller *ctlr = spi->controller;
676 struct device *dev = ctlr->dev.parent;
680 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
681 /* Chipselects are numbered 0..max; validate. */
682 cs = spi_get_chipselect(spi, idx);
683 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
684 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
685 ctlr->num_chipselect);
691 * Make sure that multiple logical CS doesn't map to the same physical CS.
692 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
694 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
695 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
700 /* Set the bus ID string */
701 spi_dev_set_name(spi);
704 * We need to make sure there's no other device with this
705 * chipselect **BEFORE** we call setup(), else we'll trash
708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
712 /* Controller may unregister concurrently */
713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714 !device_is_registered(&ctlr->dev)) {
718 if (ctlr->cs_gpiods) {
721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722 cs = spi_get_chipselect(spi, idx);
724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
729 * Drivers may modify this initial i/o setup, but will
730 * normally rely on the device being setup. Devices
731 * using SPI_CS_HIGH can't coexist well otherwise...
733 status = spi_setup(spi);
735 dev_err(dev, "can't setup %s, status %d\n",
736 dev_name(&spi->dev), status);
740 /* Device may be bound to an active driver when this returns */
741 status = device_add(&spi->dev);
743 dev_err(dev, "can't add %s, status %d\n",
744 dev_name(&spi->dev), status);
747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
754 * spi_add_device - Add spi_device allocated with spi_alloc_device
755 * @spi: spi_device to register
757 * Companion function to spi_alloc_device. Devices allocated with
758 * spi_alloc_device can be added onto the SPI bus with this function.
760 * Return: 0 on success; negative errno on failure
762 int spi_add_device(struct spi_device *spi)
764 struct spi_controller *ctlr = spi->controller;
767 /* Set the bus ID string */
768 spi_dev_set_name(spi);
770 mutex_lock(&ctlr->add_lock);
771 status = __spi_add_device(spi);
772 mutex_unlock(&ctlr->add_lock);
775 EXPORT_SYMBOL_GPL(spi_add_device);
777 static void spi_set_all_cs_unused(struct spi_device *spi)
781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
786 * spi_new_device - instantiate one new SPI device
787 * @ctlr: Controller to which device is connected
788 * @chip: Describes the SPI device
791 * On typical mainboards, this is purely internal; and it's not needed
792 * after board init creates the hard-wired devices. Some development
793 * platforms may not be able to use spi_register_board_info though, and
794 * this is exported so that for example a USB or parport based adapter
795 * driver could add devices (which it would learn about out-of-band).
797 * Return: the new device, or NULL.
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800 struct spi_board_info *chip)
802 struct spi_device *proxy;
806 * NOTE: caller did any chip->bus_num checks necessary.
808 * Also, unless we change the return value convention to use
809 * error-or-pointer (not NULL-or-pointer), troubleshootability
810 * suggests syslogged diagnostics are best here (ugh).
813 proxy = spi_alloc_device(ctlr);
817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
819 /* Use provided chip-select for proxy device */
820 spi_set_all_cs_unused(proxy);
821 spi_set_chipselect(proxy, 0, chip->chip_select);
823 proxy->max_speed_hz = chip->max_speed_hz;
824 proxy->mode = chip->mode;
825 proxy->irq = chip->irq;
826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827 proxy->dev.platform_data = (void *) chip->platform_data;
828 proxy->controller_data = chip->controller_data;
829 proxy->controller_state = NULL;
831 * By default spi->chip_select[0] will hold the physical CS number,
832 * so set bit 0 in spi->cs_index_mask.
834 proxy->cs_index_mask = BIT(0);
837 status = device_add_software_node(&proxy->dev, chip->swnode);
839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840 chip->modalias, status);
845 status = spi_add_device(proxy);
852 device_remove_software_node(&proxy->dev);
856 EXPORT_SYMBOL_GPL(spi_new_device);
859 * spi_unregister_device - unregister a single SPI device
860 * @spi: spi_device to unregister
862 * Start making the passed SPI device vanish. Normally this would be handled
863 * by spi_unregister_controller().
865 void spi_unregister_device(struct spi_device *spi)
870 if (spi->dev.of_node) {
871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872 of_node_put(spi->dev.of_node);
874 if (ACPI_COMPANION(&spi->dev))
875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876 device_remove_software_node(&spi->dev);
877 device_del(&spi->dev);
879 put_device(&spi->dev);
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884 struct spi_board_info *bi)
886 struct spi_device *dev;
888 if (ctlr->bus_num != bi->bus_num)
891 dev = spi_new_device(ctlr, bi);
893 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
898 * spi_register_board_info - register SPI devices for a given board
899 * @info: array of chip descriptors
900 * @n: how many descriptors are provided
903 * Board-specific early init code calls this (probably during arch_initcall)
904 * with segments of the SPI device table. Any device nodes are created later,
905 * after the relevant parent SPI controller (bus_num) is defined. We keep
906 * this table of devices forever, so that reloading a controller driver will
907 * not make Linux forget about these hard-wired devices.
909 * Other code can also call this, e.g. a particular add-on board might provide
910 * SPI devices through its expansion connector, so code initializing that board
911 * would naturally declare its SPI devices.
913 * The board info passed can safely be __initdata ... but be careful of
914 * any embedded pointers (platform_data, etc), they're copied as-is.
916 * Return: zero on success, else a negative error code.
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
920 struct boardinfo *bi;
926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
930 for (i = 0; i < n; i++, bi++, info++) {
931 struct spi_controller *ctlr;
933 memcpy(&bi->board_info, info, sizeof(*info));
935 mutex_lock(&board_lock);
936 list_add_tail(&bi->list, &board_list);
937 list_for_each_entry(ctlr, &spi_controller_list, list)
938 spi_match_controller_to_boardinfo(ctlr,
940 mutex_unlock(&board_lock);
946 /*-------------------------------------------------------------------------*/
948 /* Core methods for SPI resource management */
951 * spi_res_alloc - allocate a spi resource that is life-cycle managed
952 * during the processing of a spi_message while using
954 * @spi: the SPI device for which we allocate memory
955 * @release: the release code to execute for this resource
956 * @size: size to alloc and return
957 * @gfp: GFP allocation flags
959 * Return: the pointer to the allocated data
961 * This may get enhanced in the future to allocate from a memory pool
962 * of the @spi_device or @spi_controller to avoid repeated allocations.
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965 size_t size, gfp_t gfp)
967 struct spi_res *sres;
969 sres = kzalloc(sizeof(*sres) + size, gfp);
973 INIT_LIST_HEAD(&sres->entry);
974 sres->release = release;
980 * spi_res_free - free an SPI resource
981 * @res: pointer to the custom data of a resource
983 static void spi_res_free(void *res)
985 struct spi_res *sres = container_of(res, struct spi_res, data);
990 WARN_ON(!list_empty(&sres->entry));
995 * spi_res_add - add a spi_res to the spi_message
996 * @message: the SPI message
997 * @res: the spi_resource
999 static void spi_res_add(struct spi_message *message, void *res)
1001 struct spi_res *sres = container_of(res, struct spi_res, data);
1003 WARN_ON(!list_empty(&sres->entry));
1004 list_add_tail(&sres->entry, &message->resources);
1008 * spi_res_release - release all SPI resources for this message
1009 * @ctlr: the @spi_controller
1010 * @message: the @spi_message
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1014 struct spi_res *res, *tmp;
1016 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1018 res->release(ctlr, message, res->data);
1020 list_del(&res->entry);
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx) \
1028 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1029 if (!(spi->cs_index_mask & BIT(idx))) {} else
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1036 spi_for_each_valid_cs(spi, idx) {
1037 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1046 * Historically ACPI has no means of the GPIO polarity and
1047 * thus the SPISerialBus() resource defines it on the per-chip
1048 * basis. In order to avoid a chain of negations, the GPIO
1049 * polarity is considered being Active High. Even for the cases
1050 * when _DSD() is involved (in the updated versions of ACPI)
1051 * the GPIO CS polarity must be defined Active High to avoid
1052 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1055 if (has_acpi_companion(&spi->dev))
1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1058 /* Polarity handled by GPIO library */
1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1062 spi_delay_exec(&spi->cs_setup, NULL);
1064 spi_delay_exec(&spi->cs_inactive, NULL);
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1069 bool activate = enable;
1073 * Avoid calling into the driver (or doing delays) if the chip select
1074 * isn't actually changing from the last time this was called.
1076 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077 spi_is_last_cs(spi)) ||
1078 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079 !spi_is_last_cs(spi))) &&
1080 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1083 trace_spi_set_cs(spi, activate);
1085 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1090 if (spi->mode & SPI_CS_HIGH)
1094 * Handle chip select delays for GPIO based CS or controllers without
1095 * programmable chip select timing.
