]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 const struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 /*
612  * Zero(0) is a valid physical CS value and can be located at any
613  * logical CS in the spi->chip_select[]. If all the physical CS
614  * are initialized to 0 then It would be difficult to differentiate
615  * between a valid physical CS 0 & an unused logical CS whose physical
616  * CS can be 0. As a solution to this issue initialize all the CS to -1.
617  * Now all the unused logical CS will have -1 physical CS value & can be
618  * ignored while performing physical CS validity checks.
619  */
620 #define SPI_INVALID_CS          ((s8)-1)
621
622 static inline bool is_valid_cs(s8 chip_select)
623 {
624         return chip_select != SPI_INVALID_CS;
625 }
626
627 static inline int spi_dev_check_cs(struct device *dev,
628                                    struct spi_device *spi, u8 idx,
629                                    struct spi_device *new_spi, u8 new_idx)
630 {
631         u8 cs, cs_new;
632         u8 idx_new;
633
634         cs = spi_get_chipselect(spi, idx);
635         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636                 cs_new = spi_get_chipselect(new_spi, idx_new);
637                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
638                         dev_err(dev, "chipselect %u already in use\n", cs_new);
639                         return -EBUSY;
640                 }
641         }
642         return 0;
643 }
644
645 static int spi_dev_check(struct device *dev, void *data)
646 {
647         struct spi_device *spi = to_spi_device(dev);
648         struct spi_device *new_spi = data;
649         int status, idx;
650
651         if (spi->controller == new_spi->controller) {
652                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
654                         if (status)
655                                 return status;
656                 }
657         }
658         return 0;
659 }
660
661 static void spi_cleanup(struct spi_device *spi)
662 {
663         if (spi->controller->cleanup)
664                 spi->controller->cleanup(spi);
665 }
666
667 static int __spi_add_device(struct spi_device *spi)
668 {
669         struct spi_controller *ctlr = spi->controller;
670         struct device *dev = ctlr->dev.parent;
671         int status, idx;
672         u8 cs;
673
674         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675                 /* Chipselects are numbered 0..max; validate. */
676                 cs = spi_get_chipselect(spi, idx);
677                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
678                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679                                 ctlr->num_chipselect);
680                         return -EINVAL;
681                 }
682         }
683
684         /*
685          * Make sure that multiple logical CS doesn't map to the same physical CS.
686          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
687          */
688         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689                 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
690                 if (status)
691                         return status;
692         }
693
694         /* Set the bus ID string */
695         spi_dev_set_name(spi);
696
697         /*
698          * We need to make sure there's no other device with this
699          * chipselect **BEFORE** we call setup(), else we'll trash
700          * its configuration.
701          */
702         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
703         if (status)
704                 return status;
705
706         /* Controller may unregister concurrently */
707         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708             !device_is_registered(&ctlr->dev)) {
709                 return -ENODEV;
710         }
711
712         if (ctlr->cs_gpiods) {
713                 u8 cs;
714
715                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716                         cs = spi_get_chipselect(spi, idx);
717                         if (is_valid_cs(cs))
718                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
719                 }
720         }
721
722         /*
723          * Drivers may modify this initial i/o setup, but will
724          * normally rely on the device being setup.  Devices
725          * using SPI_CS_HIGH can't coexist well otherwise...
726          */
727         status = spi_setup(spi);
728         if (status < 0) {
729                 dev_err(dev, "can't setup %s, status %d\n",
730                                 dev_name(&spi->dev), status);
731                 return status;
732         }
733
734         /* Device may be bound to an active driver when this returns */
735         status = device_add(&spi->dev);
736         if (status < 0) {
737                 dev_err(dev, "can't add %s, status %d\n",
738                                 dev_name(&spi->dev), status);
739                 spi_cleanup(spi);
740         } else {
741                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
742         }
743
744         return status;
745 }
746
747 /**
748  * spi_add_device - Add spi_device allocated with spi_alloc_device
749  * @spi: spi_device to register
750  *
751  * Companion function to spi_alloc_device.  Devices allocated with
752  * spi_alloc_device can be added onto the SPI bus with this function.
753  *
754  * Return: 0 on success; negative errno on failure
755  */
756 int spi_add_device(struct spi_device *spi)
757 {
758         struct spi_controller *ctlr = spi->controller;
759         int status;
760
761         /* Set the bus ID string */
762         spi_dev_set_name(spi);
763
764         mutex_lock(&ctlr->add_lock);
765         status = __spi_add_device(spi);
766         mutex_unlock(&ctlr->add_lock);
767         return status;
768 }
769 EXPORT_SYMBOL_GPL(spi_add_device);
770
771 static void spi_set_all_cs_unused(struct spi_device *spi)
772 {
773         u8 idx;
774
775         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
777 }
778
779 /**
780  * spi_new_device - instantiate one new SPI device
781  * @ctlr: Controller to which device is connected
782  * @chip: Describes the SPI device
783  * Context: can sleep
784  *
785  * On typical mainboards, this is purely internal; and it's not needed
786  * after board init creates the hard-wired devices.  Some development
787  * platforms may not be able to use spi_register_board_info though, and
788  * this is exported so that for example a USB or parport based adapter
789  * driver could add devices (which it would learn about out-of-band).
790  *
791  * Return: the new device, or NULL.
792  */
793 struct spi_device *spi_new_device(struct spi_controller *ctlr,
794                                   struct spi_board_info *chip)
795 {
796         struct spi_device       *proxy;
797         int                     status;
798
799         /*
800          * NOTE:  caller did any chip->bus_num checks necessary.
801          *
802          * Also, unless we change the return value convention to use
803          * error-or-pointer (not NULL-or-pointer), troubleshootability
804          * suggests syslogged diagnostics are best here (ugh).
805          */
806
807         proxy = spi_alloc_device(ctlr);
808         if (!proxy)
809                 return NULL;
810
811         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
812
813         /* Use provided chip-select for proxy device */
814         spi_set_all_cs_unused(proxy);
815         spi_set_chipselect(proxy, 0, chip->chip_select);
816
817         proxy->max_speed_hz = chip->max_speed_hz;
818         proxy->mode = chip->mode;
819         proxy->irq = chip->irq;
820         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821         proxy->dev.platform_data = (void *) chip->platform_data;
822         proxy->controller_data = chip->controller_data;
823         proxy->controller_state = NULL;
824         /*
825          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828          * spi->chip_select[0] will give the physical CS.
829          * By default spi->chip_select[0] will hold the physical CS number so, set
830          * spi->cs_index_mask as 0x01.
831          */
832         proxy->cs_index_mask = 0x01;
833
834         if (chip->swnode) {
835                 status = device_add_software_node(&proxy->dev, chip->swnode);
836                 if (status) {
837                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838                                 chip->modalias, status);
839                         goto err_dev_put;
840                 }
841         }
842
843         status = spi_add_device(proxy);
844         if (status < 0)
845                 goto err_dev_put;
846
847         return proxy;
848
849 err_dev_put:
850         device_remove_software_node(&proxy->dev);
851         spi_dev_put(proxy);
852         return NULL;
853 }
854 EXPORT_SYMBOL_GPL(spi_new_device);
855
856 /**
857  * spi_unregister_device - unregister a single SPI device
858  * @spi: spi_device to unregister
859  *
860  * Start making the passed SPI device vanish. Normally this would be handled
861  * by spi_unregister_controller().
862  */
863 void spi_unregister_device(struct spi_device *spi)
864 {
865         if (!spi)
866                 return;
867
868         if (spi->dev.of_node) {
869                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870                 of_node_put(spi->dev.of_node);
871         }
872         if (ACPI_COMPANION(&spi->dev))
873                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874         device_remove_software_node(&spi->dev);
875         device_del(&spi->dev);
876         spi_cleanup(spi);
877         put_device(&spi->dev);
878 }
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
880
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882                                               struct spi_board_info *bi)
883 {
884         struct spi_device *dev;
885
886         if (ctlr->bus_num != bi->bus_num)
887                 return;
888
889         dev = spi_new_device(ctlr, bi);
890         if (!dev)
891                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892                         bi->modalias);
893 }
894
895 /**
896  * spi_register_board_info - register SPI devices for a given board
897  * @info: array of chip descriptors
898  * @n: how many descriptors are provided
899  * Context: can sleep
900  *
901  * Board-specific early init code calls this (probably during arch_initcall)
902  * with segments of the SPI device table.  Any device nodes are created later,
903  * after the relevant parent SPI controller (bus_num) is defined.  We keep
904  * this table of devices forever, so that reloading a controller driver will
905  * not make Linux forget about these hard-wired devices.
906  *
907  * Other code can also call this, e.g. a particular add-on board might provide
908  * SPI devices through its expansion connector, so code initializing that board
909  * would naturally declare its SPI devices.
910  *
911  * The board info passed can safely be __initdata ... but be careful of
912  * any embedded pointers (platform_data, etc), they're copied as-is.
913  *
914  * Return: zero on success, else a negative error code.
915  */
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917 {
918         struct boardinfo *bi;
919         int i;
920
921         if (!n)
922                 return 0;
923
924         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
925         if (!bi)
926                 return -ENOMEM;
927
928         for (i = 0; i < n; i++, bi++, info++) {
929                 struct spi_controller *ctlr;
930
931                 memcpy(&bi->board_info, info, sizeof(*info));
932
933                 mutex_lock(&board_lock);
934                 list_add_tail(&bi->list, &board_list);
935                 list_for_each_entry(ctlr, &spi_controller_list, list)
936                         spi_match_controller_to_boardinfo(ctlr,
937                                                           &bi->board_info);
938                 mutex_unlock(&board_lock);
939         }
940
941         return 0;
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 /* Core methods for SPI resource management */
947
948 /**
949  * spi_res_alloc - allocate a spi resource that is life-cycle managed
950  *                 during the processing of a spi_message while using
951  *                 spi_transfer_one
952  * @spi:     the SPI device for which we allocate memory
953  * @release: the release code to execute for this resource
954  * @size:    size to alloc and return
955  * @gfp:     GFP allocation flags
956  *
957  * Return: the pointer to the allocated data
958  *
959  * This may get enhanced in the future to allocate from a memory pool
960  * of the @spi_device or @spi_controller to avoid repeated allocations.
961  */
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963                            size_t size, gfp_t gfp)
964 {
965         struct spi_res *sres;
966
967         sres = kzalloc(sizeof(*sres) + size, gfp);
968         if (!sres)
969                 return NULL;
970
971         INIT_LIST_HEAD(&sres->entry);
972         sres->release = release;
973
974         return sres->data;
975 }
976
977 /**
978  * spi_res_free - free an SPI resource
979  * @res: pointer to the custom data of a resource
980  */
981 static void spi_res_free(void *res)
982 {
983         struct spi_res *sres = container_of(res, struct spi_res, data);
984
985         if (!res)
986                 return;
987
988         WARN_ON(!list_empty(&sres->entry));
989         kfree(sres);
990 }
991
992 /**
993  * spi_res_add - add a spi_res to the spi_message
994  * @message: the SPI message
995  * @res:     the spi_resource
996  */
997 static void spi_res_add(struct spi_message *message, void *res)
998 {
999         struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001         WARN_ON(!list_empty(&sres->entry));
1002         list_add_tail(&sres->entry, &message->resources);
1003 }
1004
1005 /**
1006  * spi_res_release - release all SPI resources for this message
1007  * @ctlr:  the @spi_controller
1008  * @message: the @spi_message
1009  */
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011 {
1012         struct spi_res *res, *tmp;
1013
1014         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015                 if (res->release)
1016                         res->release(ctlr, message, res->data);
1017
1018                 list_del(&res->entry);
1019
1020                 kfree(res);
1021         }
1022 }
1023
1024 /*-------------------------------------------------------------------------*/
1025 static inline bool spi_is_last_cs(struct spi_device *spi)
1026 {
1027         u8 idx;
1028         bool last = false;
1029
1030         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031                 if (spi->cs_index_mask & BIT(idx)) {
1032                         if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033                                 last = true;
1034                 }
1035         }
1036         return last;
1037 }
1038
1039
1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041 {
1042         bool activate = enable;
1043         u8 idx;
1044
1045         /*
1046          * Avoid calling into the driver (or doing delays) if the chip select
1047          * isn't actually changing from the last time this was called.
1048          */
1049         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050                         spi_is_last_cs(spi)) ||
1051                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052                         !spi_is_last_cs(spi))) &&
1053             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054                 return;
1055
1056         trace_spi_set_cs(spi, activate);
1057
1058         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063         if (spi->mode & SPI_CS_HIGH)
1064                 enable = !enable;
1065
1066         if (spi_is_csgpiod(spi)) {
1067                 if (!spi->controller->set_cs_timing && !activate)
1068                         spi_delay_exec(&spi->cs_hold, NULL);
1069
1070                 if (!(spi->mode & SPI_NO_CS)) {
1071                         /*
1072                          * Historically ACPI has no means of the GPIO polarity and
1073                          * thus the SPISerialBus() resource defines it on the per-chip
1074                          * basis. In order to avoid a chain of negations, the GPIO
1075                          * polarity is considered being Active High. Even for the cases
1076                          * when _DSD() is involved (in the updated versions of ACPI)
1077                          * the GPIO CS polarity must be defined Active High to avoid
1078                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1079                          * into account.
