]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
Add bridged amplifiers to cs42l43
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 const struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct device *dev = &spi->dev;
601         struct fwnode_handle *fwnode = dev_fwnode(dev);
602
603         if (is_acpi_device_node(fwnode)) {
604                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
605                 return;
606         }
607
608         if (is_software_node(fwnode)) {
609                 dev_set_name(dev, "spi-%pfwP", fwnode);
610                 return;
611         }
612
613         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
614                      spi_get_chipselect(spi, 0));
615 }
616
617 /*
618  * Zero(0) is a valid physical CS value and can be located at any
619  * logical CS in the spi->chip_select[]. If all the physical CS
620  * are initialized to 0 then It would be difficult to differentiate
621  * between a valid physical CS 0 & an unused logical CS whose physical
622  * CS can be 0. As a solution to this issue initialize all the CS to -1.
623  * Now all the unused logical CS will have -1 physical CS value & can be
624  * ignored while performing physical CS validity checks.
625  */
626 #define SPI_INVALID_CS          ((s8)-1)
627
628 static inline bool is_valid_cs(s8 chip_select)
629 {
630         return chip_select != SPI_INVALID_CS;
631 }
632
633 static inline int spi_dev_check_cs(struct device *dev,
634                                    struct spi_device *spi, u8 idx,
635                                    struct spi_device *new_spi, u8 new_idx)
636 {
637         u8 cs, cs_new;
638         u8 idx_new;
639
640         cs = spi_get_chipselect(spi, idx);
641         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
642                 cs_new = spi_get_chipselect(new_spi, idx_new);
643                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
644                         dev_err(dev, "chipselect %u already in use\n", cs_new);
645                         return -EBUSY;
646                 }
647         }
648         return 0;
649 }
650
651 static int spi_dev_check(struct device *dev, void *data)
652 {
653         struct spi_device *spi = to_spi_device(dev);
654         struct spi_device *new_spi = data;
655         int status, idx;
656
657         if (spi->controller == new_spi->controller) {
658                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
659                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
660                         if (status)
661                                 return status;
662                 }
663         }
664         return 0;
665 }
666
667 static void spi_cleanup(struct spi_device *spi)
668 {
669         if (spi->controller->cleanup)
670                 spi->controller->cleanup(spi);
671 }
672
673 static int __spi_add_device(struct spi_device *spi)
674 {
675         struct spi_controller *ctlr = spi->controller;
676         struct device *dev = ctlr->dev.parent;
677         int status, idx;
678         u8 cs;
679
680         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
681                 /* Chipselects are numbered 0..max; validate. */
682                 cs = spi_get_chipselect(spi, idx);
683                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
684                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
685                                 ctlr->num_chipselect);
686                         return -EINVAL;
687                 }
688         }
689
690         /*
691          * Make sure that multiple logical CS doesn't map to the same physical CS.
692          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
693          */
694         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
695                 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
696                 if (status)
697                         return status;
698         }
699
700         /* Set the bus ID string */
701         spi_dev_set_name(spi);
702
703         /*
704          * We need to make sure there's no other device with this
705          * chipselect **BEFORE** we call setup(), else we'll trash
706          * its configuration.
707          */
708         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709         if (status)
710                 return status;
711
712         /* Controller may unregister concurrently */
713         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714             !device_is_registered(&ctlr->dev)) {
715                 return -ENODEV;
716         }
717
718         if (ctlr->cs_gpiods) {
719                 u8 cs;
720
721                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722                         cs = spi_get_chipselect(spi, idx);
723                         if (is_valid_cs(cs))
724                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725                 }
726         }
727
728         /*
729          * Drivers may modify this initial i/o setup, but will
730          * normally rely on the device being setup.  Devices
731          * using SPI_CS_HIGH can't coexist well otherwise...
732          */
733         status = spi_setup(spi);
734         if (status < 0) {
735                 dev_err(dev, "can't setup %s, status %d\n",
736                                 dev_name(&spi->dev), status);
737                 return status;
738         }
739
740         /* Device may be bound to an active driver when this returns */
741         status = device_add(&spi->dev);
742         if (status < 0) {
743                 dev_err(dev, "can't add %s, status %d\n",
744                                 dev_name(&spi->dev), status);
745                 spi_cleanup(spi);
746         } else {
747                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748         }
749
750         return status;
751 }
752
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764         struct spi_controller *ctlr = spi->controller;
765         int status;
766
767         /* Set the bus ID string */
768         spi_dev_set_name(spi);
769
770         mutex_lock(&ctlr->add_lock);
771         status = __spi_add_device(spi);
772         mutex_unlock(&ctlr->add_lock);
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779         u8 idx;
780
781         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800                                   struct spi_board_info *chip)
801 {
802         struct spi_device       *proxy;
803         int                     status;
804
805         /*
806          * NOTE:  caller did any chip->bus_num checks necessary.
807          *
808          * Also, unless we change the return value convention to use
809          * error-or-pointer (not NULL-or-pointer), troubleshootability
810          * suggests syslogged diagnostics are best here (ugh).
811          */
812
813         proxy = spi_alloc_device(ctlr);
814         if (!proxy)
815                 return NULL;
816
817         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819         /* Use provided chip-select for proxy device */
820         spi_set_all_cs_unused(proxy);
821         spi_set_chipselect(proxy, 0, chip->chip_select);
822
823         proxy->max_speed_hz = chip->max_speed_hz;
824         proxy->mode = chip->mode;
825         proxy->irq = chip->irq;
826         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827         proxy->dev.platform_data = (void *) chip->platform_data;
828         proxy->controller_data = chip->controller_data;
829         proxy->controller_state = NULL;
830         /*
831          * By default spi->chip_select[0] will hold the physical CS number,
832          * so set bit 0 in spi->cs_index_mask.
833          */
834         proxy->cs_index_mask = BIT(0);
835
836         if (chip->swnode) {
837                 status = device_add_software_node(&proxy->dev, chip->swnode);
838                 if (status) {
839                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840                                 chip->modalias, status);
841                         goto err_dev_put;
842                 }
843         }
844
845         status = spi_add_device(proxy);
846         if (status < 0)
847                 goto err_dev_put;
848
849         return proxy;
850
851 err_dev_put:
852         device_remove_software_node(&proxy->dev);
853         spi_dev_put(proxy);
854         return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857
858 /**
859  * spi_unregister_device - unregister a single SPI device
860  * @spi: spi_device to unregister
861  *
862  * Start making the passed SPI device vanish. Normally this would be handled
863  * by spi_unregister_controller().
864  */
865 void spi_unregister_device(struct spi_device *spi)
866 {
867         if (!spi)
868                 return;
869
870         if (spi->dev.of_node) {
871                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872                 of_node_put(spi->dev.of_node);
873         }
874         if (ACPI_COMPANION(&spi->dev))
875                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876         device_remove_software_node(&spi->dev);
877         device_del(&spi->dev);
878         spi_cleanup(spi);
879         put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884                                               struct spi_board_info *bi)
885 {
886         struct spi_device *dev;
887
888         if (ctlr->bus_num != bi->bus_num)
889                 return;
890
891         dev = spi_new_device(ctlr, bi);
892         if (!dev)
893                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894                         bi->modalias);
895 }
896
897 /**
898  * spi_register_board_info - register SPI devices for a given board
899  * @info: array of chip descriptors
900  * @n: how many descriptors are provided
901  * Context: can sleep
902  *
903  * Board-specific early init code calls this (probably during arch_initcall)
904  * with segments of the SPI device table.  Any device nodes are created later,
905  * after the relevant parent SPI controller (bus_num) is defined.  We keep
906  * this table of devices forever, so that reloading a controller driver will
907  * not make Linux forget about these hard-wired devices.
908  *
909  * Other code can also call this, e.g. a particular add-on board might provide
910  * SPI devices through its expansion connector, so code initializing that board
911  * would naturally declare its SPI devices.
912  *
913  * The board info passed can safely be __initdata ... but be careful of
914  * any embedded pointers (platform_data, etc), they're copied as-is.
915  *
916  * Return: zero on success, else a negative error code.
917  */
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920         struct boardinfo *bi;
921         int i;
922
923         if (!n)
924                 return 0;
925
926         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927         if (!bi)
928                 return -ENOMEM;
929
930         for (i = 0; i < n; i++, bi++, info++) {
931                 struct spi_controller *ctlr;
932
933                 memcpy(&bi->board_info, info, sizeof(*info));
934
935                 mutex_lock(&board_lock);
936                 list_add_tail(&bi->list, &board_list);
937                 list_for_each_entry(ctlr, &spi_controller_list, list)
938                         spi_match_controller_to_boardinfo(ctlr,
939                                                           &bi->board_info);
940                 mutex_unlock(&board_lock);
941         }
942
943         return 0;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 /* Core methods for SPI resource management */
949
950 /**
951  * spi_res_alloc - allocate a spi resource that is life-cycle managed
952  *                 during the processing of a spi_message while using
953  *                 spi_transfer_one
954  * @spi:     the SPI device for which we allocate memory
955  * @release: the release code to execute for this resource
956  * @size:    size to alloc and return
957  * @gfp:     GFP allocation flags
958  *
959  * Return: the pointer to the allocated data
960  *
961  * This may get enhanced in the future to allocate from a memory pool
962  * of the @spi_device or @spi_controller to avoid repeated allocations.
963  */
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965                            size_t size, gfp_t gfp)
966 {
967         struct spi_res *sres;
968
969         sres = kzalloc(sizeof(*sres) + size, gfp);
970         if (!sres)
971                 return NULL;
972
973         INIT_LIST_HEAD(&sres->entry);
974         sres->release = release;
975
976         return sres->data;
977 }
978
979 /**
980  * spi_res_free - free an SPI resource
981  * @res: pointer to the custom data of a resource
982  */
983 static void spi_res_free(void *res)
984 {
985         struct spi_res *sres = container_of(res, struct spi_res, data);
986
987         if (!res)
988                 return;
989
990         WARN_ON(!list_empty(&sres->entry));
991         kfree(sres);
992 }
993
994 /**
995  * spi_res_add - add a spi_res to the spi_message
996  * @message: the SPI message
997  * @res:     the spi_resource
998  */
999 static void spi_res_add(struct spi_message *message, void *res)
1000 {
1001         struct spi_res *sres = container_of(res, struct spi_res, data);
1002
1003         WARN_ON(!list_empty(&sres->entry));
1004         list_add_tail(&sres->entry, &message->resources);
1005 }
1006
1007 /**
1008  * spi_res_release - release all SPI resources for this message
1009  * @ctlr:  the @spi_controller
1010  * @message: the @spi_message
1011  */
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1013 {
1014         struct spi_res *res, *tmp;
1015
1016         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1017                 if (res->release)
1018                         res->release(ctlr, message, res->data);
1019
1020                 list_del(&res->entry);
1021
1022                 kfree(res);
1023         }
1024 }
1025
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx)                         \
1028         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1029                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1030
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033         u8 idx;
1034         bool last = false;
1035
1036         spi_for_each_valid_cs(spi, idx) {
1037                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1038                         last = true;
1039         }
1040         return last;
1041 }
1042
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1044 {
1045         /*
1046          * Historically ACPI has no means of the GPIO polarity and
1047          * thus the SPISerialBus() resource defines it on the per-chip
1048          * basis. In order to avoid a chain of negations, the GPIO
1049          * polarity is considered being Active High. Even for the cases
1050          * when _DSD() is involved (in the updated versions of ACPI)
1051          * the GPIO CS polarity must be defined Active High to avoid
1052          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1053          * into account.
1054          */
1055         if (has_acpi_companion(&spi->dev))
1056                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1057         else
1058                 /* Polarity handled by GPIO library */
1059                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1060
1061         if (activate)
1062                 spi_delay_exec(&spi->cs_setup, NULL);
1063         else
1064                 spi_delay_exec(&spi->cs_inactive, NULL);
1065 }
1066
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1068 {
1069         bool activate = enable;
1070         u8 idx;
1071
1072         /*
1073          * Avoid calling into the driver (or doing delays) if the chip select
1074          * isn't actually changing from the last time this was called.
1075          */
1076         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077                         spi_is_last_cs(spi)) ||
1078                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079                         !spi_is_last_cs(spi))) &&
1080             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1081                 return;
1082
1083         trace_spi_set_cs(spi, activate);
1084
1085         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1089
1090         if (spi->mode & SPI_CS_HIGH)
1091                 enable = !enable;
1092
1093         /*
1094          * Handle chip select delays for GPIO based CS or controllers without
1095          * programmable chip select timing.
1096          */
1097         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098                 spi_delay_exec(&spi->cs_hold, NULL);
1099
1100         if (spi_is_csgpiod(spi)) {
1101                 if (!(spi->mode & SPI_NO_CS)) {
1102                         spi_for_each_valid_cs(spi, idx) {
1103                                 if (spi_get_csgpiod(spi, idx))
1104                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1105                         }
1106                 }
1107                 /* Some SPI masters need both GPIO CS & slave_select */
1108                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109                     spi->controller->set_cs)
1110                         spi->controller->set_cs(spi, !enable);
1111         } else if (spi->controller->set_cs) {
1112                 spi->controller->set_cs(spi, !enable);
1113         }
1114
1115         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1116                 if (activate)
1117                         spi_delay_exec(&spi->cs_setup, NULL);
1118                 else
1119                         spi_delay_exec(&spi->cs_inactive, NULL);
1120         }
1121 }
1122
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125                              struct sg_table *sgt, void *buf, size_t len,
1126                              enum dma_data_direction dir, unsigned long attrs)
1127 {
1128         const bool vmalloced_buf = is_vmalloc_addr(buf);
1129         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132                                 (unsigned long)buf < (PKMAP_BASE +
1133                                         (LAST_PKMAP * PAGE_SIZE)));
1134 #else
1135         const bool kmap_buf = false;
1136 #endif
1137         int desc_len;
1138         int sgs;
1139         struct page *vm_page;
1140         struct scatterlist *sg;
1141         void *sg_buf;
1142         size_t min;
1143         int i, ret;
1144
1145         if (vmalloced_buf || kmap_buf) {
1146                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148         } else if (virt_addr_valid(buf)) {
1149                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150                 sgs = DIV_ROUND_UP(len, desc_len);
1151         } else {
1152                 return -EINVAL;
1153         }
1154
1155         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1156         if (ret != 0)
1157                 return ret;
1158
1159         sg = &sgt->sgl[0];
1160         for (i = 0; i < sgs; i++) {
1161
1162                 if (vmalloced_buf || kmap_buf) {
1163                         /*
1164                          * Next scatterlist entry size is the minimum between
1165                          * the desc_len and the remaining buffer length that
1166                          * fits in a page.
