1 // SPDX-License-Identifier: GPL-2.0
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
12 #include "journal_reclaim.h"
15 #include <linux/sched/mm.h>
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
19 return id == BTREE_ID_subvolumes;
22 static struct kmem_cache *bch2_key_cache;
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
27 const struct bkey_cached *ck = obj;
28 const struct bkey_cached_key *key = arg->key;
30 return ck->key.btree_id != key->btree_id ||
31 !bpos_eq(ck->key.pos, key->pos);
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 .head_offset = offsetof(struct bkey_cached, hash),
36 .key_offset = offsetof(struct bkey_cached, key),
37 .key_len = sizeof(struct bkey_cached_key),
38 .obj_cmpfn = bch2_btree_key_cache_cmp_fn,
42 inline struct bkey_cached *
43 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
45 struct bkey_cached_key key = {
50 return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51 bch2_btree_key_cache_params);
54 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
56 if (!six_trylock_intent(&ck->c.lock))
59 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60 six_unlock_intent(&ck->c.lock);
64 if (!six_trylock_write(&ck->c.lock)) {
65 six_unlock_intent(&ck->c.lock);
72 static void bkey_cached_evict(struct btree_key_cache *c,
73 struct bkey_cached *ck)
75 BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76 bch2_btree_key_cache_params));
77 memset(&ck->key, ~0, sizeof(ck->key));
79 atomic_long_dec(&c->nr_keys);
82 static void bkey_cached_free(struct btree_key_cache *bc,
83 struct bkey_cached *ck)
85 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
87 BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
89 ck->btree_trans_barrier_seq =
90 start_poll_synchronize_srcu(&c->btree_trans_barrier);
92 if (ck->c.lock.readers) {
93 list_move_tail(&ck->list, &bc->freed_pcpu);
96 list_move_tail(&ck->list, &bc->freed_nonpcpu);
97 bc->nr_freed_nonpcpu++;
99 atomic_long_inc(&bc->nr_freed);
105 six_unlock_write(&ck->c.lock);
106 six_unlock_intent(&ck->c.lock);
110 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111 struct bkey_cached *ck)
113 struct bkey_cached *pos;
115 bc->nr_freed_nonpcpu++;
117 list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119 pos->btree_trans_barrier_seq)) {
120 list_move(&ck->list, &pos->list);
125 list_move(&ck->list, &bc->freed_nonpcpu);
129 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130 struct bkey_cached *ck)
132 BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
134 if (!ck->c.lock.readers) {
136 struct btree_key_cache_freelist *f;
140 f = this_cpu_ptr(bc->pcpu_freed);
142 if (f->nr < ARRAY_SIZE(f->objs)) {
143 f->objs[f->nr++] = ck;
149 mutex_lock(&bc->lock);
151 f = this_cpu_ptr(bc->pcpu_freed);
153 while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154 struct bkey_cached *ck2 = f->objs[--f->nr];
156 __bkey_cached_move_to_freelist_ordered(bc, ck2);
160 __bkey_cached_move_to_freelist_ordered(bc, ck);
161 mutex_unlock(&bc->lock);
164 mutex_lock(&bc->lock);
165 list_move_tail(&ck->list, &bc->freed_nonpcpu);
166 bc->nr_freed_nonpcpu++;
167 mutex_unlock(&bc->lock);
170 mutex_lock(&bc->lock);
171 list_move_tail(&ck->list, &bc->freed_pcpu);
172 mutex_unlock(&bc->lock);
176 static void bkey_cached_free_fast(struct btree_key_cache *bc,
177 struct bkey_cached *ck)
179 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
181 ck->btree_trans_barrier_seq =
182 start_poll_synchronize_srcu(&c->btree_trans_barrier);
184 list_del_init(&ck->list);
185 atomic_long_inc(&bc->nr_freed);
191 bkey_cached_move_to_freelist(bc, ck);
193 six_unlock_write(&ck->c.lock);
194 six_unlock_intent(&ck->c.lock);
197 static struct bkey_cached *
198 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
201 struct bch_fs *c = trans->c;
202 struct btree_key_cache *bc = &c->btree_key_cache;
203 struct bkey_cached *ck = NULL;
204 bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
209 struct btree_key_cache_freelist *f;
212 f = this_cpu_ptr(bc->pcpu_freed);
214 ck = f->objs[--f->nr];
218 mutex_lock(&bc->lock);
220 f = this_cpu_ptr(bc->pcpu_freed);
222 while (!list_empty(&bc->freed_nonpcpu) &&
223 f->nr < ARRAY_SIZE(f->objs) / 2) {