1080                          */
1081                         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1082                                 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1083                                         if (has_acpi_companion(&spi->dev))
1084                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1085                                                                          !enable);
1086                                         else
1087                                                 /* Polarity handled by GPIO library */
1088                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089                                                                          activate);
1090
1091                                         if (activate)
1092                                                 spi_delay_exec(&spi->cs_setup, NULL);
1093                                         else
1094                                                 spi_delay_exec(&spi->cs_inactive, NULL);
1095                                 }
1096                         }
1097                 }
1098                 /* Some SPI masters need both GPIO CS & slave_select */
1099                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1100                     spi->controller->set_cs)
1101                         spi->controller->set_cs(spi, !enable);
1102
1103                 if (!spi->controller->set_cs_timing) {
1104                         if (activate)
1105                                 spi_delay_exec(&spi->cs_setup, NULL);
1106                         else
1107                                 spi_delay_exec(&spi->cs_inactive, NULL);
1108                 }
1109         } else if (spi->controller->set_cs) {
1110                 spi->controller->set_cs(spi, !enable);
1111         }
1112 }
1113
1114 #ifdef CONFIG_HAS_DMA
1115 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1116                              struct sg_table *sgt, void *buf, size_t len,
1117                              enum dma_data_direction dir, unsigned long attrs)
1118 {
1119         const bool vmalloced_buf = is_vmalloc_addr(buf);
1120         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1121 #ifdef CONFIG_HIGHMEM
1122         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1123                                 (unsigned long)buf < (PKMAP_BASE +
1124                                         (LAST_PKMAP * PAGE_SIZE)));
1125 #else
1126         const bool kmap_buf = false;
1127 #endif
1128         int desc_len;
1129         int sgs;
1130         struct page *vm_page;
1131         struct scatterlist *sg;
1132         void *sg_buf;
1133         size_t min;
1134         int i, ret;
1135
1136         if (vmalloced_buf || kmap_buf) {
1137                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1138                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1139         } else if (virt_addr_valid(buf)) {
1140                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1141                 sgs = DIV_ROUND_UP(len, desc_len);
1142         } else {
1143                 return -EINVAL;
1144         }
1145
1146         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1147         if (ret != 0)
1148                 return ret;
1149
1150         sg = &sgt->sgl[0];
1151         for (i = 0; i < sgs; i++) {
1152
1153                 if (vmalloced_buf || kmap_buf) {
1154                         /*
1155                          * Next scatterlist entry size is the minimum between
1156                          * the desc_len and the remaining buffer length that
1157                          * fits in a page.
1158                          */
1159                         min = min_t(size_t, desc_len,
1160                                     min_t(size_t, len,
1161                                           PAGE_SIZE - offset_in_page(buf)));
1162                         if (vmalloced_buf)
1163                                 vm_page = vmalloc_to_page(buf);
1164                         else
1165                                 vm_page = kmap_to_page(buf);
1166                         if (!vm_page) {
1167                                 sg_free_table(sgt);
1168                                 return -ENOMEM;
1169                         }
1170                         sg_set_page(sg, vm_page,
1171                                     min, offset_in_page(buf));
1172                 } else {
1173                         min = min_t(size_t, len, desc_len);
1174                         sg_buf = buf;
1175                         sg_set_buf(sg, sg_buf, min);
1176                 }
1177
1178                 buf += min;
1179                 len -= min;
1180                 sg = sg_next(sg);
1181         }
1182
1183         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1184         if (ret < 0) {
1185                 sg_free_table(sgt);
1186                 return ret;
1187         }
1188
1189         return 0;
1190 }
1191
1192 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1193                 struct sg_table *sgt, void *buf, size_t len,
1194                 enum dma_data_direction dir)
1195 {
1196         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1197 }
1198
1199 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1200                                 struct device *dev, struct sg_table *sgt,
1201                                 enum dma_data_direction dir,
1202                                 unsigned long attrs)
1203 {
1204         if (sgt->orig_nents) {
1205                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1206                 sg_free_table(sgt);
1207                 sgt->orig_nents = 0;
1208                 sgt->nents = 0;
1209         }
1210 }
1211
1212 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1213                    struct sg_table *sgt, enum dma_data_direction dir)
1214 {
1215         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1216 }
1217
1218 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1219 {
1220         struct device *tx_dev, *rx_dev;
1221         struct spi_transfer *xfer;
1222         int ret;
1223
1224         if (!ctlr->can_dma)
1225                 return 0;
1226
1227         if (ctlr->dma_tx)
1228                 tx_dev = ctlr->dma_tx->device->dev;
1229         else if (ctlr->dma_map_dev)
1230                 tx_dev = ctlr->dma_map_dev;
1231         else
1232                 tx_dev = ctlr->dev.parent;
1233
1234         if (ctlr->dma_rx)
1235                 rx_dev = ctlr->dma_rx->device->dev;
1236         else if (ctlr->dma_map_dev)
1237                 rx_dev = ctlr->dma_map_dev;
1238         else
1239                 rx_dev = ctlr->dev.parent;
1240
1241         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1242                 /* The sync is done before each transfer. */
1243                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1244
1245                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1246                         continue;
1247
1248                 if (xfer->tx_buf != NULL) {
1249                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1250                                                 (void *)xfer->tx_buf,
1251                                                 xfer->len, DMA_TO_DEVICE,
1252                                                 attrs);
1253                         if (ret != 0)
1254                                 return ret;
1255                 }
1256
1257                 if (xfer->rx_buf != NULL) {
1258                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1259                                                 xfer->rx_buf, xfer->len,
1260                                                 DMA_FROM_DEVICE, attrs);
1261                         if (ret != 0) {
1262                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1263                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1264                                                 attrs);
1265
1266                                 return ret;
1267                         }
1268                 }
1269         }
1270
1271         ctlr->cur_rx_dma_dev = rx_dev;
1272         ctlr->cur_tx_dma_dev = tx_dev;
1273         ctlr->cur_msg_mapped = true;
1274
1275         return 0;
1276 }
1277
1278 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1279 {
1280         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1281         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1282         struct spi_transfer *xfer;
1283
1284         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1285                 return 0;
1286
1287         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1288                 /* The sync has already been done after each transfer. */
1289                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1290
1291                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1292                         continue;
1293
1294                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1295                                     DMA_FROM_DEVICE, attrs);
1296                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1297                                     DMA_TO_DEVICE, attrs);
1298         }
1299
1300         ctlr->cur_msg_mapped = false;
1301
1302         return 0;
1303 }
1304
1305 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1306                                     struct spi_transfer *xfer)
1307 {
1308         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1309         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1310
1311         if (!ctlr->cur_msg_mapped)
1312                 return;
1313
1314         if (xfer->tx_sg.orig_nents)
1315                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1316         if (xfer->rx_sg.orig_nents)
1317                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1318 }
1319
1320 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1321                                  struct spi_transfer *xfer)
1322 {
1323         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1324         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1325
1326         if (!ctlr->cur_msg_mapped)
1327                 return;
1328
1329         if (xfer->rx_sg.orig_nents)
1330                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1331         if (xfer->tx_sg.orig_nents)
1332                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1333 }
1334 #else /* !CONFIG_HAS_DMA */
1335 static inline int __spi_map_msg(struct spi_controller *ctlr,
1336                                 struct spi_message *msg)
1337 {
1338         return 0;
1339 }
1340
1341 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1342                                   struct spi_message *msg)
1343 {
1344         return 0;
1345 }
1346
1347 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1348                                     struct spi_transfer *xfer)
1349 {
1350 }
1351
1352 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1353                                  struct spi_transfer *xfer)
1354 {
1355 }
1356 #endif /* !CONFIG_HAS_DMA */
1357
1358 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1359                                 struct spi_message *msg)
1360 {
1361         struct spi_transfer *xfer;
1362
1363         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1364                 /*
1365                  * Restore the original value of tx_buf or rx_buf if they are
1366                  * NULL.
1367                  */
1368                 if (xfer->tx_buf == ctlr->dummy_tx)
1369                         xfer->tx_buf = NULL;
1370                 if (xfer->rx_buf == ctlr->dummy_rx)
1371                         xfer->rx_buf = NULL;
1372         }
1373
1374         return __spi_unmap_msg(ctlr, msg);
1375 }
1376
1377 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1378 {
1379         struct spi_transfer *xfer;
1380         void *tmp;
1381         unsigned int max_tx, max_rx;
1382
1383         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1384                 && !(msg->spi->mode & SPI_3WIRE)) {
1385                 max_tx = 0;
1386                 max_rx = 0;
1387
1388                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1389                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1390                             !xfer->tx_buf)
1391                                 max_tx = max(xfer->len, max_tx);
1392                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1393                             !xfer->rx_buf)
1394                                 max_rx = max(xfer->len, max_rx);
1395                 }
1396
1397                 if (max_tx) {
1398                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1399                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1400                         if (!tmp)
1401                                 return -ENOMEM;
1402                         ctlr->dummy_tx = tmp;
1403                 }
1404
1405                 if (max_rx) {
1406                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1407                                        GFP_KERNEL | GFP_DMA);
1408                         if (!tmp)
1409                                 return -ENOMEM;
1410                         ctlr->dummy_rx = tmp;
1411                 }
1412
1413                 if (max_tx || max_rx) {
1414                         list_for_each_entry(xfer, &msg->transfers,
1415                                             transfer_list) {
1416                                 if (!xfer->len)
1417                                         continue;
1418                                 if (!xfer->tx_buf)
1419                                         xfer->tx_buf = ctlr->dummy_tx;
1420                                 if (!xfer->rx_buf)
1421                                         xfer->rx_buf = ctlr->dummy_rx;
1422                         }
1423                 }
1424         }
1425
1426         return __spi_map_msg(ctlr, msg);
1427 }
1428
1429 static int spi_transfer_wait(struct spi_controller *ctlr,
1430                              struct spi_message *msg,
1431                              struct spi_transfer *xfer)
1432 {
1433         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1434         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1435         u32 speed_hz = xfer->speed_hz;
1436         unsigned long long ms;
1437
1438         if (spi_controller_is_slave(ctlr)) {
1439                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1440                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1441                         return -EINTR;
1442                 }
1443         } else {
1444                 if (!speed_hz)
1445                         speed_hz = 100000;
1446
1447                 /*
1448                  * For each byte we wait for 8 cycles of the SPI clock.
1449                  * Since speed is defined in Hz and we want milliseconds,
1450                  * use respective multiplier, but before the division,
1451                  * otherwise we may get 0 for short transfers.
1452                  */
1453                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1454                 do_div(ms, speed_hz);
1455
1456                 /*
1457                  * Increase it twice and add 200 ms tolerance, use
1458                  * predefined maximum in case of overflow.
1459                  */
1460                 ms += ms + 200;
1461                 if (ms > UINT_MAX)
1462                         ms = UINT_MAX;
1463
1464                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1465                                                  msecs_to_jiffies(ms));
1466
1467                 if (ms == 0) {
1468                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1469                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1470                         dev_err(&msg->spi->dev,
1471                                 "SPI transfer timed out\n");
1472                         return -ETIMEDOUT;
1473                 }
1474
1475                 if (xfer->error & SPI_TRANS_FAIL_IO)
1476                         return -EIO;
1477         }
1478
1479         return 0;
1480 }
1481
1482 static void _spi_transfer_delay_ns(u32 ns)
1483 {
1484         if (!ns)
1485                 return;
1486         if (ns <= NSEC_PER_USEC) {
1487                 ndelay(ns);
1488         } else {
1489                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1490
1491                 if (us <= 10)
1492                         udelay(us);
1493                 else
1494                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1495         }
1496 }
1497
1498 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1499 {
1500         u32 delay = _delay->value;
1501         u32 unit = _delay->unit;
1502         u32 hz;
1503
1504         if (!delay)
1505                 return 0;
1506
1507         switch (unit) {
1508         case SPI_DELAY_UNIT_USECS:
1509                 delay *= NSEC_PER_USEC;
1510                 break;
1511         case SPI_DELAY_UNIT_NSECS:
1512                 /* Nothing to do here */
1513                 break;
1514         case SPI_DELAY_UNIT_SCK:
1515                 /* Clock cycles need to be obtained from spi_transfer */
1516                 if (!xfer)
1517                         return -EINVAL;
1518                 /*
1519                  * If there is unknown effective speed, approximate it
1520                  * by underestimating with half of the requested Hz.
1521                  */
1522                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1523                 if (!hz)
1524                         return -EINVAL;
1525
1526                 /* Convert delay to nanoseconds */
1527                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1528                 break;
1529         default:
1530                 return -EINVAL;
1531         }
1532
1533         return delay;
1534 }
1535 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1536
1537 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1538 {
1539         int delay;
1540
1541         might_sleep();
1542
1543         if (!_delay)
1544                 return -EINVAL;
1545
1546         delay = spi_delay_to_ns(_delay, xfer);
1547         if (delay < 0)
1548                 return delay;
1549
1550         _spi_transfer_delay_ns(delay);
1551
1552         return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(spi_delay_exec);
1555
1556 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1557                                           struct spi_transfer *xfer)
1558 {
1559         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1560         u32 delay = xfer->cs_change_delay.value;
1561         u32 unit = xfer->cs_change_delay.unit;
1562         int ret;
1563
1564         /* Return early on "fast" mode - for everything but USECS */
1565         if (!delay) {
1566                 if (unit == SPI_DELAY_UNIT_USECS)
1567                         _spi_transfer_delay_ns(default_delay_ns);
1568                 return;
1569         }
1570
1571         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1572         if (ret) {
1573                 dev_err_once(&msg->spi->dev,
1574                              "Use of unsupported delay unit %i, using default of %luus\n",
1575                              unit, default_delay_ns / NSEC_PER_USEC);
1576                 _spi_transfer_delay_ns(default_delay_ns);
1577         }
1578 }
1579
1580 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1581                                                   struct spi_transfer *xfer)
1582 {
1583         _spi_transfer_cs_change_delay(msg, xfer);
1584 }
1585 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1586
1587 /*
1588  * spi_transfer_one_message - Default implementation of transfer_one_message()
1589  *
1590  * This is a standard implementation of transfer_one_message() for
1591  * drivers which implement a transfer_one() operation.  It provides
1592  * standard handling of delays and chip select management.