1167                          */
1168                         min = min_t(size_t, desc_len,
1169                                     min_t(size_t, len,
1170                                           PAGE_SIZE - offset_in_page(buf)));
1171                         if (vmalloced_buf)
1172                                 vm_page = vmalloc_to_page(buf);
1173                         else
1174                                 vm_page = kmap_to_page(buf);
1175                         if (!vm_page) {
1176                                 sg_free_table(sgt);
1177                                 return -ENOMEM;
1178                         }
1179                         sg_set_page(sg, vm_page,
1180                                     min, offset_in_page(buf));
1181                 } else {
1182                         min = min_t(size_t, len, desc_len);
1183                         sg_buf = buf;
1184                         sg_set_buf(sg, sg_buf, min);
1185                 }
1186
1187                 buf += min;
1188                 len -= min;
1189                 sg = sg_next(sg);
1190         }
1191
1192         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1193         if (ret < 0) {
1194                 sg_free_table(sgt);
1195                 return ret;
1196         }
1197
1198         return 0;
1199 }
1200
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202                 struct sg_table *sgt, void *buf, size_t len,
1203                 enum dma_data_direction dir)
1204 {
1205         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1206 }
1207
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209                                 struct device *dev, struct sg_table *sgt,
1210                                 enum dma_data_direction dir,
1211                                 unsigned long attrs)
1212 {
1213         if (sgt->orig_nents) {
1214                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1215                 sg_free_table(sgt);
1216                 sgt->orig_nents = 0;
1217                 sgt->nents = 0;
1218         }
1219 }
1220
1221 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1222                    struct sg_table *sgt, enum dma_data_direction dir)
1223 {
1224         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1225 }
1226
1227 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1228 {
1229         struct device *tx_dev, *rx_dev;
1230         struct spi_transfer *xfer;
1231         int ret;
1232
1233         if (!ctlr->can_dma)
1234                 return 0;
1235
1236         if (ctlr->dma_tx)
1237                 tx_dev = ctlr->dma_tx->device->dev;
1238         else if (ctlr->dma_map_dev)
1239                 tx_dev = ctlr->dma_map_dev;
1240         else
1241                 tx_dev = ctlr->dev.parent;
1242
1243         if (ctlr->dma_rx)
1244                 rx_dev = ctlr->dma_rx->device->dev;
1245         else if (ctlr->dma_map_dev)
1246                 rx_dev = ctlr->dma_map_dev;
1247         else
1248                 rx_dev = ctlr->dev.parent;
1249
1250         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1251                 /* The sync is done before each transfer. */
1252                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1253
1254                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1255                         continue;
1256
1257                 if (xfer->tx_buf != NULL) {
1258                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1259                                                 (void *)xfer->tx_buf,
1260                                                 xfer->len, DMA_TO_DEVICE,
1261                                                 attrs);
1262                         if (ret != 0)
1263                                 return ret;
1264                 }
1265
1266                 if (xfer->rx_buf != NULL) {
1267                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1268                                                 xfer->rx_buf, xfer->len,
1269                                                 DMA_FROM_DEVICE, attrs);
1270                         if (ret != 0) {
1271                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1272                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1273                                                 attrs);
1274
1275                                 return ret;
1276                         }
1277                 }
1278         }
1279
1280         ctlr->cur_rx_dma_dev = rx_dev;
1281         ctlr->cur_tx_dma_dev = tx_dev;
1282         ctlr->cur_msg_mapped = true;
1283
1284         return 0;
1285 }
1286
1287 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 {
1289         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1290         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1291         struct spi_transfer *xfer;
1292
1293         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1294                 return 0;
1295
1296         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1297                 /* The sync has already been done after each transfer. */
1298                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1299
1300                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1301                         continue;
1302
1303                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1304                                     DMA_FROM_DEVICE, attrs);
1305                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1306                                     DMA_TO_DEVICE, attrs);
1307         }
1308
1309         ctlr->cur_msg_mapped = false;
1310
1311         return 0;
1312 }
1313
1314 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1315                                     struct spi_transfer *xfer)
1316 {
1317         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1318         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1319
1320         if (!ctlr->cur_msg_mapped)
1321                 return;
1322
1323         if (xfer->tx_sg.orig_nents)
1324                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1325         if (xfer->rx_sg.orig_nents)
1326                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1327 }
1328
1329 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1330                                  struct spi_transfer *xfer)
1331 {
1332         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1333         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1334
1335         if (!ctlr->cur_msg_mapped)
1336                 return;
1337
1338         if (xfer->rx_sg.orig_nents)
1339                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1340         if (xfer->tx_sg.orig_nents)
1341                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1342 }
1343 #else /* !CONFIG_HAS_DMA */
1344 static inline int __spi_map_msg(struct spi_controller *ctlr,
1345                                 struct spi_message *msg)
1346 {
1347         return 0;
1348 }
1349
1350 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1351                                   struct spi_message *msg)
1352 {
1353         return 0;
1354 }
1355
1356 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1357                                     struct spi_transfer *xfer)
1358 {
1359 }
1360
1361 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1362                                  struct spi_transfer *xfer)
1363 {
1364 }
1365 #endif /* !CONFIG_HAS_DMA */
1366
1367 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1368                                 struct spi_message *msg)
1369 {
1370         struct spi_transfer *xfer;
1371
1372         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1373                 /*
1374                  * Restore the original value of tx_buf or rx_buf if they are
1375                  * NULL.
1376                  */
1377                 if (xfer->tx_buf == ctlr->dummy_tx)
1378                         xfer->tx_buf = NULL;
1379                 if (xfer->rx_buf == ctlr->dummy_rx)
1380                         xfer->rx_buf = NULL;
1381         }
1382
1383         return __spi_unmap_msg(ctlr, msg);
1384 }
1385
1386 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1387 {
1388         struct spi_transfer *xfer;
1389         void *tmp;
1390         unsigned int max_tx, max_rx;
1391
1392         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1393                 && !(msg->spi->mode & SPI_3WIRE)) {
1394                 max_tx = 0;
1395                 max_rx = 0;
1396
1397                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1398                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1399                             !xfer->tx_buf)
1400                                 max_tx = max(xfer->len, max_tx);
1401                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1402                             !xfer->rx_buf)
1403                                 max_rx = max(xfer->len, max_rx);
1404                 }
1405
1406                 if (max_tx) {
1407                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1408                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1409                         if (!tmp)
1410                                 return -ENOMEM;
1411                         ctlr->dummy_tx = tmp;
1412                 }
1413
1414                 if (max_rx) {
1415                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1416                                        GFP_KERNEL | GFP_DMA);
1417                         if (!tmp)
1418                                 return -ENOMEM;
1419                         ctlr->dummy_rx = tmp;
1420                 }
1421
1422                 if (max_tx || max_rx) {
1423                         list_for_each_entry(xfer, &msg->transfers,
1424                                             transfer_list) {
1425                                 if (!xfer->len)
1426                                         continue;
1427                                 if (!xfer->tx_buf)
1428                                         xfer->tx_buf = ctlr->dummy_tx;
1429                                 if (!xfer->rx_buf)
1430                                         xfer->rx_buf = ctlr->dummy_rx;
1431                         }
1432                 }
1433         }
1434
1435         return __spi_map_msg(ctlr, msg);
1436 }
1437
1438 static int spi_transfer_wait(struct spi_controller *ctlr,
1439                              struct spi_message *msg,
1440                              struct spi_transfer *xfer)
1441 {
1442         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1443         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1444         u32 speed_hz = xfer->speed_hz;
1445         unsigned long long ms;
1446
1447         if (spi_controller_is_slave(ctlr)) {
1448                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1449                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1450                         return -EINTR;
1451                 }
1452         } else {
1453                 if (!speed_hz)
1454                         speed_hz = 100000;
1455
1456                 /*
1457                  * For each byte we wait for 8 cycles of the SPI clock.
1458                  * Since speed is defined in Hz and we want milliseconds,
1459                  * use respective multiplier, but before the division,
1460                  * otherwise we may get 0 for short transfers.
1461                  */
1462                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1463                 do_div(ms, speed_hz);
1464
1465                 /*
1466                  * Increase it twice and add 200 ms tolerance, use
1467                  * predefined maximum in case of overflow.
1468                  */
1469                 ms += ms + 200;
1470                 if (ms > UINT_MAX)
1471                         ms = UINT_MAX;
1472
1473                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1474                                                  msecs_to_jiffies(ms));
1475
1476                 if (ms == 0) {
1477                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1478                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1479                         dev_err(&msg->spi->dev,
1480                                 "SPI transfer timed out\n");
1481                         return -ETIMEDOUT;
1482                 }
1483
1484                 if (xfer->error & SPI_TRANS_FAIL_IO)
1485                         return -EIO;
1486         }
1487
1488         return 0;
1489 }
1490
1491 static void _spi_transfer_delay_ns(u32 ns)
1492 {
1493         if (!ns)
1494                 return;
1495         if (ns <= NSEC_PER_USEC) {
1496                 ndelay(ns);
1497         } else {
1498                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1499
1500                 if (us <= 10)
1501                         udelay(us);
1502                 else
1503                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1504         }
1505 }
1506
1507 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1508 {
1509         u32 delay = _delay->value;
1510         u32 unit = _delay->unit;
1511         u32 hz;
1512
1513         if (!delay)
1514                 return 0;
1515
1516         switch (unit) {
1517         case SPI_DELAY_UNIT_USECS:
1518                 delay *= NSEC_PER_USEC;
1519                 break;
1520         case SPI_DELAY_UNIT_NSECS:
1521                 /* Nothing to do here */
1522                 break;
1523         case SPI_DELAY_UNIT_SCK:
1524                 /* Clock cycles need to be obtained from spi_transfer */
1525                 if (!xfer)
1526                         return -EINVAL;
1527                 /*
1528                  * If there is unknown effective speed, approximate it
1529                  * by underestimating with half of the requested Hz.
1530                  */
1531                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1532                 if (!hz)
1533                         return -EINVAL;
1534
1535                 /* Convert delay to nanoseconds */
1536                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1537                 break;
1538         default:
1539                 return -EINVAL;
1540         }
1541
1542         return delay;
1543 }
1544 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1545
1546 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1547 {
1548         int delay;
1549
1550         might_sleep();
1551
1552         if (!_delay)
1553                 return -EINVAL;
1554
1555         delay = spi_delay_to_ns(_delay, xfer);
1556         if (delay < 0)
1557                 return delay;
1558
1559         _spi_transfer_delay_ns(delay);
1560
1561         return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(spi_delay_exec);
1564
1565 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1566                                           struct spi_transfer *xfer)
1567 {
1568         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1569         u32 delay = xfer->cs_change_delay.value;
1570         u32 unit = xfer->cs_change_delay.unit;
1571         int ret;
1572
1573         /* Return early on "fast" mode - for everything but USECS */
1574         if (!delay) {
1575                 if (unit == SPI_DELAY_UNIT_USECS)
1576                         _spi_transfer_delay_ns(default_delay_ns);
1577                 return;
1578         }
1579
1580         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1581         if (ret) {
1582                 dev_err_once(&msg->spi->dev,
1583                              "Use of unsupported delay unit %i, using default of %luus\n",
1584                              unit, default_delay_ns / NSEC_PER_USEC);
1585                 _spi_transfer_delay_ns(default_delay_ns);
1586         }
1587 }
1588
1589 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1590                                                   struct spi_transfer *xfer)
1591 {
1592         _spi_transfer_cs_change_delay(msg, xfer);
1593 }
1594 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1595
1596 /*
1597  * spi_transfer_one_message - Default implementation of transfer_one_message()
1598  *
1599  * This is a standard implementation of transfer_one_message() for
1600  * drivers which implement a transfer_one() operation.  It provides
1601  * standard handling of delays and chip select management.
1602  */
1603 static int spi_transfer_one_message(struct spi_controller *ctlr,
1604                                     struct spi_message *msg)
1605 {
1606         struct spi_transfer *xfer;
1607         bool keep_cs = false;
1608         int ret = 0;
1609         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1610         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1611
1612         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1613         spi_set_cs(msg->spi, !xfer->cs_off, false);
1614
1615         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1616         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1617
1618         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1619                 trace_spi_transfer_start(msg, xfer);
1620
1621                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1622                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1623
1624                 if (!ctlr->ptp_sts_supported) {
1625                         xfer->ptp_sts_word_pre = 0;
1626                         ptp_read_system_prets(xfer->ptp_sts);
1627                 }
1628
1629                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1630                         reinit_completion(&ctlr->xfer_completion);
1631
1632 fallback_pio:
1633                         spi_dma_sync_for_device(ctlr, xfer);
1634                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1635                         if (ret < 0) {
1636                                 spi_dma_sync_for_cpu(ctlr, xfer);
1637
1638                                 if (ctlr->cur_msg_mapped &&
1639                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1640                                         __spi_unmap_msg(ctlr, msg);
1641                                         ctlr->fallback = true;
1642                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1643                                         goto fallback_pio;
1644                                 }
1645
1646                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1647                                                                errors);
1648                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1649                                                                errors);
1650                                 dev_err(&msg->spi->dev,
1651                                         "SPI transfer failed: %d\n", ret);
1652                                 goto out;
1653                         }
1654
1655                         if (ret > 0) {
1656                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1657                                 if (ret < 0)
1658                                         msg->status = ret;
1659                         }
1660
1661                         spi_dma_sync_for_cpu(ctlr, xfer);
1662                 } else {
1663                         if (xfer->len)
1664                                 dev_err(&msg->spi->dev,
1665                                         "Bufferless transfer has length %u\n",
1666                                         xfer->len);
1667                 }
1668
1669                 if (!ctlr->ptp_sts_supported) {
1670                         ptp_read_system_postts(xfer->ptp_sts);
1671                         xfer->ptp_sts_word_post = xfer->len;
1672                 }
1673
1674                 trace_spi_transfer_stop(msg, xfer);
1675
1676                 if (msg->status != -EINPROGRESS)
1677                         goto out;
1678
1679                 spi_transfer_delay_exec(xfer);
1680
1681                 if (xfer->cs_change) {
1682                         if (list_is_last(&xfer->transfer_list,
1683                                          &msg->transfers)) {
1684                                 keep_cs = true;
1685                         } else {
1686                                 if (!xfer->cs_off)
1687                                         spi_set_cs(msg->spi, false, false);
1688                                 _spi_transfer_cs_change_delay(msg, xfer);
1689                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1690                                         spi_set_cs(msg->spi, true, false);
1691                         }
1692                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1693                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1694                         spi_set_cs(msg->spi, xfer->cs_off, false);
1695                 }
1696
1697                 msg->actual_length += xfer->len;
1698         }
1699
1700 out:
1701         if (ret != 0 || !keep_cs)
1702                 spi_set_cs(msg->spi, false, false);
1703
1704         if (msg->status == -EINPROGRESS)
1705                 msg->status = ret;
1706
1707         if (msg->status && ctlr->handle_err)
1708                 ctlr->handle_err(ctlr, msg);
1709
1710         spi_finalize_current_message(ctlr);
1711
1712         return ret;
1713 }
1714
1715 /**
1716  * spi_finalize_current_transfer - report completion of a transfer
1717  * @ctlr: the controller reporting completion
1718  *
1719  * Called by SPI drivers using the core transfer_one_message()
1720  * implementation to notify it that the current interrupt driven
1721  * transfer has finished and the next one may be scheduled.
1722  */
1723 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1724 {
1725         complete(&ctlr->xfer_completion);
1726 }
1727 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1728
1729 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1730 {
1731         if (ctlr->auto_runtime_pm) {
1732                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1733                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1734         }
1735 }
1736
1737 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1738                 struct spi_message *msg, bool was_busy)
1739 {
1740         struct spi_transfer *xfer;
1741         int ret;
1742
1743         if (!was_busy && ctlr->auto_runtime_pm) {
1744                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1745                 if (ret < 0) {
1746                         pm_runtime_put_noidle(ctlr->dev.parent);
1747                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1748                                 ret);
1749
1750                         msg->status = ret;
1751                         spi_finalize_current_message(ctlr);
1752
1753                         return ret;
1754                 }
1755         }
1756
1757         if (!was_busy)
1758                 trace_spi_controller_busy(ctlr);
1759
1760         if (!was_busy && ctlr->prepare_transfer_hardware) {
1761                 ret = ctlr->prepare_transfer_hardware(ctlr);
1762                 if (ret) {
1763                         dev_err(&ctlr->dev,
1764                                 "failed to prepare transfer hardware: %d\n",
1765                                 ret);
1766
1767                         if (ctlr->auto_runtime_pm)
1768                                 pm_runtime_put(ctlr->dev.parent);
1769
1770                         msg->status = ret;
1771                         spi_finalize_current_message(ctlr);
1772
1773                         return ret;
1774                 }
1775         }
1776
1777         trace_spi_message_start(msg);
1778
1779         if (ctlr->prepare_message) {
1780                 ret = ctlr->prepare_message(ctlr, msg);
1781                 if (ret) {
1782                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1783                                 ret);
1784                         msg->status = ret;
1785                         spi_finalize_current_message(ctlr);
1786                         return ret;
1787                 }
1788                 msg->prepared = true;
1789         }
1790
1791         ret = spi_map_msg(ctlr, msg);
1792         if (ret) {
1793                 msg->status = ret;
1794                 spi_finalize_current_message(ctlr);
1795                 return ret;
1796         }
1797
1798         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1799                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1800                         xfer->ptp_sts_word_pre = 0;
1801                         ptp_read_system_prets(xfer->ptp_sts);
1802                 }
1803         }
1804
1805         /*
1806          * Drivers implementation of transfer_one_message() must arrange for
1807          * spi_finalize_current_message() to get called. Most drivers will do
1808          * this in the calling context, but some don't. For those cases, a
1809          * completion is used to guarantee that this function does not return
1810          * until spi_finalize_current_message() is done accessing
1811          * ctlr->cur_msg.