224 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
225 list_del_init(&ck->list);
226 bc->nr_freed_nonpcpu--;
227 f->objs[f->nr++] = ck;
230 ck = f->nr ? f->objs[--f->nr] : NULL;
232 mutex_unlock(&bc->lock);
235 mutex_lock(&bc->lock);
236 if (!list_empty(&bc->freed_nonpcpu)) {
237 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
238 list_del_init(&ck->list);
239 bc->nr_freed_nonpcpu--;
241 mutex_unlock(&bc->lock);
244 mutex_lock(&bc->lock);
245 if (!list_empty(&bc->freed_pcpu)) {
246 ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
247 list_del_init(&ck->list);
249 mutex_unlock(&bc->lock);
253 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
255 bkey_cached_move_to_freelist(bc, ck);
259 path->l[0].b = (void *) ck;
260 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
261 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
263 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
265 btree_node_unlock(trans, path, 0);
266 bkey_cached_move_to_freelist(bc, ck);
273 ck = allocate_dropping_locks(trans, ret,
274 kmem_cache_zalloc(bch2_key_cache, _gfp));
276 kmem_cache_free(bch2_key_cache, ck);
283 INIT_LIST_HEAD(&ck->list);
284 bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
287 BUG_ON(!six_trylock_intent(&ck->c.lock));
288 BUG_ON(!six_trylock_write(&ck->c.lock));
293 static struct bkey_cached *
294 bkey_cached_reuse(struct btree_key_cache *c)
296 struct bucket_table *tbl;
297 struct rhash_head *pos;
298 struct bkey_cached *ck;
301 mutex_lock(&c->lock);
303 tbl = rht_dereference_rcu(c->table.tbl, &c->table);
304 for (i = 0; i < tbl->size; i++)
305 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
306 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
307 bkey_cached_lock_for_evict(ck)) {
308 bkey_cached_evict(c, ck);
315 mutex_unlock(&c->lock);
319 static struct bkey_cached *
320 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
322 struct bch_fs *c = trans->c;
323 struct btree_key_cache *bc = &c->btree_key_cache;
324 struct bkey_cached *ck;
325 bool was_new = false;
327 ck = bkey_cached_alloc(trans, path, &was_new);
332 ck = bkey_cached_reuse(bc);
334 bch_err(c, "error allocating memory for key cache item, btree %s",
335 bch2_btree_id_str(path->btree_id));
336 return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
339 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
343 ck->c.btree_id = path->btree_id;
344 ck->key.btree_id = path->btree_id;
345 ck->key.pos = path->pos;
347 ck->flags = 1U << BKEY_CACHED_ACCESSED;
349 if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
351 bch2_btree_key_cache_params))) {
352 /* We raced with another fill: */
354 if (likely(was_new)) {
355 six_unlock_write(&ck->c.lock);
356 six_unlock_intent(&ck->c.lock);
359 bkey_cached_free_fast(bc, ck);
362 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
366 atomic_long_inc(&bc->nr_keys);
368 six_unlock_write(&ck->c.lock);
373 static int btree_key_cache_fill(struct btree_trans *trans,
374 struct btree_path *ck_path,
375 struct bkey_cached *ck)
377 struct btree_iter iter;
379 unsigned new_u64s = 0;
380 struct bkey_i *new_k = NULL;
383 bch2_trans_iter_init(trans, &iter, ck->key.btree_id, ck->key.pos,
384 BTREE_ITER_KEY_CACHE_FILL|
385 BTREE_ITER_CACHED_NOFILL);
386 iter.flags &= ~BTREE_ITER_WITH_JOURNAL;
387 k = bch2_btree_iter_peek_slot(&iter);
392 if (!bch2_btree_node_relock(trans, ck_path, 0)) {
393 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
394 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
399 * bch2_varint_decode can read past the end of the buffer by at
400 * most 7 bytes (it won't be used):
402 new_u64s = k.k->u64s + 1;
405 * Allocate some extra space so that the transaction commit path is less
406 * likely to have to reallocate, since that requires a transaction
409 new_u64s = min(256U, (new_u64s * 3) / 2);
411 if (new_u64s > ck->u64s) {
412 new_u64s = roundup_pow_of_two(new_u64s);
413 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
415 bch2_trans_unlock(trans);
417 new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
419 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
420 bch2_btree_id_str(ck->key.btree_id), new_u64s);
421 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