1097 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098 spi_delay_exec(&spi->cs_hold, NULL);
1100 if (spi_is_csgpiod(spi)) {
1101 if (!(spi->mode & SPI_NO_CS)) {
1102 spi_for_each_valid_cs(spi, idx) {
1103 if (spi_get_csgpiod(spi, idx))
1104 spi_toggle_csgpiod(spi, idx, enable, activate);
1107 /* Some SPI masters need both GPIO CS & slave_select */
1108 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109 spi->controller->set_cs)
1110 spi->controller->set_cs(spi, !enable);
1111 } else if (spi->controller->set_cs) {
1112 spi->controller->set_cs(spi, !enable);
1115 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1117 spi_delay_exec(&spi->cs_setup, NULL);
1119 spi_delay_exec(&spi->cs_inactive, NULL);
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125 struct sg_table *sgt, void *buf, size_t len,
1126 enum dma_data_direction dir, unsigned long attrs)
1128 const bool vmalloced_buf = is_vmalloc_addr(buf);
1129 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132 (unsigned long)buf < (PKMAP_BASE +
1133 (LAST_PKMAP * PAGE_SIZE)));
1135 const bool kmap_buf = false;
1139 struct page *vm_page;
1140 struct scatterlist *sg;
1145 if (vmalloced_buf || kmap_buf) {
1146 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148 } else if (virt_addr_valid(buf)) {
1149 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150 sgs = DIV_ROUND_UP(len, desc_len);
1155 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1160 for (i = 0; i < sgs; i++) {
1162 if (vmalloced_buf || kmap_buf) {
1164 * Next scatterlist entry size is the minimum between
1165 * the desc_len and the remaining buffer length that
1168 min = min_t(size_t, desc_len,
1170 PAGE_SIZE - offset_in_page(buf)));
1172 vm_page = vmalloc_to_page(buf);
1174 vm_page = kmap_to_page(buf);
1179 sg_set_page(sg, vm_page,
1180 min, offset_in_page(buf));
1182 min = min_t(size_t, len, desc_len);
1184 sg_set_buf(sg, sg_buf, min);
1192 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202 struct sg_table *sgt, void *buf, size_t len,
1203 enum dma_data_direction dir)
1205 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209 struct device *dev, struct sg_table *sgt,
1210 enum dma_data_direction dir,
1211 unsigned long attrs)
1213 if (sgt->orig_nents) {
1214 dma_unmap_sgtable(dev, sgt, dir, attrs);
1216 sgt->orig_nents = 0;
1221 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1222 struct sg_table *sgt, enum dma_data_direction dir)
1224 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1227 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1229 struct device *tx_dev, *rx_dev;
1230 struct spi_transfer *xfer;
1237 tx_dev = ctlr->dma_tx->device->dev;
1238 else if (ctlr->dma_map_dev)
1239 tx_dev = ctlr->dma_map_dev;
1241 tx_dev = ctlr->dev.parent;
1244 rx_dev = ctlr->dma_rx->device->dev;
1245 else if (ctlr->dma_map_dev)
1246 rx_dev = ctlr->dma_map_dev;
1248 rx_dev = ctlr->dev.parent;
1250 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1251 /* The sync is done before each transfer. */
1252 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1254 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1257 if (xfer->tx_buf != NULL) {
1258 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1259 (void *)xfer->tx_buf,
1260 xfer->len, DMA_TO_DEVICE,
1266 if (xfer->rx_buf != NULL) {
1267 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1268 xfer->rx_buf, xfer->len,
1269 DMA_FROM_DEVICE, attrs);
1271 spi_unmap_buf_attrs(ctlr, tx_dev,
1272 &xfer->tx_sg, DMA_TO_DEVICE,
1280 ctlr->cur_rx_dma_dev = rx_dev;
1281 ctlr->cur_tx_dma_dev = tx_dev;
1282 ctlr->cur_msg_mapped = true;
1287 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1289 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1290 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1291 struct spi_transfer *xfer;
1293 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1296 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1297 /* The sync has already been done after each transfer. */
1298 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1300 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1303 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1304 DMA_FROM_DEVICE, attrs);
1305 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1306 DMA_TO_DEVICE, attrs);
1309 ctlr->cur_msg_mapped = false;
1314 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1315 struct spi_transfer *xfer)
1317 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1318 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1320 if (!ctlr->cur_msg_mapped)
1323 if (xfer->tx_sg.orig_nents)
1324 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1325 if (xfer->rx_sg.orig_nents)
1326 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1329 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1330 struct spi_transfer *xfer)
1332 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1333 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1335 if (!ctlr->cur_msg_mapped)
1338 if (xfer->rx_sg.orig_nents)
1339 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1340 if (xfer->tx_sg.orig_nents)
1341 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1343 #else /* !CONFIG_HAS_DMA */
1344 static inline int __spi_map_msg(struct spi_controller *ctlr,
1345 struct spi_message *msg)
1350 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1351 struct spi_message *msg)
1356 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1357 struct spi_transfer *xfer)
1361 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1362 struct spi_transfer *xfer)
1365 #endif /* !CONFIG_HAS_DMA */
1367 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1368 struct spi_message *msg)
1370 struct spi_transfer *xfer;
1372 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1374 * Restore the original value of tx_buf or rx_buf if they are
1377 if (xfer->tx_buf == ctlr->dummy_tx)
1378 xfer->tx_buf = NULL;
1379 if (xfer->rx_buf == ctlr->dummy_rx)
1380 xfer->rx_buf = NULL;
1383 return __spi_unmap_msg(ctlr, msg);
1386 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1388 struct spi_transfer *xfer;
1390 unsigned int max_tx, max_rx;
1392 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1393 && !(msg->spi->mode & SPI_3WIRE)) {
1397 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1398 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1400 max_tx = max(xfer->len, max_tx);
1401 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1403 max_rx = max(xfer->len, max_rx);
1407 tmp = krealloc(ctlr->dummy_tx, max_tx,
1408 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1411 ctlr->dummy_tx = tmp;
1415 tmp = krealloc(ctlr->dummy_rx, max_rx,
1416 GFP_KERNEL | GFP_DMA);
1419 ctlr->dummy_rx = tmp;
1422 if (max_tx || max_rx) {
1423 list_for_each_entry(xfer, &msg->transfers,
1428 xfer->tx_buf = ctlr->dummy_tx;
1430 xfer->rx_buf = ctlr->dummy_rx;
1435 return __spi_map_msg(ctlr, msg);
1438 static int spi_transfer_wait(struct spi_controller *ctlr,
1439 struct spi_message *msg,
1440 struct spi_transfer *xfer)
1442 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1443 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1444 u32 speed_hz = xfer->speed_hz;
1445 unsigned long long ms;
1447 if (spi_controller_is_slave(ctlr)) {
1448 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1449 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1457 * For each byte we wait for 8 cycles of the SPI clock.
1458 * Since speed is defined in Hz and we want milliseconds,
1459 * use respective multiplier, but before the division,
1460 * otherwise we may get 0 for short transfers.
1462 ms = 8LL * MSEC_PER_SEC * xfer->len;
1463 do_div(ms, speed_hz);
1466 * Increase it twice and add 200 ms tolerance, use
1467 * predefined maximum in case of overflow.
1473 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1474 msecs_to_jiffies(ms));
1477 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1478 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1479 dev_err(&msg->spi->dev,
1480 "SPI transfer timed out\n");
1484 if (xfer->error & SPI_TRANS_FAIL_IO)
1491 static void _spi_transfer_delay_ns(u32 ns)
1495 if (ns <= NSEC_PER_USEC) {
1498 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1503 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1509 u32 delay = _delay->value;
1510 u32 unit = _delay->unit;
1517 case SPI_DELAY_UNIT_USECS:
1518 delay *= NSEC_PER_USEC;
1520 case SPI_DELAY_UNIT_NSECS:
1521 /* Nothing to do here */
1523 case SPI_DELAY_UNIT_SCK:
1524 /* Clock cycles need to be obtained from spi_transfer */
1528 * If there is unknown effective speed, approximate it
1529 * by underestimating with half of the requested Hz.
1531 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535 /* Convert delay to nanoseconds */
1536 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1544 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1546 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1555 delay = spi_delay_to_ns(_delay, xfer);
1559 _spi_transfer_delay_ns(delay);
1563 EXPORT_SYMBOL_GPL(spi_delay_exec);
1565 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1566 struct spi_transfer *xfer)
1568 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1569 u32 delay = xfer->cs_change_delay.value;
1570 u32 unit = xfer->cs_change_delay.unit;
1573 /* Return early on "fast" mode - for everything but USECS */
1575 if (unit == SPI_DELAY_UNIT_USECS)
1576 _spi_transfer_delay_ns(default_delay_ns);
1580 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1582 dev_err_once(&msg->spi->dev,
1583 "Use of unsupported delay unit %i, using default of %luus\n",
1584 unit, default_delay_ns / NSEC_PER_USEC);
1585 _spi_transfer_delay_ns(default_delay_ns);
1589 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1590 struct spi_transfer *xfer)
1592 _spi_transfer_cs_change_delay(msg, xfer);
1594 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1597 * spi_transfer_one_message - Default implementation of transfer_one_message()
1599 * This is a standard implementation of transfer_one_message() for
1600 * drivers which implement a transfer_one() operation. It provides
1601 * standard handling of delays and chip select management.
1603 static int spi_transfer_one_message(struct spi_controller *ctlr,
1604 struct spi_message *msg)
1606 struct spi_transfer *xfer;
1607 bool keep_cs = false;
1609 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1610 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1612 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1613 spi_set_cs(msg->spi, !xfer->cs_off, false);
1615 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1616 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1618 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1619 trace_spi_transfer_start(msg, xfer);
1621 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1622 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1624 if (!ctlr->ptp_sts_supported) {
1625 xfer->ptp_sts_word_pre = 0;
1626 ptp_read_system_prets(xfer->ptp_sts);
1629 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1630 reinit_completion(&ctlr->xfer_completion);
1633 spi_dma_sync_for_device(ctlr, xfer);
1634 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1636 spi_dma_sync_for_cpu(ctlr, xfer);
1638 if (ctlr->cur_msg_mapped &&
1639 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1640 __spi_unmap_msg(ctlr, msg);
1641 ctlr->fallback = true;
1642 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646 SPI_STATISTICS_INCREMENT_FIELD(statm,
1648 SPI_STATISTICS_INCREMENT_FIELD(stats,
1650 dev_err(&msg->spi->dev,
1651 "SPI transfer failed: %d\n", ret);
1656 ret = spi_transfer_wait(ctlr, msg, xfer);
1661 spi_dma_sync_for_cpu(ctlr, xfer);
1664 dev_err(&msg->spi->dev,
1665 "Bufferless transfer has length %u\n",
1669 if (!ctlr->ptp_sts_supported) {
1670 ptp_read_system_postts(xfer->ptp_sts);
1671 xfer->ptp_sts_word_post = xfer->len;
1674 trace_spi_transfer_stop(msg, xfer);
1676 if (msg->status != -EINPROGRESS)
1679 spi_transfer_delay_exec(xfer);
1681 if (xfer->cs_change) {
1682 if (list_is_last(&xfer->transfer_list,
1687 spi_set_cs(msg->spi, false, false);
1688 _spi_transfer_cs_change_delay(msg, xfer);
1689 if (!list_next_entry(xfer, transfer_list)->cs_off)
1690 spi_set_cs(msg->spi, true, false);
1692 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1693 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1694 spi_set_cs(msg->spi, xfer->cs_off, false);
1697 msg->actual_length += xfer->len;
1701 if (ret != 0 || !keep_cs)
1702 spi_set_cs(msg->spi, false, false);
1704 if (msg->status == -EINPROGRESS)
1707 if (msg->status && ctlr->handle_err)
1708 ctlr->handle_err(ctlr, msg);
1710 spi_finalize_current_message(ctlr);
1716 * spi_finalize_current_transfer - report completion of a transfer
1717 * @ctlr: the controller reporting completion
1719 * Called by SPI drivers using the core transfer_one_message()
1720 * implementation to notify it that the current interrupt driven
1721 * transfer has finished and the next one may be scheduled.
1723 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1725 complete(&ctlr->xfer_completion);
1727 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1729 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1731 if (ctlr->auto_runtime_pm) {
1732 pm_runtime_mark_last_busy(ctlr->dev.parent);
1733 pm_runtime_put_autosuspend(ctlr->dev.parent);
1737 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1738 struct spi_message *msg, bool was_busy)
1740 struct spi_transfer *xfer;
1743 if (!was_busy && ctlr->auto_runtime_pm) {
1744 ret = pm_runtime_get_sync(ctlr->dev.parent);
1746 pm_runtime_put_noidle(ctlr->dev.parent);
1747 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751 spi_finalize_current_message(ctlr);
1758 trace_spi_controller_busy(ctlr);
1760 if (!was_busy && ctlr->prepare_transfer_hardware) {
1761 ret = ctlr->prepare_transfer_hardware(ctlr);
1764 "failed to prepare transfer hardware: %d\n",
1767 if (ctlr->auto_runtime_pm)
1768 pm_runtime_put(ctlr->dev.parent);
1771 spi_finalize_current_message(ctlr);
1777 trace_spi_message_start(msg);
1779 if (ctlr->prepare_message) {
1780 ret = ctlr->prepare_message(ctlr, msg);
1782 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1785 spi_finalize_current_message(ctlr);
1788 msg->prepared = true;
1791 ret = spi_map_msg(ctlr, msg);
1794 spi_finalize_current_message(ctlr);
1798 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1799 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1800 xfer->ptp_sts_word_pre = 0;
1801 ptp_read_system_prets(xfer->ptp_sts);
1806 * Drivers implementation of transfer_one_message() must arrange for
1807 * spi_finalize_current_message() to get called. Most drivers will do
1808 * this in the calling context, but some don't. For those cases, a
1809 * completion is used to guarantee that this function does not return
1810 * until spi_finalize_current_message() is done accessing
1812 * Use of the following two flags enable to opportunistically skip the
1813 * use of the completion since its use involves expensive spin locks.
1814 * In case of a race with the context that calls
1815 * spi_finalize_current_message() the completion will always be used,
1816 * due to strict ordering of these flags using barriers.