1593  */
1594 static int spi_transfer_one_message(struct spi_controller *ctlr,
1595                                     struct spi_message *msg)
1596 {
1597         struct spi_transfer *xfer;
1598         bool keep_cs = false;
1599         int ret = 0;
1600         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1601         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1602
1603         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1604         spi_set_cs(msg->spi, !xfer->cs_off, false);
1605
1606         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1607         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1608
1609         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1610                 trace_spi_transfer_start(msg, xfer);
1611
1612                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1613                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1614
1615                 if (!ctlr->ptp_sts_supported) {
1616                         xfer->ptp_sts_word_pre = 0;
1617                         ptp_read_system_prets(xfer->ptp_sts);
1618                 }
1619
1620                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1621                         reinit_completion(&ctlr->xfer_completion);
1622
1623 fallback_pio:
1624                         spi_dma_sync_for_device(ctlr, xfer);
1625                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1626                         if (ret < 0) {
1627                                 spi_dma_sync_for_cpu(ctlr, xfer);
1628
1629                                 if (ctlr->cur_msg_mapped &&
1630                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1631                                         __spi_unmap_msg(ctlr, msg);
1632                                         ctlr->fallback = true;
1633                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1634                                         goto fallback_pio;
1635                                 }
1636
1637                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1638                                                                errors);
1639                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1640                                                                errors);
1641                                 dev_err(&msg->spi->dev,
1642                                         "SPI transfer failed: %d\n", ret);
1643                                 goto out;
1644                         }
1645
1646                         if (ret > 0) {
1647                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1648                                 if (ret < 0)
1649                                         msg->status = ret;
1650                         }
1651
1652                         spi_dma_sync_for_cpu(ctlr, xfer);
1653                 } else {
1654                         if (xfer->len)
1655                                 dev_err(&msg->spi->dev,
1656                                         "Bufferless transfer has length %u\n",
1657                                         xfer->len);
1658                 }
1659
1660                 if (!ctlr->ptp_sts_supported) {
1661                         ptp_read_system_postts(xfer->ptp_sts);
1662                         xfer->ptp_sts_word_post = xfer->len;
1663                 }
1664
1665                 trace_spi_transfer_stop(msg, xfer);
1666
1667                 if (msg->status != -EINPROGRESS)
1668                         goto out;
1669
1670                 spi_transfer_delay_exec(xfer);
1671
1672                 if (xfer->cs_change) {
1673                         if (list_is_last(&xfer->transfer_list,
1674                                          &msg->transfers)) {
1675                                 keep_cs = true;
1676                         } else {
1677                                 if (!xfer->cs_off)
1678                                         spi_set_cs(msg->spi, false, false);
1679                                 _spi_transfer_cs_change_delay(msg, xfer);
1680                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1681                                         spi_set_cs(msg->spi, true, false);
1682                         }
1683                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1684                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1685                         spi_set_cs(msg->spi, xfer->cs_off, false);
1686                 }
1687
1688                 msg->actual_length += xfer->len;
1689         }
1690
1691 out:
1692         if (ret != 0 || !keep_cs)
1693                 spi_set_cs(msg->spi, false, false);
1694
1695         if (msg->status == -EINPROGRESS)
1696                 msg->status = ret;
1697
1698         if (msg->status && ctlr->handle_err)
1699                 ctlr->handle_err(ctlr, msg);
1700
1701         spi_finalize_current_message(ctlr);
1702
1703         return ret;
1704 }
1705
1706 /**
1707  * spi_finalize_current_transfer - report completion of a transfer
1708  * @ctlr: the controller reporting completion
1709  *
1710  * Called by SPI drivers using the core transfer_one_message()
1711  * implementation to notify it that the current interrupt driven
1712  * transfer has finished and the next one may be scheduled.
1713  */
1714 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1715 {
1716         complete(&ctlr->xfer_completion);
1717 }
1718 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1719
1720 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1721 {
1722         if (ctlr->auto_runtime_pm) {
1723                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1724                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1725         }
1726 }
1727
1728 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1729                 struct spi_message *msg, bool was_busy)
1730 {
1731         struct spi_transfer *xfer;
1732         int ret;
1733
1734         if (!was_busy && ctlr->auto_runtime_pm) {
1735                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1736                 if (ret < 0) {
1737                         pm_runtime_put_noidle(ctlr->dev.parent);
1738                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1739                                 ret);
1740
1741                         msg->status = ret;
1742                         spi_finalize_current_message(ctlr);
1743
1744                         return ret;
1745                 }
1746         }
1747
1748         if (!was_busy)
1749                 trace_spi_controller_busy(ctlr);
1750
1751         if (!was_busy && ctlr->prepare_transfer_hardware) {
1752                 ret = ctlr->prepare_transfer_hardware(ctlr);
1753                 if (ret) {
1754                         dev_err(&ctlr->dev,
1755                                 "failed to prepare transfer hardware: %d\n",
1756                                 ret);
1757
1758                         if (ctlr->auto_runtime_pm)
1759                                 pm_runtime_put(ctlr->dev.parent);
1760
1761                         msg->status = ret;
1762                         spi_finalize_current_message(ctlr);
1763
1764                         return ret;
1765                 }
1766         }
1767
1768         trace_spi_message_start(msg);
1769
1770         if (ctlr->prepare_message) {
1771                 ret = ctlr->prepare_message(ctlr, msg);
1772                 if (ret) {
1773                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1774                                 ret);
1775                         msg->status = ret;
1776                         spi_finalize_current_message(ctlr);
1777                         return ret;
1778                 }
1779                 msg->prepared = true;
1780         }
1781
1782         ret = spi_map_msg(ctlr, msg);
1783         if (ret) {
1784                 msg->status = ret;
1785                 spi_finalize_current_message(ctlr);
1786                 return ret;
1787         }
1788
1789         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1790                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1791                         xfer->ptp_sts_word_pre = 0;
1792                         ptp_read_system_prets(xfer->ptp_sts);
1793                 }
1794         }
1795
1796         /*
1797          * Drivers implementation of transfer_one_message() must arrange for
1798          * spi_finalize_current_message() to get called. Most drivers will do
1799          * this in the calling context, but some don't. For those cases, a
1800          * completion is used to guarantee that this function does not return
1801          * until spi_finalize_current_message() is done accessing
1802          * ctlr->cur_msg.
1803          * Use of the following two flags enable to opportunistically skip the
1804          * use of the completion since its use involves expensive spin locks.
1805          * In case of a race with the context that calls
1806          * spi_finalize_current_message() the completion will always be used,
1807          * due to strict ordering of these flags using barriers.
1808          */
1809         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1810         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1811         reinit_completion(&ctlr->cur_msg_completion);
1812         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1813
1814         ret = ctlr->transfer_one_message(ctlr, msg);
1815         if (ret) {
1816                 dev_err(&ctlr->dev,
1817                         "failed to transfer one message from queue\n");
1818                 return ret;
1819         }
1820
1821         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1822         smp_mb(); /* See spi_finalize_current_message()... */
1823         if (READ_ONCE(ctlr->cur_msg_incomplete))
1824                 wait_for_completion(&ctlr->cur_msg_completion);
1825
1826         return 0;
1827 }
1828
1829 /**
1830  * __spi_pump_messages - function which processes SPI message queue
1831  * @ctlr: controller to process queue for
1832  * @in_kthread: true if we are in the context of the message pump thread
1833  *
1834  * This function checks if there is any SPI message in the queue that
1835  * needs processing and if so call out to the driver to initialize hardware
1836  * and transfer each message.
1837  *
1838  * Note that it is called both from the kthread itself and also from
1839  * inside spi_sync(); the queue extraction handling at the top of the
1840  * function should deal with this safely.
1841  */
1842 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1843 {
1844         struct spi_message *msg;
1845         bool was_busy = false;
1846         unsigned long flags;
1847         int ret;
1848
1849         /* Take the I/O mutex */
1850         mutex_lock(&ctlr->io_mutex);
1851
1852         /* Lock queue */
1853         spin_lock_irqsave(&ctlr->queue_lock, flags);
1854
1855         /* Make sure we are not already running a message */
1856         if (ctlr->cur_msg)
1857                 goto out_unlock;
1858
1859         /* Check if the queue is idle */
1860         if (list_empty(&ctlr->queue) || !ctlr->running) {
1861                 if (!ctlr->busy)
1862                         goto out_unlock;
1863
1864                 /* Defer any non-atomic teardown to the thread */
1865                 if (!in_kthread) {
1866                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1867                             !ctlr->unprepare_transfer_hardware) {
1868                                 spi_idle_runtime_pm(ctlr);
1869                                 ctlr->busy = false;
1870                                 ctlr->queue_empty = true;
1871                                 trace_spi_controller_idle(ctlr);
1872                         } else {
1873                                 kthread_queue_work(ctlr->kworker,
1874                                                    &ctlr->pump_messages);
1875                         }
1876                         goto out_unlock;
1877                 }
1878
1879                 ctlr->busy = false;
1880                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1881
1882                 kfree(ctlr->dummy_rx);
1883                 ctlr->dummy_rx = NULL;
1884                 kfree(ctlr->dummy_tx);
1885                 ctlr->dummy_tx = NULL;
1886                 if (ctlr->unprepare_transfer_hardware &&
1887                     ctlr->unprepare_transfer_hardware(ctlr))
1888                         dev_err(&ctlr->dev,
1889                                 "failed to unprepare transfer hardware\n");
1890                 spi_idle_runtime_pm(ctlr);
1891                 trace_spi_controller_idle(ctlr);
1892
1893                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1894                 ctlr->queue_empty = true;
1895                 goto out_unlock;
1896         }
1897
1898         /* Extract head of queue */
1899         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1900         ctlr->cur_msg = msg;
1901
1902         list_del_init(&msg->queue);
1903         if (ctlr->busy)
1904                 was_busy = true;
1905         else
1906                 ctlr->busy = true;
1907         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1908
1909         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1910         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1911
1912         ctlr->cur_msg = NULL;
1913         ctlr->fallback = false;
1914
1915         mutex_unlock(&ctlr->io_mutex);
1916
1917         /* Prod the scheduler in case transfer_one() was busy waiting */
1918         if (!ret)
1919                 cond_resched();
1920         return;
1921
1922 out_unlock:
1923         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1924         mutex_unlock(&ctlr->io_mutex);
1925 }
1926
1927 /**
1928  * spi_pump_messages - kthread work function which processes spi message queue
1929  * @work: pointer to kthread work struct contained in the controller struct
1930  */
1931 static void spi_pump_messages(struct kthread_work *work)
1932 {
1933         struct spi_controller *ctlr =
1934                 container_of(work, struct spi_controller, pump_messages);
1935
1936         __spi_pump_messages(ctlr, true);
1937 }
1938
1939 /**
1940  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1941  * @ctlr: Pointer to the spi_controller structure of the driver
1942  * @xfer: Pointer to the transfer being timestamped
1943  * @progress: How many words (not bytes) have been transferred so far
1944  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1945  *            transfer, for less jitter in time measurement. Only compatible
1946  *            with PIO drivers. If true, must follow up with
1947  *            spi_take_timestamp_post or otherwise system will crash.
1948  *            WARNING: for fully predictable results, the CPU frequency must
1949  *            also be under control (governor).
1950  *
1951  * This is a helper for drivers to collect the beginning of the TX timestamp
1952  * for the requested byte from the SPI transfer. The frequency with which this
1953  * function must be called (once per word, once for the whole transfer, once
1954  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1955  * greater than or equal to the requested byte at the time of the call. The
1956  * timestamp is only taken once, at the first such call. It is assumed that
1957  * the driver advances its @tx buffer pointer monotonically.
1958  */
1959 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1960                             struct spi_transfer *xfer,
1961                             size_t progress, bool irqs_off)
1962 {
1963         if (!xfer->ptp_sts)
1964                 return;
1965
1966         if (xfer->timestamped)
1967                 return;
1968
1969         if (progress > xfer->ptp_sts_word_pre)
1970                 return;
1971
1972         /* Capture the resolution of the timestamp */
1973         xfer->ptp_sts_word_pre = progress;
1974
1975         if (irqs_off) {
1976                 local_irq_save(ctlr->irq_flags);
1977                 preempt_disable();
1978         }
1979
1980         ptp_read_system_prets(xfer->ptp_sts);
1981 }
1982 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1983
1984 /**
1985  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1986  * @ctlr: Pointer to the spi_controller structure of the driver
1987  * @xfer: Pointer to the transfer being timestamped
1988  * @progress: How many words (not bytes) have been transferred so far
1989  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1990  *
1991  * This is a helper for drivers to collect the end of the TX timestamp for
1992  * the requested byte from the SPI transfer. Can be called with an arbitrary
1993  * frequency: only the first call where @tx exceeds or is equal to the
1994  * requested word will be timestamped.
1995  */
1996 void spi_take_timestamp_post(struct spi_controller *ctlr,
1997                              struct spi_transfer *xfer,
1998                              size_t progress, bool irqs_off)
1999 {
2000         if (!xfer->ptp_sts)
2001                 return;
2002
2003         if (xfer->timestamped)
2004                 return;
2005
2006         if (progress < xfer->ptp_sts_word_post)
2007                 return;
2008
2009         ptp_read_system_postts(xfer->ptp_sts);
2010
2011         if (irqs_off) {
2012                 local_irq_restore(ctlr->irq_flags);
2013                 preempt_enable();
2014         }
2015
2016         /* Capture the resolution of the timestamp */
2017         xfer->ptp_sts_word_post = progress;
2018
2019         xfer->timestamped = 1;
2020 }
2021 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2022
2023 /**
2024  * spi_set_thread_rt - set the controller to pump at realtime priority
2025  * @ctlr: controller to boost priority of
2026  *
2027  * This can be called because the controller requested realtime priority
2028  * (by setting the ->rt value before calling spi_register_controller()) or
2029  * because a device on the bus said that its transfers needed realtime
2030  * priority.
2031  *
2032  * NOTE: at the moment if any device on a bus says it needs realtime then
2033  * the thread will be at realtime priority for all transfers on that
2034  * controller.  If this eventually becomes a problem we may see if we can
2035  * find a way to boost the priority only temporarily during relevant
2036  * transfers.
