]> Git Repo - J-linux.git/blob - fs/bcachefs/btree_key_cache.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / bcachefs / btree_key_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19         return id == BTREE_ID_subvolumes;
20 }
21
22 static struct kmem_cache *bch2_key_cache;
23
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25                                        const void *obj)
26 {
27         const struct bkey_cached *ck = obj;
28         const struct bkey_cached_key *key = arg->key;
29
30         return ck->key.btree_id != key->btree_id ||
31                 !bpos_eq(ck->key.pos, key->pos);
32 }
33
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35         .head_offset            = offsetof(struct bkey_cached, hash),
36         .key_offset             = offsetof(struct bkey_cached, key),
37         .key_len                = sizeof(struct bkey_cached_key),
38         .obj_cmpfn              = bch2_btree_key_cache_cmp_fn,
39         .automatic_shrinking    = true,
40 };
41
42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43                                          struct bkey_cached *ck,
44                                          enum btree_node_locked_type lock_held)
45 {
46         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
47         path->l[0].b            = (void *) ck;
48         mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50
51 __flatten
52 inline struct bkey_cached *
53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55         struct bkey_cached_key key = {
56                 .btree_id       = btree_id,
57                 .pos            = pos,
58         };
59
60         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61                                       bch2_btree_key_cache_params);
62 }
63
64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66         if (!six_trylock_intent(&ck->c.lock))
67                 return false;
68
69         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70                 six_unlock_intent(&ck->c.lock);
71                 return false;
72         }
73
74         if (!six_trylock_write(&ck->c.lock)) {
75                 six_unlock_intent(&ck->c.lock);
76                 return false;
77         }
78
79         return true;
80 }
81
82 static bool bkey_cached_evict(struct btree_key_cache *c,
83                               struct bkey_cached *ck)
84 {
85         bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
86                                       bch2_btree_key_cache_params);
87         if (ret) {
88                 memset(&ck->key, ~0, sizeof(ck->key));
89                 atomic_long_dec(&c->nr_keys);
90         }
91
92         return ret;
93 }
94
95 static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
96 {
97         struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
98         struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
99
100         this_cpu_dec(*c->btree_key_cache.nr_pending);
101         kmem_cache_free(bch2_key_cache, ck);
102 }
103
104 static void bkey_cached_free(struct btree_key_cache *bc,
105                              struct bkey_cached *ck)
106 {
107         kfree(ck->k);
108         ck->k           = NULL;
109         ck->u64s        = 0;
110
111         six_unlock_write(&ck->c.lock);
112         six_unlock_intent(&ck->c.lock);
113
114         bool pcpu_readers = ck->c.lock.readers != NULL;
115         rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
116         this_cpu_inc(*bc->nr_pending);
117 }
118
119 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
120 {
121         gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
122
123         struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
124         if (unlikely(!ck))
125                 return NULL;
126         ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
127         if (unlikely(!ck->k)) {
128                 kmem_cache_free(bch2_key_cache, ck);
129                 return NULL;
130         }
131         ck->u64s = key_u64s;
132         return ck;
133 }
134
135 static struct bkey_cached *
136 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
137 {
138         struct bch_fs *c = trans->c;
139         struct btree_key_cache *bc = &c->btree_key_cache;
140         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
141         int ret;
142
143         struct bkey_cached *ck = container_of_or_null(
144                                 rcu_pending_dequeue(&bc->pending[pcpu_readers]),
145                                 struct bkey_cached, rcu);
146         if (ck)
147                 goto lock;
148
149         ck = allocate_dropping_locks(trans, ret,
150                                      __bkey_cached_alloc(key_u64s, _gfp));
151         if (ret) {
152                 if (ck)
153                         kfree(ck->k);
154                 kmem_cache_free(bch2_key_cache, ck);
155                 return ERR_PTR(ret);
156         }
157
158         if (ck) {
159                 bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
160                 ck->c.cached = true;
161                 goto lock;
162         }
163
164         ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