1818 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1819 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1820 reinit_completion(&ctlr->cur_msg_completion);
1821 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1823 ret = ctlr->transfer_one_message(ctlr, msg);
1826 "failed to transfer one message from queue\n");
1830 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1831 smp_mb(); /* See spi_finalize_current_message()... */
1832 if (READ_ONCE(ctlr->cur_msg_incomplete))
1833 wait_for_completion(&ctlr->cur_msg_completion);
1839 * __spi_pump_messages - function which processes SPI message queue
1840 * @ctlr: controller to process queue for
1841 * @in_kthread: true if we are in the context of the message pump thread
1843 * This function checks if there is any SPI message in the queue that
1844 * needs processing and if so call out to the driver to initialize hardware
1845 * and transfer each message.
1847 * Note that it is called both from the kthread itself and also from
1848 * inside spi_sync(); the queue extraction handling at the top of the
1849 * function should deal with this safely.
1851 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1853 struct spi_message *msg;
1854 bool was_busy = false;
1855 unsigned long flags;
1858 /* Take the I/O mutex */
1859 mutex_lock(&ctlr->io_mutex);
1862 spin_lock_irqsave(&ctlr->queue_lock, flags);
1864 /* Make sure we are not already running a message */
1868 /* Check if the queue is idle */
1869 if (list_empty(&ctlr->queue) || !ctlr->running) {
1873 /* Defer any non-atomic teardown to the thread */
1875 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1876 !ctlr->unprepare_transfer_hardware) {
1877 spi_idle_runtime_pm(ctlr);
1879 ctlr->queue_empty = true;
1880 trace_spi_controller_idle(ctlr);
1882 kthread_queue_work(ctlr->kworker,
1883 &ctlr->pump_messages);
1889 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1891 kfree(ctlr->dummy_rx);
1892 ctlr->dummy_rx = NULL;
1893 kfree(ctlr->dummy_tx);
1894 ctlr->dummy_tx = NULL;
1895 if (ctlr->unprepare_transfer_hardware &&
1896 ctlr->unprepare_transfer_hardware(ctlr))
1898 "failed to unprepare transfer hardware\n");
1899 spi_idle_runtime_pm(ctlr);
1900 trace_spi_controller_idle(ctlr);
1902 spin_lock_irqsave(&ctlr->queue_lock, flags);
1903 ctlr->queue_empty = true;
1907 /* Extract head of queue */
1908 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1909 ctlr->cur_msg = msg;
1911 list_del_init(&msg->queue);
1916 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1918 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1919 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1921 ctlr->cur_msg = NULL;
1922 ctlr->fallback = false;
1924 mutex_unlock(&ctlr->io_mutex);
1926 /* Prod the scheduler in case transfer_one() was busy waiting */
1932 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1933 mutex_unlock(&ctlr->io_mutex);
1937 * spi_pump_messages - kthread work function which processes spi message queue
1938 * @work: pointer to kthread work struct contained in the controller struct
1940 static void spi_pump_messages(struct kthread_work *work)
1942 struct spi_controller *ctlr =
1943 container_of(work, struct spi_controller, pump_messages);
1945 __spi_pump_messages(ctlr, true);
1949 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1950 * @ctlr: Pointer to the spi_controller structure of the driver
1951 * @xfer: Pointer to the transfer being timestamped
1952 * @progress: How many words (not bytes) have been transferred so far
1953 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1954 * transfer, for less jitter in time measurement. Only compatible
1955 * with PIO drivers. If true, must follow up with
1956 * spi_take_timestamp_post or otherwise system will crash.
1957 * WARNING: for fully predictable results, the CPU frequency must
1958 * also be under control (governor).
1960 * This is a helper for drivers to collect the beginning of the TX timestamp
1961 * for the requested byte from the SPI transfer. The frequency with which this
1962 * function must be called (once per word, once for the whole transfer, once
1963 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1964 * greater than or equal to the requested byte at the time of the call. The
1965 * timestamp is only taken once, at the first such call. It is assumed that
1966 * the driver advances its @tx buffer pointer monotonically.
1968 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1969 struct spi_transfer *xfer,
1970 size_t progress, bool irqs_off)
1975 if (xfer->timestamped)
1978 if (progress > xfer->ptp_sts_word_pre)
1981 /* Capture the resolution of the timestamp */
1982 xfer->ptp_sts_word_pre = progress;
1985 local_irq_save(ctlr->irq_flags);
1989 ptp_read_system_prets(xfer->ptp_sts);
1991 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1994 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1995 * @ctlr: Pointer to the spi_controller structure of the driver
1996 * @xfer: Pointer to the transfer being timestamped
1997 * @progress: How many words (not bytes) have been transferred so far
1998 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2000 * This is a helper for drivers to collect the end of the TX timestamp for
2001 * the requested byte from the SPI transfer. Can be called with an arbitrary
2002 * frequency: only the first call where @tx exceeds or is equal to the
2003 * requested word will be timestamped.
2005 void spi_take_timestamp_post(struct spi_controller *ctlr,
2006 struct spi_transfer *xfer,
2007 size_t progress, bool irqs_off)
2012 if (xfer->timestamped)
2015 if (progress < xfer->ptp_sts_word_post)
2018 ptp_read_system_postts(xfer->ptp_sts);
2021 local_irq_restore(ctlr->irq_flags);
2025 /* Capture the resolution of the timestamp */
2026 xfer->ptp_sts_word_post = progress;
2028 xfer->timestamped = 1;
2030 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2033 * spi_set_thread_rt - set the controller to pump at realtime priority
2034 * @ctlr: controller to boost priority of
2036 * This can be called because the controller requested realtime priority
2037 * (by setting the ->rt value before calling spi_register_controller()) or
2038 * because a device on the bus said that its transfers needed realtime
2041 * NOTE: at the moment if any device on a bus says it needs realtime then
2042 * the thread will be at realtime priority for all transfers on that
2043 * controller. If this eventually becomes a problem we may see if we can
2044 * find a way to boost the priority only temporarily during relevant
2047 static void spi_set_thread_rt(struct spi_controller *ctlr)
2049 dev_info(&ctlr->dev,
2050 "will run message pump with realtime priority\n");
2051 sched_set_fifo(ctlr->kworker->task);
2054 static int spi_init_queue(struct spi_controller *ctlr)
2056 ctlr->running = false;
2058 ctlr->queue_empty = true;
2060 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2061 if (IS_ERR(ctlr->kworker)) {
2062 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2063 return PTR_ERR(ctlr->kworker);
2066 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2069 * Controller config will indicate if this controller should run the
2070 * message pump with high (realtime) priority to reduce the transfer
2071 * latency on the bus by minimising the delay between a transfer
2072 * request and the scheduling of the message pump thread. Without this
2073 * setting the message pump thread will remain at default priority.
2076 spi_set_thread_rt(ctlr);
2082 * spi_get_next_queued_message() - called by driver to check for queued
2084 * @ctlr: the controller to check for queued messages
2086 * If there are more messages in the queue, the next message is returned from
2089 * Return: the next message in the queue, else NULL if the queue is empty.
2091 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2093 struct spi_message *next;
2094 unsigned long flags;
2096 /* Get a pointer to the next message, if any */
2097 spin_lock_irqsave(&ctlr->queue_lock, flags);
2098 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2100 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2107 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2108 * and spi_maybe_unoptimize_message()
2109 * @msg: the message to unoptimize
2111 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2112 * core should use spi_maybe_unoptimize_message() rather than calling this
2113 * function directly.
2115 * It is not valid to call this on a message that is not currently optimized.
2117 static void __spi_unoptimize_message(struct spi_message *msg)
2119 struct spi_controller *ctlr = msg->spi->controller;
2121 if (ctlr->unoptimize_message)
2122 ctlr->unoptimize_message(msg);
2124 spi_res_release(ctlr, msg);
2126 msg->optimized = false;
2127 msg->opt_state = NULL;
2131 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2132 * @msg: the message to unoptimize
2134 * This function is used to unoptimize a message if and only if it was
2135 * optimized by the core (via spi_maybe_optimize_message()).
2137 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2139 if (!msg->pre_optimized && msg->optimized)
2140 __spi_unoptimize_message(msg);
2144 * spi_finalize_current_message() - the current message is complete
2145 * @ctlr: the controller to return the message to
2147 * Called by the driver to notify the core that the message in the front of the
2148 * queue is complete and can be removed from the queue.
2150 void spi_finalize_current_message(struct spi_controller *ctlr)
2152 struct spi_transfer *xfer;
2153 struct spi_message *mesg;
2156 mesg = ctlr->cur_msg;
2158 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2159 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2160 ptp_read_system_postts(xfer->ptp_sts);
2161 xfer->ptp_sts_word_post = xfer->len;
2165 if (unlikely(ctlr->ptp_sts_supported))
2166 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2167 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2169 spi_unmap_msg(ctlr, mesg);
2171 if (mesg->prepared && ctlr->unprepare_message) {
2172 ret = ctlr->unprepare_message(ctlr, mesg);
2174 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179 mesg->prepared = false;
2181 spi_maybe_unoptimize_message(mesg);
2183 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2184 smp_mb(); /* See __spi_pump_transfer_message()... */
2185 if (READ_ONCE(ctlr->cur_msg_need_completion))
2186 complete(&ctlr->cur_msg_completion);
2188 trace_spi_message_done(mesg);
2192 mesg->complete(mesg->context);
2194 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2196 static int spi_start_queue(struct spi_controller *ctlr)
2198 unsigned long flags;
2200 spin_lock_irqsave(&ctlr->queue_lock, flags);
2202 if (ctlr->running || ctlr->busy) {
2203 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2207 ctlr->running = true;
2208 ctlr->cur_msg = NULL;
2209 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2211 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216 static int spi_stop_queue(struct spi_controller *ctlr)
2218 unsigned long flags;
2219 unsigned limit = 500;
2222 spin_lock_irqsave(&ctlr->queue_lock, flags);
2225 * This is a bit lame, but is optimized for the common execution path.
2226 * A wait_queue on the ctlr->busy could be used, but then the common
2227 * execution path (pump_messages) would be required to call wake_up or
2228 * friends on every SPI message. Do this instead.
2230 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232 usleep_range(10000, 11000);
2233 spin_lock_irqsave(&ctlr->queue_lock, flags);
2236 if (!list_empty(&ctlr->queue) || ctlr->busy)
2239 ctlr->running = false;
2241 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2246 static int spi_destroy_queue(struct spi_controller *ctlr)
2250 ret = spi_stop_queue(ctlr);
2253 * kthread_flush_worker will block until all work is done.
2254 * If the reason that stop_queue timed out is that the work will never
2255 * finish, then it does no good to call flush/stop thread, so
2259 dev_err(&ctlr->dev, "problem destroying queue\n");
2263 kthread_destroy_worker(ctlr->kworker);
2268 static int __spi_queued_transfer(struct spi_device *spi,
2269 struct spi_message *msg,
2272 struct spi_controller *ctlr = spi->controller;
2273 unsigned long flags;
2275 spin_lock_irqsave(&ctlr->queue_lock, flags);
2277 if (!ctlr->running) {
2278 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2281 msg->actual_length = 0;
2282 msg->status = -EINPROGRESS;
2284 list_add_tail(&msg->queue, &ctlr->queue);
2285 ctlr->queue_empty = false;
2286 if (!ctlr->busy && need_pump)
2287 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2289 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2294 * spi_queued_transfer - transfer function for queued transfers
2295 * @spi: SPI device which is requesting transfer
2296 * @msg: SPI message which is to handled is queued to driver queue
2298 * Return: zero on success, else a negative error code.