2037  */
2038 static void spi_set_thread_rt(struct spi_controller *ctlr)
2039 {
2040         dev_info(&ctlr->dev,
2041                 "will run message pump with realtime priority\n");
2042         sched_set_fifo(ctlr->kworker->task);
2043 }
2044
2045 static int spi_init_queue(struct spi_controller *ctlr)
2046 {
2047         ctlr->running = false;
2048         ctlr->busy = false;
2049         ctlr->queue_empty = true;
2050
2051         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2052         if (IS_ERR(ctlr->kworker)) {
2053                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2054                 return PTR_ERR(ctlr->kworker);
2055         }
2056
2057         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2058
2059         /*
2060          * Controller config will indicate if this controller should run the
2061          * message pump with high (realtime) priority to reduce the transfer
2062          * latency on the bus by minimising the delay between a transfer
2063          * request and the scheduling of the message pump thread. Without this
2064          * setting the message pump thread will remain at default priority.
2065          */
2066         if (ctlr->rt)
2067                 spi_set_thread_rt(ctlr);
2068
2069         return 0;
2070 }
2071
2072 /**
2073  * spi_get_next_queued_message() - called by driver to check for queued
2074  * messages
2075  * @ctlr: the controller to check for queued messages
2076  *
2077  * If there are more messages in the queue, the next message is returned from
2078  * this call.
2079  *
2080  * Return: the next message in the queue, else NULL if the queue is empty.
2081  */
2082 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2083 {
2084         struct spi_message *next;
2085         unsigned long flags;
2086
2087         /* Get a pointer to the next message, if any */
2088         spin_lock_irqsave(&ctlr->queue_lock, flags);
2089         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2090                                         queue);
2091         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2092
2093         return next;
2094 }
2095 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2096
2097 /*
2098  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2099  *                            and spi_maybe_unoptimize_message()
2100  * @msg: the message to unoptimize
2101  *
2102  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2103  * core should use spi_maybe_unoptimize_message() rather than calling this
2104  * function directly.
2105  *
2106  * It is not valid to call this on a message that is not currently optimized.
2107  */
2108 static void __spi_unoptimize_message(struct spi_message *msg)
2109 {
2110         struct spi_controller *ctlr = msg->spi->controller;
2111
2112         if (ctlr->unoptimize_message)
2113                 ctlr->unoptimize_message(msg);
2114
2115         spi_res_release(ctlr, msg);
2116
2117         msg->optimized = false;
2118         msg->opt_state = NULL;
2119 }
2120
2121 /*
2122  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2123  * @msg: the message to unoptimize
2124  *
2125  * This function is used to unoptimize a message if and only if it was
2126  * optimized by the core (via spi_maybe_optimize_message()).
2127  */
2128 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2129 {
2130         if (!msg->pre_optimized && msg->optimized)
2131                 __spi_unoptimize_message(msg);
2132 }
2133
2134 /**
2135  * spi_finalize_current_message() - the current message is complete
2136  * @ctlr: the controller to return the message to
2137  *
2138  * Called by the driver to notify the core that the message in the front of the
2139  * queue is complete and can be removed from the queue.
2140  */
2141 void spi_finalize_current_message(struct spi_controller *ctlr)
2142 {
2143         struct spi_transfer *xfer;
2144         struct spi_message *mesg;
2145         int ret;
2146
2147         mesg = ctlr->cur_msg;
2148
2149         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2150                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2151                         ptp_read_system_postts(xfer->ptp_sts);
2152                         xfer->ptp_sts_word_post = xfer->len;
2153                 }
2154         }
2155
2156         if (unlikely(ctlr->ptp_sts_supported))
2157                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2158                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2159
2160         spi_unmap_msg(ctlr, mesg);
2161
2162         if (mesg->prepared && ctlr->unprepare_message) {
2163                 ret = ctlr->unprepare_message(ctlr, mesg);
2164                 if (ret) {
2165                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2166                                 ret);
2167                 }
2168         }
2169
2170         mesg->prepared = false;
2171
2172         spi_maybe_unoptimize_message(mesg);
2173
2174         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2175         smp_mb(); /* See __spi_pump_transfer_message()... */
2176         if (READ_ONCE(ctlr->cur_msg_need_completion))
2177                 complete(&ctlr->cur_msg_completion);
2178
2179         trace_spi_message_done(mesg);
2180
2181         mesg->state = NULL;
2182         if (mesg->complete)
2183                 mesg->complete(mesg->context);
2184 }
2185 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2186
2187 static int spi_start_queue(struct spi_controller *ctlr)
2188 {
2189         unsigned long flags;
2190
2191         spin_lock_irqsave(&ctlr->queue_lock, flags);
2192
2193         if (ctlr->running || ctlr->busy) {
2194                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2195                 return -EBUSY;
2196         }
2197
2198         ctlr->running = true;
2199         ctlr->cur_msg = NULL;
2200         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201
2202         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2203
2204         return 0;
2205 }
2206
2207 static int spi_stop_queue(struct spi_controller *ctlr)
2208 {
2209         unsigned long flags;
2210         unsigned limit = 500;
2211         int ret = 0;
2212
2213         spin_lock_irqsave(&ctlr->queue_lock, flags);
2214
2215         /*
2216          * This is a bit lame, but is optimized for the common execution path.
2217          * A wait_queue on the ctlr->busy could be used, but then the common
2218          * execution path (pump_messages) would be required to call wake_up or
2219          * friends on every SPI message. Do this instead.
2220          */
2221         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2222                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2223                 usleep_range(10000, 11000);
2224                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2225         }
2226
2227         if (!list_empty(&ctlr->queue) || ctlr->busy)
2228                 ret = -EBUSY;
2229         else
2230                 ctlr->running = false;
2231
2232         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2233
2234         return ret;
2235 }
2236
2237 static int spi_destroy_queue(struct spi_controller *ctlr)
2238 {
2239         int ret;
2240
2241         ret = spi_stop_queue(ctlr);
2242
2243         /*
2244          * kthread_flush_worker will block until all work is done.
2245          * If the reason that stop_queue timed out is that the work will never
2246          * finish, then it does no good to call flush/stop thread, so
2247          * return anyway.
2248          */
2249         if (ret) {
2250                 dev_err(&ctlr->dev, "problem destroying queue\n");
2251                 return ret;
2252         }
2253
2254         kthread_destroy_worker(ctlr->kworker);
2255
2256         return 0;
2257 }
2258
2259 static int __spi_queued_transfer(struct spi_device *spi,
2260                                  struct spi_message *msg,
2261                                  bool need_pump)
2262 {
2263         struct spi_controller *ctlr = spi->controller;
2264         unsigned long flags;
2265
2266         spin_lock_irqsave(&ctlr->queue_lock, flags);
2267
2268         if (!ctlr->running) {
2269                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2270                 return -ESHUTDOWN;
2271         }
2272         msg->actual_length = 0;
2273         msg->status = -EINPROGRESS;
2274
2275         list_add_tail(&msg->queue, &ctlr->queue);
2276         ctlr->queue_empty = false;
2277         if (!ctlr->busy && need_pump)
2278                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2279
2280         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2281         return 0;
2282 }
2283
2284 /**
2285  * spi_queued_transfer - transfer function for queued transfers
2286  * @spi: SPI device which is requesting transfer
2287  * @msg: SPI message which is to handled is queued to driver queue
2288  *
2289  * Return: zero on success, else a negative error code.
2290  */
2291 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2292 {
2293         return __spi_queued_transfer(spi, msg, true);
2294 }
2295
2296 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2297 {
2298         int ret;
2299
2300         ctlr->transfer = spi_queued_transfer;
2301         if (!ctlr->transfer_one_message)
2302                 ctlr->transfer_one_message = spi_transfer_one_message;
2303
2304         /* Initialize and start queue */
2305         ret = spi_init_queue(ctlr);
2306         if (ret) {
2307                 dev_err(&ctlr->dev, "problem initializing queue\n");
2308                 goto err_init_queue;
2309         }
2310         ctlr->queued = true;
2311         ret = spi_start_queue(ctlr);
2312         if (ret) {
2313                 dev_err(&ctlr->dev, "problem starting queue\n");
2314                 goto err_start_queue;
2315         }
2316
2317         return 0;
2318
2319 err_start_queue:
2320         spi_destroy_queue(ctlr);
2321 err_init_queue:
2322         return ret;
2323 }
2324
2325 /**
2326  * spi_flush_queue - Send all pending messages in the queue from the callers'
2327  *                   context
2328  * @ctlr: controller to process queue for
2329  *
2330  * This should be used when one wants to ensure all pending messages have been
2331  * sent before doing something. Is used by the spi-mem code to make sure SPI
2332  * memory operations do not preempt regular SPI transfers that have been queued
2333  * before the spi-mem operation.
2334  */
2335 void spi_flush_queue(struct spi_controller *ctlr)
2336 {
2337         if (ctlr->transfer == spi_queued_transfer)
2338                 __spi_pump_messages(ctlr, false);
2339 }
2340
2341 /*-------------------------------------------------------------------------*/
2342
2343 #if defined(CONFIG_OF)
2344 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2345                                      struct spi_delay *delay, const char *prop)
2346 {
2347         u32 value;
2348
2349         if (!of_property_read_u32(nc, prop, &value)) {
2350                 if (value > U16_MAX) {
2351                         delay->value = DIV_ROUND_UP(value, 1000);
2352                         delay->unit = SPI_DELAY_UNIT_USECS;
2353                 } else {
2354                         delay->value = value;
2355                         delay->unit = SPI_DELAY_UNIT_NSECS;
2356                 }
2357         }
2358 }
2359
2360 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2361                            struct device_node *nc)
2362 {
2363         u32 value, cs[SPI_CS_CNT_MAX];
2364         int rc, idx;
2365
2366         /* Mode (clock phase/polarity/etc.) */
2367         if (of_property_read_bool(nc, "spi-cpha"))
2368                 spi->mode |= SPI_CPHA;
2369         if (of_property_read_bool(nc, "spi-cpol"))
2370                 spi->mode |= SPI_CPOL;
2371         if (of_property_read_bool(nc, "spi-3wire"))
2372                 spi->mode |= SPI_3WIRE;
2373         if (of_property_read_bool(nc, "spi-lsb-first"))
2374                 spi->mode |= SPI_LSB_FIRST;
2375         if (of_property_read_bool(nc, "spi-cs-high"))
2376                 spi->mode |= SPI_CS_HIGH;
2377
2378         /* Device DUAL/QUAD mode */
2379         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2380                 switch (value) {
2381                 case 0:
2382                         spi->mode |= SPI_NO_TX;
2383                         break;
2384                 case 1:
2385                         break;
2386                 case 2:
2387                         spi->mode |= SPI_TX_DUAL;
2388                         break;
2389                 case 4:
2390                         spi->mode |= SPI_TX_QUAD;
2391                         break;
2392                 case 8:
2393                         spi->mode |= SPI_TX_OCTAL;
2394                         break;
2395                 default:
2396                         dev_warn(&ctlr->dev,
2397                                 "spi-tx-bus-width %d not supported\n",
2398                                 value);
2399                         break;
2400                 }
2401         }
2402
2403         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2404                 switch (value) {
2405                 case 0:
2406                         spi->mode |= SPI_NO_RX;
2407                         break;
2408                 case 1:
2409                         break;
2410                 case 2:
2411                         spi->mode |= SPI_RX_DUAL;
2412                         break;
2413                 case 4:
2414                         spi->mode |= SPI_RX_QUAD;
2415                         break;
2416                 case 8:
2417                         spi->mode |= SPI_RX_OCTAL;
2418                         break;
2419                 default:
2420                         dev_warn(&ctlr->dev,
2421                                 "spi-rx-bus-width %d not supported\n",
2422                                 value);
2423                         break;
2424                 }
2425         }
2426
2427         if (spi_controller_is_slave(ctlr)) {
2428                 if (!of_node_name_eq(nc, "slave")) {
2429                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2430                                 nc);
2431                         return -EINVAL;
2432                 }
2433                 return 0;
2434         }
2435
2436         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2437                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2438                 return -EINVAL;
2439         }
2440
2441         spi_set_all_cs_unused(spi);
2442
2443         /* Device address */
2444         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2445                                                  SPI_CS_CNT_MAX);
2446         if (rc < 0) {
2447                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2448                         nc, rc);
2449                 return rc;
2450         }
2451         if (rc > ctlr->num_chipselect) {
2452                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2453                         nc, rc);
2454                 return rc;
2455         }
2456         if ((of_property_read_bool(nc, "parallel-memories")) &&
2457             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2458                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2459                 return -EINVAL;
2460         }
2461         for (idx = 0; idx < rc; idx++)
2462                 spi_set_chipselect(spi, idx, cs[idx]);
2463
2464         /*
2465          * By default spi->chip_select[0] will hold the physical CS number,
2466          * so set bit 0 in spi->cs_index_mask.
2467          */
2468         spi->cs_index_mask = BIT(0);
2469
2470         /* Device speed */
2471         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2472                 spi->max_speed_hz = value;
2473
2474         /* Device CS delays */
2475         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2476         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2477         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2478
2479         return 0;
2480 }
2481
2482 static struct spi_device *
2483 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2484 {
2485         struct spi_device *spi;
2486         int rc;
2487
2488         /* Alloc an spi_device */
2489         spi = spi_alloc_device(ctlr);
2490         if (!spi) {
2491                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2492                 rc = -ENOMEM;
2493                 goto err_out;
2494         }
2495
2496         /* Select device driver */
2497         rc = of_alias_from_compatible(nc, spi->modalias,
2498                                       sizeof(spi->modalias));
2499         if (rc < 0) {
2500                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2501                 goto err_out;
2502         }
2503
2504         rc = of_spi_parse_dt(ctlr, spi, nc);
2505         if (rc)
2506                 goto err_out;
2507
2508         /* Store a pointer to the node in the device structure */
2509         of_node_get(nc);
2510
2511         device_set_node(&spi->dev, of_fwnode_handle(nc));
2512
2513         /* Register the new device */
2514         rc = spi_add_device(spi);
2515         if (rc) {
2516                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2517                 goto err_of_node_put;
2518         }
2519
2520         return spi;
2521
2522 err_of_node_put:
2523         of_node_put(nc);
2524 err_out:
2525         spi_dev_put(spi);
2526         return ERR_PTR(rc);
2527 }
2528
2529 /**
2530  * of_register_spi_devices() - Register child devices onto the SPI bus
2531  * @ctlr:       Pointer to spi_controller device
2532  *
2533  * Registers an spi_device for each child node of controller node which
2534  * represents a valid SPI slave.