165                                   struct bkey_cached, rcu);
166         if (ck)
167                 goto lock;
168 lock:
169         six_lock_intent(&ck->c.lock, NULL, NULL);
170         six_lock_write(&ck->c.lock, NULL, NULL);
171         return ck;
172 }
173
174 static struct bkey_cached *
175 bkey_cached_reuse(struct btree_key_cache *c)
176 {
177         struct bucket_table *tbl;
178         struct rhash_head *pos;
179         struct bkey_cached *ck;
180         unsigned i;
181
182         rcu_read_lock();
183         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
184         for (i = 0; i < tbl->size; i++)
185                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
186                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
187                             bkey_cached_lock_for_evict(ck)) {
188                                 if (bkey_cached_evict(c, ck))
189                                         goto out;
190                                 six_unlock_write(&ck->c.lock);
191                                 six_unlock_intent(&ck->c.lock);
192                         }
193                 }
194         ck = NULL;
195 out:
196         rcu_read_unlock();
197         return ck;
198 }
199
200 static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
201                                   struct bkey_s_c k)
202 {
203         struct bch_fs *c = trans->c;
204         struct btree_key_cache *bc = &c->btree_key_cache;
205
206         /*
207          * bch2_varint_decode can read past the end of the buffer by at
208          * most 7 bytes (it won't be used):
209          */
210         unsigned key_u64s = k.k->u64s + 1;
211
212         /*
213          * Allocate some extra space so that the transaction commit path is less
214          * likely to have to reallocate, since that requires a transaction
215          * restart:
216          */
217         key_u64s = min(256U, (key_u64s * 3) / 2);
218         key_u64s = roundup_pow_of_two(key_u64s);
219
220         struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
221         int ret = PTR_ERR_OR_ZERO(ck);
222         if (ret)
223                 return ret;
224
225         if (unlikely(!ck)) {
226                 ck = bkey_cached_reuse(bc);
227                 if (unlikely(!ck)) {
228                         bch_err(c, "error allocating memory for key cache item, btree %s",
229                                 bch2_btree_id_str(path->btree_id));
230                         return -BCH_ERR_ENOMEM_btree_key_cache_create;
231                 }
232         }
233
234         ck->c.level             = 0;
235         ck->c.btree_id          = path->btree_id;
236         ck->key.btree_id        = path->btree_id;
237         ck->key.pos             = path->pos;
238         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
239
240         if (unlikely(key_u64s > ck->u64s)) {
241                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
242
243                 struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
244                                 kmalloc(key_u64s * sizeof(u64), _gfp));
245                 if (unlikely(!new_k)) {
246                         bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
247                                 bch2_btree_id_str(ck->key.btree_id), key_u64s);
248                         ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
249                 } else if (ret) {
250                         kfree(new_k);
251                         goto err;
252                 }
253
254                 kfree(ck->k);
255                 ck->k = new_k;
256                 ck->u64s = key_u64s;
257         }
258
259         bkey_reassemble(ck->k, k);
260
261         ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
262         if (unlikely(ret)) /* raced with another fill? */
263                 goto err;
264
265         atomic_long_inc(&bc->nr_keys);
266         six_unlock_write(&ck->c.lock);
267
268         enum six_lock_type lock_want = __btree_lock_want(path, 0);
269         if (lock_want == SIX_LOCK_read)
270                 six_lock_downgrade(&ck->c.lock);
271         btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
272         path->uptodate = BTREE_ITER_UPTODATE;
273         return 0;
274 err:
275         bkey_cached_free(bc, ck);
276         mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
277
278         return ret;
279 }
280
281 static noinline int btree_key_cache_fill(struct btree_trans *trans,
282                                          struct btree_path *ck_path,
283                                          unsigned flags)
284 {
285         if (flags & BTREE_ITER_cached_nofill) {
286                 ck_path->uptodate = BTREE_ITER_UPTODATE;
287                 return 0;
288         }
289
290         struct bch_fs *c = trans->c;
291         struct btree_iter iter;
292         struct bkey_s_c k;
293         int ret;
294
295         bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
296                              BTREE_ITER_key_cache_fill|
297                              BTREE_ITER_cached_nofill);
298         iter.flags &= ~BTREE_ITER_with_journal;