1812          * Use of the following two flags enable to opportunistically skip the
1813          * use of the completion since its use involves expensive spin locks.
1814          * In case of a race with the context that calls
1815          * spi_finalize_current_message() the completion will always be used,
1816          * due to strict ordering of these flags using barriers.
1817          */
1818         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1819         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1820         reinit_completion(&ctlr->cur_msg_completion);
1821         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1822
1823         ret = ctlr->transfer_one_message(ctlr, msg);
1824         if (ret) {
1825                 dev_err(&ctlr->dev,
1826                         "failed to transfer one message from queue\n");
1827                 return ret;
1828         }
1829
1830         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1831         smp_mb(); /* See spi_finalize_current_message()... */
1832         if (READ_ONCE(ctlr->cur_msg_incomplete))
1833                 wait_for_completion(&ctlr->cur_msg_completion);
1834
1835         return 0;
1836 }
1837
1838 /**
1839  * __spi_pump_messages - function which processes SPI message queue
1840  * @ctlr: controller to process queue for
1841  * @in_kthread: true if we are in the context of the message pump thread
1842  *
1843  * This function checks if there is any SPI message in the queue that
1844  * needs processing and if so call out to the driver to initialize hardware
1845  * and transfer each message.
1846  *
1847  * Note that it is called both from the kthread itself and also from
1848  * inside spi_sync(); the queue extraction handling at the top of the
1849  * function should deal with this safely.
1850  */
1851 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1852 {
1853         struct spi_message *msg;
1854         bool was_busy = false;
1855         unsigned long flags;
1856         int ret;
1857
1858         /* Take the I/O mutex */
1859         mutex_lock(&ctlr->io_mutex);
1860
1861         /* Lock queue */
1862         spin_lock_irqsave(&ctlr->queue_lock, flags);
1863
1864         /* Make sure we are not already running a message */
1865         if (ctlr->cur_msg)
1866                 goto out_unlock;
1867
1868         /* Check if the queue is idle */
1869         if (list_empty(&ctlr->queue) || !ctlr->running) {
1870                 if (!ctlr->busy)
1871                         goto out_unlock;
1872
1873                 /* Defer any non-atomic teardown to the thread */
1874                 if (!in_kthread) {
1875                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1876                             !ctlr->unprepare_transfer_hardware) {
1877                                 spi_idle_runtime_pm(ctlr);
1878                                 ctlr->busy = false;
1879                                 ctlr->queue_empty = true;
1880                                 trace_spi_controller_idle(ctlr);
1881                         } else {
1882                                 kthread_queue_work(ctlr->kworker,
1883                                                    &ctlr->pump_messages);
1884                         }
1885                         goto out_unlock;
1886                 }
1887
1888                 ctlr->busy = false;
1889                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1890
1891                 kfree(ctlr->dummy_rx);
1892                 ctlr->dummy_rx = NULL;
1893                 kfree(ctlr->dummy_tx);
1894                 ctlr->dummy_tx = NULL;
1895                 if (ctlr->unprepare_transfer_hardware &&
1896                     ctlr->unprepare_transfer_hardware(ctlr))
1897                         dev_err(&ctlr->dev,
1898                                 "failed to unprepare transfer hardware\n");
1899                 spi_idle_runtime_pm(ctlr);
1900                 trace_spi_controller_idle(ctlr);
1901
1902                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1903                 ctlr->queue_empty = true;
1904                 goto out_unlock;
1905         }
1906
1907         /* Extract head of queue */
1908         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1909         ctlr->cur_msg = msg;
1910
1911         list_del_init(&msg->queue);
1912         if (ctlr->busy)
1913                 was_busy = true;
1914         else
1915                 ctlr->busy = true;
1916         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917
1918         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1919         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1920
1921         ctlr->cur_msg = NULL;
1922         ctlr->fallback = false;
1923
1924         mutex_unlock(&ctlr->io_mutex);
1925
1926         /* Prod the scheduler in case transfer_one() was busy waiting */
1927         if (!ret)
1928                 cond_resched();
1929         return;
1930
1931 out_unlock:
1932         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1933         mutex_unlock(&ctlr->io_mutex);
1934 }
1935
1936 /**
1937  * spi_pump_messages - kthread work function which processes spi message queue
1938  * @work: pointer to kthread work struct contained in the controller struct
1939  */
1940 static void spi_pump_messages(struct kthread_work *work)
1941 {
1942         struct spi_controller *ctlr =
1943                 container_of(work, struct spi_controller, pump_messages);
1944
1945         __spi_pump_messages(ctlr, true);
1946 }
1947
1948 /**
1949  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1950  * @ctlr: Pointer to the spi_controller structure of the driver
1951  * @xfer: Pointer to the transfer being timestamped
1952  * @progress: How many words (not bytes) have been transferred so far
1953  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1954  *            transfer, for less jitter in time measurement. Only compatible
1955  *            with PIO drivers. If true, must follow up with
1956  *            spi_take_timestamp_post or otherwise system will crash.
1957  *            WARNING: for fully predictable results, the CPU frequency must
1958  *            also be under control (governor).
1959  *
1960  * This is a helper for drivers to collect the beginning of the TX timestamp
1961  * for the requested byte from the SPI transfer. The frequency with which this
1962  * function must be called (once per word, once for the whole transfer, once
1963  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1964  * greater than or equal to the requested byte at the time of the call. The
1965  * timestamp is only taken once, at the first such call. It is assumed that
1966  * the driver advances its @tx buffer pointer monotonically.
1967  */
1968 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1969                             struct spi_transfer *xfer,
1970                             size_t progress, bool irqs_off)
1971 {
1972         if (!xfer->ptp_sts)
1973                 return;
1974
1975         if (xfer->timestamped)
1976                 return;
1977
1978         if (progress > xfer->ptp_sts_word_pre)
1979                 return;
1980
1981         /* Capture the resolution of the timestamp */
1982         xfer->ptp_sts_word_pre = progress;
1983
1984         if (irqs_off) {
1985                 local_irq_save(ctlr->irq_flags);
1986                 preempt_disable();
1987         }
1988
1989         ptp_read_system_prets(xfer->ptp_sts);
1990 }
1991 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1992
1993 /**
1994  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1995  * @ctlr: Pointer to the spi_controller structure of the driver
1996  * @xfer: Pointer to the transfer being timestamped
1997  * @progress: How many words (not bytes) have been transferred so far
1998  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1999  *
2000  * This is a helper for drivers to collect the end of the TX timestamp for
2001  * the requested byte from the SPI transfer. Can be called with an arbitrary
2002  * frequency: only the first call where @tx exceeds or is equal to the
2003  * requested word will be timestamped.
2004  */
2005 void spi_take_timestamp_post(struct spi_controller *ctlr,
2006                              struct spi_transfer *xfer,
2007                              size_t progress, bool irqs_off)
2008 {
2009         if (!xfer->ptp_sts)
2010                 return;
2011
2012         if (xfer->timestamped)
2013                 return;
2014
2015         if (progress < xfer->ptp_sts_word_post)
2016                 return;
2017
2018         ptp_read_system_postts(xfer->ptp_sts);
2019
2020         if (irqs_off) {
2021                 local_irq_restore(ctlr->irq_flags);
2022                 preempt_enable();
2023         }
2024
2025         /* Capture the resolution of the timestamp */
2026         xfer->ptp_sts_word_post = progress;
2027
2028         xfer->timestamped = 1;
2029 }
2030 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2031
2032 /**
2033  * spi_set_thread_rt - set the controller to pump at realtime priority
2034  * @ctlr: controller to boost priority of
2035  *
2036  * This can be called because the controller requested realtime priority
2037  * (by setting the ->rt value before calling spi_register_controller()) or
2038  * because a device on the bus said that its transfers needed realtime
2039  * priority.
2040  *
2041  * NOTE: at the moment if any device on a bus says it needs realtime then
2042  * the thread will be at realtime priority for all transfers on that
2043  * controller.  If this eventually becomes a problem we may see if we can
2044  * find a way to boost the priority only temporarily during relevant
2045  * transfers.
2046  */
2047 static void spi_set_thread_rt(struct spi_controller *ctlr)
2048 {
2049         dev_info(&ctlr->dev,
2050                 "will run message pump with realtime priority\n");
2051         sched_set_fifo(ctlr->kworker->task);
2052 }
2053
2054 static int spi_init_queue(struct spi_controller *ctlr)
2055 {
2056         ctlr->running = false;
2057         ctlr->busy = false;
2058         ctlr->queue_empty = true;
2059
2060         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2061         if (IS_ERR(ctlr->kworker)) {
2062                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2063                 return PTR_ERR(ctlr->kworker);
2064         }
2065
2066         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2067
2068         /*
2069          * Controller config will indicate if this controller should run the
2070          * message pump with high (realtime) priority to reduce the transfer
2071          * latency on the bus by minimising the delay between a transfer
2072          * request and the scheduling of the message pump thread. Without this
2073          * setting the message pump thread will remain at default priority.
2074          */
2075         if (ctlr->rt)
2076                 spi_set_thread_rt(ctlr);
2077
2078         return 0;
2079 }
2080
2081 /**
2082  * spi_get_next_queued_message() - called by driver to check for queued
2083  * messages
2084  * @ctlr: the controller to check for queued messages
2085  *
2086  * If there are more messages in the queue, the next message is returned from
2087  * this call.
2088  *
2089  * Return: the next message in the queue, else NULL if the queue is empty.
2090  */
2091 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2092 {
2093         struct spi_message *next;
2094         unsigned long flags;
2095
2096         /* Get a pointer to the next message, if any */
2097         spin_lock_irqsave(&ctlr->queue_lock, flags);
2098         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2099                                         queue);
2100         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2101
2102         return next;
2103 }
2104 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2105
2106 /*
2107  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2108  *                            and spi_maybe_unoptimize_message()
2109  * @msg: the message to unoptimize
2110  *
2111  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2112  * core should use spi_maybe_unoptimize_message() rather than calling this
2113  * function directly.
2114  *
2115  * It is not valid to call this on a message that is not currently optimized.
2116  */
2117 static void __spi_unoptimize_message(struct spi_message *msg)
2118 {
2119         struct spi_controller *ctlr = msg->spi->controller;
2120
2121         if (ctlr->unoptimize_message)
2122                 ctlr->unoptimize_message(msg);
2123
2124         spi_res_release(ctlr, msg);
2125
2126         msg->optimized = false;
2127         msg->opt_state = NULL;
2128 }
2129
2130 /*
2131  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2132  * @msg: the message to unoptimize
2133  *
2134  * This function is used to unoptimize a message if and only if it was
2135  * optimized by the core (via spi_maybe_optimize_message()).
2136  */
2137 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2138 {
2139         if (!msg->pre_optimized && msg->optimized)
2140                 __spi_unoptimize_message(msg);
2141 }
2142
2143 /**
2144  * spi_finalize_current_message() - the current message is complete
2145  * @ctlr: the controller to return the message to
2146  *
2147  * Called by the driver to notify the core that the message in the front of the
2148  * queue is complete and can be removed from the queue.
2149  */
2150 void spi_finalize_current_message(struct spi_controller *ctlr)
2151 {
2152         struct spi_transfer *xfer;
2153         struct spi_message *mesg;
2154         int ret;
2155
2156         mesg = ctlr->cur_msg;
2157
2158         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2159                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2160                         ptp_read_system_postts(xfer->ptp_sts);
2161                         xfer->ptp_sts_word_post = xfer->len;
2162                 }
2163         }
2164
2165         if (unlikely(ctlr->ptp_sts_supported))
2166                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2167                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2168
2169         spi_unmap_msg(ctlr, mesg);
2170
2171         if (mesg->prepared && ctlr->unprepare_message) {
2172                 ret = ctlr->unprepare_message(ctlr, mesg);
2173                 if (ret) {
2174                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2175                                 ret);
2176                 }
2177         }
2178
2179         mesg->prepared = false;
2180
2181         spi_maybe_unoptimize_message(mesg);
2182
2183         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2184         smp_mb(); /* See __spi_pump_transfer_message()... */
2185         if (READ_ONCE(ctlr->cur_msg_need_completion))
2186                 complete(&ctlr->cur_msg_completion);
2187
2188         trace_spi_message_done(mesg);
2189
2190         mesg->state = NULL;
2191         if (mesg->complete)
2192                 mesg->complete(mesg->context);
2193 }
2194 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2195
2196 static int spi_start_queue(struct spi_controller *ctlr)
2197 {
2198         unsigned long flags;
2199
2200         spin_lock_irqsave(&ctlr->queue_lock, flags);
2201
2202         if (ctlr->running || ctlr->busy) {
2203                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2204                 return -EBUSY;
2205         }
2206
2207         ctlr->running = true;
2208         ctlr->cur_msg = NULL;
2209         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2210
2211         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2212
2213         return 0;
2214 }
2215
2216 static int spi_stop_queue(struct spi_controller *ctlr)
2217 {
2218         unsigned long flags;
2219         unsigned limit = 500;
2220         int ret = 0;
2221
2222         spin_lock_irqsave(&ctlr->queue_lock, flags);
2223
2224         /*
2225          * This is a bit lame, but is optimized for the common execution path.
2226          * A wait_queue on the ctlr->busy could be used, but then the common
2227          * execution path (pump_messages) would be required to call wake_up or
2228          * friends on every SPI message. Do this instead.
2229          */
2230         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2231                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232                 usleep_range(10000, 11000);
2233                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2234         }
2235
2236         if (!list_empty(&ctlr->queue) || ctlr->busy)
2237                 ret = -EBUSY;
2238         else
2239                 ctlr->running = false;
2240
2241         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2242
2243         return ret;
2244 }
2245
2246 static int spi_destroy_queue(struct spi_controller *ctlr)
2247 {
2248         int ret;
2249
2250         ret = spi_stop_queue(ctlr);
2251
2252         /*
2253          * kthread_flush_worker will block until all work is done.
2254          * If the reason that stop_queue timed out is that the work will never
2255          * finish, then it does no good to call flush/stop thread, so
2256          * return anyway.
2257          */
2258         if (ret) {
2259                 dev_err(&ctlr->dev, "problem destroying queue\n");
2260                 return ret;
2261         }
2262
2263         kthread_destroy_worker(ctlr->kworker);
2264
2265         return 0;
2266 }
2267
2268 static int __spi_queued_transfer(struct spi_device *spi,
2269                                  struct spi_message *msg,
2270                                  bool need_pump)
2271 {
2272         struct spi_controller *ctlr = spi->controller;
2273         unsigned long flags;
2274
2275         spin_lock_irqsave(&ctlr->queue_lock, flags);
2276
2277         if (!ctlr->running) {
2278                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2279                 return -ESHUTDOWN;
2280         }
2281         msg->actual_length = 0;
2282         msg->status = -EINPROGRESS;
2283
2284         list_add_tail(&msg->queue, &ctlr->queue);
2285         ctlr->queue_empty = false;
2286         if (!ctlr->busy && need_pump)
2287                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2288
2289         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2290         return 0;
2291 }
2292
2293 /**
2294  * spi_queued_transfer - transfer function for queued transfers
2295  * @spi: SPI device which is requesting transfer
2296  * @msg: SPI message which is to handled is queued to driver queue
2297  *
2298  * Return: zero on success, else a negative error code.