2535  */
2536 static void of_register_spi_devices(struct spi_controller *ctlr)
2537 {
2538         struct spi_device *spi;
2539         struct device_node *nc;
2540
2541         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2542                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2543                         continue;
2544                 spi = of_register_spi_device(ctlr, nc);
2545                 if (IS_ERR(spi)) {
2546                         dev_warn(&ctlr->dev,
2547                                  "Failed to create SPI device for %pOF\n", nc);
2548                         of_node_clear_flag(nc, OF_POPULATED);
2549                 }
2550         }
2551 }
2552 #else
2553 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2554 #endif
2555
2556 /**
2557  * spi_new_ancillary_device() - Register ancillary SPI device
2558  * @spi:         Pointer to the main SPI device registering the ancillary device
2559  * @chip_select: Chip Select of the ancillary device
2560  *
2561  * Register an ancillary SPI device; for example some chips have a chip-select
2562  * for normal device usage and another one for setup/firmware upload.
2563  *
2564  * This may only be called from main SPI device's probe routine.
2565  *
2566  * Return: 0 on success; negative errno on failure
2567  */
2568 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2569                                              u8 chip_select)
2570 {
2571         struct spi_controller *ctlr = spi->controller;
2572         struct spi_device *ancillary;
2573         int rc = 0;
2574
2575         /* Alloc an spi_device */
2576         ancillary = spi_alloc_device(ctlr);
2577         if (!ancillary) {
2578                 rc = -ENOMEM;
2579                 goto err_out;
2580         }
2581
2582         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2583
2584         /* Use provided chip-select for ancillary device */
2585         spi_set_all_cs_unused(ancillary);
2586         spi_set_chipselect(ancillary, 0, chip_select);
2587
2588         /* Take over SPI mode/speed from SPI main device */
2589         ancillary->max_speed_hz = spi->max_speed_hz;
2590         ancillary->mode = spi->mode;
2591         /*
2592          * By default spi->chip_select[0] will hold the physical CS number,
2593          * so set bit 0 in spi->cs_index_mask.
2594          */
2595         ancillary->cs_index_mask = BIT(0);
2596
2597         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2598
2599         /* Register the new device */
2600         rc = __spi_add_device(ancillary);
2601         if (rc) {
2602                 dev_err(&spi->dev, "failed to register ancillary device\n");
2603                 goto err_out;
2604         }
2605
2606         return ancillary;
2607
2608 err_out:
2609         spi_dev_put(ancillary);
2610         return ERR_PTR(rc);
2611 }
2612 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2613
2614 #ifdef CONFIG_ACPI
2615 struct acpi_spi_lookup {
2616         struct spi_controller   *ctlr;
2617         u32                     max_speed_hz;
2618         u32                     mode;
2619         int                     irq;
2620         u8                      bits_per_word;
2621         u8                      chip_select;
2622         int                     n;
2623         int                     index;
2624 };
2625
2626 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2627 {
2628         struct acpi_resource_spi_serialbus *sb;
2629         int *count = data;
2630
2631         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2632                 return 1;
2633
2634         sb = &ares->data.spi_serial_bus;
2635         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2636                 return 1;
2637
2638         *count = *count + 1;
2639
2640         return 1;
2641 }
2642
2643 /**
2644  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2645  * @adev:       ACPI device
2646  *
2647  * Return: the number of SpiSerialBus resources in the ACPI-device's
2648  * resource-list; or a negative error code.
2649  */
2650 int acpi_spi_count_resources(struct acpi_device *adev)
2651 {
2652         LIST_HEAD(r);
2653         int count = 0;
2654         int ret;
2655
2656         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2657         if (ret < 0)
2658                 return ret;
2659
2660         acpi_dev_free_resource_list(&r);
2661
2662         return count;
2663 }
2664 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2665
2666 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2667                                             struct acpi_spi_lookup *lookup)
2668 {
2669         const union acpi_object *obj;
2670
2671         if (!x86_apple_machine)
2672                 return;
2673
2674         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2675             && obj->buffer.length >= 4)
2676                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2677
2678         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2679             && obj->buffer.length == 8)
2680                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2681
2682         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2683             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2684                 lookup->mode |= SPI_LSB_FIRST;
2685
2686         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2687             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2688                 lookup->mode |= SPI_CPOL;
2689
2690         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2691             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2692                 lookup->mode |= SPI_CPHA;
2693 }
2694
2695 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2696 {
2697         struct acpi_spi_lookup *lookup = data;
2698         struct spi_controller *ctlr = lookup->ctlr;
2699
2700         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2701                 struct acpi_resource_spi_serialbus *sb;
2702                 acpi_handle parent_handle;
2703                 acpi_status status;
2704
2705                 sb = &ares->data.spi_serial_bus;
2706                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2707
2708                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2709                                 return 1;
2710
2711                         status = acpi_get_handle(NULL,
2712                                                  sb->resource_source.string_ptr,
2713                                                  &parent_handle);
2714
2715                         if (ACPI_FAILURE(status))
2716                                 return -ENODEV;
2717
2718                         if (ctlr) {
2719                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2720                                         return -ENODEV;
2721                         } else {
2722                                 struct acpi_device *adev;
2723
2724                                 adev = acpi_fetch_acpi_dev(parent_handle);
2725                                 if (!adev)
2726                                         return -ENODEV;
2727
2728                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2729                                 if (!ctlr)
2730                                         return -EPROBE_DEFER;
2731
2732                                 lookup->ctlr = ctlr;
2733                         }
2734
2735                         /*
2736                          * ACPI DeviceSelection numbering is handled by the
2737                          * host controller driver in Windows and can vary
2738                          * from driver to driver. In Linux we always expect
2739                          * 0 .. max - 1 so we need to ask the driver to
2740                          * translate between the two schemes.
2741                          */
2742                         if (ctlr->fw_translate_cs) {
2743                                 int cs = ctlr->fw_translate_cs(ctlr,
2744                                                 sb->device_selection);
2745                                 if (cs < 0)
2746                                         return cs;
2747                                 lookup->chip_select = cs;
2748                         } else {
2749                                 lookup->chip_select = sb->device_selection;
2750                         }
2751
2752                         lookup->max_speed_hz = sb->connection_speed;
2753                         lookup->bits_per_word = sb->data_bit_length;
2754
2755                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2756                                 lookup->mode |= SPI_CPHA;
2757                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2758                                 lookup->mode |= SPI_CPOL;
2759                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2760                                 lookup->mode |= SPI_CS_HIGH;
2761                 }
2762         } else if (lookup->irq < 0) {
2763                 struct resource r;
2764
2765                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2766                         lookup->irq = r.start;
2767         }
2768
2769         /* Always tell the ACPI core to skip this resource */
2770         return 1;
2771 }
2772
2773 /**
2774  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2775  * @ctlr: controller to which the spi device belongs
2776  * @adev: ACPI Device for the spi device
2777  * @index: Index of the spi resource inside the ACPI Node
2778  *
2779  * This should be used to allocate a new SPI device from and ACPI Device node.
2780  * The caller is responsible for calling spi_add_device to register the SPI device.
2781  *
2782  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2783  * using the resource.
2784  * If index is set to -1, index is not used.
2785  * Note: If index is -1, ctlr must be set.
2786  *
2787  * Return: a pointer to the new device, or ERR_PTR on error.
2788  */
2789 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2790                                          struct acpi_device *adev,
2791                                          int index)
2792 {
2793         acpi_handle parent_handle = NULL;
2794         struct list_head resource_list;
2795         struct acpi_spi_lookup lookup = {};
2796         struct spi_device *spi;
2797         int ret;
2798
2799         if (!ctlr && index == -1)
2800                 return ERR_PTR(-EINVAL);
2801
2802         lookup.ctlr             = ctlr;
2803         lookup.irq              = -1;
2804         lookup.index            = index;
2805         lookup.n                = 0;
2806
2807         INIT_LIST_HEAD(&resource_list);
2808         ret = acpi_dev_get_resources(adev, &resource_list,
2809                                      acpi_spi_add_resource, &lookup);
2810         acpi_dev_free_resource_list(&resource_list);
2811
2812         if (ret < 0)
2813                 /* Found SPI in _CRS but it points to another controller */
2814                 return ERR_PTR(ret);
2815
2816         if (!lookup.max_speed_hz &&
2817             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2818             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2819                 /* Apple does not use _CRS but nested devices for SPI slaves */
2820                 acpi_spi_parse_apple_properties(adev, &lookup);
2821         }
2822
2823         if (!lookup.max_speed_hz)
2824                 return ERR_PTR(-ENODEV);
2825
2826         spi = spi_alloc_device(lookup.ctlr);
2827         if (!spi) {
2828                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2829                         dev_name(&adev->dev));
2830                 return ERR_PTR(-ENOMEM);
2831         }
2832
2833         spi_set_all_cs_unused(spi);
2834         spi_set_chipselect(spi, 0, lookup.chip_select);
2835
2836         ACPI_COMPANION_SET(&spi->dev, adev);
2837         spi->max_speed_hz       = lookup.max_speed_hz;
2838         spi->mode               |= lookup.mode;
2839         spi->irq                = lookup.irq;
2840         spi->bits_per_word      = lookup.bits_per_word;
2841         /*
2842          * By default spi->chip_select[0] will hold the physical CS number,
2843          * so set bit 0 in spi->cs_index_mask.
2844          */
2845         spi->cs_index_mask      = BIT(0);
2846
2847         return spi;
2848 }
2849 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2850
2851 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2852                                             struct acpi_device *adev)
2853 {
2854         struct spi_device *spi;
2855
2856         if (acpi_bus_get_status(adev) || !adev->status.present ||
2857             acpi_device_enumerated(adev))
2858                 return AE_OK;
2859
2860         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2861         if (IS_ERR(spi)) {
2862                 if (PTR_ERR(spi) == -ENOMEM)
2863                         return AE_NO_MEMORY;
2864                 else
2865                         return AE_OK;
2866         }
2867
2868         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2869                           sizeof(spi->modalias));
2870
2871         if (spi->irq < 0)
2872                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2873
2874         acpi_device_set_enumerated(adev);
2875
2876         adev->power.flags.ignore_parent = true;
2877         if (spi_add_device(spi)) {
2878                 adev->power.flags.ignore_parent = false;
2879                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2880                         dev_name(&adev->dev));
2881                 spi_dev_put(spi);
2882         }
2883
2884         return AE_OK;
2885 }
2886
2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2888                                        void *data, void **return_value)
2889 {
2890         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2891         struct spi_controller *ctlr = data;
2892
2893         if (!adev)
2894                 return AE_OK;
2895
2896         return acpi_register_spi_device(ctlr, adev);
2897 }
2898
2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2900
2901 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2902 {
2903         acpi_status status;
2904         acpi_handle handle;
2905
2906         handle = ACPI_HANDLE(ctlr->dev.parent);
2907         if (!handle)
2908                 return;
2909
2910         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2911                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2912                                      acpi_spi_add_device, NULL, ctlr, NULL);
2913         if (ACPI_FAILURE(status))
2914                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2915 }
2916 #else
2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2918 #endif /* CONFIG_ACPI */
2919
2920 static void spi_controller_release(struct device *dev)
2921 {
2922         struct spi_controller *ctlr;
2923
2924         ctlr = container_of(dev, struct spi_controller, dev);
2925         kfree(ctlr);
2926 }
2927
2928 static struct class spi_master_class = {
2929         .name           = "spi_master",
2930         .dev_release    = spi_controller_release,
2931         .dev_groups     = spi_master_groups,
2932 };
2933
2934 #ifdef CONFIG_SPI_SLAVE
2935 /**
2936  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2937  *                   controller
2938  * @spi: device used for the current transfer
2939  */
2940 int spi_slave_abort(struct spi_device *spi)
2941 {
2942         struct spi_controller *ctlr = spi->controller;
2943
2944         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2945                 return ctlr->slave_abort(ctlr);
2946
2947         return -ENOTSUPP;
2948 }
2949 EXPORT_SYMBOL_GPL(spi_slave_abort);
2950
2951 int spi_target_abort(struct spi_device *spi)
2952 {
2953         struct spi_controller *ctlr = spi->controller;
2954
2955         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2956                 return ctlr->target_abort(ctlr);
2957
2958         return -ENOTSUPP;
2959 }
2960 EXPORT_SYMBOL_GPL(spi_target_abort);
2961
2962 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2963                           char *buf)
2964 {
2965         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2966                                                    dev);
2967         struct device *child;
2968
2969         child = device_find_any_child(&ctlr->dev);
2970         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2971 }
2972
2973 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2974                            const char *buf, size_t count)
2975 {
2976         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2977                                                    dev);
2978         struct spi_device *spi;
2979         struct device *child;
2980         char name[32];
2981         int rc;
2982
2983         rc = sscanf(buf, "%31s", name);
2984         if (rc != 1 || !name[0])
2985                 return -EINVAL;
2986
2987         child = device_find_any_child(&ctlr->dev);
2988         if (child) {
2989                 /* Remove registered slave */
2990                 device_unregister(child);
2991                 put_device(child);
2992         }
2993
2994         if (strcmp(name, "(null)")) {
2995                 /* Register new slave */
2996                 spi = spi_alloc_device(ctlr);
2997                 if (!spi)
2998                         return -ENOMEM;
2999
3000                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3001
3002                 rc = spi_add_device(spi);
3003                 if (rc) {
3004                         spi_dev_put(spi);
3005                         return rc;
3006                 }
3007         }
3008
3009         return count;
3010 }
3011
3012 static DEVICE_ATTR_RW(slave);
3013
3014 static struct attribute *spi_slave_attrs[] = {
3015         &dev_attr_slave.attr,
3016         NULL,
3017 };
3018
3019 static const struct attribute_group spi_slave_group = {
3020         .attrs = spi_slave_attrs,
3021 };
3022
3023 static const struct attribute_group *spi_slave_groups[] = {
3024         &spi_controller_statistics_group,
3025         &spi_slave_group,
3026         NULL,
3027 };
3028
3029 static struct class spi_slave_class = {
3030         .name           = "spi_slave",
3031         .dev_release    = spi_controller_release,
3032         .dev_groups     = spi_slave_groups,
3033 };
3034 #else
3035 extern struct class spi_slave_class;    /* dummy */
3036 #endif
3037
3038 /**
3039  * __spi_alloc_controller - allocate an SPI master or slave controller
3040  * @dev: the controller, possibly using the platform_bus
3041  * @size: how much zeroed driver-private data to allocate; the pointer to this
3042  *      memory is in the driver_data field of the returned device, accessible
3043  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3044  *      drivers granting DMA access to portions of their private data need to
3045  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3046  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3047  *      slave (true) controller
3048  * Context: can sleep
3049  *
3050  * This call is used only by SPI controller drivers, which are the
3051  * only ones directly touching chip registers.  It's how they allocate
3052  * an spi_controller structure, prior to calling spi_register_controller().