299         k = bch2_btree_iter_peek_slot(&iter);
300         ret = bkey_err(k);
301         if (ret)
302                 goto err;
303
304         /* Recheck after btree lookup, before allocating: */
305         ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
306         if (unlikely(ret))
307                 goto out;
308
309         ret = btree_key_cache_create(trans, ck_path, k);
310         if (ret)
311                 goto err;
312 out:
313         /* We're not likely to need this iterator again: */
314         bch2_set_btree_iter_dontneed(&iter);
315 err:
316         bch2_trans_iter_exit(trans, &iter);
317         return ret;
318 }
319
320 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
321                                                   struct btree_path *path)
322 {
323         struct bch_fs *c = trans->c;
324         struct bkey_cached *ck;
325 retry:
326         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
327         if (!ck)
328                 return -ENOENT;
329
330         enum six_lock_type lock_want = __btree_lock_want(path, 0);
331
332         int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
333         if (ret)
334                 return ret;
335
336         if (ck->key.btree_id != path->btree_id ||
337             !bpos_eq(ck->key.pos, path->pos)) {
338                 six_unlock_type(&ck->c.lock, lock_want);
339                 goto retry;
340         }
341
342         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
343                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
344
345         btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
346         path->uptodate = BTREE_ITER_UPTODATE;
347         return 0;
348 }
349
350 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
351                                     unsigned flags)
352 {
353         EBUG_ON(path->level);
354
355         path->l[1].b = NULL;
356
357         int ret;
358         do {
359                 ret = btree_path_traverse_cached_fast(trans, path);
360                 if (unlikely(ret == -ENOENT))
361                         ret = btree_key_cache_fill(trans, path, flags);
362         } while (ret == -EEXIST);
363
364         if (unlikely(ret)) {
365                 path->uptodate = BTREE_ITER_NEED_TRAVERSE;
366                 if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
367                         btree_node_unlock(trans, path, 0);
368                         path->l[0].b = ERR_PTR(ret);
369                 }
370         }
371         return ret;
372 }
373
374 static int btree_key_cache_flush_pos(struct btree_trans *trans,
375                                      struct bkey_cached_key key,
376                                      u64 journal_seq,
377                                      unsigned commit_flags,
378                                      bool evict)
379 {
380         struct bch_fs *c = trans->c;
381         struct journal *j = &c->journal;
382         struct btree_iter c_iter, b_iter;
383         struct bkey_cached *ck = NULL;
384         int ret;
385
386         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
387                              BTREE_ITER_slots|
388                              BTREE_ITER_intent|
389                              BTREE_ITER_all_snapshots);
390         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
391                              BTREE_ITER_cached|
392                              BTREE_ITER_intent);
393         b_iter.flags &= ~BTREE_ITER_with_key_cache;
394
395         ret = bch2_btree_iter_traverse(&c_iter);
396         if (ret)
397                 goto out;
398
399         ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
400         if (!ck)
401                 goto out;
402
403         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
404                 if (evict)
405                         goto evict;
406                 goto out;
407         }
408
409         if (journal_seq && ck->journal.seq != journal_seq)
410                 goto out;
411
412         trans->journal_res.seq = ck->journal.seq;
413
414         /*
415          * If we're at the end of the journal, we really want to free up space
416          * in the journal right away - we don't want to pin that old journal
417          * sequence number with a new btree node write, we want to re-journal
418          * the update
419          */
420         if (ck->journal.seq == journal_last_seq(j))
421                 commit_flags |= BCH_WATERMARK_reclaim;
422
423         if (ck->journal.seq != journal_last_seq(j) ||
424             !test_bit(JOURNAL_space_low, &c->journal.flags))
425                 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
426
427         ret   = bch2_btree_iter_traverse(&b_iter) ?:
428                 bch2_trans_update(trans, &b_iter, ck->k,
429                                   BTREE_UPDATE_key_cache_reclaim|
430                                   BTREE_UPDATE_internal_snapshot_node|
431                                   BTREE_TRIGGER_norun) ?:
432                 bch2_trans_commit(trans, NULL, NULL,
433                                   BCH_TRANS_COMMIT_no_check_rw|
434                                   BCH_TRANS_COMMIT_no_enospc|