2299  */
2300 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2301 {
2302         return __spi_queued_transfer(spi, msg, true);
2303 }
2304
2305 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2306 {
2307         int ret;
2308
2309         ctlr->transfer = spi_queued_transfer;
2310         if (!ctlr->transfer_one_message)
2311                 ctlr->transfer_one_message = spi_transfer_one_message;
2312
2313         /* Initialize and start queue */
2314         ret = spi_init_queue(ctlr);
2315         if (ret) {
2316                 dev_err(&ctlr->dev, "problem initializing queue\n");
2317                 goto err_init_queue;
2318         }
2319         ctlr->queued = true;
2320         ret = spi_start_queue(ctlr);
2321         if (ret) {
2322                 dev_err(&ctlr->dev, "problem starting queue\n");
2323                 goto err_start_queue;
2324         }
2325
2326         return 0;
2327
2328 err_start_queue:
2329         spi_destroy_queue(ctlr);
2330 err_init_queue:
2331         return ret;
2332 }
2333
2334 /**
2335  * spi_flush_queue - Send all pending messages in the queue from the callers'
2336  *                   context
2337  * @ctlr: controller to process queue for
2338  *
2339  * This should be used when one wants to ensure all pending messages have been
2340  * sent before doing something. Is used by the spi-mem code to make sure SPI
2341  * memory operations do not preempt regular SPI transfers that have been queued
2342  * before the spi-mem operation.
2343  */
2344 void spi_flush_queue(struct spi_controller *ctlr)
2345 {
2346         if (ctlr->transfer == spi_queued_transfer)
2347                 __spi_pump_messages(ctlr, false);
2348 }
2349
2350 /*-------------------------------------------------------------------------*/
2351
2352 #if defined(CONFIG_OF)
2353 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2354                                      struct spi_delay *delay, const char *prop)
2355 {
2356         u32 value;
2357
2358         if (!of_property_read_u32(nc, prop, &value)) {
2359                 if (value > U16_MAX) {
2360                         delay->value = DIV_ROUND_UP(value, 1000);
2361                         delay->unit = SPI_DELAY_UNIT_USECS;
2362                 } else {
2363                         delay->value = value;
2364                         delay->unit = SPI_DELAY_UNIT_NSECS;
2365                 }
2366         }
2367 }
2368
2369 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2370                            struct device_node *nc)
2371 {
2372         u32 value, cs[SPI_CS_CNT_MAX];
2373         int rc, idx;
2374
2375         /* Mode (clock phase/polarity/etc.) */
2376         if (of_property_read_bool(nc, "spi-cpha"))
2377                 spi->mode |= SPI_CPHA;
2378         if (of_property_read_bool(nc, "spi-cpol"))
2379                 spi->mode |= SPI_CPOL;
2380         if (of_property_read_bool(nc, "spi-3wire"))
2381                 spi->mode |= SPI_3WIRE;
2382         if (of_property_read_bool(nc, "spi-lsb-first"))
2383                 spi->mode |= SPI_LSB_FIRST;
2384         if (of_property_read_bool(nc, "spi-cs-high"))
2385                 spi->mode |= SPI_CS_HIGH;
2386
2387         /* Device DUAL/QUAD mode */
2388         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2389                 switch (value) {
2390                 case 0:
2391                         spi->mode |= SPI_NO_TX;
2392                         break;
2393                 case 1:
2394                         break;
2395                 case 2:
2396                         spi->mode |= SPI_TX_DUAL;
2397                         break;
2398                 case 4:
2399                         spi->mode |= SPI_TX_QUAD;
2400                         break;
2401                 case 8:
2402                         spi->mode |= SPI_TX_OCTAL;
2403                         break;
2404                 default:
2405                         dev_warn(&ctlr->dev,
2406                                 "spi-tx-bus-width %d not supported\n",
2407                                 value);
2408                         break;
2409                 }
2410         }
2411
2412         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2413                 switch (value) {
2414                 case 0:
2415                         spi->mode |= SPI_NO_RX;
2416                         break;
2417                 case 1:
2418                         break;
2419                 case 2:
2420                         spi->mode |= SPI_RX_DUAL;
2421                         break;
2422                 case 4:
2423                         spi->mode |= SPI_RX_QUAD;
2424                         break;
2425                 case 8:
2426                         spi->mode |= SPI_RX_OCTAL;
2427                         break;
2428                 default:
2429                         dev_warn(&ctlr->dev,
2430                                 "spi-rx-bus-width %d not supported\n",
2431                                 value);
2432                         break;
2433                 }
2434         }
2435
2436         if (spi_controller_is_slave(ctlr)) {
2437                 if (!of_node_name_eq(nc, "slave")) {
2438                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2439                                 nc);
2440                         return -EINVAL;
2441                 }
2442                 return 0;
2443         }
2444
2445         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2446                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2447                 return -EINVAL;
2448         }
2449
2450         spi_set_all_cs_unused(spi);
2451
2452         /* Device address */
2453         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2454                                                  SPI_CS_CNT_MAX);
2455         if (rc < 0) {
2456                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2457                         nc, rc);
2458                 return rc;
2459         }
2460         if (rc > ctlr->num_chipselect) {
2461                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2462                         nc, rc);
2463                 return rc;
2464         }
2465         if ((of_property_read_bool(nc, "parallel-memories")) &&
2466             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2467                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2468                 return -EINVAL;
2469         }
2470         for (idx = 0; idx < rc; idx++)
2471                 spi_set_chipselect(spi, idx, cs[idx]);
2472
2473         /*
2474          * By default spi->chip_select[0] will hold the physical CS number,
2475          * so set bit 0 in spi->cs_index_mask.
2476          */
2477         spi->cs_index_mask = BIT(0);
2478
2479         /* Device speed */
2480         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2481                 spi->max_speed_hz = value;
2482
2483         /* Device CS delays */
2484         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2485         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2486         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2487
2488         return 0;
2489 }
2490
2491 static struct spi_device *
2492 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2493 {
2494         struct spi_device *spi;
2495         int rc;
2496
2497         /* Alloc an spi_device */
2498         spi = spi_alloc_device(ctlr);
2499         if (!spi) {
2500                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2501                 rc = -ENOMEM;
2502                 goto err_out;
2503         }
2504
2505         /* Select device driver */
2506         rc = of_alias_from_compatible(nc, spi->modalias,
2507                                       sizeof(spi->modalias));
2508         if (rc < 0) {
2509                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2510                 goto err_out;
2511         }
2512
2513         rc = of_spi_parse_dt(ctlr, spi, nc);
2514         if (rc)
2515                 goto err_out;
2516
2517         /* Store a pointer to the node in the device structure */
2518         of_node_get(nc);
2519
2520         device_set_node(&spi->dev, of_fwnode_handle(nc));
2521
2522         /* Register the new device */
2523         rc = spi_add_device(spi);
2524         if (rc) {
2525                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2526                 goto err_of_node_put;
2527         }
2528
2529         return spi;
2530
2531 err_of_node_put:
2532         of_node_put(nc);
2533 err_out:
2534         spi_dev_put(spi);
2535         return ERR_PTR(rc);
2536 }
2537
2538 /**
2539  * of_register_spi_devices() - Register child devices onto the SPI bus
2540  * @ctlr:       Pointer to spi_controller device
2541  *
2542  * Registers an spi_device for each child node of controller node which
2543  * represents a valid SPI slave.
2544  */
2545 static void of_register_spi_devices(struct spi_controller *ctlr)
2546 {
2547         struct spi_device *spi;
2548         struct device_node *nc;
2549
2550         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2551                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2552                         continue;
2553                 spi = of_register_spi_device(ctlr, nc);
2554                 if (IS_ERR(spi)) {
2555                         dev_warn(&ctlr->dev,
2556                                  "Failed to create SPI device for %pOF\n", nc);
2557                         of_node_clear_flag(nc, OF_POPULATED);
2558                 }
2559         }
2560 }
2561 #else
2562 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2563 #endif
2564
2565 /**
2566  * spi_new_ancillary_device() - Register ancillary SPI device
2567  * @spi:         Pointer to the main SPI device registering the ancillary device
2568  * @chip_select: Chip Select of the ancillary device
2569  *
2570  * Register an ancillary SPI device; for example some chips have a chip-select
2571  * for normal device usage and another one for setup/firmware upload.
2572  *
2573  * This may only be called from main SPI device's probe routine.
2574  *
2575  * Return: 0 on success; negative errno on failure
2576  */
2577 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2578                                              u8 chip_select)
2579 {
2580         struct spi_controller *ctlr = spi->controller;
2581         struct spi_device *ancillary;
2582         int rc = 0;
2583
2584         /* Alloc an spi_device */
2585         ancillary = spi_alloc_device(ctlr);
2586         if (!ancillary) {
2587                 rc = -ENOMEM;
2588                 goto err_out;
2589         }
2590
2591         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2592
2593         /* Use provided chip-select for ancillary device */
2594         spi_set_all_cs_unused(ancillary);
2595         spi_set_chipselect(ancillary, 0, chip_select);
2596
2597         /* Take over SPI mode/speed from SPI main device */
2598         ancillary->max_speed_hz = spi->max_speed_hz;
2599         ancillary->mode = spi->mode;
2600         /*
2601          * By default spi->chip_select[0] will hold the physical CS number,
2602          * so set bit 0 in spi->cs_index_mask.
2603          */
2604         ancillary->cs_index_mask = BIT(0);
2605
2606         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2607
2608         /* Register the new device */
2609         rc = __spi_add_device(ancillary);
2610         if (rc) {
2611                 dev_err(&spi->dev, "failed to register ancillary device\n");
2612                 goto err_out;
2613         }
2614
2615         return ancillary;
2616
2617 err_out:
2618         spi_dev_put(ancillary);
2619         return ERR_PTR(rc);
2620 }
2621 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2622
2623 #ifdef CONFIG_ACPI
2624 struct acpi_spi_lookup {
2625         struct spi_controller   *ctlr;
2626         u32                     max_speed_hz;
2627         u32                     mode;
2628         int                     irq;
2629         u8                      bits_per_word;
2630         u8                      chip_select;
2631         int                     n;
2632         int                     index;
2633 };
2634
2635 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2636 {
2637         struct acpi_resource_spi_serialbus *sb;
2638         int *count = data;
2639
2640         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2641                 return 1;
2642
2643         sb = &ares->data.spi_serial_bus;
2644         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2645                 return 1;
2646
2647         *count = *count + 1;
2648
2649         return 1;
2650 }
2651
2652 /**
2653  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2654  * @adev:       ACPI device
2655  *
2656  * Return: the number of SpiSerialBus resources in the ACPI-device's
2657  * resource-list; or a negative error code.
2658  */
2659 int acpi_spi_count_resources(struct acpi_device *adev)
2660 {
2661         LIST_HEAD(r);
2662         int count = 0;
2663         int ret;
2664
2665         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2666         if (ret < 0)
2667                 return ret;
2668
2669         acpi_dev_free_resource_list(&r);
2670
2671         return count;
2672 }
2673 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2674
2675 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2676                                             struct acpi_spi_lookup *lookup)
2677 {
2678         const union acpi_object *obj;
2679
2680         if (!x86_apple_machine)
2681                 return;
2682
2683         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2684             && obj->buffer.length >= 4)
2685                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2686
2687         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2688             && obj->buffer.length == 8)
2689                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2690
2691         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2692             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2693                 lookup->mode |= SPI_LSB_FIRST;
2694
2695         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2696             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2697                 lookup->mode |= SPI_CPOL;
2698
2699         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2700             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2701                 lookup->mode |= SPI_CPHA;
2702 }
2703
2704 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2705 {
2706         struct acpi_spi_lookup *lookup = data;
2707         struct spi_controller *ctlr = lookup->ctlr;
2708
2709         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2710                 struct acpi_resource_spi_serialbus *sb;
2711                 acpi_handle parent_handle;
2712                 acpi_status status;
2713
2714                 sb = &ares->data.spi_serial_bus;
2715                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2716
2717                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2718                                 return 1;
2719
2720                         status = acpi_get_handle(NULL,
2721                                                  sb->resource_source.string_ptr,
2722                                                  &parent_handle);
2723
2724                         if (ACPI_FAILURE(status))
2725                                 return -ENODEV;
2726
2727                         if (ctlr) {
2728                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2729                                         return -ENODEV;
2730                         } else {
2731                                 struct acpi_device *adev;
2732
2733                                 adev = acpi_fetch_acpi_dev(parent_handle);
2734                                 if (!adev)
2735                                         return -ENODEV;
2736
2737                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2738                                 if (!ctlr)
2739                                         return -EPROBE_DEFER;
2740
2741                                 lookup->ctlr = ctlr;
2742                         }
2743
2744                         /*
2745                          * ACPI DeviceSelection numbering is handled by the
2746                          * host controller driver in Windows and can vary
2747                          * from driver to driver. In Linux we always expect
2748                          * 0 .. max - 1 so we need to ask the driver to
2749                          * translate between the two schemes.
2750                          */
2751                         if (ctlr->fw_translate_cs) {
2752                                 int cs = ctlr->fw_translate_cs(ctlr,
2753                                                 sb->device_selection);
2754                                 if (cs < 0)
2755                                         return cs;
2756                                 lookup->chip_select = cs;
2757                         } else {
2758                                 lookup->chip_select = sb->device_selection;
2759                         }
2760
2761                         lookup->max_speed_hz = sb->connection_speed;
2762                         lookup->bits_per_word = sb->data_bit_length;
2763
2764                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2765                                 lookup->mode |= SPI_CPHA;
2766                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2767                                 lookup->mode |= SPI_CPOL;
2768                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2769                                 lookup->mode |= SPI_CS_HIGH;
2770                 }
2771         } else if (lookup->irq < 0) {
2772                 struct resource r;
2773
2774                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2775                         lookup->irq = r.start;
2776         }
2777
2778         /* Always tell the ACPI core to skip this resource */
2779         return 1;
2780 }
2781
2782 /**
2783  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2784  * @ctlr: controller to which the spi device belongs
2785  * @adev: ACPI Device for the spi device
2786  * @index: Index of the spi resource inside the ACPI Node
2787  *
2788  * This should be used to allocate a new SPI device from and ACPI Device node.
2789  * The caller is responsible for calling spi_add_device to register the SPI device.
2790  *
2791  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2792  * using the resource.
2793  * If index is set to -1, index is not used.
2794  * Note: If index is -1, ctlr must be set.
2795  *
2796  * Return: a pointer to the new device, or ERR_PTR on error.