3053  *
3054  * This must be called from context that can sleep.
3055  *
3056  * The caller is responsible for assigning the bus number and initializing the
3057  * controller's methods before calling spi_register_controller(); and (after
3058  * errors adding the device) calling spi_controller_put() to prevent a memory
3059  * leak.
3060  *
3061  * Return: the SPI controller structure on success, else NULL.
3062  */
3063 struct spi_controller *__spi_alloc_controller(struct device *dev,
3064                                               unsigned int size, bool slave)
3065 {
3066         struct spi_controller   *ctlr;
3067         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3068
3069         if (!dev)
3070                 return NULL;
3071
3072         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3073         if (!ctlr)
3074                 return NULL;
3075
3076         device_initialize(&ctlr->dev);
3077         INIT_LIST_HEAD(&ctlr->queue);
3078         spin_lock_init(&ctlr->queue_lock);
3079         spin_lock_init(&ctlr->bus_lock_spinlock);
3080         mutex_init(&ctlr->bus_lock_mutex);
3081         mutex_init(&ctlr->io_mutex);
3082         mutex_init(&ctlr->add_lock);
3083         ctlr->bus_num = -1;
3084         ctlr->num_chipselect = 1;
3085         ctlr->slave = slave;
3086         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3087                 ctlr->dev.class = &spi_slave_class;
3088         else
3089                 ctlr->dev.class = &spi_master_class;
3090         ctlr->dev.parent = dev;
3091         pm_suspend_ignore_children(&ctlr->dev, true);
3092         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3093
3094         return ctlr;
3095 }
3096 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3097
3098 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3099 {
3100         spi_controller_put(*(struct spi_controller **)ctlr);
3101 }
3102
3103 /**
3104  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3105  * @dev: physical device of SPI controller
3106  * @size: how much zeroed driver-private data to allocate
3107  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3108  * Context: can sleep
3109  *
3110  * Allocate an SPI controller and automatically release a reference on it
3111  * when @dev is unbound from its driver.  Drivers are thus relieved from
3112  * having to call spi_controller_put().
3113  *
3114  * The arguments to this function are identical to __spi_alloc_controller().
3115  *
3116  * Return: the SPI controller structure on success, else NULL.
3117  */
3118 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3119                                                    unsigned int size,
3120                                                    bool slave)
3121 {
3122         struct spi_controller **ptr, *ctlr;
3123
3124         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3125                            GFP_KERNEL);
3126         if (!ptr)
3127                 return NULL;
3128
3129         ctlr = __spi_alloc_controller(dev, size, slave);
3130         if (ctlr) {
3131                 ctlr->devm_allocated = true;
3132                 *ptr = ctlr;
3133                 devres_add(dev, ptr);
3134         } else {
3135                 devres_free(ptr);
3136         }
3137
3138         return ctlr;
3139 }
3140 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3141
3142 /**
3143  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3144  * @ctlr: The SPI master to grab GPIO descriptors for
3145  */
3146 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3147 {
3148         int nb, i;
3149         struct gpio_desc **cs;
3150         struct device *dev = &ctlr->dev;
3151         unsigned long native_cs_mask = 0;
3152         unsigned int num_cs_gpios = 0;
3153
3154         nb = gpiod_count(dev, "cs");
3155         if (nb < 0) {
3156                 /* No GPIOs at all is fine, else return the error */
3157                 if (nb == -ENOENT)
3158                         return 0;
3159                 return nb;
3160         }
3161
3162         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3163
3164         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3165                           GFP_KERNEL);
3166         if (!cs)
3167                 return -ENOMEM;
3168         ctlr->cs_gpiods = cs;
3169
3170         for (i = 0; i < nb; i++) {
3171                 /*
3172                  * Most chipselects are active low, the inverted
3173                  * semantics are handled by special quirks in gpiolib,
3174                  * so initializing them GPIOD_OUT_LOW here means
3175                  * "unasserted", in most cases this will drive the physical
3176                  * line high.
3177                  */
3178                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3179                                                       GPIOD_OUT_LOW);
3180                 if (IS_ERR(cs[i]))
3181                         return PTR_ERR(cs[i]);
3182
3183                 if (cs[i]) {
3184                         /*
3185                          * If we find a CS GPIO, name it after the device and
3186                          * chip select line.
3187                          */
3188                         char *gpioname;
3189
3190                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3191                                                   dev_name(dev), i);
3192                         if (!gpioname)
3193                                 return -ENOMEM;
3194                         gpiod_set_consumer_name(cs[i], gpioname);
3195                         num_cs_gpios++;
3196                         continue;
3197                 }
3198
3199                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3200                         dev_err(dev, "Invalid native chip select %d\n", i);
3201                         return -EINVAL;
3202                 }
3203                 native_cs_mask |= BIT(i);
3204         }
3205
3206         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3207
3208         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3209             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3210                 dev_err(dev, "No unused native chip select available\n");
3211                 return -EINVAL;
3212         }
3213
3214         return 0;
3215 }
3216
3217 static int spi_controller_check_ops(struct spi_controller *ctlr)
3218 {
3219         /*
3220          * The controller may implement only the high-level SPI-memory like
3221          * operations if it does not support regular SPI transfers, and this is
3222          * valid use case.
3223          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3224          * one of the ->transfer_xxx() method be implemented.
3225          */
3226         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3227                 if (!ctlr->transfer && !ctlr->transfer_one &&
3228                    !ctlr->transfer_one_message) {
3229                         return -EINVAL;
3230                 }
3231         }
3232
3233         return 0;
3234 }
3235
3236 /* Allocate dynamic bus number using Linux idr */
3237 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3238 {
3239         int id;
3240
3241         mutex_lock(&board_lock);
3242         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3243         mutex_unlock(&board_lock);
3244         if (WARN(id < 0, "couldn't get idr"))
3245                 return id == -ENOSPC ? -EBUSY : id;
3246         ctlr->bus_num = id;
3247         return 0;
3248 }
3249
3250 /**
3251  * spi_register_controller - register SPI master or slave controller
3252  * @ctlr: initialized master, originally from spi_alloc_master() or
3253  *      spi_alloc_slave()
3254  * Context: can sleep
3255  *
3256  * SPI controllers connect to their drivers using some non-SPI bus,
3257  * such as the platform bus.  The final stage of probe() in that code
3258  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3259  *
3260  * SPI controllers use board specific (often SOC specific) bus numbers,
3261  * and board-specific addressing for SPI devices combines those numbers
3262  * with chip select numbers.  Since SPI does not directly support dynamic
3263  * device identification, boards need configuration tables telling which
3264  * chip is at which address.
3265  *
3266  * This must be called from context that can sleep.  It returns zero on
3267  * success, else a negative error code (dropping the controller's refcount).
3268  * After a successful return, the caller is responsible for calling
3269  * spi_unregister_controller().
3270  *
3271  * Return: zero on success, else a negative error code.
3272  */
3273 int spi_register_controller(struct spi_controller *ctlr)
3274 {
3275         struct device           *dev = ctlr->dev.parent;
3276         struct boardinfo        *bi;
3277         int                     first_dynamic;
3278         int                     status;
3279         int                     idx;
3280
3281         if (!dev)
3282                 return -ENODEV;
3283
3284         /*
3285          * Make sure all necessary hooks are implemented before registering
3286          * the SPI controller.
3287          */
3288         status = spi_controller_check_ops(ctlr);
3289         if (status)
3290                 return status;
3291
3292         if (ctlr->bus_num < 0)
3293                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3294         if (ctlr->bus_num >= 0) {
3295                 /* Devices with a fixed bus num must check-in with the num */
3296                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3297                 if (status)
3298                         return status;
3299         }
3300         if (ctlr->bus_num < 0) {
3301                 first_dynamic = of_alias_get_highest_id("spi");
3302                 if (first_dynamic < 0)
3303                         first_dynamic = 0;
3304                 else
3305                         first_dynamic++;
3306
3307                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3308                 if (status)
3309                         return status;
3310         }
3311         ctlr->bus_lock_flag = 0;
3312         init_completion(&ctlr->xfer_completion);
3313         init_completion(&ctlr->cur_msg_completion);
3314         if (!ctlr->max_dma_len)
3315                 ctlr->max_dma_len = INT_MAX;
3316
3317         /*
3318          * Register the device, then userspace will see it.
3319          * Registration fails if the bus ID is in use.
3320          */
3321         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3322
3323         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3324                 status = spi_get_gpio_descs(ctlr);
3325                 if (status)
3326                         goto free_bus_id;
3327                 /*
3328                  * A controller using GPIO descriptors always
3329                  * supports SPI_CS_HIGH if need be.
3330                  */
3331                 ctlr->mode_bits |= SPI_CS_HIGH;
3332         }
3333
3334         /*
3335          * Even if it's just one always-selected device, there must
3336          * be at least one chipselect.
3337          */
3338         if (!ctlr->num_chipselect) {
3339                 status = -EINVAL;
3340                 goto free_bus_id;
3341         }
3342
3343         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3344         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3345                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3346
3347         status = device_add(&ctlr->dev);
3348         if (status < 0)
3349                 goto free_bus_id;
3350         dev_dbg(dev, "registered %s %s\n",
3351                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3352                         dev_name(&ctlr->dev));
3353
3354         /*
3355          * If we're using a queued driver, start the queue. Note that we don't
3356          * need the queueing logic if the driver is only supporting high-level
3357          * memory operations.
3358          */
3359         if (ctlr->transfer) {
3360                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3361         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3362                 status = spi_controller_initialize_queue(ctlr);
3363                 if (status) {
3364                         device_del(&ctlr->dev);
3365                         goto free_bus_id;
3366                 }
3367         }
3368         /* Add statistics */
3369         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3370         if (!ctlr->pcpu_statistics) {
3371                 dev_err(dev, "Error allocating per-cpu statistics\n");
3372                 status = -ENOMEM;
3373                 goto destroy_queue;
3374         }
3375
3376         mutex_lock(&board_lock);
3377         list_add_tail(&ctlr->list, &spi_controller_list);
3378         list_for_each_entry(bi, &board_list, list)
3379                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3380         mutex_unlock(&board_lock);
3381
3382         /* Register devices from the device tree and ACPI */
3383         of_register_spi_devices(ctlr);
3384         acpi_register_spi_devices(ctlr);
3385         return status;
3386
3387 destroy_queue:
3388         spi_destroy_queue(ctlr);
3389 free_bus_id:
3390         mutex_lock(&board_lock);
3391         idr_remove(&spi_master_idr, ctlr->bus_num);
3392         mutex_unlock(&board_lock);
3393         return status;
3394 }
3395 EXPORT_SYMBOL_GPL(spi_register_controller);
3396
3397 static void devm_spi_unregister(struct device *dev, void *res)
3398 {
3399         spi_unregister_controller(*(struct spi_controller **)res);
3400 }
3401
3402 /**
3403  * devm_spi_register_controller - register managed SPI master or slave
3404  *      controller
3405  * @dev:    device managing SPI controller
3406  * @ctlr: initialized controller, originally from spi_alloc_master() or
3407  *      spi_alloc_slave()
3408  * Context: can sleep
3409  *
3410  * Register a SPI device as with spi_register_controller() which will
3411  * automatically be unregistered and freed.
3412  *
3413  * Return: zero on success, else a negative error code.
3414  */
3415 int devm_spi_register_controller(struct device *dev,
3416                                  struct spi_controller *ctlr)
3417 {
3418         struct spi_controller **ptr;
3419         int ret;
3420
3421         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3422         if (!ptr)
3423                 return -ENOMEM;
3424
3425         ret = spi_register_controller(ctlr);
3426         if (!ret) {
3427                 *ptr = ctlr;
3428                 devres_add(dev, ptr);
3429         } else {
3430                 devres_free(ptr);
3431         }
3432
3433         return ret;
3434 }
3435 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3436
3437 static int __unregister(struct device *dev, void *null)
3438 {
3439         spi_unregister_device(to_spi_device(dev));
3440         return 0;
3441 }
3442
3443 /**
3444  * spi_unregister_controller - unregister SPI master or slave controller
3445  * @ctlr: the controller being unregistered
3446  * Context: can sleep
3447  *
3448  * This call is used only by SPI controller drivers, which are the
3449  * only ones directly touching chip registers.