435                                   commit_flags);
436
437         bch2_fs_fatal_err_on(ret &&
438                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
439                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
440                              !bch2_journal_error(j), c,
441                              "flushing key cache: %s", bch2_err_str(ret));
442         if (ret)
443                 goto out;
444
445         bch2_journal_pin_drop(j, &ck->journal);
446
447         struct btree_path *path = btree_iter_path(trans, &c_iter);
448         BUG_ON(!btree_node_locked(path, 0));
449
450         if (!evict) {
451                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
452                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
453                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
454                 }
455         } else {
456                 struct btree_path *path2;
457                 unsigned i;
458 evict:
459                 trans_for_each_path(trans, path2, i)
460                         if (path2 != path)
461                                 __bch2_btree_path_unlock(trans, path2);
462
463                 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
464
465                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
466                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
467                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
468                 }
469
470                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
471                 if (bkey_cached_evict(&c->btree_key_cache, ck)) {
472                         bkey_cached_free(&c->btree_key_cache, ck);
473                 } else {
474                         six_unlock_write(&ck->c.lock);
475                         six_unlock_intent(&ck->c.lock);
476                 }
477         }
478 out:
479         bch2_trans_iter_exit(trans, &b_iter);
480         bch2_trans_iter_exit(trans, &c_iter);
481         return ret;
482 }
483
484 int bch2_btree_key_cache_journal_flush(struct journal *j,
485                                 struct journal_entry_pin *pin, u64 seq)
486 {
487         struct bch_fs *c = container_of(j, struct bch_fs, journal);
488         struct bkey_cached *ck =
489                 container_of(pin, struct bkey_cached, journal);
490         struct bkey_cached_key key;
491         struct btree_trans *trans = bch2_trans_get(c);
492         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
493         int ret = 0;
494
495         btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
496         key = ck->key;
497
498         if (ck->journal.seq != seq ||
499             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
500                 six_unlock_read(&ck->c.lock);
501                 goto unlock;
502         }
503
504         if (ck->seq != seq) {
505                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
506                                         bch2_btree_key_cache_journal_flush);
507                 six_unlock_read(&ck->c.lock);
508                 goto unlock;
509         }
510         six_unlock_read(&ck->c.lock);
511
512         ret = lockrestart_do(trans,
513                 btree_key_cache_flush_pos(trans, key, seq,
514                                 BCH_TRANS_COMMIT_journal_reclaim, false));
515 unlock:
516         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
517
518         bch2_trans_put(trans);
519         return ret;
520 }
521
522 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
523                                   unsigned flags,
524                                   struct btree_insert_entry *insert_entry)
525 {
526         struct bch_fs *c = trans->c;
527         struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
528         struct bkey_i *insert = insert_entry->k;
529         bool kick_reclaim = false;
530
531         BUG_ON(insert->k.u64s > ck->u64s);
532
533         bkey_copy(ck->k, insert);
534
535         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
536                 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
537                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
538                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
539
540                 if (bch2_nr_btree_keys_need_flush(c))
541                         kick_reclaim = true;
542         }
543
544         /*
545          * To minimize lock contention, we only add the journal pin here and
546          * defer pin updates to the flush callback via ->seq. Be careful not to
547          * update ->seq on nojournal commits because we don't want to update the
548          * pin to a seq that doesn't include journal updates on disk. Otherwise
549          * we risk losing the update after a crash.
550          *
551          * The only exception is if the pin is not active in the first place. We
552          * have to add the pin because journal reclaim drives key cache
553          * flushing. The flush callback will not proceed unless ->seq matches
554          * the latest pin, so make sure it starts with a consistent value.