2300 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2302 return __spi_queued_transfer(spi, msg, true);
2305 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2309 ctlr->transfer = spi_queued_transfer;
2310 if (!ctlr->transfer_one_message)
2311 ctlr->transfer_one_message = spi_transfer_one_message;
2313 /* Initialize and start queue */
2314 ret = spi_init_queue(ctlr);
2316 dev_err(&ctlr->dev, "problem initializing queue\n");
2317 goto err_init_queue;
2319 ctlr->queued = true;
2320 ret = spi_start_queue(ctlr);
2322 dev_err(&ctlr->dev, "problem starting queue\n");
2323 goto err_start_queue;
2329 spi_destroy_queue(ctlr);
2335 * spi_flush_queue - Send all pending messages in the queue from the callers'
2337 * @ctlr: controller to process queue for
2339 * This should be used when one wants to ensure all pending messages have been
2340 * sent before doing something. Is used by the spi-mem code to make sure SPI
2341 * memory operations do not preempt regular SPI transfers that have been queued
2342 * before the spi-mem operation.
2344 void spi_flush_queue(struct spi_controller *ctlr)
2346 if (ctlr->transfer == spi_queued_transfer)
2347 __spi_pump_messages(ctlr, false);
2350 /*-------------------------------------------------------------------------*/
2352 #if defined(CONFIG_OF)
2353 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2354 struct spi_delay *delay, const char *prop)
2358 if (!of_property_read_u32(nc, prop, &value)) {
2359 if (value > U16_MAX) {
2360 delay->value = DIV_ROUND_UP(value, 1000);
2361 delay->unit = SPI_DELAY_UNIT_USECS;
2363 delay->value = value;
2364 delay->unit = SPI_DELAY_UNIT_NSECS;
2369 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2370 struct device_node *nc)
2372 u32 value, cs[SPI_CS_CNT_MAX];
2375 /* Mode (clock phase/polarity/etc.) */
2376 if (of_property_read_bool(nc, "spi-cpha"))
2377 spi->mode |= SPI_CPHA;
2378 if (of_property_read_bool(nc, "spi-cpol"))
2379 spi->mode |= SPI_CPOL;
2380 if (of_property_read_bool(nc, "spi-3wire"))
2381 spi->mode |= SPI_3WIRE;
2382 if (of_property_read_bool(nc, "spi-lsb-first"))
2383 spi->mode |= SPI_LSB_FIRST;
2384 if (of_property_read_bool(nc, "spi-cs-high"))
2385 spi->mode |= SPI_CS_HIGH;
2387 /* Device DUAL/QUAD mode */
2388 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2391 spi->mode |= SPI_NO_TX;
2396 spi->mode |= SPI_TX_DUAL;
2399 spi->mode |= SPI_TX_QUAD;
2402 spi->mode |= SPI_TX_OCTAL;
2405 dev_warn(&ctlr->dev,
2406 "spi-tx-bus-width %d not supported\n",
2412 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2415 spi->mode |= SPI_NO_RX;
2420 spi->mode |= SPI_RX_DUAL;
2423 spi->mode |= SPI_RX_QUAD;
2426 spi->mode |= SPI_RX_OCTAL;
2429 dev_warn(&ctlr->dev,
2430 "spi-rx-bus-width %d not supported\n",
2436 if (spi_controller_is_slave(ctlr)) {
2437 if (!of_node_name_eq(nc, "slave")) {
2438 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2445 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2446 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2450 spi_set_all_cs_unused(spi);
2452 /* Device address */
2453 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2456 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2460 if (rc > ctlr->num_chipselect) {
2461 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2465 if ((of_property_read_bool(nc, "parallel-memories")) &&
2466 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2467 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2470 for (idx = 0; idx < rc; idx++)
2471 spi_set_chipselect(spi, idx, cs[idx]);
2474 * By default spi->chip_select[0] will hold the physical CS number,
2475 * so set bit 0 in spi->cs_index_mask.
2477 spi->cs_index_mask = BIT(0);
2480 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2481 spi->max_speed_hz = value;
2483 /* Device CS delays */
2484 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2485 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2486 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2491 static struct spi_device *
2492 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2494 struct spi_device *spi;
2497 /* Alloc an spi_device */
2498 spi = spi_alloc_device(ctlr);
2500 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2505 /* Select device driver */
2506 rc = of_alias_from_compatible(nc, spi->modalias,
2507 sizeof(spi->modalias));
2509 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2513 rc = of_spi_parse_dt(ctlr, spi, nc);
2517 /* Store a pointer to the node in the device structure */
2520 device_set_node(&spi->dev, of_fwnode_handle(nc));
2522 /* Register the new device */
2523 rc = spi_add_device(spi);
2525 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2526 goto err_of_node_put;
2539 * of_register_spi_devices() - Register child devices onto the SPI bus
2540 * @ctlr: Pointer to spi_controller device
2542 * Registers an spi_device for each child node of controller node which
2543 * represents a valid SPI slave.
2545 static void of_register_spi_devices(struct spi_controller *ctlr)
2547 struct spi_device *spi;
2548 struct device_node *nc;
2550 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2551 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2553 spi = of_register_spi_device(ctlr, nc);
2555 dev_warn(&ctlr->dev,
2556 "Failed to create SPI device for %pOF\n", nc);
2557 of_node_clear_flag(nc, OF_POPULATED);
2562 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2566 * spi_new_ancillary_device() - Register ancillary SPI device
2567 * @spi: Pointer to the main SPI device registering the ancillary device
2568 * @chip_select: Chip Select of the ancillary device
2570 * Register an ancillary SPI device; for example some chips have a chip-select
2571 * for normal device usage and another one for setup/firmware upload.
2573 * This may only be called from main SPI device's probe routine.
2575 * Return: 0 on success; negative errno on failure
2577 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2580 struct spi_controller *ctlr = spi->controller;
2581 struct spi_device *ancillary;
2584 /* Alloc an spi_device */
2585 ancillary = spi_alloc_device(ctlr);
2591 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2593 /* Use provided chip-select for ancillary device */
2594 spi_set_all_cs_unused(ancillary);
2595 spi_set_chipselect(ancillary, 0, chip_select);
2597 /* Take over SPI mode/speed from SPI main device */
2598 ancillary->max_speed_hz = spi->max_speed_hz;
2599 ancillary->mode = spi->mode;
2601 * By default spi->chip_select[0] will hold the physical CS number,
2602 * so set bit 0 in spi->cs_index_mask.
2604 ancillary->cs_index_mask = BIT(0);
2606 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2608 /* Register the new device */
2609 rc = __spi_add_device(ancillary);
2611 dev_err(&spi->dev, "failed to register ancillary device\n");
2618 spi_dev_put(ancillary);
2621 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2624 struct acpi_spi_lookup {
2625 struct spi_controller *ctlr;
2635 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2637 struct acpi_resource_spi_serialbus *sb;
2640 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2643 sb = &ares->data.spi_serial_bus;
2644 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2647 *count = *count + 1;
2653 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2654 * @adev: ACPI device
2656 * Return: the number of SpiSerialBus resources in the ACPI-device's
2657 * resource-list; or a negative error code.
2659 int acpi_spi_count_resources(struct acpi_device *adev)
2665 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2669 acpi_dev_free_resource_list(&r);
2673 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2675 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2676 struct acpi_spi_lookup *lookup)
2678 const union acpi_object *obj;
2680 if (!x86_apple_machine)
2683 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2684 && obj->buffer.length >= 4)
2685 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2687 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2688 && obj->buffer.length == 8)
2689 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2691 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2692 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2693 lookup->mode |= SPI_LSB_FIRST;
2695 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2696 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2697 lookup->mode |= SPI_CPOL;
2699 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2700 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2701 lookup->mode |= SPI_CPHA;
2704 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2706 struct acpi_spi_lookup *lookup = data;
2707 struct spi_controller *ctlr = lookup->ctlr;
2709 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2710 struct acpi_resource_spi_serialbus *sb;
2711 acpi_handle parent_handle;
2714 sb = &ares->data.spi_serial_bus;
2715 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2717 if (lookup->index != -1 && lookup->n++ != lookup->index)
2720 status = acpi_get_handle(NULL,
2721 sb->resource_source.string_ptr,
2724 if (ACPI_FAILURE(status))
2728 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2731 struct acpi_device *adev;
2733 adev = acpi_fetch_acpi_dev(parent_handle);
2737 ctlr = acpi_spi_find_controller_by_adev(adev);
2739 return -EPROBE_DEFER;
2741 lookup->ctlr = ctlr;
2745 * ACPI DeviceSelection numbering is handled by the
2746 * host controller driver in Windows and can vary
2747 * from driver to driver. In Linux we always expect
2748 * 0 .. max - 1 so we need to ask the driver to
2749 * translate between the two schemes.
2751 if (ctlr->fw_translate_cs) {
2752 int cs = ctlr->fw_translate_cs(ctlr,
2753 sb->device_selection);
2756 lookup->chip_select = cs;
2758 lookup->chip_select = sb->device_selection;
2761 lookup->max_speed_hz = sb->connection_speed;
2762 lookup->bits_per_word = sb->data_bit_length;
2764 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2765 lookup->mode |= SPI_CPHA;
2766 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2767 lookup->mode |= SPI_CPOL;
2768 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2769 lookup->mode |= SPI_CS_HIGH;
2771 } else if (lookup->irq < 0) {
2774 if (acpi_dev_resource_interrupt(ares, 0, &r))
2775 lookup->irq = r.start;
2778 /* Always tell the ACPI core to skip this resource */
2783 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2784 * @ctlr: controller to which the spi device belongs
2785 * @adev: ACPI Device for the spi device
2786 * @index: Index of the spi resource inside the ACPI Node
2788 * This should be used to allocate a new SPI device from and ACPI Device node.
2789 * The caller is responsible for calling spi_add_device to register the SPI device.
2791 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2792 * using the resource.
2793 * If index is set to -1, index is not used.
2794 * Note: If index is -1, ctlr must be set.
2796 * Return: a pointer to the new device, or ERR_PTR on error.
2798 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2799 struct acpi_device *adev,
2802 acpi_handle parent_handle = NULL;
2803 struct list_head resource_list;
2804 struct acpi_spi_lookup lookup = {};
2805 struct spi_device *spi;
2808 if (!ctlr && index == -1)
2809 return ERR_PTR(-EINVAL);
2813 lookup.index = index;
2816 INIT_LIST_HEAD(&resource_list);
2817 ret = acpi_dev_get_resources(adev, &resource_list,
2818 acpi_spi_add_resource, &lookup);
2819 acpi_dev_free_resource_list(&resource_list);
2822 /* Found SPI in _CRS but it points to another controller */
2823 return ERR_PTR(ret);
2825 if (!lookup.max_speed_hz &&
2826 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2827 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2828 /* Apple does not use _CRS but nested devices for SPI slaves */
2829 acpi_spi_parse_apple_properties(adev, &lookup);
2832 if (!lookup.max_speed_hz)
2833 return ERR_PTR(-ENODEV);
2835 spi = spi_alloc_device(lookup.ctlr);
2837 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2838 dev_name(&adev->dev));
2839 return ERR_PTR(-ENOMEM);
2842 spi_set_all_cs_unused(spi);
2843 spi_set_chipselect(spi, 0, lookup.chip_select);
2845 ACPI_COMPANION_SET(&spi->dev, adev);
2846 spi->max_speed_hz = lookup.max_speed_hz;
2847 spi->mode |= lookup.mode;
2848 spi->irq = lookup.irq;
2849 spi->bits_per_word = lookup.bits_per_word;
2851 * By default spi->chip_select[0] will hold the physical CS number,
2852 * so set bit 0 in spi->cs_index_mask.