2797  */
2798 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2799                                          struct acpi_device *adev,
2800                                          int index)
2801 {
2802         acpi_handle parent_handle = NULL;
2803         struct list_head resource_list;
2804         struct acpi_spi_lookup lookup = {};
2805         struct spi_device *spi;
2806         int ret;
2807
2808         if (!ctlr && index == -1)
2809                 return ERR_PTR(-EINVAL);
2810
2811         lookup.ctlr             = ctlr;
2812         lookup.irq              = -1;
2813         lookup.index            = index;
2814         lookup.n                = 0;
2815
2816         INIT_LIST_HEAD(&resource_list);
2817         ret = acpi_dev_get_resources(adev, &resource_list,
2818                                      acpi_spi_add_resource, &lookup);
2819         acpi_dev_free_resource_list(&resource_list);
2820
2821         if (ret < 0)
2822                 /* Found SPI in _CRS but it points to another controller */
2823                 return ERR_PTR(ret);
2824
2825         if (!lookup.max_speed_hz &&
2826             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2827             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2828                 /* Apple does not use _CRS but nested devices for SPI slaves */
2829                 acpi_spi_parse_apple_properties(adev, &lookup);
2830         }
2831
2832         if (!lookup.max_speed_hz)
2833                 return ERR_PTR(-ENODEV);
2834
2835         spi = spi_alloc_device(lookup.ctlr);
2836         if (!spi) {
2837                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2838                         dev_name(&adev->dev));
2839                 return ERR_PTR(-ENOMEM);
2840         }
2841
2842         spi_set_all_cs_unused(spi);
2843         spi_set_chipselect(spi, 0, lookup.chip_select);
2844
2845         ACPI_COMPANION_SET(&spi->dev, adev);
2846         spi->max_speed_hz       = lookup.max_speed_hz;
2847         spi->mode               |= lookup.mode;
2848         spi->irq                = lookup.irq;
2849         spi->bits_per_word      = lookup.bits_per_word;
2850         /*
2851          * By default spi->chip_select[0] will hold the physical CS number,
2852          * so set bit 0 in spi->cs_index_mask.
2853          */
2854         spi->cs_index_mask      = BIT(0);
2855
2856         return spi;
2857 }
2858 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2859
2860 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2861                                             struct acpi_device *adev)
2862 {
2863         struct spi_device *spi;
2864
2865         if (acpi_bus_get_status(adev) || !adev->status.present ||
2866             acpi_device_enumerated(adev))
2867                 return AE_OK;
2868
2869         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2870         if (IS_ERR(spi)) {
2871                 if (PTR_ERR(spi) == -ENOMEM)
2872                         return AE_NO_MEMORY;
2873                 else
2874                         return AE_OK;
2875         }
2876
2877         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2878                           sizeof(spi->modalias));
2879
2880         if (spi->irq < 0)
2881                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2882
2883         acpi_device_set_enumerated(adev);
2884
2885         adev->power.flags.ignore_parent = true;
2886         if (spi_add_device(spi)) {
2887                 adev->power.flags.ignore_parent = false;
2888                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2889                         dev_name(&adev->dev));
2890                 spi_dev_put(spi);
2891         }
2892
2893         return AE_OK;
2894 }
2895
2896 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2897                                        void *data, void **return_value)
2898 {
2899         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2900         struct spi_controller *ctlr = data;
2901
2902         if (!adev)
2903                 return AE_OK;
2904
2905         return acpi_register_spi_device(ctlr, adev);
2906 }
2907
2908 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2909
2910 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2911 {
2912         acpi_status status;
2913         acpi_handle handle;
2914
2915         handle = ACPI_HANDLE(ctlr->dev.parent);
2916         if (!handle)
2917                 return;
2918
2919         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2920                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2921                                      acpi_spi_add_device, NULL, ctlr, NULL);
2922         if (ACPI_FAILURE(status))
2923                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2924 }
2925 #else
2926 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2927 #endif /* CONFIG_ACPI */
2928
2929 static void spi_controller_release(struct device *dev)
2930 {
2931         struct spi_controller *ctlr;
2932
2933         ctlr = container_of(dev, struct spi_controller, dev);
2934         kfree(ctlr);
2935 }
2936
2937 static struct class spi_master_class = {
2938         .name           = "spi_master",
2939         .dev_release    = spi_controller_release,
2940         .dev_groups     = spi_master_groups,
2941 };
2942
2943 #ifdef CONFIG_SPI_SLAVE
2944 /**
2945  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2946  *                   controller
2947  * @spi: device used for the current transfer
2948  */
2949 int spi_slave_abort(struct spi_device *spi)
2950 {
2951         struct spi_controller *ctlr = spi->controller;
2952
2953         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2954                 return ctlr->slave_abort(ctlr);
2955
2956         return -ENOTSUPP;
2957 }
2958 EXPORT_SYMBOL_GPL(spi_slave_abort);
2959
2960 int spi_target_abort(struct spi_device *spi)
2961 {
2962         struct spi_controller *ctlr = spi->controller;
2963
2964         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2965                 return ctlr->target_abort(ctlr);
2966
2967         return -ENOTSUPP;
2968 }
2969 EXPORT_SYMBOL_GPL(spi_target_abort);
2970
2971 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2972                           char *buf)
2973 {
2974         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2975                                                    dev);
2976         struct device *child;
2977
2978         child = device_find_any_child(&ctlr->dev);
2979         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2980 }
2981
2982 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2983                            const char *buf, size_t count)
2984 {
2985         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2986                                                    dev);
2987         struct spi_device *spi;
2988         struct device *child;
2989         char name[32];
2990         int rc;
2991
2992         rc = sscanf(buf, "%31s", name);
2993         if (rc != 1 || !name[0])
2994                 return -EINVAL;
2995
2996         child = device_find_any_child(&ctlr->dev);
2997         if (child) {
2998                 /* Remove registered slave */
2999                 device_unregister(child);
3000                 put_device(child);
3001         }
3002
3003         if (strcmp(name, "(null)")) {
3004                 /* Register new slave */
3005                 spi = spi_alloc_device(ctlr);
3006                 if (!spi)
3007                         return -ENOMEM;
3008
3009                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3010
3011                 rc = spi_add_device(spi);
3012                 if (rc) {
3013                         spi_dev_put(spi);
3014                         return rc;
3015                 }
3016         }
3017
3018         return count;
3019 }
3020
3021 static DEVICE_ATTR_RW(slave);
3022
3023 static struct attribute *spi_slave_attrs[] = {
3024         &dev_attr_slave.attr,
3025         NULL,
3026 };
3027
3028 static const struct attribute_group spi_slave_group = {
3029         .attrs = spi_slave_attrs,
3030 };
3031
3032 static const struct attribute_group *spi_slave_groups[] = {
3033         &spi_controller_statistics_group,
3034         &spi_slave_group,
3035         NULL,
3036 };
3037
3038 static struct class spi_slave_class = {
3039         .name           = "spi_slave",
3040         .dev_release    = spi_controller_release,
3041         .dev_groups     = spi_slave_groups,
3042 };
3043 #else
3044 extern struct class spi_slave_class;    /* dummy */
3045 #endif
3046
3047 /**
3048  * __spi_alloc_controller - allocate an SPI master or slave controller
3049  * @dev: the controller, possibly using the platform_bus
3050  * @size: how much zeroed driver-private data to allocate; the pointer to this
3051  *      memory is in the driver_data field of the returned device, accessible
3052  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3053  *      drivers granting DMA access to portions of their private data need to
3054  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3055  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3056  *      slave (true) controller
3057  * Context: can sleep
3058  *
3059  * This call is used only by SPI controller drivers, which are the
3060  * only ones directly touching chip registers.  It's how they allocate
3061  * an spi_controller structure, prior to calling spi_register_controller().
3062  *
3063  * This must be called from context that can sleep.
3064  *
3065  * The caller is responsible for assigning the bus number and initializing the
3066  * controller's methods before calling spi_register_controller(); and (after
3067  * errors adding the device) calling spi_controller_put() to prevent a memory
3068  * leak.
3069  *
3070  * Return: the SPI controller structure on success, else NULL.
3071  */
3072 struct spi_controller *__spi_alloc_controller(struct device *dev,
3073                                               unsigned int size, bool slave)
3074 {
3075         struct spi_controller   *ctlr;
3076         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3077
3078         if (!dev)
3079                 return NULL;
3080
3081         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3082         if (!ctlr)
3083                 return NULL;
3084
3085         device_initialize(&ctlr->dev);
3086         INIT_LIST_HEAD(&ctlr->queue);
3087         spin_lock_init(&ctlr->queue_lock);
3088         spin_lock_init(&ctlr->bus_lock_spinlock);
3089         mutex_init(&ctlr->bus_lock_mutex);
3090         mutex_init(&ctlr->io_mutex);
3091         mutex_init(&ctlr->add_lock);
3092         ctlr->bus_num = -1;
3093         ctlr->num_chipselect = 1;
3094         ctlr->slave = slave;
3095         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3096                 ctlr->dev.class = &spi_slave_class;
3097         else
3098                 ctlr->dev.class = &spi_master_class;
3099         ctlr->dev.parent = dev;
3100         pm_suspend_ignore_children(&ctlr->dev, true);
3101         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3102
3103         return ctlr;
3104 }
3105 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3106
3107 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3108 {
3109         spi_controller_put(*(struct spi_controller **)ctlr);
3110 }
3111
3112 /**
3113  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3114  * @dev: physical device of SPI controller
3115  * @size: how much zeroed driver-private data to allocate
3116  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3117  * Context: can sleep
3118  *
3119  * Allocate an SPI controller and automatically release a reference on it
3120  * when @dev is unbound from its driver.  Drivers are thus relieved from
3121  * having to call spi_controller_put().
3122  *
3123  * The arguments to this function are identical to __spi_alloc_controller().
3124  *
3125  * Return: the SPI controller structure on success, else NULL.
3126  */
3127 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3128                                                    unsigned int size,
3129                                                    bool slave)
3130 {
3131         struct spi_controller **ptr, *ctlr;
3132
3133         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3134                            GFP_KERNEL);
3135         if (!ptr)
3136                 return NULL;
3137
3138         ctlr = __spi_alloc_controller(dev, size, slave);
3139         if (ctlr) {
3140                 ctlr->devm_allocated = true;
3141                 *ptr = ctlr;
3142                 devres_add(dev, ptr);
3143         } else {
3144                 devres_free(ptr);
3145         }
3146
3147         return ctlr;
3148 }
3149 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3150
3151 /**
3152  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3153  * @ctlr: The SPI master to grab GPIO descriptors for
3154  */
3155 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3156 {
3157         int nb, i;
3158         struct gpio_desc **cs;
3159         struct device *dev = &ctlr->dev;
3160         unsigned long native_cs_mask = 0;
3161         unsigned int num_cs_gpios = 0;
3162
3163         nb = gpiod_count(dev, "cs");
3164         if (nb < 0) {
3165                 /* No GPIOs at all is fine, else return the error */
3166                 if (nb == -ENOENT)
3167                         return 0;
3168                 return nb;
3169         }
3170
3171         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3172
3173         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3174                           GFP_KERNEL);
3175         if (!cs)
3176                 return -ENOMEM;
3177         ctlr->cs_gpiods = cs;
3178
3179         for (i = 0; i < nb; i++) {
3180                 /*
3181                  * Most chipselects are active low, the inverted
3182                  * semantics are handled by special quirks in gpiolib,
3183                  * so initializing them GPIOD_OUT_LOW here means
3184                  * "unasserted", in most cases this will drive the physical
3185                  * line high.
3186                  */
3187                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3188                                                       GPIOD_OUT_LOW);
3189                 if (IS_ERR(cs[i]))
3190                         return PTR_ERR(cs[i]);
3191
3192                 if (cs[i]) {
3193                         /*
3194                          * If we find a CS GPIO, name it after the device and
3195                          * chip select line.
3196                          */
3197                         char *gpioname;
3198
3199                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3200                                                   dev_name(dev), i);
3201                         if (!gpioname)
3202                                 return -ENOMEM;
3203                         gpiod_set_consumer_name(cs[i], gpioname);
3204                         num_cs_gpios++;
3205                         continue;
3206                 }
3207
3208                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3209                         dev_err(dev, "Invalid native chip select %d\n", i);
3210                         return -EINVAL;
3211                 }
3212                 native_cs_mask |= BIT(i);
3213         }
3214
3215         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3216
3217         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3218             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3219                 dev_err(dev, "No unused native chip select available\n");
3220                 return -EINVAL;
3221         }
3222
3223         return 0;
3224 }
3225
3226 static int spi_controller_check_ops(struct spi_controller *ctlr)
3227 {
3228         /*
3229          * The controller may implement only the high-level SPI-memory like
3230          * operations if it does not support regular SPI transfers, and this is
3231          * valid use case.
3232          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3233          * one of the ->transfer_xxx() method be implemented.
3234          */
3235         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3236                 if (!ctlr->transfer && !ctlr->transfer_one &&
3237                    !ctlr->transfer_one_message) {
3238                         return -EINVAL;
3239                 }
3240         }
3241
3242         return 0;
3243 }
3244
3245 /* Allocate dynamic bus number using Linux idr */
3246 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3247 {
3248         int id;
3249
3250         mutex_lock(&board_lock);
3251         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3252         mutex_unlock(&board_lock);
3253         if (WARN(id < 0, "couldn't get idr"))
3254                 return id == -ENOSPC ? -EBUSY : id;
3255         ctlr->bus_num = id;
3256         return 0;
3257 }
3258
3259 /**
3260  * spi_register_controller - register SPI master or slave controller
3261  * @ctlr: initialized master, originally from spi_alloc_master() or
3262  *      spi_alloc_slave()
3263  * Context: can sleep
3264  *
3265  * SPI controllers connect to their drivers using some non-SPI bus,
3266  * such as the platform bus.  The final stage of probe() in that code
3267  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3268  *
3269  * SPI controllers use board specific (often SOC specific) bus numbers,
3270  * and board-specific addressing for SPI devices combines those numbers
3271  * with chip select numbers.  Since SPI does not directly support dynamic
3272  * device identification, boards need configuration tables telling which
3273  * chip is at which address.
3274  *
3275  * This must be called from context that can sleep.  It returns zero on
3276  * success, else a negative error code (dropping the controller's refcount).
3277  * After a successful return, the caller is responsible for calling
3278  * spi_unregister_controller().
3279  *
3280  * Return: zero on success, else a negative error code.
3281  */
3282 int spi_register_controller(struct spi_controller *ctlr)
3283 {
3284         struct device           *dev = ctlr->dev.parent;
3285         struct boardinfo        *bi;
3286         int                     first_dynamic;
3287         int                     status;
3288         int                     idx;
3289
3290         if (!dev)
3291                 return -ENODEV;
3292
3293         /*
3294          * Make sure all necessary hooks are implemented before registering
3295          * the SPI controller.
3296          */
3297         status = spi_controller_check_ops(ctlr);
3298         if (status)
3299                 return status;
3300
3301         if (ctlr->bus_num < 0)
3302                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3303         if (ctlr->bus_num >= 0) {
3304                 /* Devices with a fixed bus num must check-in with the num */
3305                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3306                 if (status)
3307                         return status;
3308         }
3309         if (ctlr->bus_num < 0) {
3310                 first_dynamic = of_alias_get_highest_id("spi");
3311                 if (first_dynamic < 0)
3312                         first_dynamic = 0;
3313                 else
3314                         first_dynamic++;
3315
3316                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3317                 if (status)
3318                         return status;
3319         }
3320         ctlr->bus_lock_flag = 0;
3321         init_completion(&ctlr->xfer_completion);
3322         init_completion(&ctlr->cur_msg_completion);
3323         if (!ctlr->max_dma_len)
3324                 ctlr->max_dma_len = INT_MAX;
3325
3326         /*
3327          * Register the device, then userspace will see it.
3328          * Registration fails if the bus ID is in use.
3329          */
3330         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3331
3332         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3333                 status = spi_get_gpio_descs(ctlr);
3334                 if (status)
3335                         goto free_bus_id;
3336                 /*
3337                  * A controller using GPIO descriptors always
3338                  * supports SPI_CS_HIGH if need be.
3339                  */
3340                 ctlr->mode_bits |= SPI_CS_HIGH;
3341         }
3342
3343         /*
3344          * Even if it's just one always-selected device, there must
3345          * be at least one chipselect.