555          */
556         if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
557             !journal_pin_active(&ck->journal)) {
558                 ck->seq = trans->journal_res.seq;
559         }
560         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
561                              &ck->journal, bch2_btree_key_cache_journal_flush);
562
563         if (kick_reclaim)
564                 journal_reclaim_kick(&c->journal);
565         return true;
566 }
567
568 void bch2_btree_key_cache_drop(struct btree_trans *trans,
569                                struct btree_path *path)
570 {
571         struct bch_fs *c = trans->c;
572         struct btree_key_cache *bc = &c->btree_key_cache;
573         struct bkey_cached *ck = (void *) path->l[0].b;
574
575         /*
576          * We just did an update to the btree, bypassing the key cache: the key
577          * cache key is now stale and must be dropped, even if dirty:
578          */
579         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
580                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
581                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
582                 bch2_journal_pin_drop(&c->journal, &ck->journal);
583         }
584
585         bkey_cached_evict(bc, ck);
586         bkey_cached_free(bc, ck);
587
588         mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
589         btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
590         path->should_be_locked = false;
591 }
592
593 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
594                                            struct shrink_control *sc)
595 {
596         struct bch_fs *c = shrink->private_data;
597         struct btree_key_cache *bc = &c->btree_key_cache;
598         struct bucket_table *tbl;
599         struct bkey_cached *ck;
600         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
601         unsigned iter, start;
602         int srcu_idx;
603
604         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
605         rcu_read_lock();
606
607         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
608
609         /*
610          * Scanning is expensive while a rehash is in progress - most elements
611          * will be on the new hashtable, if it's in progress
612          *
613          * A rehash could still start while we're scanning - that's ok, we'll
614          * still see most elements.
615          */
616         if (unlikely(tbl->nest)) {
617                 rcu_read_unlock();
618                 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
619                 return SHRINK_STOP;
620         }
621
622         iter = bc->shrink_iter;
623         if (iter >= tbl->size)
624                 iter = 0;
625         start = iter;
626
627         do {
628                 struct rhash_head *pos, *next;
629
630                 pos = rht_ptr_rcu(&tbl->buckets[iter]);
631
632                 while (!rht_is_a_nulls(pos)) {
633                         next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
634                         ck = container_of(pos, struct bkey_cached, hash);
635
636                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
637                                 bc->skipped_dirty++;
638                         } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
639                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
640                                 bc->skipped_accessed++;
641                         } else if (!bkey_cached_lock_for_evict(ck)) {
642                                 bc->skipped_lock_fail++;
643                         } else if (bkey_cached_evict(bc, ck)) {
644                                 bkey_cached_free(bc, ck);
645                                 bc->freed++;
646                                 freed++;
647                         } else {
648                                 six_unlock_write(&ck->c.lock);
649                                 six_unlock_intent(&ck->c.lock);
650                         }
651
652                         scanned++;
653                         if (scanned >= nr)
654                                 goto out;
655
656                         pos = next;
657                 }
658
659                 iter++;
660                 if (iter >= tbl->size)
661                         iter = 0;
662         } while (scanned < nr && iter != start);
663 out:
664         bc->shrink_iter = iter;
665
666         rcu_read_unlock();
667         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
668
669         return freed;
670 }
671
672 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
673                                             struct shrink_control *sc)
674 {
675         struct bch_fs *c = shrink->private_data;
676         struct btree_key_cache *bc = &c->btree_key_cache;
677         long nr = atomic_long_read(&bc->nr_keys) -
678                 atomic_long_read(&bc->nr_dirty);
679
680         /*
681          * Avoid hammering our shrinker too much if it's nearly empty - the
682          * shrinker code doesn't take into account how big our cache is, if it's
683          * mostly empty but the system is under memory pressure it causes nasty