2854 spi->cs_index_mask = BIT(0);
2858 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2860 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2861 struct acpi_device *adev)
2863 struct spi_device *spi;
2865 if (acpi_bus_get_status(adev) || !adev->status.present ||
2866 acpi_device_enumerated(adev))
2869 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2871 if (PTR_ERR(spi) == -ENOMEM)
2872 return AE_NO_MEMORY;
2877 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2878 sizeof(spi->modalias));
2881 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2883 acpi_device_set_enumerated(adev);
2885 adev->power.flags.ignore_parent = true;
2886 if (spi_add_device(spi)) {
2887 adev->power.flags.ignore_parent = false;
2888 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2889 dev_name(&adev->dev));
2896 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2897 void *data, void **return_value)
2899 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2900 struct spi_controller *ctlr = data;
2905 return acpi_register_spi_device(ctlr, adev);
2908 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2910 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2915 handle = ACPI_HANDLE(ctlr->dev.parent);
2919 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2920 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2921 acpi_spi_add_device, NULL, ctlr, NULL);
2922 if (ACPI_FAILURE(status))
2923 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2926 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2927 #endif /* CONFIG_ACPI */
2929 static void spi_controller_release(struct device *dev)
2931 struct spi_controller *ctlr;
2933 ctlr = container_of(dev, struct spi_controller, dev);
2937 static struct class spi_master_class = {
2938 .name = "spi_master",
2939 .dev_release = spi_controller_release,
2940 .dev_groups = spi_master_groups,
2943 #ifdef CONFIG_SPI_SLAVE
2945 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2947 * @spi: device used for the current transfer
2949 int spi_slave_abort(struct spi_device *spi)
2951 struct spi_controller *ctlr = spi->controller;
2953 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2954 return ctlr->slave_abort(ctlr);
2958 EXPORT_SYMBOL_GPL(spi_slave_abort);
2960 int spi_target_abort(struct spi_device *spi)
2962 struct spi_controller *ctlr = spi->controller;
2964 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2965 return ctlr->target_abort(ctlr);
2969 EXPORT_SYMBOL_GPL(spi_target_abort);
2971 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2974 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2976 struct device *child;
2978 child = device_find_any_child(&ctlr->dev);
2979 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2982 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2983 const char *buf, size_t count)
2985 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2987 struct spi_device *spi;
2988 struct device *child;
2992 rc = sscanf(buf, "%31s", name);
2993 if (rc != 1 || !name[0])
2996 child = device_find_any_child(&ctlr->dev);
2998 /* Remove registered slave */
2999 device_unregister(child);
3003 if (strcmp(name, "(null)")) {
3004 /* Register new slave */
3005 spi = spi_alloc_device(ctlr);
3009 strscpy(spi->modalias, name, sizeof(spi->modalias));
3011 rc = spi_add_device(spi);
3021 static DEVICE_ATTR_RW(slave);
3023 static struct attribute *spi_slave_attrs[] = {
3024 &dev_attr_slave.attr,
3028 static const struct attribute_group spi_slave_group = {
3029 .attrs = spi_slave_attrs,
3032 static const struct attribute_group *spi_slave_groups[] = {
3033 &spi_controller_statistics_group,
3038 static struct class spi_slave_class = {
3039 .name = "spi_slave",
3040 .dev_release = spi_controller_release,
3041 .dev_groups = spi_slave_groups,
3044 extern struct class spi_slave_class; /* dummy */
3048 * __spi_alloc_controller - allocate an SPI master or slave controller
3049 * @dev: the controller, possibly using the platform_bus
3050 * @size: how much zeroed driver-private data to allocate; the pointer to this
3051 * memory is in the driver_data field of the returned device, accessible
3052 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3053 * drivers granting DMA access to portions of their private data need to
3054 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3055 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3056 * slave (true) controller
3057 * Context: can sleep
3059 * This call is used only by SPI controller drivers, which are the
3060 * only ones directly touching chip registers. It's how they allocate
3061 * an spi_controller structure, prior to calling spi_register_controller().
3063 * This must be called from context that can sleep.
3065 * The caller is responsible for assigning the bus number and initializing the
3066 * controller's methods before calling spi_register_controller(); and (after
3067 * errors adding the device) calling spi_controller_put() to prevent a memory
3070 * Return: the SPI controller structure on success, else NULL.
3072 struct spi_controller *__spi_alloc_controller(struct device *dev,
3073 unsigned int size, bool slave)
3075 struct spi_controller *ctlr;
3076 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3081 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3085 device_initialize(&ctlr->dev);
3086 INIT_LIST_HEAD(&ctlr->queue);
3087 spin_lock_init(&ctlr->queue_lock);
3088 spin_lock_init(&ctlr->bus_lock_spinlock);
3089 mutex_init(&ctlr->bus_lock_mutex);
3090 mutex_init(&ctlr->io_mutex);
3091 mutex_init(&ctlr->add_lock);
3093 ctlr->num_chipselect = 1;
3094 ctlr->slave = slave;
3095 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3096 ctlr->dev.class = &spi_slave_class;
3098 ctlr->dev.class = &spi_master_class;
3099 ctlr->dev.parent = dev;
3100 pm_suspend_ignore_children(&ctlr->dev, true);
3101 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3105 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3107 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3109 spi_controller_put(*(struct spi_controller **)ctlr);
3113 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3114 * @dev: physical device of SPI controller
3115 * @size: how much zeroed driver-private data to allocate
3116 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3117 * Context: can sleep
3119 * Allocate an SPI controller and automatically release a reference on it
3120 * when @dev is unbound from its driver. Drivers are thus relieved from
3121 * having to call spi_controller_put().
3123 * The arguments to this function are identical to __spi_alloc_controller().
3125 * Return: the SPI controller structure on success, else NULL.
3127 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3131 struct spi_controller **ptr, *ctlr;
3133 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3138 ctlr = __spi_alloc_controller(dev, size, slave);
3140 ctlr->devm_allocated = true;
3142 devres_add(dev, ptr);
3149 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3152 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3153 * @ctlr: The SPI master to grab GPIO descriptors for
3155 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3158 struct gpio_desc **cs;
3159 struct device *dev = &ctlr->dev;
3160 unsigned long native_cs_mask = 0;
3161 unsigned int num_cs_gpios = 0;
3163 nb = gpiod_count(dev, "cs");
3165 /* No GPIOs at all is fine, else return the error */
3171 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3173 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3177 ctlr->cs_gpiods = cs;
3179 for (i = 0; i < nb; i++) {
3181 * Most chipselects are active low, the inverted
3182 * semantics are handled by special quirks in gpiolib,
3183 * so initializing them GPIOD_OUT_LOW here means
3184 * "unasserted", in most cases this will drive the physical
3187 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3190 return PTR_ERR(cs[i]);
3194 * If we find a CS GPIO, name it after the device and
3199 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3203 gpiod_set_consumer_name(cs[i], gpioname);
3208 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3209 dev_err(dev, "Invalid native chip select %d\n", i);
3212 native_cs_mask |= BIT(i);
3215 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3217 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3218 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3219 dev_err(dev, "No unused native chip select available\n");
3226 static int spi_controller_check_ops(struct spi_controller *ctlr)
3229 * The controller may implement only the high-level SPI-memory like
3230 * operations if it does not support regular SPI transfers, and this is
3232 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3233 * one of the ->transfer_xxx() method be implemented.
3235 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3236 if (!ctlr->transfer && !ctlr->transfer_one &&
3237 !ctlr->transfer_one_message) {
3245 /* Allocate dynamic bus number using Linux idr */
3246 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3250 mutex_lock(&board_lock);
3251 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3252 mutex_unlock(&board_lock);
3253 if (WARN(id < 0, "couldn't get idr"))
3254 return id == -ENOSPC ? -EBUSY : id;
3260 * spi_register_controller - register SPI master or slave controller
3261 * @ctlr: initialized master, originally from spi_alloc_master() or
3263 * Context: can sleep
3265 * SPI controllers connect to their drivers using some non-SPI bus,
3266 * such as the platform bus. The final stage of probe() in that code
3267 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3269 * SPI controllers use board specific (often SOC specific) bus numbers,
3270 * and board-specific addressing for SPI devices combines those numbers
3271 * with chip select numbers. Since SPI does not directly support dynamic
3272 * device identification, boards need configuration tables telling which
3273 * chip is at which address.
3275 * This must be called from context that can sleep. It returns zero on
3276 * success, else a negative error code (dropping the controller's refcount).
3277 * After a successful return, the caller is responsible for calling
3278 * spi_unregister_controller().
3280 * Return: zero on success, else a negative error code.
3282 int spi_register_controller(struct spi_controller *ctlr)
3284 struct device *dev = ctlr->dev.parent;
3285 struct boardinfo *bi;
3294 * Make sure all necessary hooks are implemented before registering
3295 * the SPI controller.
3297 status = spi_controller_check_ops(ctlr);
3301 if (ctlr->bus_num < 0)
3302 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3303 if (ctlr->bus_num >= 0) {
3304 /* Devices with a fixed bus num must check-in with the num */
3305 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3309 if (ctlr->bus_num < 0) {
3310 first_dynamic = of_alias_get_highest_id("spi");
3311 if (first_dynamic < 0)
3316 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3320 ctlr->bus_lock_flag = 0;
3321 init_completion(&ctlr->xfer_completion);
3322 init_completion(&ctlr->cur_msg_completion);
3323 if (!ctlr->max_dma_len)
3324 ctlr->max_dma_len = INT_MAX;
3327 * Register the device, then userspace will see it.
3328 * Registration fails if the bus ID is in use.
3330 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3332 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3333 status = spi_get_gpio_descs(ctlr);
3337 * A controller using GPIO descriptors always
3338 * supports SPI_CS_HIGH if need be.
3340 ctlr->mode_bits |= SPI_CS_HIGH;
3344 * Even if it's just one always-selected device, there must
3345 * be at least one chipselect.
3347 if (!ctlr->num_chipselect) {
3352 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3353 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3354 ctlr->last_cs[idx] = SPI_INVALID_CS;
3356 status = device_add(&ctlr->dev);
3359 dev_dbg(dev, "registered %s %s\n",
3360 spi_controller_is_slave(ctlr) ? "slave" : "master",
3361 dev_name(&ctlr->dev));
3364 * If we're using a queued driver, start the queue. Note that we don't
3365 * need the queueing logic if the driver is only supporting high-level
3366 * memory operations.
3368 if (ctlr->transfer) {
3369 dev_info(dev, "controller is unqueued, this is deprecated\n");
3370 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3371 status = spi_controller_initialize_queue(ctlr);
3373 device_del(&ctlr->dev);
3377 /* Add statistics */
3378 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3379 if (!ctlr->pcpu_statistics) {
3380 dev_err(dev, "Error allocating per-cpu statistics\n");
3385 mutex_lock(&board_lock);
3386 list_add_tail(&ctlr->list, &spi_controller_list);
3387 list_for_each_entry(bi, &board_list, list)
3388 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3389 mutex_unlock(&board_lock);
3391 /* Register devices from the device tree and ACPI */
3392 of_register_spi_devices(ctlr);
3393 acpi_register_spi_devices(ctlr);
3397 spi_destroy_queue(ctlr);
3399 mutex_lock(&board_lock);
3400 idr_remove(&spi_master_idr, ctlr->bus_num);
3401 mutex_unlock(&board_lock);
3404 EXPORT_SYMBOL_GPL(spi_register_controller);
3406 static void devm_spi_unregister(struct device *dev, void *res)
3408 spi_unregister_controller(*(struct spi_controller **)res);
3412 * devm_spi_register_controller - register managed SPI master or slave
3414 * @dev: device managing SPI controller
3415 * @ctlr: initialized controller, originally from spi_alloc_master() or
3417 * Context: can sleep
3419 * Register a SPI device as with spi_register_controller() which will
3420 * automatically be unregistered and freed.