3346          */
3347         if (!ctlr->num_chipselect) {
3348                 status = -EINVAL;
3349                 goto free_bus_id;
3350         }
3351
3352         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3353         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3354                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3355
3356         status = device_add(&ctlr->dev);
3357         if (status < 0)
3358                 goto free_bus_id;
3359         dev_dbg(dev, "registered %s %s\n",
3360                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3361                         dev_name(&ctlr->dev));
3362
3363         /*
3364          * If we're using a queued driver, start the queue. Note that we don't
3365          * need the queueing logic if the driver is only supporting high-level
3366          * memory operations.
3367          */
3368         if (ctlr->transfer) {
3369                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3370         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3371                 status = spi_controller_initialize_queue(ctlr);
3372                 if (status) {
3373                         device_del(&ctlr->dev);
3374                         goto free_bus_id;
3375                 }
3376         }
3377         /* Add statistics */
3378         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3379         if (!ctlr->pcpu_statistics) {
3380                 dev_err(dev, "Error allocating per-cpu statistics\n");
3381                 status = -ENOMEM;
3382                 goto destroy_queue;
3383         }
3384
3385         mutex_lock(&board_lock);
3386         list_add_tail(&ctlr->list, &spi_controller_list);
3387         list_for_each_entry(bi, &board_list, list)
3388                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3389         mutex_unlock(&board_lock);
3390
3391         /* Register devices from the device tree and ACPI */
3392         of_register_spi_devices(ctlr);
3393         acpi_register_spi_devices(ctlr);
3394         return status;
3395
3396 destroy_queue:
3397         spi_destroy_queue(ctlr);
3398 free_bus_id:
3399         mutex_lock(&board_lock);
3400         idr_remove(&spi_master_idr, ctlr->bus_num);
3401         mutex_unlock(&board_lock);
3402         return status;
3403 }
3404 EXPORT_SYMBOL_GPL(spi_register_controller);
3405
3406 static void devm_spi_unregister(struct device *dev, void *res)
3407 {
3408         spi_unregister_controller(*(struct spi_controller **)res);
3409 }
3410
3411 /**
3412  * devm_spi_register_controller - register managed SPI master or slave
3413  *      controller
3414  * @dev:    device managing SPI controller
3415  * @ctlr: initialized controller, originally from spi_alloc_master() or
3416  *      spi_alloc_slave()
3417  * Context: can sleep
3418  *
3419  * Register a SPI device as with spi_register_controller() which will
3420  * automatically be unregistered and freed.
3421  *
3422  * Return: zero on success, else a negative error code.
3423  */
3424 int devm_spi_register_controller(struct device *dev,
3425                                  struct spi_controller *ctlr)
3426 {
3427         struct spi_controller **ptr;
3428         int ret;
3429
3430         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3431         if (!ptr)
3432                 return -ENOMEM;
3433
3434         ret = spi_register_controller(ctlr);
3435         if (!ret) {
3436                 *ptr = ctlr;
3437                 devres_add(dev, ptr);
3438         } else {
3439                 devres_free(ptr);
3440         }
3441
3442         return ret;
3443 }
3444 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3445
3446 static int __unregister(struct device *dev, void *null)
3447 {
3448         spi_unregister_device(to_spi_device(dev));
3449         return 0;
3450 }
3451
3452 /**
3453  * spi_unregister_controller - unregister SPI master or slave controller
3454  * @ctlr: the controller being unregistered
3455  * Context: can sleep
3456  *
3457  * This call is used only by SPI controller drivers, which are the
3458  * only ones directly touching chip registers.
3459  *
3460  * This must be called from context that can sleep.
3461  *
3462  * Note that this function also drops a reference to the controller.
3463  */
3464 void spi_unregister_controller(struct spi_controller *ctlr)
3465 {
3466         struct spi_controller *found;
3467         int id = ctlr->bus_num;
3468
3469         /* Prevent addition of new devices, unregister existing ones */
3470         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3471                 mutex_lock(&ctlr->add_lock);
3472
3473         device_for_each_child(&ctlr->dev, NULL, __unregister);
3474
3475         /* First make sure that this controller was ever added */
3476         mutex_lock(&board_lock);
3477         found = idr_find(&spi_master_idr, id);
3478         mutex_unlock(&board_lock);
3479         if (ctlr->queued) {
3480                 if (spi_destroy_queue(ctlr))
3481                         dev_err(&ctlr->dev, "queue remove failed\n");
3482         }
3483         mutex_lock(&board_lock);
3484         list_del(&ctlr->list);
3485         mutex_unlock(&board_lock);
3486
3487         device_del(&ctlr->dev);
3488
3489         /* Free bus id */
3490         mutex_lock(&board_lock);
3491         if (found == ctlr)
3492                 idr_remove(&spi_master_idr, id);
3493         mutex_unlock(&board_lock);
3494
3495         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3496                 mutex_unlock(&ctlr->add_lock);
3497
3498         /*
3499          * Release the last reference on the controller if its driver
3500          * has not yet been converted to devm_spi_alloc_master/slave().
3501          */
3502         if (!ctlr->devm_allocated)
3503                 put_device(&ctlr->dev);
3504 }
3505 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3506
3507 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3508 {
3509         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3510 }
3511
3512 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3513 {
3514         mutex_lock(&ctlr->bus_lock_mutex);
3515         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3516         mutex_unlock(&ctlr->bus_lock_mutex);
3517 }
3518
3519 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3520 {
3521         mutex_lock(&ctlr->bus_lock_mutex);
3522         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3523         mutex_unlock(&ctlr->bus_lock_mutex);
3524 }
3525
3526 int spi_controller_suspend(struct spi_controller *ctlr)
3527 {
3528         int ret = 0;
3529
3530         /* Basically no-ops for non-queued controllers */
3531         if (ctlr->queued) {
3532                 ret = spi_stop_queue(ctlr);
3533                 if (ret)
3534                         dev_err(&ctlr->dev, "queue stop failed\n");
3535         }
3536
3537         __spi_mark_suspended(ctlr);
3538         return ret;
3539 }
3540 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3541
3542 int spi_controller_resume(struct spi_controller *ctlr)
3543 {
3544         int ret = 0;
3545
3546         __spi_mark_resumed(ctlr);
3547
3548         if (ctlr->queued) {
3549                 ret = spi_start_queue(ctlr);
3550                 if (ret)
3551                         dev_err(&ctlr->dev, "queue restart failed\n");
3552         }
3553         return ret;
3554 }
3555 EXPORT_SYMBOL_GPL(spi_controller_resume);
3556
3557 /*-------------------------------------------------------------------------*/
3558
3559 /* Core methods for spi_message alterations */
3560
3561 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3562                                             struct spi_message *msg,
3563                                             void *res)
3564 {
3565         struct spi_replaced_transfers *rxfer = res;
3566         size_t i;
3567
3568         /* Call extra callback if requested */
3569         if (rxfer->release)
3570                 rxfer->release(ctlr, msg, res);
3571
3572         /* Insert replaced transfers back into the message */
3573         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3574
3575         /* Remove the formerly inserted entries */
3576         for (i = 0; i < rxfer->inserted; i++)
3577                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3578 }
3579
3580 /**
3581  * spi_replace_transfers - replace transfers with several transfers
3582  *                         and register change with spi_message.resources
3583  * @msg:           the spi_message we work upon
3584  * @xfer_first:    the first spi_transfer we want to replace
3585  * @remove:        number of transfers to remove
3586  * @insert:        the number of transfers we want to insert instead
3587  * @release:       extra release code necessary in some circumstances
3588  * @extradatasize: extra data to allocate (with alignment guarantees
3589  *                 of struct @spi_transfer)
3590  * @gfp:           gfp flags
3591  *
3592  * Returns: pointer to @spi_replaced_transfers,
3593  *          PTR_ERR(...) in case of errors.
3594  */
3595 static struct spi_replaced_transfers *spi_replace_transfers(
3596         struct spi_message *msg,
3597         struct spi_transfer *xfer_first,
3598         size_t remove,
3599         size_t insert,
3600         spi_replaced_release_t release,
3601         size_t extradatasize,
3602         gfp_t gfp)
3603 {
3604         struct spi_replaced_transfers *rxfer;
3605         struct spi_transfer *xfer;
3606         size_t i;
3607
3608         /* Allocate the structure using spi_res */
3609         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3610                               struct_size(rxfer, inserted_transfers, insert)
3611                               + extradatasize,
3612                               gfp);
3613         if (!rxfer)
3614                 return ERR_PTR(-ENOMEM);
3615
3616         /* The release code to invoke before running the generic release */
3617         rxfer->release = release;
3618
3619         /* Assign extradata */
3620         if (extradatasize)
3621                 rxfer->extradata =
3622                         &rxfer->inserted_transfers[insert];
3623
3624         /* Init the replaced_transfers list */
3625         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3626
3627         /*
3628          * Assign the list_entry after which we should reinsert
3629          * the @replaced_transfers - it may be spi_message.messages!
3630          */
3631         rxfer->replaced_after = xfer_first->transfer_list.prev;
3632
3633         /* Remove the requested number of transfers */
3634         for (i = 0; i < remove; i++) {
3635                 /*
3636                  * If the entry after replaced_after it is msg->transfers
3637                  * then we have been requested to remove more transfers
3638                  * than are in the list.
3639                  */
3640                 if (rxfer->replaced_after->next == &msg->transfers) {
3641                         dev_err(&msg->spi->dev,
3642                                 "requested to remove more spi_transfers than are available\n");
3643                         /* Insert replaced transfers back into the message */
3644                         list_splice(&rxfer->replaced_transfers,
3645                                     rxfer->replaced_after);
3646
3647                         /* Free the spi_replace_transfer structure... */
3648                         spi_res_free(rxfer);
3649
3650                         /* ...and return with an error */
3651                         return ERR_PTR(-EINVAL);
3652                 }
3653
3654                 /*
3655                  * Remove the entry after replaced_after from list of
3656                  * transfers and add it to list of replaced_transfers.
3657                  */
3658                 list_move_tail(rxfer->replaced_after->next,
3659                                &rxfer->replaced_transfers);
3660         }
3661
3662         /*
3663          * Create copy of the given xfer with identical settings
3664          * based on the first transfer to get removed.
3665          */
3666         for (i = 0; i < insert; i++) {
3667                 /* We need to run in reverse order */
3668                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3669
3670                 /* Copy all spi_transfer data */
3671                 memcpy(xfer, xfer_first, sizeof(*xfer));
3672
3673                 /* Add to list */
3674                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3675
3676                 /* Clear cs_change and delay for all but the last */
3677                 if (i) {
3678                         xfer->cs_change = false;
3679                         xfer->delay.value = 0;
3680                 }
3681         }
3682
3683         /* Set up inserted... */
3684         rxfer->inserted = insert;
3685
3686         /* ...and register it with spi_res/spi_message */
3687         spi_res_add(msg, rxfer);
3688
3689         return rxfer;
3690 }
3691
3692 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3693                                         struct spi_message *msg,
3694                                         struct spi_transfer **xferp,
3695                                         size_t maxsize)
3696 {
3697         struct spi_transfer *xfer = *xferp, *xfers;
3698         struct spi_replaced_transfers *srt;
3699         size_t offset;
3700         size_t count, i;
3701
3702         /* Calculate how many we have to replace */
3703         count = DIV_ROUND_UP(xfer->len, maxsize);
3704
3705         /* Create replacement */
3706         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3707         if (IS_ERR(srt))
3708                 return PTR_ERR(srt);
3709         xfers = srt->inserted_transfers;
3710
3711         /*
3712          * Now handle each of those newly inserted spi_transfers.
3713          * Note that the replacements spi_transfers all are preset
3714          * to the same values as *xferp, so tx_buf, rx_buf and len
3715          * are all identical (as well as most others)
3716          * so we just have to fix up len and the pointers.
3717          */
3718
3719         /*
3720          * The first transfer just needs the length modified, so we
3721          * run it outside the loop.
3722          */
3723         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3724
3725         /* All the others need rx_buf/tx_buf also set */
3726         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3727                 /* Update rx_buf, tx_buf and DMA */
3728                 if (xfers[i].rx_buf)
3729                         xfers[i].rx_buf += offset;
3730                 if (xfers[i].tx_buf)
3731                         xfers[i].tx_buf += offset;
3732
3733                 /* Update length */
3734                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3735         }
3736
3737         /*
3738          * We set up xferp to the last entry we have inserted,
3739          * so that we skip those already split transfers.
3740          */
3741         *xferp = &xfers[count - 1];
3742
3743         /* Increment statistics counters */
3744         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3745                                        transfers_split_maxsize);
3746         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3747                                        transfers_split_maxsize);
3748
3749         return 0;
3750 }
3751
3752 /**
3753  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3754  *                               when an individual transfer exceeds a
3755  *                               certain size
3756  * @ctlr:    the @spi_controller for this transfer
3757  * @msg:   the @spi_message to transform
3758  * @maxsize:  the maximum when to apply this
3759  *
3760  * This function allocates resources that are automatically freed during the
3761  * spi message unoptimize phase so this function should only be called from
3762  * optimize_message callbacks.
3763  *
3764  * Return: status of transformation
3765  */
3766 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3767                                 struct spi_message *msg,
3768                                 size_t maxsize)
3769 {
3770         struct spi_transfer *xfer;
3771         int ret;
3772
3773         /*
3774          * Iterate over the transfer_list,
3775          * but note that xfer is advanced to the last transfer inserted
3776          * to avoid checking sizes again unnecessarily (also xfer does
3777          * potentially belong to a different list by the time the
3778          * replacement has happened).
3779          */
3780         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3781                 if (xfer->len > maxsize) {
3782                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3783                                                            maxsize);
3784                         if (ret)
3785                                 return ret;
3786                 }
3787         }
3788
3789         return 0;
3790 }
3791 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3792
3793
3794 /**
3795  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3796  *                                when an individual transfer exceeds a
3797  *                                certain number of SPI words
3798  * @ctlr:     the @spi_controller for this transfer
3799  * @msg:      the @spi_message to transform
3800  * @maxwords: the number of words to limit each transfer to
3801  *
3802  * This function allocates resources that are automatically freed during the
3803  * spi message unoptimize phase so this function should only be called from
3804  * optimize_message callbacks.
3805  *
3806  * Return: status of transformation
3807  */
3808 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3809                                  struct spi_message *msg,
3810                                  size_t maxwords)
3811 {
3812         struct spi_transfer *xfer;
3813
3814         /*
3815          * Iterate over the transfer_list,
3816          * but note that xfer is advanced to the last transfer inserted
3817          * to avoid checking sizes again unnecessarily (also xfer does
3818          * potentially belong to a different list by the time the
3819          * replacement has happened).
3820          */
3821         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3822                 size_t maxsize;
3823                 int ret;
3824
3825                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3826                 if (xfer->len > maxsize) {
3827                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3828                                                            maxsize);
3829                         if (ret)
3830                                 return ret;
3831                 }
3832         }
3833
3834         return 0;
3835 }
3836 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3837
3838 /*-------------------------------------------------------------------------*/
3839
3840 /*
3841  * Core methods for SPI controller protocol drivers. Some of the
3842  * other core methods are currently defined as inline functions.
3843  */
3844
3845 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3846                                         u8 bits_per_word)
3847 {
3848         if (ctlr->bits_per_word_mask) {
3849                 /* Only 32 bits fit in the mask */
3850                 if (bits_per_word > 32)
3851                         return -EINVAL;
3852                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3853                         return -EINVAL;
3854         }
3855
3856         return 0;
3857 }
3858
3859 /**
3860  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3861  * @spi: the device that requires specific CS timing configuration
3862  *
3863  * Return: zero on success, else a negative error code.