3450  *
3451  * This must be called from context that can sleep.
3452  *
3453  * Note that this function also drops a reference to the controller.
3454  */
3455 void spi_unregister_controller(struct spi_controller *ctlr)
3456 {
3457         struct spi_controller *found;
3458         int id = ctlr->bus_num;
3459
3460         /* Prevent addition of new devices, unregister existing ones */
3461         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3462                 mutex_lock(&ctlr->add_lock);
3463
3464         device_for_each_child(&ctlr->dev, NULL, __unregister);
3465
3466         /* First make sure that this controller was ever added */
3467         mutex_lock(&board_lock);
3468         found = idr_find(&spi_master_idr, id);
3469         mutex_unlock(&board_lock);
3470         if (ctlr->queued) {
3471                 if (spi_destroy_queue(ctlr))
3472                         dev_err(&ctlr->dev, "queue remove failed\n");
3473         }
3474         mutex_lock(&board_lock);
3475         list_del(&ctlr->list);
3476         mutex_unlock(&board_lock);
3477
3478         device_del(&ctlr->dev);
3479
3480         /* Free bus id */
3481         mutex_lock(&board_lock);
3482         if (found == ctlr)
3483                 idr_remove(&spi_master_idr, id);
3484         mutex_unlock(&board_lock);
3485
3486         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3487                 mutex_unlock(&ctlr->add_lock);
3488
3489         /*
3490          * Release the last reference on the controller if its driver
3491          * has not yet been converted to devm_spi_alloc_master/slave().
3492          */
3493         if (!ctlr->devm_allocated)
3494                 put_device(&ctlr->dev);
3495 }
3496 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3497
3498 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3499 {
3500         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3501 }
3502
3503 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3504 {
3505         mutex_lock(&ctlr->bus_lock_mutex);
3506         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3507         mutex_unlock(&ctlr->bus_lock_mutex);
3508 }
3509
3510 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3511 {
3512         mutex_lock(&ctlr->bus_lock_mutex);
3513         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3514         mutex_unlock(&ctlr->bus_lock_mutex);
3515 }
3516
3517 int spi_controller_suspend(struct spi_controller *ctlr)
3518 {
3519         int ret = 0;
3520
3521         /* Basically no-ops for non-queued controllers */
3522         if (ctlr->queued) {
3523                 ret = spi_stop_queue(ctlr);
3524                 if (ret)
3525                         dev_err(&ctlr->dev, "queue stop failed\n");
3526         }
3527
3528         __spi_mark_suspended(ctlr);
3529         return ret;
3530 }
3531 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3532
3533 int spi_controller_resume(struct spi_controller *ctlr)
3534 {
3535         int ret = 0;
3536
3537         __spi_mark_resumed(ctlr);
3538
3539         if (ctlr->queued) {
3540                 ret = spi_start_queue(ctlr);
3541                 if (ret)
3542                         dev_err(&ctlr->dev, "queue restart failed\n");
3543         }
3544         return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(spi_controller_resume);
3547
3548 /*-------------------------------------------------------------------------*/
3549
3550 /* Core methods for spi_message alterations */
3551
3552 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3553                                             struct spi_message *msg,
3554                                             void *res)
3555 {
3556         struct spi_replaced_transfers *rxfer = res;
3557         size_t i;
3558
3559         /* Call extra callback if requested */
3560         if (rxfer->release)
3561                 rxfer->release(ctlr, msg, res);
3562
3563         /* Insert replaced transfers back into the message */
3564         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3565
3566         /* Remove the formerly inserted entries */
3567         for (i = 0; i < rxfer->inserted; i++)
3568                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3569 }
3570
3571 /**
3572  * spi_replace_transfers - replace transfers with several transfers
3573  *                         and register change with spi_message.resources
3574  * @msg:           the spi_message we work upon
3575  * @xfer_first:    the first spi_transfer we want to replace
3576  * @remove:        number of transfers to remove
3577  * @insert:        the number of transfers we want to insert instead
3578  * @release:       extra release code necessary in some circumstances
3579  * @extradatasize: extra data to allocate (with alignment guarantees
3580  *                 of struct @spi_transfer)
3581  * @gfp:           gfp flags
3582  *
3583  * Returns: pointer to @spi_replaced_transfers,
3584  *          PTR_ERR(...) in case of errors.
3585  */
3586 static struct spi_replaced_transfers *spi_replace_transfers(
3587         struct spi_message *msg,
3588         struct spi_transfer *xfer_first,
3589         size_t remove,
3590         size_t insert,
3591         spi_replaced_release_t release,
3592         size_t extradatasize,
3593         gfp_t gfp)
3594 {
3595         struct spi_replaced_transfers *rxfer;
3596         struct spi_transfer *xfer;
3597         size_t i;
3598
3599         /* Allocate the structure using spi_res */
3600         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3601                               struct_size(rxfer, inserted_transfers, insert)
3602                               + extradatasize,
3603                               gfp);
3604         if (!rxfer)
3605                 return ERR_PTR(-ENOMEM);
3606
3607         /* The release code to invoke before running the generic release */
3608         rxfer->release = release;
3609
3610         /* Assign extradata */
3611         if (extradatasize)
3612                 rxfer->extradata =
3613                         &rxfer->inserted_transfers[insert];
3614
3615         /* Init the replaced_transfers list */
3616         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3617
3618         /*
3619          * Assign the list_entry after which we should reinsert
3620          * the @replaced_transfers - it may be spi_message.messages!
3621          */
3622         rxfer->replaced_after = xfer_first->transfer_list.prev;
3623
3624         /* Remove the requested number of transfers */
3625         for (i = 0; i < remove; i++) {
3626                 /*
3627                  * If the entry after replaced_after it is msg->transfers
3628                  * then we have been requested to remove more transfers
3629                  * than are in the list.
3630                  */
3631                 if (rxfer->replaced_after->next == &msg->transfers) {
3632                         dev_err(&msg->spi->dev,
3633                                 "requested to remove more spi_transfers than are available\n");
3634                         /* Insert replaced transfers back into the message */
3635                         list_splice(&rxfer->replaced_transfers,
3636                                     rxfer->replaced_after);
3637
3638                         /* Free the spi_replace_transfer structure... */
3639                         spi_res_free(rxfer);
3640
3641                         /* ...and return with an error */
3642                         return ERR_PTR(-EINVAL);
3643                 }
3644
3645                 /*
3646                  * Remove the entry after replaced_after from list of
3647                  * transfers and add it to list of replaced_transfers.
3648                  */
3649                 list_move_tail(rxfer->replaced_after->next,
3650                                &rxfer->replaced_transfers);
3651         }
3652
3653         /*
3654          * Create copy of the given xfer with identical settings
3655          * based on the first transfer to get removed.
3656          */
3657         for (i = 0; i < insert; i++) {
3658                 /* We need to run in reverse order */
3659                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3660
3661                 /* Copy all spi_transfer data */
3662                 memcpy(xfer, xfer_first, sizeof(*xfer));
3663
3664                 /* Add to list */
3665                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3666
3667                 /* Clear cs_change and delay for all but the last */
3668                 if (i) {
3669                         xfer->cs_change = false;
3670                         xfer->delay.value = 0;
3671                 }
3672         }
3673
3674         /* Set up inserted... */
3675         rxfer->inserted = insert;
3676
3677         /* ...and register it with spi_res/spi_message */
3678         spi_res_add(msg, rxfer);
3679
3680         return rxfer;
3681 }
3682
3683 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3684                                         struct spi_message *msg,
3685                                         struct spi_transfer **xferp,
3686                                         size_t maxsize)
3687 {
3688         struct spi_transfer *xfer = *xferp, *xfers;
3689         struct spi_replaced_transfers *srt;
3690         size_t offset;
3691         size_t count, i;
3692
3693         /* Calculate how many we have to replace */
3694         count = DIV_ROUND_UP(xfer->len, maxsize);
3695
3696         /* Create replacement */
3697         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3698         if (IS_ERR(srt))
3699                 return PTR_ERR(srt);
3700         xfers = srt->inserted_transfers;
3701
3702         /*
3703          * Now handle each of those newly inserted spi_transfers.
3704          * Note that the replacements spi_transfers all are preset
3705          * to the same values as *xferp, so tx_buf, rx_buf and len
3706          * are all identical (as well as most others)
3707          * so we just have to fix up len and the pointers.
3708          *
3709          * This also includes support for the depreciated
3710          * spi_message.is_dma_mapped interface.
3711          */
3712
3713         /*
3714          * The first transfer just needs the length modified, so we
3715          * run it outside the loop.
3716          */
3717         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3718
3719         /* All the others need rx_buf/tx_buf also set */
3720         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3721                 /* Update rx_buf, tx_buf and DMA */
3722                 if (xfers[i].rx_buf)
3723                         xfers[i].rx_buf += offset;
3724                 if (xfers[i].rx_dma)
3725                         xfers[i].rx_dma += offset;
3726                 if (xfers[i].tx_buf)
3727                         xfers[i].tx_buf += offset;
3728                 if (xfers[i].tx_dma)
3729                         xfers[i].tx_dma += offset;
3730
3731                 /* Update length */
3732                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3733         }
3734
3735         /*
3736          * We set up xferp to the last entry we have inserted,
3737          * so that we skip those already split transfers.
3738          */
3739         *xferp = &xfers[count - 1];
3740
3741         /* Increment statistics counters */
3742         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3743                                        transfers_split_maxsize);
3744         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3745                                        transfers_split_maxsize);
3746
3747         return 0;
3748 }
3749
3750 /**
3751  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3752  *                               when an individual transfer exceeds a
3753  *                               certain size
3754  * @ctlr:    the @spi_controller for this transfer
3755  * @msg:   the @spi_message to transform
3756  * @maxsize:  the maximum when to apply this
3757  *
3758  * This function allocates resources that are automatically freed during the
3759  * spi message unoptimize phase so this function should only be called from
3760  * optimize_message callbacks.
3761  *
3762  * Return: status of transformation
3763  */
3764 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3765                                 struct spi_message *msg,
3766                                 size_t maxsize)
3767 {
3768         struct spi_transfer *xfer;
3769         int ret;
3770
3771         /*
3772          * Iterate over the transfer_list,
3773          * but note that xfer is advanced to the last transfer inserted
3774          * to avoid checking sizes again unnecessarily (also xfer does
3775          * potentially belong to a different list by the time the
3776          * replacement has happened).
3777          */
3778         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3779                 if (xfer->len > maxsize) {
3780                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3781                                                            maxsize);
3782                         if (ret)
3783                                 return ret;
3784                 }
3785         }
3786
3787         return 0;
3788 }
3789 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3790
3791
3792 /**
3793  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3794  *                                when an individual transfer exceeds a
3795  *                                certain number of SPI words
3796  * @ctlr:     the @spi_controller for this transfer
3797  * @msg:      the @spi_message to transform
3798  * @maxwords: the number of words to limit each transfer to
3799  *
3800  * This function allocates resources that are automatically freed during the
3801  * spi message unoptimize phase so this function should only be called from
3802  * optimize_message callbacks.
3803  *
3804  * Return: status of transformation
3805  */
3806 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3807                                  struct spi_message *msg,
3808                                  size_t maxwords)
3809 {
3810         struct spi_transfer *xfer;
3811
3812         /*
3813          * Iterate over the transfer_list,
3814          * but note that xfer is advanced to the last transfer inserted
3815          * to avoid checking sizes again unnecessarily (also xfer does
3816          * potentially belong to a different list by the time the
3817          * replacement has happened).
3818          */
3819         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3820                 size_t maxsize;
3821                 int ret;
3822
3823                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3824                 if (xfer->len > maxsize) {
3825                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3826                                                            maxsize);
3827                         if (ret)
3828                                 return ret;
3829                 }
3830         }
3831
3832         return 0;
3833 }
3834 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3835
3836 /*-------------------------------------------------------------------------*/
3837
3838 /*
3839  * Core methods for SPI controller protocol drivers. Some of the
3840  * other core methods are currently defined as inline functions.
3841  */
3842
3843 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3844                                         u8 bits_per_word)
3845 {
3846         if (ctlr->bits_per_word_mask) {
3847                 /* Only 32 bits fit in the mask */
3848                 if (bits_per_word > 32)
3849                         return -EINVAL;
3850                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3851                         return -EINVAL;
3852         }
3853
3854         return 0;
3855 }
3856
3857 /**
3858  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3859  * @spi: the device that requires specific CS timing configuration
3860  *
3861  * Return: zero on success, else a negative error code.
3862  */
3863 static int spi_set_cs_timing(struct spi_device *spi)
3864 {
3865         struct device *parent = spi->controller->dev.parent;
3866         int status = 0;
3867
3868         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3869                 if (spi->controller->auto_runtime_pm) {
3870                         status = pm_runtime_get_sync(parent);
3871                         if (status < 0) {
3872                                 pm_runtime_put_noidle(parent);
3873                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3874                                         status);
3875                                 return status;
3876                         }
3877
3878                         status = spi->controller->set_cs_timing(spi);
3879                         pm_runtime_mark_last_busy(parent);
3880                         pm_runtime_put_autosuspend(parent);
3881                 } else {
3882                         status = spi->controller->set_cs_timing(spi);
3883                 }
3884         }
3885         return status;
3886 }
3887
3888 /**
3889  * spi_setup - setup SPI mode and clock rate
3890  * @spi: the device whose settings are being modified
3891  * Context: can sleep, and no requests are queued to the device
3892  *
3893  * SPI protocol drivers may need to update the transfer mode if the
3894  * device doesn't work with its default.  They may likewise need
3895  * to update clock rates or word sizes from initial values.  This function
3896  * changes those settings, and must be called from a context that can sleep.
3897  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3898  * effect the next time the device is selected and data is transferred to
3899  * or from it.  When this function returns, the SPI device is deselected.