3422 * Return: zero on success, else a negative error code.
3424 int devm_spi_register_controller(struct device *dev,
3425 struct spi_controller *ctlr)
3427 struct spi_controller **ptr;
3430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3434 ret = spi_register_controller(ctlr);
3437 devres_add(dev, ptr);
3444 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3446 static int __unregister(struct device *dev, void *null)
3448 spi_unregister_device(to_spi_device(dev));
3453 * spi_unregister_controller - unregister SPI master or slave controller
3454 * @ctlr: the controller being unregistered
3455 * Context: can sleep
3457 * This call is used only by SPI controller drivers, which are the
3458 * only ones directly touching chip registers.
3460 * This must be called from context that can sleep.
3462 * Note that this function also drops a reference to the controller.
3464 void spi_unregister_controller(struct spi_controller *ctlr)
3466 struct spi_controller *found;
3467 int id = ctlr->bus_num;
3469 /* Prevent addition of new devices, unregister existing ones */
3470 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3471 mutex_lock(&ctlr->add_lock);
3473 device_for_each_child(&ctlr->dev, NULL, __unregister);
3475 /* First make sure that this controller was ever added */
3476 mutex_lock(&board_lock);
3477 found = idr_find(&spi_master_idr, id);
3478 mutex_unlock(&board_lock);
3480 if (spi_destroy_queue(ctlr))
3481 dev_err(&ctlr->dev, "queue remove failed\n");
3483 mutex_lock(&board_lock);
3484 list_del(&ctlr->list);
3485 mutex_unlock(&board_lock);
3487 device_del(&ctlr->dev);
3490 mutex_lock(&board_lock);
3492 idr_remove(&spi_master_idr, id);
3493 mutex_unlock(&board_lock);
3495 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3496 mutex_unlock(&ctlr->add_lock);
3499 * Release the last reference on the controller if its driver
3500 * has not yet been converted to devm_spi_alloc_master/slave().
3502 if (!ctlr->devm_allocated)
3503 put_device(&ctlr->dev);
3505 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3507 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3509 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3512 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3514 mutex_lock(&ctlr->bus_lock_mutex);
3515 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3516 mutex_unlock(&ctlr->bus_lock_mutex);
3519 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3521 mutex_lock(&ctlr->bus_lock_mutex);
3522 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3523 mutex_unlock(&ctlr->bus_lock_mutex);
3526 int spi_controller_suspend(struct spi_controller *ctlr)
3530 /* Basically no-ops for non-queued controllers */
3532 ret = spi_stop_queue(ctlr);
3534 dev_err(&ctlr->dev, "queue stop failed\n");
3537 __spi_mark_suspended(ctlr);
3540 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3542 int spi_controller_resume(struct spi_controller *ctlr)
3546 __spi_mark_resumed(ctlr);
3549 ret = spi_start_queue(ctlr);
3551 dev_err(&ctlr->dev, "queue restart failed\n");
3555 EXPORT_SYMBOL_GPL(spi_controller_resume);
3557 /*-------------------------------------------------------------------------*/
3559 /* Core methods for spi_message alterations */
3561 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3562 struct spi_message *msg,
3565 struct spi_replaced_transfers *rxfer = res;
3568 /* Call extra callback if requested */
3570 rxfer->release(ctlr, msg, res);
3572 /* Insert replaced transfers back into the message */
3573 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3575 /* Remove the formerly inserted entries */
3576 for (i = 0; i < rxfer->inserted; i++)
3577 list_del(&rxfer->inserted_transfers[i].transfer_list);
3581 * spi_replace_transfers - replace transfers with several transfers
3582 * and register change with spi_message.resources
3583 * @msg: the spi_message we work upon
3584 * @xfer_first: the first spi_transfer we want to replace
3585 * @remove: number of transfers to remove
3586 * @insert: the number of transfers we want to insert instead
3587 * @release: extra release code necessary in some circumstances
3588 * @extradatasize: extra data to allocate (with alignment guarantees
3589 * of struct @spi_transfer)
3592 * Returns: pointer to @spi_replaced_transfers,
3593 * PTR_ERR(...) in case of errors.
3595 static struct spi_replaced_transfers *spi_replace_transfers(
3596 struct spi_message *msg,
3597 struct spi_transfer *xfer_first,
3600 spi_replaced_release_t release,
3601 size_t extradatasize,
3604 struct spi_replaced_transfers *rxfer;
3605 struct spi_transfer *xfer;
3608 /* Allocate the structure using spi_res */
3609 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3610 struct_size(rxfer, inserted_transfers, insert)
3614 return ERR_PTR(-ENOMEM);
3616 /* The release code to invoke before running the generic release */
3617 rxfer->release = release;
3619 /* Assign extradata */
3622 &rxfer->inserted_transfers[insert];
3624 /* Init the replaced_transfers list */
3625 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3628 * Assign the list_entry after which we should reinsert
3629 * the @replaced_transfers - it may be spi_message.messages!
3631 rxfer->replaced_after = xfer_first->transfer_list.prev;
3633 /* Remove the requested number of transfers */
3634 for (i = 0; i < remove; i++) {
3636 * If the entry after replaced_after it is msg->transfers
3637 * then we have been requested to remove more transfers
3638 * than are in the list.
3640 if (rxfer->replaced_after->next == &msg->transfers) {
3641 dev_err(&msg->spi->dev,
3642 "requested to remove more spi_transfers than are available\n");
3643 /* Insert replaced transfers back into the message */
3644 list_splice(&rxfer->replaced_transfers,
3645 rxfer->replaced_after);
3647 /* Free the spi_replace_transfer structure... */
3648 spi_res_free(rxfer);
3650 /* ...and return with an error */
3651 return ERR_PTR(-EINVAL);
3655 * Remove the entry after replaced_after from list of
3656 * transfers and add it to list of replaced_transfers.
3658 list_move_tail(rxfer->replaced_after->next,
3659 &rxfer->replaced_transfers);
3663 * Create copy of the given xfer with identical settings
3664 * based on the first transfer to get removed.
3666 for (i = 0; i < insert; i++) {
3667 /* We need to run in reverse order */
3668 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3670 /* Copy all spi_transfer data */
3671 memcpy(xfer, xfer_first, sizeof(*xfer));
3674 list_add(&xfer->transfer_list, rxfer->replaced_after);
3676 /* Clear cs_change and delay for all but the last */
3678 xfer->cs_change = false;
3679 xfer->delay.value = 0;
3683 /* Set up inserted... */
3684 rxfer->inserted = insert;
3686 /* ...and register it with spi_res/spi_message */
3687 spi_res_add(msg, rxfer);
3692 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3693 struct spi_message *msg,
3694 struct spi_transfer **xferp,
3697 struct spi_transfer *xfer = *xferp, *xfers;
3698 struct spi_replaced_transfers *srt;
3702 /* Calculate how many we have to replace */
3703 count = DIV_ROUND_UP(xfer->len, maxsize);
3705 /* Create replacement */
3706 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3708 return PTR_ERR(srt);
3709 xfers = srt->inserted_transfers;
3712 * Now handle each of those newly inserted spi_transfers.
3713 * Note that the replacements spi_transfers all are preset
3714 * to the same values as *xferp, so tx_buf, rx_buf and len
3715 * are all identical (as well as most others)
3716 * so we just have to fix up len and the pointers.
3720 * The first transfer just needs the length modified, so we
3721 * run it outside the loop.
3723 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3725 /* All the others need rx_buf/tx_buf also set */
3726 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3727 /* Update rx_buf, tx_buf and DMA */
3728 if (xfers[i].rx_buf)
3729 xfers[i].rx_buf += offset;
3730 if (xfers[i].tx_buf)
3731 xfers[i].tx_buf += offset;
3734 xfers[i].len = min(maxsize, xfers[i].len - offset);
3738 * We set up xferp to the last entry we have inserted,
3739 * so that we skip those already split transfers.
3741 *xferp = &xfers[count - 1];
3743 /* Increment statistics counters */
3744 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3745 transfers_split_maxsize);
3746 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3747 transfers_split_maxsize);
3753 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3754 * when an individual transfer exceeds a
3756 * @ctlr: the @spi_controller for this transfer
3757 * @msg: the @spi_message to transform
3758 * @maxsize: the maximum when to apply this
3760 * This function allocates resources that are automatically freed during the
3761 * spi message unoptimize phase so this function should only be called from
3762 * optimize_message callbacks.
3764 * Return: status of transformation
3766 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3767 struct spi_message *msg,
3770 struct spi_transfer *xfer;
3774 * Iterate over the transfer_list,
3775 * but note that xfer is advanced to the last transfer inserted
3776 * to avoid checking sizes again unnecessarily (also xfer does
3777 * potentially belong to a different list by the time the
3778 * replacement has happened).
3780 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3781 if (xfer->len > maxsize) {
3782 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3791 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3795 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3796 * when an individual transfer exceeds a
3797 * certain number of SPI words
3798 * @ctlr: the @spi_controller for this transfer
3799 * @msg: the @spi_message to transform
3800 * @maxwords: the number of words to limit each transfer to
3802 * This function allocates resources that are automatically freed during the
3803 * spi message unoptimize phase so this function should only be called from
3804 * optimize_message callbacks.
3806 * Return: status of transformation
3808 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3809 struct spi_message *msg,
3812 struct spi_transfer *xfer;
3815 * Iterate over the transfer_list,
3816 * but note that xfer is advanced to the last transfer inserted
3817 * to avoid checking sizes again unnecessarily (also xfer does
3818 * potentially belong to a different list by the time the
3819 * replacement has happened).
3821 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3825 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3826 if (xfer->len > maxsize) {
3827 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3836 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3838 /*-------------------------------------------------------------------------*/
3841 * Core methods for SPI controller protocol drivers. Some of the
3842 * other core methods are currently defined as inline functions.
3845 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3848 if (ctlr->bits_per_word_mask) {
3849 /* Only 32 bits fit in the mask */
3850 if (bits_per_word > 32)
3852 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3860 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3861 * @spi: the device that requires specific CS timing configuration
3863 * Return: zero on success, else a negative error code.
3865 static int spi_set_cs_timing(struct spi_device *spi)
3867 struct device *parent = spi->controller->dev.parent;
3870 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3871 if (spi->controller->auto_runtime_pm) {
3872 status = pm_runtime_get_sync(parent);
3874 pm_runtime_put_noidle(parent);
3875 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3880 status = spi->controller->set_cs_timing(spi);
3881 pm_runtime_mark_last_busy(parent);
3882 pm_runtime_put_autosuspend(parent);
3884 status = spi->controller->set_cs_timing(spi);
3891 * spi_setup - setup SPI mode and clock rate
3892 * @spi: the device whose settings are being modified
3893 * Context: can sleep, and no requests are queued to the device
3895 * SPI protocol drivers may need to update the transfer mode if the
3896 * device doesn't work with its default. They may likewise need
3897 * to update clock rates or word sizes from initial values. This function
3898 * changes those settings, and must be called from a context that can sleep.
3899 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3900 * effect the next time the device is selected and data is transferred to
3901 * or from it. When this function returns, the SPI device is deselected.