425 if (!bch2_btree_node_relock(trans, ck_path, 0)) {
427 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
428 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
432 ret = bch2_trans_relock(trans);
440 ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
452 bkey_reassemble(ck->k, k);
454 bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
456 /* We're not likely to need this iterator again: */
457 set_btree_iter_dontneed(&iter);
459 bch2_trans_iter_exit(trans, &iter);
464 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
467 struct bch_fs *c = trans->c;
468 struct bkey_cached *ck;
475 if (bch2_btree_node_relock_notrace(trans, path, 0)) {
476 ck = (void *) path->l[0].b;
480 ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
482 ck = btree_key_cache_create(trans, path);
483 ret = PTR_ERR_OR_ZERO(ck);
489 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
490 path->locks_want = 1;
492 enum six_lock_type lock_want = __btree_lock_want(path, 0);
494 ret = btree_node_lock(trans, path, (void *) ck, 0,
495 lock_want, _THIS_IP_);
496 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
501 if (ck->key.btree_id != path->btree_id ||
502 !bpos_eq(ck->key.pos, path->pos)) {
503 six_unlock_type(&ck->c.lock, lock_want);
507 mark_btree_node_locked(trans, path, 0,
508 (enum btree_node_locked_type) lock_want);
511 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
512 path->l[0].b = (void *) ck;
514 path->uptodate = BTREE_ITER_UPTODATE;
516 if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
518 * Using the underscore version because we haven't set
519 * path->uptodate yet:
521 if (!path->locks_want &&
522 !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
523 trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
524 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
528 ret = btree_key_cache_fill(trans, path, ck);
532 ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
536 path->uptodate = BTREE_ITER_UPTODATE;
539 if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
540 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
542 BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
543 BUG_ON(path->uptodate);
547 path->uptodate = BTREE_ITER_NEED_TRAVERSE;
548 if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
549 btree_node_unlock(trans, path, 0);
550 path->l[0].b = ERR_PTR(ret);
555 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
558 struct bch_fs *c = trans->c;
559 struct bkey_cached *ck;
562 EBUG_ON(path->level);
566 if (bch2_btree_node_relock_notrace(trans, path, 0)) {
567 ck = (void *) path->l[0].b;
571 ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
573 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
575 enum six_lock_type lock_want = __btree_lock_want(path, 0);
577 ret = btree_node_lock(trans, path, (void *) ck, 0,
578 lock_want, _THIS_IP_);
579 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
584 if (ck->key.btree_id != path->btree_id ||
585 !bpos_eq(ck->key.pos, path->pos)) {
586 six_unlock_type(&ck->c.lock, lock_want);
590 mark_btree_node_locked(trans, path, 0,
591 (enum btree_node_locked_type) lock_want);
594 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
595 path->l[0].b = (void *) ck;
598 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
600 if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
601 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
603 path->uptodate = BTREE_ITER_UPTODATE;
605 EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
610 static int btree_key_cache_flush_pos(struct btree_trans *trans,
611 struct bkey_cached_key key,
613 unsigned commit_flags,
616 struct bch_fs *c = trans->c;
617 struct journal *j = &c->journal;
618 struct btree_iter c_iter, b_iter;
619 struct bkey_cached *ck = NULL;
622 bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
625 BTREE_ITER_ALL_SNAPSHOTS);
626 bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
629 b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
631 ret = bch2_btree_iter_traverse(&c_iter);
635 ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
639 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
647 if (journal_seq && ck->journal.seq != journal_seq)