3864  */
3865 static int spi_set_cs_timing(struct spi_device *spi)
3866 {
3867         struct device *parent = spi->controller->dev.parent;
3868         int status = 0;
3869
3870         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3871                 if (spi->controller->auto_runtime_pm) {
3872                         status = pm_runtime_get_sync(parent);
3873                         if (status < 0) {
3874                                 pm_runtime_put_noidle(parent);
3875                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3876                                         status);
3877                                 return status;
3878                         }
3879
3880                         status = spi->controller->set_cs_timing(spi);
3881                         pm_runtime_mark_last_busy(parent);
3882                         pm_runtime_put_autosuspend(parent);
3883                 } else {
3884                         status = spi->controller->set_cs_timing(spi);
3885                 }
3886         }
3887         return status;
3888 }
3889
3890 /**
3891  * spi_setup - setup SPI mode and clock rate
3892  * @spi: the device whose settings are being modified
3893  * Context: can sleep, and no requests are queued to the device
3894  *
3895  * SPI protocol drivers may need to update the transfer mode if the
3896  * device doesn't work with its default.  They may likewise need
3897  * to update clock rates or word sizes from initial values.  This function
3898  * changes those settings, and must be called from a context that can sleep.
3899  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3900  * effect the next time the device is selected and data is transferred to
3901  * or from it.  When this function returns, the SPI device is deselected.
3902  *
3903  * Note that this call will fail if the protocol driver specifies an option
3904  * that the underlying controller or its driver does not support.  For
3905  * example, not all hardware supports wire transfers using nine bit words,
3906  * LSB-first wire encoding, or active-high chipselects.
3907  *
3908  * Return: zero on success, else a negative error code.
3909  */
3910 int spi_setup(struct spi_device *spi)
3911 {
3912         unsigned        bad_bits, ugly_bits;
3913         int             status = 0;
3914
3915         /*
3916          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3917          * are set at the same time.
3918          */
3919         if ((hweight_long(spi->mode &
3920                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3921             (hweight_long(spi->mode &
3922                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3923                 dev_err(&spi->dev,
3924                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3925                 return -EINVAL;
3926         }
3927         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3928         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3929                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3930                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3931                 return -EINVAL;
3932         /*
3933          * Help drivers fail *cleanly* when they need options
3934          * that aren't supported with their current controller.
3935          * SPI_CS_WORD has a fallback software implementation,
3936          * so it is ignored here.
3937          */
3938         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3939                                  SPI_NO_TX | SPI_NO_RX);
3940         ugly_bits = bad_bits &
3941                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3942                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3943         if (ugly_bits) {
3944                 dev_warn(&spi->dev,
3945                          "setup: ignoring unsupported mode bits %x\n",
3946                          ugly_bits);
3947                 spi->mode &= ~ugly_bits;
3948                 bad_bits &= ~ugly_bits;
3949         }
3950         if (bad_bits) {
3951                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3952                         bad_bits);
3953                 return -EINVAL;
3954         }
3955
3956         if (!spi->bits_per_word) {
3957                 spi->bits_per_word = 8;
3958         } else {
3959                 /*
3960                  * Some controllers may not support the default 8 bits-per-word
3961                  * so only perform the check when this is explicitly provided.
3962                  */
3963                 status = __spi_validate_bits_per_word(spi->controller,
3964                                                       spi->bits_per_word);
3965                 if (status)
3966                         return status;
3967         }
3968
3969         if (spi->controller->max_speed_hz &&
3970             (!spi->max_speed_hz ||
3971              spi->max_speed_hz > spi->controller->max_speed_hz))
3972                 spi->max_speed_hz = spi->controller->max_speed_hz;
3973
3974         mutex_lock(&spi->controller->io_mutex);
3975
3976         if (spi->controller->setup) {
3977                 status = spi->controller->setup(spi);
3978                 if (status) {
3979                         mutex_unlock(&spi->controller->io_mutex);
3980                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3981                                 status);
3982                         return status;
3983                 }
3984         }
3985
3986         status = spi_set_cs_timing(spi);
3987         if (status) {
3988                 mutex_unlock(&spi->controller->io_mutex);
3989                 return status;
3990         }
3991
3992         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3993                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3994                 if (status < 0) {
3995                         mutex_unlock(&spi->controller->io_mutex);
3996                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3997                                 status);
3998                         return status;
3999                 }
4000
4001                 /*
4002                  * We do not want to return positive value from pm_runtime_get,
4003                  * there are many instances of devices calling spi_setup() and
4004                  * checking for a non-zero return value instead of a negative
4005                  * return value.
4006                  */
4007                 status = 0;
4008
4009                 spi_set_cs(spi, false, true);
4010                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4011                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4012         } else {
4013                 spi_set_cs(spi, false, true);
4014         }
4015
4016         mutex_unlock(&spi->controller->io_mutex);
4017
4018         if (spi->rt && !spi->controller->rt) {
4019                 spi->controller->rt = true;
4020                 spi_set_thread_rt(spi->controller);
4021         }
4022
4023         trace_spi_setup(spi, status);
4024
4025         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4026                         spi->mode & SPI_MODE_X_MASK,
4027                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4028                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4029                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4030                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4031                         spi->bits_per_word, spi->max_speed_hz,
4032                         status);
4033
4034         return status;
4035 }
4036 EXPORT_SYMBOL_GPL(spi_setup);
4037
4038 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4039                                        struct spi_device *spi)
4040 {
4041         int delay1, delay2;
4042
4043         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4044         if (delay1 < 0)
4045                 return delay1;
4046
4047         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4048         if (delay2 < 0)
4049                 return delay2;
4050
4051         if (delay1 < delay2)
4052                 memcpy(&xfer->word_delay, &spi->word_delay,
4053                        sizeof(xfer->word_delay));
4054
4055         return 0;
4056 }
4057
4058 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4059 {
4060         struct spi_controller *ctlr = spi->controller;
4061         struct spi_transfer *xfer;
4062         int w_size;
4063
4064         if (list_empty(&message->transfers))
4065                 return -EINVAL;
4066
4067         message->spi = spi;
4068
4069         /*
4070          * Half-duplex links include original MicroWire, and ones with
4071          * only one data pin like SPI_3WIRE (switches direction) or where
4072          * either MOSI or MISO is missing.  They can also be caused by
4073          * software limitations.
4074          */
4075         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4076             (spi->mode & SPI_3WIRE)) {
4077                 unsigned flags = ctlr->flags;
4078
4079                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4080                         if (xfer->rx_buf && xfer->tx_buf)
4081                                 return -EINVAL;
4082                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4083                                 return -EINVAL;
4084                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4085                                 return -EINVAL;
4086                 }
4087         }
4088
4089         /*
4090          * Set transfer bits_per_word and max speed as spi device default if
4091          * it is not set for this transfer.
4092          * Set transfer tx_nbits and rx_nbits as single transfer default
4093          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4094          * Ensure transfer word_delay is at least as long as that required by
4095          * device itself.
4096          */
4097         message->frame_length = 0;
4098         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4099                 xfer->effective_speed_hz = 0;
4100                 message->frame_length += xfer->len;
4101                 if (!xfer->bits_per_word)
4102                         xfer->bits_per_word = spi->bits_per_word;
4103
4104                 if (!xfer->speed_hz)
4105                         xfer->speed_hz = spi->max_speed_hz;
4106
4107                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4108                         xfer->speed_hz = ctlr->max_speed_hz;
4109
4110                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4111                         return -EINVAL;
4112
4113                 /*
4114                  * SPI transfer length should be multiple of SPI word size
4115                  * where SPI word size should be power-of-two multiple.
4116                  */
4117                 if (xfer->bits_per_word <= 8)
4118                         w_size = 1;
4119                 else if (xfer->bits_per_word <= 16)
4120                         w_size = 2;
4121                 else
4122                         w_size = 4;
4123
4124                 /* No partial transfers accepted */
4125                 if (xfer->len % w_size)
4126                         return -EINVAL;
4127
4128                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4129                     xfer->speed_hz < ctlr->min_speed_hz)
4130                         return -EINVAL;
4131
4132                 if (xfer->tx_buf && !xfer->tx_nbits)
4133                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4134                 if (xfer->rx_buf && !xfer->rx_nbits)
4135                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4136                 /*
4137                  * Check transfer tx/rx_nbits:
4138                  * 1. check the value matches one of single, dual and quad
4139                  * 2. check tx/rx_nbits match the mode in spi_device
4140                  */
4141                 if (xfer->tx_buf) {
4142                         if (spi->mode & SPI_NO_TX)
4143                                 return -EINVAL;
4144                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4145                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4146                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4147                                 return -EINVAL;
4148                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4149                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4150                                 return -EINVAL;
4151                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4152                                 !(spi->mode & SPI_TX_QUAD))
4153                                 return -EINVAL;
4154                 }
4155                 /* Check transfer rx_nbits */
4156                 if (xfer->rx_buf) {
4157                         if (spi->mode & SPI_NO_RX)
4158                                 return -EINVAL;
4159                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4160                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4161                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4162                                 return -EINVAL;
4163                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4164                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4165                                 return -EINVAL;
4166                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4167                                 !(spi->mode & SPI_RX_QUAD))
4168                                 return -EINVAL;
4169                 }
4170
4171                 if (_spi_xfer_word_delay_update(xfer, spi))
4172                         return -EINVAL;
4173         }
4174
4175         message->status = -EINPROGRESS;
4176
4177         return 0;
4178 }
4179
4180 /*
4181  * spi_split_transfers - generic handling of transfer splitting
4182  * @msg: the message to split
4183  *
4184  * Under certain conditions, a SPI controller may not support arbitrary
4185  * transfer sizes or other features required by a peripheral. This function
4186  * will split the transfers in the message into smaller transfers that are
4187  * supported by the controller.
4188  *
4189  * Controllers with special requirements not covered here can also split
4190  * transfers in the optimize_message() callback.
4191  *
4192  * Context: can sleep
4193  * Return: zero on success, else a negative error code
4194  */
4195 static int spi_split_transfers(struct spi_message *msg)
4196 {
4197         struct spi_controller *ctlr = msg->spi->controller;
4198         struct spi_transfer *xfer;
4199         int ret;
4200
4201         /*
4202          * If an SPI controller does not support toggling the CS line on each
4203          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4204          * for the CS line, we can emulate the CS-per-word hardware function by
4205          * splitting transfers into one-word transfers and ensuring that
4206          * cs_change is set for each transfer.
4207          */
4208         if ((msg->spi->mode & SPI_CS_WORD) &&
4209             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4210                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4211                 if (ret)
4212                         return ret;
4213
4214                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4215                         /* Don't change cs_change on the last entry in the list */
4216                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4217                                 break;
4218
4219                         xfer->cs_change = 1;
4220                 }
4221         } else {
4222                 ret = spi_split_transfers_maxsize(ctlr, msg,
4223                                                   spi_max_transfer_size(msg->spi));
4224                 if (ret)
4225                         return ret;
4226         }
4227
4228         return 0;
4229 }
4230
4231 /*
4232  * __spi_optimize_message - shared implementation for spi_optimize_message()
4233  *                          and spi_maybe_optimize_message()
4234  * @spi: the device that will be used for the message
4235  * @msg: the message to optimize
4236  *
4237  * Peripheral drivers will call spi_optimize_message() and the spi core will
4238  * call spi_maybe_optimize_message() instead of calling this directly.
4239  *
4240  * It is not valid to call this on a message that has already been optimized.
4241  *
4242  * Return: zero on success, else a negative error code
4243  */
4244 static int __spi_optimize_message(struct spi_device *spi,
4245                                   struct spi_message *msg)
4246 {
4247         struct spi_controller *ctlr = spi->controller;
4248         int ret;
4249
4250         ret = __spi_validate(spi, msg);
4251         if (ret)
4252                 return ret;
4253
4254         ret = spi_split_transfers(msg);
4255         if (ret)
4256                 return ret;
4257
4258         if (ctlr->optimize_message) {
4259                 ret = ctlr->optimize_message(msg);
4260                 if (ret) {
4261                         spi_res_release(ctlr, msg);
4262                         return ret;
4263                 }
4264         }
4265
4266         msg->optimized = true;
4267
4268         return 0;
4269 }
4270
4271 /*
4272  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4273  * @spi: the device that will be used for the message
4274  * @msg: the message to optimize
4275  * Return: zero on success, else a negative error code
4276  */
4277 static int spi_maybe_optimize_message(struct spi_device *spi,
4278                                       struct spi_message *msg)
4279 {
4280         if (msg->pre_optimized)
4281                 return 0;
4282
4283         return __spi_optimize_message(spi, msg);
4284 }
4285
4286 /**
4287  * spi_optimize_message - do any one-time validation and setup for a SPI message
4288  * @spi: the device that will be used for the message
4289  * @msg: the message to optimize
4290  *
4291  * Peripheral drivers that reuse the same message repeatedly may call this to
4292  * perform as much message prep as possible once, rather than repeating it each
4293  * time a message transfer is performed to improve throughput and reduce CPU
4294  * usage.
4295  *
4296  * Once a message has been optimized, it cannot be modified with the exception
4297  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4298  * only the data in the memory it points to).
4299  *
4300  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4301  * to avoid leaking resources.
4302  *
4303  * Context: can sleep
4304  * Return: zero on success, else a negative error code
4305  */
4306 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4307 {
4308         int ret;
4309
4310         ret = __spi_optimize_message(spi, msg);
4311         if (ret)
4312                 return ret;
4313
4314         /*
4315          * This flag indicates that the peripheral driver called spi_optimize_message()
4316          * and therefore we shouldn't unoptimize message automatically when finalizing
4317          * the message but rather wait until spi_unoptimize_message() is called
4318          * by the peripheral driver.
4319          */
4320         msg->pre_optimized = true;
4321
4322         return 0;
4323 }
4324 EXPORT_SYMBOL_GPL(spi_optimize_message);
4325
4326 /**
4327  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4328  * @msg: the message to unoptimize
4329  *
4330  * Calls to this function must be balanced with calls to spi_optimize_message().
4331  *
4332  * Context: can sleep
4333  */
4334 void spi_unoptimize_message(struct spi_message *msg)
4335 {
4336         __spi_unoptimize_message(msg);
4337         msg->pre_optimized = false;
4338 }
4339 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4340
4341 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4342 {
4343         struct spi_controller *ctlr = spi->controller;
4344         struct spi_transfer *xfer;
4345
4346         /*
4347          * Some controllers do not support doing regular SPI transfers. Return
4348          * ENOTSUPP when this is the case.
4349          */
4350         if (!ctlr->transfer)
4351                 return -ENOTSUPP;
4352
4353         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4354         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4355
4356         trace_spi_message_submit(message);
4357
4358         if (!ctlr->ptp_sts_supported) {
4359                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4360                         xfer->ptp_sts_word_pre = 0;
4361                         ptp_read_system_prets(xfer->ptp_sts);
4362                 }
4363         }
4364
4365         return ctlr->transfer(spi, message);
4366 }
4367
4368 /**
4369  * spi_async - asynchronous SPI transfer
4370  * @spi: device with which data will be exchanged
4371  * @message: describes the data transfers, including completion callback
4372  * Context: any (IRQs may be blocked, etc)
4373  *
4374  * This call may be used in_irq and other contexts which can't sleep,
4375  * as well as from task contexts which can sleep.
4376  *
4377  * The completion callback is invoked in a context which can't sleep.
4378  * Before that invocation, the value of message->status is undefined.
4379  * When the callback is issued, message->status holds either zero (to
4380  * indicate complete success) or a negative error code.  After that
4381  * callback returns, the driver which issued the transfer request may
4382  * deallocate the associated memory; it's no longer in use by any SPI
4383  * core or controller driver code.
4384  *
4385  * Note that although all messages to a spi_device are handled in
4386  * FIFO order, messages may go to different devices in other orders.
4387  * Some device might be higher priority, or have various "hard" access
4388  * time requirements, for example.
4389  *
4390  * On detection of any fault during the transfer, processing of
4391  * the entire message is aborted, and the device is deselected.
4392  * Until returning from the associated message completion callback,
4393  * no other spi_message queued to that device will be processed.
4394  * (This rule applies equally to all the synchronous transfer calls,
4395  * which are wrappers around this core asynchronous primitive.)