3903 * Note that this call will fail if the protocol driver specifies an option
3904 * that the underlying controller or its driver does not support. For
3905 * example, not all hardware supports wire transfers using nine bit words,
3906 * LSB-first wire encoding, or active-high chipselects.
3908 * Return: zero on success, else a negative error code.
3910 int spi_setup(struct spi_device *spi)
3912 unsigned bad_bits, ugly_bits;
3916 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3917 * are set at the same time.
3919 if ((hweight_long(spi->mode &
3920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3921 (hweight_long(spi->mode &
3922 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3924 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3927 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3928 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3929 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3930 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3933 * Help drivers fail *cleanly* when they need options
3934 * that aren't supported with their current controller.
3935 * SPI_CS_WORD has a fallback software implementation,
3936 * so it is ignored here.
3938 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3939 SPI_NO_TX | SPI_NO_RX);
3940 ugly_bits = bad_bits &
3941 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3942 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3945 "setup: ignoring unsupported mode bits %x\n",
3947 spi->mode &= ~ugly_bits;
3948 bad_bits &= ~ugly_bits;
3951 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3956 if (!spi->bits_per_word) {
3957 spi->bits_per_word = 8;
3960 * Some controllers may not support the default 8 bits-per-word
3961 * so only perform the check when this is explicitly provided.
3963 status = __spi_validate_bits_per_word(spi->controller,
3964 spi->bits_per_word);
3969 if (spi->controller->max_speed_hz &&
3970 (!spi->max_speed_hz ||
3971 spi->max_speed_hz > spi->controller->max_speed_hz))
3972 spi->max_speed_hz = spi->controller->max_speed_hz;
3974 mutex_lock(&spi->controller->io_mutex);
3976 if (spi->controller->setup) {
3977 status = spi->controller->setup(spi);
3979 mutex_unlock(&spi->controller->io_mutex);
3980 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3986 status = spi_set_cs_timing(spi);
3988 mutex_unlock(&spi->controller->io_mutex);
3992 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3993 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3995 mutex_unlock(&spi->controller->io_mutex);
3996 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4002 * We do not want to return positive value from pm_runtime_get,
4003 * there are many instances of devices calling spi_setup() and
4004 * checking for a non-zero return value instead of a negative
4009 spi_set_cs(spi, false, true);
4010 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4011 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4013 spi_set_cs(spi, false, true);
4016 mutex_unlock(&spi->controller->io_mutex);
4018 if (spi->rt && !spi->controller->rt) {
4019 spi->controller->rt = true;
4020 spi_set_thread_rt(spi->controller);
4023 trace_spi_setup(spi, status);
4025 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4026 spi->mode & SPI_MODE_X_MASK,
4027 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4028 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4029 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4030 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4031 spi->bits_per_word, spi->max_speed_hz,
4036 EXPORT_SYMBOL_GPL(spi_setup);
4038 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4039 struct spi_device *spi)
4043 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4047 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4051 if (delay1 < delay2)
4052 memcpy(&xfer->word_delay, &spi->word_delay,
4053 sizeof(xfer->word_delay));
4058 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4060 struct spi_controller *ctlr = spi->controller;
4061 struct spi_transfer *xfer;
4064 if (list_empty(&message->transfers))
4070 * Half-duplex links include original MicroWire, and ones with
4071 * only one data pin like SPI_3WIRE (switches direction) or where
4072 * either MOSI or MISO is missing. They can also be caused by
4073 * software limitations.
4075 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4076 (spi->mode & SPI_3WIRE)) {
4077 unsigned flags = ctlr->flags;
4079 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4080 if (xfer->rx_buf && xfer->tx_buf)
4082 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4084 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4090 * Set transfer bits_per_word and max speed as spi device default if
4091 * it is not set for this transfer.
4092 * Set transfer tx_nbits and rx_nbits as single transfer default
4093 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4094 * Ensure transfer word_delay is at least as long as that required by
4097 message->frame_length = 0;
4098 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4099 xfer->effective_speed_hz = 0;
4100 message->frame_length += xfer->len;
4101 if (!xfer->bits_per_word)
4102 xfer->bits_per_word = spi->bits_per_word;
4104 if (!xfer->speed_hz)
4105 xfer->speed_hz = spi->max_speed_hz;
4107 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4108 xfer->speed_hz = ctlr->max_speed_hz;
4110 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4114 * SPI transfer length should be multiple of SPI word size
4115 * where SPI word size should be power-of-two multiple.
4117 if (xfer->bits_per_word <= 8)
4119 else if (xfer->bits_per_word <= 16)
4124 /* No partial transfers accepted */
4125 if (xfer->len % w_size)
4128 if (xfer->speed_hz && ctlr->min_speed_hz &&
4129 xfer->speed_hz < ctlr->min_speed_hz)
4132 if (xfer->tx_buf && !xfer->tx_nbits)
4133 xfer->tx_nbits = SPI_NBITS_SINGLE;
4134 if (xfer->rx_buf && !xfer->rx_nbits)
4135 xfer->rx_nbits = SPI_NBITS_SINGLE;
4137 * Check transfer tx/rx_nbits:
4138 * 1. check the value matches one of single, dual and quad
4139 * 2. check tx/rx_nbits match the mode in spi_device
4142 if (spi->mode & SPI_NO_TX)
4144 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4145 xfer->tx_nbits != SPI_NBITS_DUAL &&
4146 xfer->tx_nbits != SPI_NBITS_QUAD)
4148 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4149 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4151 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4152 !(spi->mode & SPI_TX_QUAD))
4155 /* Check transfer rx_nbits */
4157 if (spi->mode & SPI_NO_RX)
4159 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4160 xfer->rx_nbits != SPI_NBITS_DUAL &&
4161 xfer->rx_nbits != SPI_NBITS_QUAD)
4163 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4164 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4166 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4167 !(spi->mode & SPI_RX_QUAD))
4171 if (_spi_xfer_word_delay_update(xfer, spi))
4175 message->status = -EINPROGRESS;
4181 * spi_split_transfers - generic handling of transfer splitting
4182 * @msg: the message to split
4184 * Under certain conditions, a SPI controller may not support arbitrary
4185 * transfer sizes or other features required by a peripheral. This function
4186 * will split the transfers in the message into smaller transfers that are
4187 * supported by the controller.
4189 * Controllers with special requirements not covered here can also split
4190 * transfers in the optimize_message() callback.
4192 * Context: can sleep
4193 * Return: zero on success, else a negative error code
4195 static int spi_split_transfers(struct spi_message *msg)
4197 struct spi_controller *ctlr = msg->spi->controller;
4198 struct spi_transfer *xfer;
4202 * If an SPI controller does not support toggling the CS line on each
4203 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4204 * for the CS line, we can emulate the CS-per-word hardware function by
4205 * splitting transfers into one-word transfers and ensuring that
4206 * cs_change is set for each transfer.
4208 if ((msg->spi->mode & SPI_CS_WORD) &&
4209 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4210 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4214 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4215 /* Don't change cs_change on the last entry in the list */
4216 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4219 xfer->cs_change = 1;
4222 ret = spi_split_transfers_maxsize(ctlr, msg,
4223 spi_max_transfer_size(msg->spi));
4232 * __spi_optimize_message - shared implementation for spi_optimize_message()
4233 * and spi_maybe_optimize_message()
4234 * @spi: the device that will be used for the message
4235 * @msg: the message to optimize
4237 * Peripheral drivers will call spi_optimize_message() and the spi core will
4238 * call spi_maybe_optimize_message() instead of calling this directly.
4240 * It is not valid to call this on a message that has already been optimized.
4242 * Return: zero on success, else a negative error code
4244 static int __spi_optimize_message(struct spi_device *spi,
4245 struct spi_message *msg)
4247 struct spi_controller *ctlr = spi->controller;
4250 ret = __spi_validate(spi, msg);
4254 ret = spi_split_transfers(msg);
4258 if (ctlr->optimize_message) {
4259 ret = ctlr->optimize_message(msg);
4261 spi_res_release(ctlr, msg);
4266 msg->optimized = true;
4272 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4273 * @spi: the device that will be used for the message
4274 * @msg: the message to optimize
4275 * Return: zero on success, else a negative error code
4277 static int spi_maybe_optimize_message(struct spi_device *spi,
4278 struct spi_message *msg)
4280 if (msg->pre_optimized)
4283 return __spi_optimize_message(spi, msg);
4287 * spi_optimize_message - do any one-time validation and setup for a SPI message
4288 * @spi: the device that will be used for the message
4289 * @msg: the message to optimize
4291 * Peripheral drivers that reuse the same message repeatedly may call this to
4292 * perform as much message prep as possible once, rather than repeating it each
4293 * time a message transfer is performed to improve throughput and reduce CPU
4296 * Once a message has been optimized, it cannot be modified with the exception
4297 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4298 * only the data in the memory it points to).
4300 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4301 * to avoid leaking resources.
4303 * Context: can sleep
4304 * Return: zero on success, else a negative error code
4306 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4310 ret = __spi_optimize_message(spi, msg);
4315 * This flag indicates that the peripheral driver called spi_optimize_message()
4316 * and therefore we shouldn't unoptimize message automatically when finalizing
4317 * the message but rather wait until spi_unoptimize_message() is called
4318 * by the peripheral driver.
4320 msg->pre_optimized = true;
4324 EXPORT_SYMBOL_GPL(spi_optimize_message);
4327 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4328 * @msg: the message to unoptimize
4330 * Calls to this function must be balanced with calls to spi_optimize_message().
4332 * Context: can sleep
4334 void spi_unoptimize_message(struct spi_message *msg)
4336 __spi_unoptimize_message(msg);
4337 msg->pre_optimized = false;
4339 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4341 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4343 struct spi_controller *ctlr = spi->controller;
4344 struct spi_transfer *xfer;
4347 * Some controllers do not support doing regular SPI transfers. Return
4348 * ENOTSUPP when this is the case.
4350 if (!ctlr->transfer)
4353 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4354 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4356 trace_spi_message_submit(message);
4358 if (!ctlr->ptp_sts_supported) {
4359 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4360 xfer->ptp_sts_word_pre = 0;
4361 ptp_read_system_prets(xfer->ptp_sts);
4365 return ctlr->transfer(spi, message);
4369 * spi_async - asynchronous SPI transfer
4370 * @spi: device with which data will be exchanged
4371 * @message: describes the data transfers, including completion callback
4372 * Context: any (IRQs may be blocked, etc)
4374 * This call may be used in_irq and other contexts which can't sleep,
4375 * as well as from task contexts which can sleep.
4377 * The completion callback is invoked in a context which can't sleep.
4378 * Before that invocation, the value of message->status is undefined.
4379 * When the callback is issued, message->status holds either zero (to
4380 * indicate complete success) or a negative error code. After that
4381 * callback returns, the driver which issued the transfer request may
4382 * deallocate the associated memory; it's no longer in use by any SPI
4383 * core or controller driver code.
4385 * Note that although all messages to a spi_device are handled in
4386 * FIFO order, messages may go to different devices in other orders.
4387 * Some device might be higher priority, or have various "hard" access
4388 * time requirements, for example.
4390 * On detection of any fault during the transfer, processing of
4391 * the entire message is aborted, and the device is deselected.
4392 * Until returning from the associated message completion callback,
4393 * no other spi_message queued to that device will be processed.
4394 * (This rule applies equally to all the synchronous transfer calls,
4395 * which are wrappers around this core asynchronous primitive.)
4397 * Return: zero on success, else a negative error code.