684          * lock contention:
685          */
686         nr -= 128;
687
688         return max(0L, nr);
689 }
690
691 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
692 {
693         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
694         struct bucket_table *tbl;
695         struct bkey_cached *ck;
696         struct rhash_head *pos;
697         LIST_HEAD(items);
698         unsigned i;
699
700         shrinker_free(bc->shrink);
701
702         /*
703          * The loop is needed to guard against racing with rehash:
704          */
705         while (atomic_long_read(&bc->nr_keys)) {
706                 rcu_read_lock();
707                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
708                 if (tbl) {
709                         if (tbl->nest) {
710                                 /* wait for in progress rehash */
711                                 rcu_read_unlock();
712                                 mutex_lock(&bc->table.mutex);
713                                 mutex_unlock(&bc->table.mutex);
714                                 rcu_read_lock();
715                                 continue;
716                         }
717                         for (i = 0; i < tbl->size; i++)
718                                 while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
719                                         ck = container_of(pos, struct bkey_cached, hash);
720                                         BUG_ON(!bkey_cached_evict(bc, ck));
721                                         kfree(ck->k);
722                                         kmem_cache_free(bch2_key_cache, ck);
723                                 }
724                 }
725                 rcu_read_unlock();
726         }
727
728         if (atomic_long_read(&bc->nr_dirty) &&
729             !bch2_journal_error(&c->journal) &&
730             test_bit(BCH_FS_was_rw, &c->flags))
731                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
732                       atomic_long_read(&bc->nr_dirty));
733
734         if (atomic_long_read(&bc->nr_keys))
735                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
736                       atomic_long_read(&bc->nr_keys));
737
738         if (bc->table_init_done)
739                 rhashtable_destroy(&bc->table);
740
741         rcu_pending_exit(&bc->pending[0]);
742         rcu_pending_exit(&bc->pending[1]);
743
744         free_percpu(bc->nr_pending);
745 }
746
747 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
748 {
749 }
750
751 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
752 {
753         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
754         struct shrinker *shrink;
755
756         bc->nr_pending = alloc_percpu(size_t);
757         if (!bc->nr_pending)
758                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
759
760         if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
761             rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
762                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
763
764         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
765                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
766
767         bc->table_init_done = true;
768
769         shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
770         if (!shrink)
771                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
772         bc->shrink = shrink;
773         shrink->count_objects   = bch2_btree_key_cache_count;
774         shrink->scan_objects    = bch2_btree_key_cache_scan;
775         shrink->batch           = 1 << 14;
776         shrink->seeks           = 0;
777         shrink->private_data    = c;
778         shrinker_register(shrink);
779         return 0;
780 }
781
782 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
783 {
784         printbuf_tabstop_push(out, 24);
785         printbuf_tabstop_push(out, 12);
786
787         prt_printf(out, "keys:\t%lu\r\n",               atomic_long_read(&bc->nr_keys));
788         prt_printf(out, "dirty:\t%lu\r\n",              atomic_long_read(&bc->nr_dirty));
789         prt_printf(out, "table size:\t%u\r\n",          bc->table.tbl->size);
790         prt_newline(out);
791         prt_printf(out, "shrinker:\n");
792         prt_printf(out, "requested_to_free:\t%lu\r\n",  bc->requested_to_free);
793         prt_printf(out, "freed:\t%lu\r\n",              bc->freed);
794         prt_printf(out, "skipped_dirty:\t%lu\r\n",      bc->skipped_dirty);
795         prt_printf(out, "skipped_accessed:\t%lu\r\n",   bc->skipped_accessed);
796         prt_printf(out, "skipped_lock_fail:\t%lu\r\n",  bc->skipped_lock_fail);
797         prt_newline(out);
798         prt_printf(out, "pending:\t%zu\r\n",            per_cpu_sum(bc->nr_pending));
799 }
800
801 void bch2_btree_key_cache_exit(void)
802 {
803         kmem_cache_destroy(bch2_key_cache);
804 }
805
806 int __init bch2_btree_key_cache_init(void)
807 {
808         bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
809         if (!bch2_key_cache)
810                 return -ENOMEM;
811
812         return 0;
813 }
This page took 0.088512 seconds and 4 git commands to generate.