4396  *
4397  * Return: zero on success, else a negative error code.
4398  */
4399 int spi_async(struct spi_device *spi, struct spi_message *message)
4400 {
4401         struct spi_controller *ctlr = spi->controller;
4402         int ret;
4403         unsigned long flags;
4404
4405         ret = spi_maybe_optimize_message(spi, message);
4406         if (ret)
4407                 return ret;
4408
4409         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4410
4411         if (ctlr->bus_lock_flag)
4412                 ret = -EBUSY;
4413         else
4414                 ret = __spi_async(spi, message);
4415
4416         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4417
4418         spi_maybe_unoptimize_message(message);
4419
4420         return ret;
4421 }
4422 EXPORT_SYMBOL_GPL(spi_async);
4423
4424 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4425 {
4426         bool was_busy;
4427         int ret;
4428
4429         mutex_lock(&ctlr->io_mutex);
4430
4431         was_busy = ctlr->busy;
4432
4433         ctlr->cur_msg = msg;
4434         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4435         if (ret)
4436                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4437         ctlr->cur_msg = NULL;
4438         ctlr->fallback = false;
4439
4440         if (!was_busy) {
4441                 kfree(ctlr->dummy_rx);
4442                 ctlr->dummy_rx = NULL;
4443                 kfree(ctlr->dummy_tx);
4444                 ctlr->dummy_tx = NULL;
4445                 if (ctlr->unprepare_transfer_hardware &&
4446                     ctlr->unprepare_transfer_hardware(ctlr))
4447                         dev_err(&ctlr->dev,
4448                                 "failed to unprepare transfer hardware\n");
4449                 spi_idle_runtime_pm(ctlr);
4450         }
4451
4452         mutex_unlock(&ctlr->io_mutex);
4453 }
4454
4455 /*-------------------------------------------------------------------------*/
4456
4457 /*
4458  * Utility methods for SPI protocol drivers, layered on
4459  * top of the core.  Some other utility methods are defined as
4460  * inline functions.
4461  */
4462
4463 static void spi_complete(void *arg)
4464 {
4465         complete(arg);
4466 }
4467
4468 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4469 {
4470         DECLARE_COMPLETION_ONSTACK(done);
4471         unsigned long flags;
4472         int status;
4473         struct spi_controller *ctlr = spi->controller;
4474
4475         if (__spi_check_suspended(ctlr)) {
4476                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4477                 return -ESHUTDOWN;
4478         }
4479
4480         status = spi_maybe_optimize_message(spi, message);
4481         if (status)
4482                 return status;
4483
4484         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4485         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4486
4487         /*
4488          * Checking queue_empty here only guarantees async/sync message
4489          * ordering when coming from the same context. It does not need to
4490          * guard against reentrancy from a different context. The io_mutex
4491          * will catch those cases.
4492          */
4493         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4494                 message->actual_length = 0;
4495                 message->status = -EINPROGRESS;
4496
4497                 trace_spi_message_submit(message);
4498
4499                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4500                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4501
4502                 __spi_transfer_message_noqueue(ctlr, message);
4503
4504                 return message->status;
4505         }
4506
4507         /*
4508          * There are messages in the async queue that could have originated
4509          * from the same context, so we need to preserve ordering.
4510          * Therefor we send the message to the async queue and wait until they
4511          * are completed.
4512          */
4513         message->complete = spi_complete;
4514         message->context = &done;
4515
4516         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4517         status = __spi_async(spi, message);
4518         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4519
4520         if (status == 0) {
4521                 wait_for_completion(&done);
4522                 status = message->status;
4523         }
4524         message->context = NULL;
4525
4526         return status;
4527 }
4528
4529 /**
4530  * spi_sync - blocking/synchronous SPI data transfers
4531  * @spi: device with which data will be exchanged
4532  * @message: describes the data transfers
4533  * Context: can sleep
4534  *
4535  * This call may only be used from a context that may sleep.  The sleep
4536  * is non-interruptible, and has no timeout.  Low-overhead controller
4537  * drivers may DMA directly into and out of the message buffers.
4538  *
4539  * Note that the SPI device's chip select is active during the message,
4540  * and then is normally disabled between messages.  Drivers for some
4541  * frequently-used devices may want to minimize costs of selecting a chip,
4542  * by leaving it selected in anticipation that the next message will go
4543  * to the same chip.  (That may increase power usage.)
4544  *
4545  * Also, the caller is guaranteeing that the memory associated with the
4546  * message will not be freed before this call returns.
4547  *
4548  * Return: zero on success, else a negative error code.
4549  */
4550 int spi_sync(struct spi_device *spi, struct spi_message *message)
4551 {
4552         int ret;
4553
4554         mutex_lock(&spi->controller->bus_lock_mutex);
4555         ret = __spi_sync(spi, message);
4556         mutex_unlock(&spi->controller->bus_lock_mutex);
4557
4558         return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(spi_sync);
4561
4562 /**
4563  * spi_sync_locked - version of spi_sync with exclusive bus usage
4564  * @spi: device with which data will be exchanged
4565  * @message: describes the data transfers
4566  * Context: can sleep
4567  *
4568  * This call may only be used from a context that may sleep.  The sleep
4569  * is non-interruptible, and has no timeout.  Low-overhead controller
4570  * drivers may DMA directly into and out of the message buffers.
4571  *
4572  * This call should be used by drivers that require exclusive access to the
4573  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4574  * be released by a spi_bus_unlock call when the exclusive access is over.
4575  *
4576  * Return: zero on success, else a negative error code.
4577  */
4578 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4579 {
4580         return __spi_sync(spi, message);
4581 }
4582 EXPORT_SYMBOL_GPL(spi_sync_locked);
4583
4584 /**
4585  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4586  * @ctlr: SPI bus master that should be locked for exclusive bus access
4587  * Context: can sleep
4588  *
4589  * This call may only be used from a context that may sleep.  The sleep
4590  * is non-interruptible, and has no timeout.
4591  *
4592  * This call should be used by drivers that require exclusive access to the
4593  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4594  * exclusive access is over. Data transfer must be done by spi_sync_locked
4595  * and spi_async_locked calls when the SPI bus lock is held.
4596  *
4597  * Return: always zero.
4598  */
4599 int spi_bus_lock(struct spi_controller *ctlr)
4600 {
4601         unsigned long flags;
4602
4603         mutex_lock(&ctlr->bus_lock_mutex);
4604
4605         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4606         ctlr->bus_lock_flag = 1;
4607         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4608
4609         /* Mutex remains locked until spi_bus_unlock() is called */
4610
4611         return 0;
4612 }
4613 EXPORT_SYMBOL_GPL(spi_bus_lock);
4614
4615 /**
4616  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4617  * @ctlr: SPI bus master that was locked for exclusive bus access
4618  * Context: can sleep
4619  *
4620  * This call may only be used from a context that may sleep.  The sleep
4621  * is non-interruptible, and has no timeout.
4622  *
4623  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4624  * call.
4625  *
4626  * Return: always zero.
4627  */
4628 int spi_bus_unlock(struct spi_controller *ctlr)
4629 {
4630         ctlr->bus_lock_flag = 0;
4631
4632         mutex_unlock(&ctlr->bus_lock_mutex);
4633
4634         return 0;
4635 }
4636 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4637
4638 /* Portable code must never pass more than 32 bytes */
4639 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4640
4641 static u8       *buf;
4642
4643 /**
4644  * spi_write_then_read - SPI synchronous write followed by read
4645  * @spi: device with which data will be exchanged
4646  * @txbuf: data to be written (need not be DMA-safe)
4647  * @n_tx: size of txbuf, in bytes
4648  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4649  * @n_rx: size of rxbuf, in bytes
4650  * Context: can sleep
4651  *
4652  * This performs a half duplex MicroWire style transaction with the
4653  * device, sending txbuf and then reading rxbuf.  The return value
4654  * is zero for success, else a negative errno status code.
4655  * This call may only be used from a context that may sleep.
4656  *
4657  * Parameters to this routine are always copied using a small buffer.
4658  * Performance-sensitive or bulk transfer code should instead use
4659  * spi_{async,sync}() calls with DMA-safe buffers.
4660  *
4661  * Return: zero on success, else a negative error code.
4662  */
4663 int spi_write_then_read(struct spi_device *spi,
4664                 const void *txbuf, unsigned n_tx,
4665                 void *rxbuf, unsigned n_rx)
4666 {
4667         static DEFINE_MUTEX(lock);
4668
4669         int                     status;
4670         struct spi_message      message;
4671         struct spi_transfer     x[2];
4672         u8                      *local_buf;
4673
4674         /*
4675          * Use preallocated DMA-safe buffer if we can. We can't avoid
4676          * copying here, (as a pure convenience thing), but we can
4677          * keep heap costs out of the hot path unless someone else is
4678          * using the pre-allocated buffer or the transfer is too large.
4679          */
4680         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4681                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4682                                     GFP_KERNEL | GFP_DMA);
4683                 if (!local_buf)
4684                         return -ENOMEM;
4685         } else {
4686                 local_buf = buf;
4687         }
4688
4689         spi_message_init(&message);
4690         memset(x, 0, sizeof(x));
4691         if (n_tx) {
4692                 x[0].len = n_tx;
4693                 spi_message_add_tail(&x[0], &message);
4694         }
4695         if (n_rx) {
4696                 x[1].len = n_rx;
4697                 spi_message_add_tail(&x[1], &message);
4698         }
4699
4700         memcpy(local_buf, txbuf, n_tx);
4701         x[0].tx_buf = local_buf;
4702         x[1].rx_buf = local_buf + n_tx;
4703
4704         /* Do the I/O */
4705         status = spi_sync(spi, &message);
4706         if (status == 0)
4707                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4708
4709         if (x[0].tx_buf == buf)
4710                 mutex_unlock(&lock);
4711         else
4712                 kfree(local_buf);
4713
4714         return status;
4715 }
4716 EXPORT_SYMBOL_GPL(spi_write_then_read);
4717
4718 /*-------------------------------------------------------------------------*/
4719
4720 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4721 /* Must call put_device() when done with returned spi_device device */
4722 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4723 {
4724         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4725
4726         return dev ? to_spi_device(dev) : NULL;
4727 }
4728
4729 /* The spi controllers are not using spi_bus, so we find it with another way */
4730 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4731 {
4732         struct device *dev;
4733
4734         dev = class_find_device_by_of_node(&spi_master_class, node);
4735         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4736                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4737         if (!dev)
4738                 return NULL;
4739
4740         /* Reference got in class_find_device */
4741         return container_of(dev, struct spi_controller, dev);
4742 }
4743
4744 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4745                          void *arg)
4746 {
4747         struct of_reconfig_data *rd = arg;
4748         struct spi_controller *ctlr;
4749         struct spi_device *spi;
4750
4751         switch (of_reconfig_get_state_change(action, arg)) {
4752         case OF_RECONFIG_CHANGE_ADD:
4753                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4754                 if (ctlr == NULL)
4755                         return NOTIFY_OK;       /* Not for us */
4756
4757                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4758                         put_device(&ctlr->dev);
4759                         return NOTIFY_OK;
4760                 }
4761
4762                 /*
4763                  * Clear the flag before adding the device so that fw_devlink
4764                  * doesn't skip adding consumers to this device.
4765                  */
4766                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4767                 spi = of_register_spi_device(ctlr, rd->dn);
4768                 put_device(&ctlr->dev);
4769
4770                 if (IS_ERR(spi)) {
4771                         pr_err("%s: failed to create for '%pOF'\n",
4772                                         __func__, rd->dn);
4773                         of_node_clear_flag(rd->dn, OF_POPULATED);
4774                         return notifier_from_errno(PTR_ERR(spi));
4775                 }
4776                 break;
4777
4778         case OF_RECONFIG_CHANGE_REMOVE:
4779                 /* Already depopulated? */
4780                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4781                         return NOTIFY_OK;
4782
4783                 /* Find our device by node */
4784                 spi = of_find_spi_device_by_node(rd->dn);
4785                 if (spi == NULL)
4786                         return NOTIFY_OK;       /* No? not meant for us */
4787
4788                 /* Unregister takes one ref away */
4789                 spi_unregister_device(spi);
4790
4791                 /* And put the reference of the find */
4792                 put_device(&spi->dev);
4793                 break;
4794         }
4795
4796         return NOTIFY_OK;
4797 }
4798
4799 static struct notifier_block spi_of_notifier = {
4800         .notifier_call = of_spi_notify,
4801 };
4802 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4803 extern struct notifier_block spi_of_notifier;
4804 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4805
4806 #if IS_ENABLED(CONFIG_ACPI)
4807 static int spi_acpi_controller_match(struct device *dev, const void *data)
4808 {
4809         return ACPI_COMPANION(dev->parent) == data;
4810 }
4811
4812 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4813 {
4814         struct device *dev;
4815
4816         dev = class_find_device(&spi_master_class, NULL, adev,
4817                                 spi_acpi_controller_match);
4818         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4819                 dev = class_find_device(&spi_slave_class, NULL, adev,
4820                                         spi_acpi_controller_match);
4821         if (!dev)
4822                 return NULL;
4823
4824         return container_of(dev, struct spi_controller, dev);
4825 }
4826 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4827
4828 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4829 {
4830         struct device *dev;
4831
4832         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4833         return to_spi_device(dev);
4834 }
4835
4836 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4837                            void *arg)
4838 {
4839         struct acpi_device *adev = arg;
4840         struct spi_controller *ctlr;
4841         struct spi_device *spi;
4842
4843         switch (value) {
4844         case ACPI_RECONFIG_DEVICE_ADD:
4845                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4846                 if (!ctlr)
4847                         break;
4848
4849                 acpi_register_spi_device(ctlr, adev);
4850                 put_device(&ctlr->dev);
4851                 break;
4852         case ACPI_RECONFIG_DEVICE_REMOVE:
4853                 if (!acpi_device_enumerated(adev))
4854                         break;
4855
4856                 spi = acpi_spi_find_device_by_adev(adev);
4857                 if (!spi)
4858                         break;
4859
4860                 spi_unregister_device(spi);
4861                 put_device(&spi->dev);
4862                 break;
4863         }
4864
4865         return NOTIFY_OK;
4866 }
4867
4868 static struct notifier_block spi_acpi_notifier = {
4869         .notifier_call = acpi_spi_notify,
4870 };
4871 #else
4872 extern struct notifier_block spi_acpi_notifier;
4873 #endif
4874
4875 static int __init spi_init(void)
4876 {
4877         int     status;
4878
4879         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4880         if (!buf) {
4881                 status = -ENOMEM;
4882                 goto err0;
4883         }
4884
4885         status = bus_register(&spi_bus_type);
4886         if (status < 0)
4887                 goto err1;
4888
4889         status = class_register(&spi_master_class);
4890         if (status < 0)
4891                 goto err2;
4892
4893         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4894                 status = class_register(&spi_slave_class);
4895                 if (status < 0)
4896                         goto err3;
4897         }
4898
4899         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4900                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4901         if (IS_ENABLED(CONFIG_ACPI))
4902                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4903
4904         return 0;
4905
4906 err3:
4907         class_unregister(&spi_master_class);
4908 err2:
4909         bus_unregister(&spi_bus_type);
4910 err1:
4911         kfree(buf);
4912         buf = NULL;
4913 err0:
4914         return status;
4915 }
4916
4917 /*
4918  * A board_info is normally registered in arch_initcall(),
4919  * but even essential drivers wait till later.
4920  *
4921  * REVISIT only boardinfo really needs static linking. The rest (device and
4922  * driver registration) _could_ be dynamically linked (modular) ... Costs
4923  * include needing to have boardinfo data structures be much more public.
4924  */
4925 postcore_initcall(spi_init);
This page took 0.313771 seconds and 4 git commands to generate.