650 trans->journal_res.seq = ck->journal.seq;
653 * If we're at the end of the journal, we really want to free up space
654 * in the journal right away - we don't want to pin that old journal
655 * sequence number with a new btree node write, we want to re-journal
658 if (ck->journal.seq == journal_last_seq(j))
659 commit_flags |= BCH_WATERMARK_reclaim;
661 if (ck->journal.seq != journal_last_seq(j) ||
662 j->watermark == BCH_WATERMARK_stripe)
663 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
665 ret = bch2_btree_iter_traverse(&b_iter) ?:
666 bch2_trans_update(trans, &b_iter, ck->k,
667 BTREE_UPDATE_KEY_CACHE_RECLAIM|
668 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
669 BTREE_TRIGGER_NORUN) ?:
670 bch2_trans_commit(trans, NULL, NULL,
671 BCH_TRANS_COMMIT_no_check_rw|
672 BCH_TRANS_COMMIT_no_enospc|
675 bch2_fs_fatal_err_on(ret &&
676 !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
677 !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
678 !bch2_journal_error(j), c,
679 "flushing key cache: %s", bch2_err_str(ret));
683 bch2_journal_pin_drop(j, &ck->journal);
685 struct btree_path *path = btree_iter_path(trans, &c_iter);
686 BUG_ON(!btree_node_locked(path, 0));
689 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
690 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
691 atomic_long_dec(&c->btree_key_cache.nr_dirty);
694 struct btree_path *path2;
697 trans_for_each_path(trans, path2, i)
699 __bch2_btree_path_unlock(trans, path2);
701 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
703 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
704 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
705 atomic_long_dec(&c->btree_key_cache.nr_dirty);
708 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
709 bkey_cached_evict(&c->btree_key_cache, ck);
710 bkey_cached_free_fast(&c->btree_key_cache, ck);
713 bch2_trans_iter_exit(trans, &b_iter);
714 bch2_trans_iter_exit(trans, &c_iter);
718 int bch2_btree_key_cache_journal_flush(struct journal *j,
719 struct journal_entry_pin *pin, u64 seq)
721 struct bch_fs *c = container_of(j, struct bch_fs, journal);
722 struct bkey_cached *ck =
723 container_of(pin, struct bkey_cached, journal);
724 struct bkey_cached_key key;
725 struct btree_trans *trans = bch2_trans_get(c);
726 int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
729 btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
732 if (ck->journal.seq != seq ||
733 !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
734 six_unlock_read(&ck->c.lock);
738 if (ck->seq != seq) {
739 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
740 bch2_btree_key_cache_journal_flush);
741 six_unlock_read(&ck->c.lock);
744 six_unlock_read(&ck->c.lock);
746 ret = lockrestart_do(trans,
747 btree_key_cache_flush_pos(trans, key, seq,
748 BCH_TRANS_COMMIT_journal_reclaim, false));
750 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
752 bch2_trans_put(trans);
756 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
758 struct btree_insert_entry *insert_entry)
760 struct bch_fs *c = trans->c;
761 struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
762 struct bkey_i *insert = insert_entry->k;
763 bool kick_reclaim = false;
765 BUG_ON(insert->k.u64s > ck->u64s);
767 bkey_copy(ck->k, insert);
770 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
771 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
772 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
773 atomic_long_inc(&c->btree_key_cache.nr_dirty);
775 if (bch2_nr_btree_keys_need_flush(c))
780 * To minimize lock contention, we only add the journal pin here and
781 * defer pin updates to the flush callback via ->seq. Be careful not to
782 * update ->seq on nojournal commits because we don't want to update the
783 * pin to a seq that doesn't include journal updates on disk. Otherwise
784 * we risk losing the update after a crash.
786 * The only exception is if the pin is not active in the first place. We
787 * have to add the pin because journal reclaim drives key cache
788 * flushing. The flush callback will not proceed unless ->seq matches
789 * the latest pin, so make sure it starts with a consistent value.