4399 int spi_async(struct spi_device *spi, struct spi_message *message)
4401 struct spi_controller *ctlr = spi->controller;
4403 unsigned long flags;
4405 ret = spi_maybe_optimize_message(spi, message);
4409 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4411 if (ctlr->bus_lock_flag)
4414 ret = __spi_async(spi, message);
4416 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4418 spi_maybe_unoptimize_message(message);
4422 EXPORT_SYMBOL_GPL(spi_async);
4424 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4429 mutex_lock(&ctlr->io_mutex);
4431 was_busy = ctlr->busy;
4433 ctlr->cur_msg = msg;
4434 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4436 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4437 ctlr->cur_msg = NULL;
4438 ctlr->fallback = false;
4441 kfree(ctlr->dummy_rx);
4442 ctlr->dummy_rx = NULL;
4443 kfree(ctlr->dummy_tx);
4444 ctlr->dummy_tx = NULL;
4445 if (ctlr->unprepare_transfer_hardware &&
4446 ctlr->unprepare_transfer_hardware(ctlr))
4448 "failed to unprepare transfer hardware\n");
4449 spi_idle_runtime_pm(ctlr);
4452 mutex_unlock(&ctlr->io_mutex);
4455 /*-------------------------------------------------------------------------*/
4458 * Utility methods for SPI protocol drivers, layered on
4459 * top of the core. Some other utility methods are defined as
4463 static void spi_complete(void *arg)
4468 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4470 DECLARE_COMPLETION_ONSTACK(done);
4471 unsigned long flags;
4473 struct spi_controller *ctlr = spi->controller;
4475 if (__spi_check_suspended(ctlr)) {
4476 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4480 status = spi_maybe_optimize_message(spi, message);
4484 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4485 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4488 * Checking queue_empty here only guarantees async/sync message
4489 * ordering when coming from the same context. It does not need to
4490 * guard against reentrancy from a different context. The io_mutex
4491 * will catch those cases.
4493 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4494 message->actual_length = 0;
4495 message->status = -EINPROGRESS;
4497 trace_spi_message_submit(message);
4499 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4500 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4502 __spi_transfer_message_noqueue(ctlr, message);
4504 return message->status;
4508 * There are messages in the async queue that could have originated
4509 * from the same context, so we need to preserve ordering.
4510 * Therefor we send the message to the async queue and wait until they
4513 message->complete = spi_complete;
4514 message->context = &done;
4516 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4517 status = __spi_async(spi, message);
4518 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4521 wait_for_completion(&done);
4522 status = message->status;
4524 message->context = NULL;
4530 * spi_sync - blocking/synchronous SPI data transfers
4531 * @spi: device with which data will be exchanged
4532 * @message: describes the data transfers
4533 * Context: can sleep
4535 * This call may only be used from a context that may sleep. The sleep
4536 * is non-interruptible, and has no timeout. Low-overhead controller
4537 * drivers may DMA directly into and out of the message buffers.
4539 * Note that the SPI device's chip select is active during the message,
4540 * and then is normally disabled between messages. Drivers for some
4541 * frequently-used devices may want to minimize costs of selecting a chip,
4542 * by leaving it selected in anticipation that the next message will go
4543 * to the same chip. (That may increase power usage.)
4545 * Also, the caller is guaranteeing that the memory associated with the
4546 * message will not be freed before this call returns.
4548 * Return: zero on success, else a negative error code.
4550 int spi_sync(struct spi_device *spi, struct spi_message *message)
4554 mutex_lock(&spi->controller->bus_lock_mutex);
4555 ret = __spi_sync(spi, message);
4556 mutex_unlock(&spi->controller->bus_lock_mutex);
4560 EXPORT_SYMBOL_GPL(spi_sync);
4563 * spi_sync_locked - version of spi_sync with exclusive bus usage
4564 * @spi: device with which data will be exchanged
4565 * @message: describes the data transfers
4566 * Context: can sleep
4568 * This call may only be used from a context that may sleep. The sleep
4569 * is non-interruptible, and has no timeout. Low-overhead controller
4570 * drivers may DMA directly into and out of the message buffers.
4572 * This call should be used by drivers that require exclusive access to the
4573 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4574 * be released by a spi_bus_unlock call when the exclusive access is over.
4576 * Return: zero on success, else a negative error code.
4578 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4580 return __spi_sync(spi, message);
4582 EXPORT_SYMBOL_GPL(spi_sync_locked);
4585 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4586 * @ctlr: SPI bus master that should be locked for exclusive bus access
4587 * Context: can sleep
4589 * This call may only be used from a context that may sleep. The sleep
4590 * is non-interruptible, and has no timeout.
4592 * This call should be used by drivers that require exclusive access to the
4593 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4594 * exclusive access is over. Data transfer must be done by spi_sync_locked
4595 * and spi_async_locked calls when the SPI bus lock is held.
4597 * Return: always zero.
4599 int spi_bus_lock(struct spi_controller *ctlr)
4601 unsigned long flags;
4603 mutex_lock(&ctlr->bus_lock_mutex);
4605 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4606 ctlr->bus_lock_flag = 1;
4607 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4609 /* Mutex remains locked until spi_bus_unlock() is called */
4613 EXPORT_SYMBOL_GPL(spi_bus_lock);
4616 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4617 * @ctlr: SPI bus master that was locked for exclusive bus access
4618 * Context: can sleep
4620 * This call may only be used from a context that may sleep. The sleep
4621 * is non-interruptible, and has no timeout.
4623 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4626 * Return: always zero.
4628 int spi_bus_unlock(struct spi_controller *ctlr)
4630 ctlr->bus_lock_flag = 0;
4632 mutex_unlock(&ctlr->bus_lock_mutex);
4636 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4638 /* Portable code must never pass more than 32 bytes */
4639 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4644 * spi_write_then_read - SPI synchronous write followed by read
4645 * @spi: device with which data will be exchanged
4646 * @txbuf: data to be written (need not be DMA-safe)
4647 * @n_tx: size of txbuf, in bytes
4648 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4649 * @n_rx: size of rxbuf, in bytes
4650 * Context: can sleep
4652 * This performs a half duplex MicroWire style transaction with the
4653 * device, sending txbuf and then reading rxbuf. The return value
4654 * is zero for success, else a negative errno status code.
4655 * This call may only be used from a context that may sleep.
4657 * Parameters to this routine are always copied using a small buffer.
4658 * Performance-sensitive or bulk transfer code should instead use
4659 * spi_{async,sync}() calls with DMA-safe buffers.
4661 * Return: zero on success, else a negative error code.
4663 int spi_write_then_read(struct spi_device *spi,
4664 const void *txbuf, unsigned n_tx,
4665 void *rxbuf, unsigned n_rx)
4667 static DEFINE_MUTEX(lock);
4670 struct spi_message message;
4671 struct spi_transfer x[2];
4675 * Use preallocated DMA-safe buffer if we can. We can't avoid
4676 * copying here, (as a pure convenience thing), but we can
4677 * keep heap costs out of the hot path unless someone else is
4678 * using the pre-allocated buffer or the transfer is too large.
4680 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4681 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4682 GFP_KERNEL | GFP_DMA);
4689 spi_message_init(&message);
4690 memset(x, 0, sizeof(x));
4693 spi_message_add_tail(&x[0], &message);
4697 spi_message_add_tail(&x[1], &message);
4700 memcpy(local_buf, txbuf, n_tx);
4701 x[0].tx_buf = local_buf;
4702 x[1].rx_buf = local_buf + n_tx;
4705 status = spi_sync(spi, &message);
4707 memcpy(rxbuf, x[1].rx_buf, n_rx);
4709 if (x[0].tx_buf == buf)
4710 mutex_unlock(&lock);
4716 EXPORT_SYMBOL_GPL(spi_write_then_read);
4718 /*-------------------------------------------------------------------------*/
4720 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4721 /* Must call put_device() when done with returned spi_device device */
4722 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4724 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4726 return dev ? to_spi_device(dev) : NULL;
4729 /* The spi controllers are not using spi_bus, so we find it with another way */
4730 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4734 dev = class_find_device_by_of_node(&spi_master_class, node);
4735 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4736 dev = class_find_device_by_of_node(&spi_slave_class, node);
4740 /* Reference got in class_find_device */
4741 return container_of(dev, struct spi_controller, dev);
4744 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4747 struct of_reconfig_data *rd = arg;
4748 struct spi_controller *ctlr;
4749 struct spi_device *spi;
4751 switch (of_reconfig_get_state_change(action, arg)) {
4752 case OF_RECONFIG_CHANGE_ADD:
4753 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4755 return NOTIFY_OK; /* Not for us */
4757 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4758 put_device(&ctlr->dev);
4763 * Clear the flag before adding the device so that fw_devlink
4764 * doesn't skip adding consumers to this device.
4766 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4767 spi = of_register_spi_device(ctlr, rd->dn);
4768 put_device(&ctlr->dev);
4771 pr_err("%s: failed to create for '%pOF'\n",
4773 of_node_clear_flag(rd->dn, OF_POPULATED);
4774 return notifier_from_errno(PTR_ERR(spi));
4778 case OF_RECONFIG_CHANGE_REMOVE:
4779 /* Already depopulated? */
4780 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4783 /* Find our device by node */
4784 spi = of_find_spi_device_by_node(rd->dn);
4786 return NOTIFY_OK; /* No? not meant for us */
4788 /* Unregister takes one ref away */
4789 spi_unregister_device(spi);
4791 /* And put the reference of the find */
4792 put_device(&spi->dev);
4799 static struct notifier_block spi_of_notifier = {
4800 .notifier_call = of_spi_notify,
4802 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4803 extern struct notifier_block spi_of_notifier;
4804 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4806 #if IS_ENABLED(CONFIG_ACPI)
4807 static int spi_acpi_controller_match(struct device *dev, const void *data)
4809 return ACPI_COMPANION(dev->parent) == data;
4812 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4816 dev = class_find_device(&spi_master_class, NULL, adev,
4817 spi_acpi_controller_match);
4818 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4819 dev = class_find_device(&spi_slave_class, NULL, adev,
4820 spi_acpi_controller_match);
4824 return container_of(dev, struct spi_controller, dev);
4826 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4828 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4832 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4833 return to_spi_device(dev);
4836 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4839 struct acpi_device *adev = arg;
4840 struct spi_controller *ctlr;
4841 struct spi_device *spi;
4844 case ACPI_RECONFIG_DEVICE_ADD:
4845 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4849 acpi_register_spi_device(ctlr, adev);
4850 put_device(&ctlr->dev);
4852 case ACPI_RECONFIG_DEVICE_REMOVE:
4853 if (!acpi_device_enumerated(adev))
4856 spi = acpi_spi_find_device_by_adev(adev);
4860 spi_unregister_device(spi);
4861 put_device(&spi->dev);
4868 static struct notifier_block spi_acpi_notifier = {
4869 .notifier_call = acpi_spi_notify,
4872 extern struct notifier_block spi_acpi_notifier;
4875 static int __init spi_init(void)
4879 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4885 status = bus_register(&spi_bus_type);
4889 status = class_register(&spi_master_class);
4893 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4894 status = class_register(&spi_slave_class);
4899 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4900 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4901 if (IS_ENABLED(CONFIG_ACPI))
4902 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4907 class_unregister(&spi_master_class);
4909 bus_unregister(&spi_bus_type);
4918 * A board_info is normally registered in arch_initcall(),
4919 * but even essential drivers wait till later.
4921 * REVISIT only boardinfo really needs static linking. The rest (device and
4922 * driver registration) _could_ be dynamically linked (modular) ... Costs
4923 * include needing to have boardinfo data structures be much more public.
4925 postcore_initcall(spi_init);