791 if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
792 !journal_pin_active(&ck->journal)) {
793 ck->seq = trans->journal_res.seq;
795 bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
796 &ck->journal, bch2_btree_key_cache_journal_flush);
799 journal_reclaim_kick(&c->journal);
803 void bch2_btree_key_cache_drop(struct btree_trans *trans,
804 struct btree_path *path)
806 struct bch_fs *c = trans->c;
807 struct bkey_cached *ck = (void *) path->l[0].b;
812 * We just did an update to the btree, bypassing the key cache: the key
813 * cache key is now stale and must be dropped, even if dirty:
815 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
816 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
817 atomic_long_dec(&c->btree_key_cache.nr_dirty);
818 bch2_journal_pin_drop(&c->journal, &ck->journal);
824 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
825 struct shrink_control *sc)
827 struct bch_fs *c = shrink->private_data;
828 struct btree_key_cache *bc = &c->btree_key_cache;
829 struct bucket_table *tbl;
830 struct bkey_cached *ck, *t;
831 size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
832 unsigned start, flags;
835 mutex_lock(&bc->lock);
836 srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
837 flags = memalloc_nofs_save();
840 * Newest freed entries are at the end of the list - once we hit one
841 * that's too new to be freed, we can bail out:
843 scanned += bc->nr_freed_nonpcpu;
845 list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
846 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
847 ck->btree_trans_barrier_seq))
851 six_lock_exit(&ck->c.lock);
852 kmem_cache_free(bch2_key_cache, ck);
853 atomic_long_dec(&bc->nr_freed);
855 bc->nr_freed_nonpcpu--;
861 scanned += bc->nr_freed_pcpu;
863 list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
864 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
865 ck->btree_trans_barrier_seq))
869 six_lock_exit(&ck->c.lock);
870 kmem_cache_free(bch2_key_cache, ck);
871 atomic_long_dec(&bc->nr_freed);
880 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
881 if (bc->shrink_iter >= tbl->size)
883 start = bc->shrink_iter;
886 struct rhash_head *pos, *next;
888 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
890 while (!rht_is_a_nulls(pos)) {
891 next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
892 ck = container_of(pos, struct bkey_cached, hash);
894 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
897 if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
898 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
899 else if (bkey_cached_lock_for_evict(ck)) {
900 bkey_cached_evict(bc, ck);
901 bkey_cached_free(bc, ck);
912 if (bc->shrink_iter >= tbl->size)
914 } while (scanned < nr && bc->shrink_iter != start);
918 memalloc_nofs_restore(flags);
919 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
920 mutex_unlock(&bc->lock);
925 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
926 struct shrink_control *sc)
928 struct bch_fs *c = shrink->private_data;
929 struct btree_key_cache *bc = &c->btree_key_cache;
930 long nr = atomic_long_read(&bc->nr_keys) -
931 atomic_long_read(&bc->nr_dirty);
936 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
938 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
939 struct bucket_table *tbl;
940 struct bkey_cached *ck, *n;
941 struct rhash_head *pos;
948 shrinker_free(bc->shrink);
950 mutex_lock(&bc->lock);
953 * The loop is needed to guard against racing with rehash:
955 while (atomic_long_read(&bc->nr_keys)) {
957 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
959 for (i = 0; i < tbl->size; i++)
960 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
961 bkey_cached_evict(bc, ck);
962 list_add(&ck->list, &items);
968 for_each_possible_cpu(cpu) {
969 struct btree_key_cache_freelist *f =
970 per_cpu_ptr(bc->pcpu_freed, cpu);
972 for (i = 0; i < f->nr; i++) {
974 list_add(&ck->list, &items);
979 BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
980 BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
982 list_splice(&bc->freed_pcpu, &items);
983 list_splice(&bc->freed_nonpcpu, &items);
985 mutex_unlock(&bc->lock);
987 list_for_each_entry_safe(ck, n, &items, list) {
992 six_lock_exit(&ck->c.lock);
993 kmem_cache_free(bch2_key_cache, ck);
996 if (atomic_long_read(&bc->nr_dirty) &&
997 !bch2_journal_error(&c->journal) &&
998 test_bit(BCH_FS_was_rw, &c->flags))
999 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
1000 atomic_long_read(&bc->nr_dirty));
1002 if (atomic_long_read(&bc->nr_keys))
1003 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1004 atomic_long_read(&bc->nr_keys));
1006 if (bc->table_init_done)
1007 rhashtable_destroy(&bc->table);
1009 free_percpu(bc->pcpu_freed);
1012 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1014 mutex_init(&c->lock);
1015 INIT_LIST_HEAD(&c->freed_pcpu);
1016 INIT_LIST_HEAD(&c->freed_nonpcpu);
1019 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1021 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1022 struct shrinker *shrink;
1025 bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1026 if (!bc->pcpu_freed)
1027 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1030 if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1031 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1033 bc->table_init_done = true;
1035 shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1037 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1038 bc->shrink = shrink;
1040 shrink->count_objects = bch2_btree_key_cache_count;
1041 shrink->scan_objects = bch2_btree_key_cache_scan;
1042 shrink->private_data = c;
1043 shrinker_register(shrink);
1047 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1049 prt_printf(out, "nr_freed:\t%lu", atomic_long_read(&c->nr_freed));
1051 prt_printf(out, "nr_keys:\t%lu", atomic_long_read(&c->nr_keys));
1053 prt_printf(out, "nr_dirty:\t%lu", atomic_long_read(&c->nr_dirty));
1057 void bch2_btree_key_cache_exit(void)
1059 kmem_cache_destroy(bch2_key_cache);
1062 int __init bch2_btree_key_cache_init(void)
1064 bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1065 if (!bch2_key_cache)