3900  *
3901  * Note that this call will fail if the protocol driver specifies an option
3902  * that the underlying controller or its driver does not support.  For
3903  * example, not all hardware supports wire transfers using nine bit words,
3904  * LSB-first wire encoding, or active-high chipselects.
3905  *
3906  * Return: zero on success, else a negative error code.
3907  */
3908 int spi_setup(struct spi_device *spi)
3909 {
3910         unsigned        bad_bits, ugly_bits;
3911         int             status = 0;
3912
3913         /*
3914          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3915          * are set at the same time.
3916          */
3917         if ((hweight_long(spi->mode &
3918                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3919             (hweight_long(spi->mode &
3920                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3921                 dev_err(&spi->dev,
3922                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3923                 return -EINVAL;
3924         }
3925         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3926         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3927                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3929                 return -EINVAL;
3930         /*
3931          * Help drivers fail *cleanly* when they need options
3932          * that aren't supported with their current controller.
3933          * SPI_CS_WORD has a fallback software implementation,
3934          * so it is ignored here.
3935          */
3936         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3937                                  SPI_NO_TX | SPI_NO_RX);
3938         ugly_bits = bad_bits &
3939                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3940                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3941         if (ugly_bits) {
3942                 dev_warn(&spi->dev,
3943                          "setup: ignoring unsupported mode bits %x\n",
3944                          ugly_bits);
3945                 spi->mode &= ~ugly_bits;
3946                 bad_bits &= ~ugly_bits;
3947         }
3948         if (bad_bits) {
3949                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3950                         bad_bits);
3951                 return -EINVAL;
3952         }
3953
3954         if (!spi->bits_per_word) {
3955                 spi->bits_per_word = 8;
3956         } else {
3957                 /*
3958                  * Some controllers may not support the default 8 bits-per-word
3959                  * so only perform the check when this is explicitly provided.
3960                  */
3961                 status = __spi_validate_bits_per_word(spi->controller,
3962                                                       spi->bits_per_word);
3963                 if (status)
3964                         return status;
3965         }
3966
3967         if (spi->controller->max_speed_hz &&
3968             (!spi->max_speed_hz ||
3969              spi->max_speed_hz > spi->controller->max_speed_hz))
3970                 spi->max_speed_hz = spi->controller->max_speed_hz;
3971
3972         mutex_lock(&spi->controller->io_mutex);
3973
3974         if (spi->controller->setup) {
3975                 status = spi->controller->setup(spi);
3976                 if (status) {
3977                         mutex_unlock(&spi->controller->io_mutex);
3978                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3979                                 status);
3980                         return status;
3981                 }
3982         }
3983
3984         status = spi_set_cs_timing(spi);
3985         if (status) {
3986                 mutex_unlock(&spi->controller->io_mutex);
3987                 return status;
3988         }
3989
3990         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3991                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3992                 if (status < 0) {
3993                         mutex_unlock(&spi->controller->io_mutex);
3994                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3995                                 status);
3996                         return status;
3997                 }
3998
3999                 /*
4000                  * We do not want to return positive value from pm_runtime_get,
4001                  * there are many instances of devices calling spi_setup() and
4002                  * checking for a non-zero return value instead of a negative
4003                  * return value.
4004                  */
4005                 status = 0;
4006
4007                 spi_set_cs(spi, false, true);
4008                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4009                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4010         } else {
4011                 spi_set_cs(spi, false, true);
4012         }
4013
4014         mutex_unlock(&spi->controller->io_mutex);
4015
4016         if (spi->rt && !spi->controller->rt) {
4017                 spi->controller->rt = true;
4018                 spi_set_thread_rt(spi->controller);
4019         }
4020
4021         trace_spi_setup(spi, status);
4022
4023         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4024                         spi->mode & SPI_MODE_X_MASK,
4025                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4026                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4027                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4028                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4029                         spi->bits_per_word, spi->max_speed_hz,
4030                         status);
4031
4032         return status;
4033 }
4034 EXPORT_SYMBOL_GPL(spi_setup);
4035
4036 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4037                                        struct spi_device *spi)
4038 {
4039         int delay1, delay2;
4040
4041         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4042         if (delay1 < 0)
4043                 return delay1;
4044
4045         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4046         if (delay2 < 0)
4047                 return delay2;
4048
4049         if (delay1 < delay2)
4050                 memcpy(&xfer->word_delay, &spi->word_delay,
4051                        sizeof(xfer->word_delay));
4052
4053         return 0;
4054 }
4055
4056 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4057 {
4058         struct spi_controller *ctlr = spi->controller;
4059         struct spi_transfer *xfer;
4060         int w_size;
4061
4062         if (list_empty(&message->transfers))
4063                 return -EINVAL;
4064
4065         message->spi = spi;
4066
4067         /*
4068          * Half-duplex links include original MicroWire, and ones with
4069          * only one data pin like SPI_3WIRE (switches direction) or where
4070          * either MOSI or MISO is missing.  They can also be caused by
4071          * software limitations.
4072          */
4073         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4074             (spi->mode & SPI_3WIRE)) {
4075                 unsigned flags = ctlr->flags;
4076
4077                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4078                         if (xfer->rx_buf && xfer->tx_buf)
4079                                 return -EINVAL;
4080                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4081                                 return -EINVAL;
4082                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4083                                 return -EINVAL;
4084                 }
4085         }
4086
4087         /*
4088          * Set transfer bits_per_word and max speed as spi device default if
4089          * it is not set for this transfer.
4090          * Set transfer tx_nbits and rx_nbits as single transfer default
4091          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4092          * Ensure transfer word_delay is at least as long as that required by
4093          * device itself.
4094          */
4095         message->frame_length = 0;
4096         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4097                 xfer->effective_speed_hz = 0;
4098                 message->frame_length += xfer->len;
4099                 if (!xfer->bits_per_word)
4100                         xfer->bits_per_word = spi->bits_per_word;
4101
4102                 if (!xfer->speed_hz)
4103                         xfer->speed_hz = spi->max_speed_hz;
4104
4105                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4106                         xfer->speed_hz = ctlr->max_speed_hz;
4107
4108                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4109                         return -EINVAL;
4110
4111                 /*
4112                  * SPI transfer length should be multiple of SPI word size
4113                  * where SPI word size should be power-of-two multiple.
4114                  */
4115                 if (xfer->bits_per_word <= 8)
4116                         w_size = 1;
4117                 else if (xfer->bits_per_word <= 16)
4118                         w_size = 2;
4119                 else
4120                         w_size = 4;
4121
4122                 /* No partial transfers accepted */
4123                 if (xfer->len % w_size)
4124                         return -EINVAL;
4125
4126                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4127                     xfer->speed_hz < ctlr->min_speed_hz)
4128                         return -EINVAL;
4129
4130                 if (xfer->tx_buf && !xfer->tx_nbits)
4131                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4132                 if (xfer->rx_buf && !xfer->rx_nbits)
4133                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4134                 /*
4135                  * Check transfer tx/rx_nbits:
4136                  * 1. check the value matches one of single, dual and quad
4137                  * 2. check tx/rx_nbits match the mode in spi_device
4138                  */
4139                 if (xfer->tx_buf) {
4140                         if (spi->mode & SPI_NO_TX)
4141                                 return -EINVAL;
4142                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4143                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4144                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4145                                 return -EINVAL;
4146                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4147                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4148                                 return -EINVAL;
4149                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4150                                 !(spi->mode & SPI_TX_QUAD))
4151                                 return -EINVAL;
4152                 }
4153                 /* Check transfer rx_nbits */
4154                 if (xfer->rx_buf) {
4155                         if (spi->mode & SPI_NO_RX)
4156                                 return -EINVAL;
4157                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4158                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4159                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4160                                 return -EINVAL;
4161                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4162                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4163                                 return -EINVAL;
4164                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4165                                 !(spi->mode & SPI_RX_QUAD))
4166                                 return -EINVAL;
4167                 }
4168
4169                 if (_spi_xfer_word_delay_update(xfer, spi))
4170                         return -EINVAL;
4171         }
4172
4173         message->status = -EINPROGRESS;
4174
4175         return 0;
4176 }
4177
4178 /*
4179  * spi_split_transfers - generic handling of transfer splitting
4180  * @msg: the message to split
4181  *
4182  * Under certain conditions, a SPI controller may not support arbitrary
4183  * transfer sizes or other features required by a peripheral. This function
4184  * will split the transfers in the message into smaller transfers that are
4185  * supported by the controller.
4186  *
4187  * Controllers with special requirements not covered here can also split
4188  * transfers in the optimize_message() callback.
4189  *
4190  * Context: can sleep
4191  * Return: zero on success, else a negative error code
4192  */
4193 static int spi_split_transfers(struct spi_message *msg)
4194 {
4195         struct spi_controller *ctlr = msg->spi->controller;
4196         struct spi_transfer *xfer;
4197         int ret;
4198
4199         /*
4200          * If an SPI controller does not support toggling the CS line on each
4201          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4202          * for the CS line, we can emulate the CS-per-word hardware function by
4203          * splitting transfers into one-word transfers and ensuring that
4204          * cs_change is set for each transfer.
4205          */
4206         if ((msg->spi->mode & SPI_CS_WORD) &&
4207             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4208                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4209                 if (ret)
4210                         return ret;
4211
4212                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4213                         /* Don't change cs_change on the last entry in the list */
4214                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4215                                 break;
4216
4217                         xfer->cs_change = 1;
4218                 }
4219         } else {
4220                 ret = spi_split_transfers_maxsize(ctlr, msg,
4221                                                   spi_max_transfer_size(msg->spi));
4222                 if (ret)
4223                         return ret;
4224         }
4225
4226         return 0;
4227 }
4228
4229 /*
4230  * __spi_optimize_message - shared implementation for spi_optimize_message()
4231  *                          and spi_maybe_optimize_message()
4232  * @spi: the device that will be used for the message
4233  * @msg: the message to optimize
4234  *
4235  * Peripheral drivers will call spi_optimize_message() and the spi core will
4236  * call spi_maybe_optimize_message() instead of calling this directly.
4237  *
4238  * It is not valid to call this on a message that has already been optimized.
4239  *
4240  * Return: zero on success, else a negative error code
4241  */
4242 static int __spi_optimize_message(struct spi_device *spi,
4243                                   struct spi_message *msg)
4244 {
4245         struct spi_controller *ctlr = spi->controller;
4246         int ret;
4247
4248         ret = __spi_validate(spi, msg);
4249         if (ret)
4250                 return ret;
4251
4252         ret = spi_split_transfers(msg);
4253         if (ret)
4254                 return ret;
4255
4256         if (ctlr->optimize_message) {
4257                 ret = ctlr->optimize_message(msg);
4258                 if (ret) {
4259                         spi_res_release(ctlr, msg);
4260                         return ret;
4261                 }
4262         }
4263
4264         msg->optimized = true;
4265
4266         return 0;
4267 }
4268
4269 /*
4270  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4271  * @spi: the device that will be used for the message
4272  * @msg: the message to optimize
4273  * Return: zero on success, else a negative error code
4274  */
4275 static int spi_maybe_optimize_message(struct spi_device *spi,
4276                                       struct spi_message *msg)
4277 {
4278         if (msg->pre_optimized)
4279                 return 0;
4280
4281         return __spi_optimize_message(spi, msg);
4282 }
4283
4284 /**
4285  * spi_optimize_message - do any one-time validation and setup for a SPI message
4286  * @spi: the device that will be used for the message
4287  * @msg: the message to optimize
4288  *
4289  * Peripheral drivers that reuse the same message repeatedly may call this to
4290  * perform as much message prep as possible once, rather than repeating it each
4291  * time a message transfer is performed to improve throughput and reduce CPU
4292  * usage.
4293  *
4294  * Once a message has been optimized, it cannot be modified with the exception
4295  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296  * only the data in the memory it points to).
4297  *
4298  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299  * to avoid leaking resources.
4300  *
4301  * Context: can sleep
4302  * Return: zero on success, else a negative error code
4303  */
4304 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305 {
4306         int ret;
4307
4308         ret = __spi_optimize_message(spi, msg);
4309         if (ret)
4310                 return ret;
4311
4312         /*
4313          * This flag indicates that the peripheral driver called spi_optimize_message()
4314          * and therefore we shouldn't unoptimize message automatically when finalizing
4315          * the message but rather wait until spi_unoptimize_message() is called
4316          * by the peripheral driver.
4317          */
4318         msg->pre_optimized = true;
4319
4320         return 0;
4321 }
4322 EXPORT_SYMBOL_GPL(spi_optimize_message);
4323
4324 /**
4325  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4326  * @msg: the message to unoptimize
4327  *
4328  * Calls to this function must be balanced with calls to spi_optimize_message().
4329  *
4330  * Context: can sleep
4331  */
4332 void spi_unoptimize_message(struct spi_message *msg)
4333 {
4334         __spi_unoptimize_message(msg);
4335         msg->pre_optimized = false;
4336 }
4337 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4338
4339 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4340 {
4341         struct spi_controller *ctlr = spi->controller;
4342         struct spi_transfer *xfer;
4343
4344         /*
4345          * Some controllers do not support doing regular SPI transfers. Return
4346          * ENOTSUPP when this is the case.
4347          */
4348         if (!ctlr->transfer)
4349                 return -ENOTSUPP;
4350
4351         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4352         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4353
4354         trace_spi_message_submit(message);
4355
4356         if (!ctlr->ptp_sts_supported) {
4357                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4358                         xfer->ptp_sts_word_pre = 0;
4359                         ptp_read_system_prets(xfer->ptp_sts);
4360                 }
4361         }
4362
4363         return ctlr->transfer(spi, message);
4364 }
4365
4366 /**
4367  * spi_async - asynchronous SPI transfer
4368  * @spi: device with which data will be exchanged
4369  * @message: describes the data transfers, including completion callback
4370  * Context: any (IRQs may be blocked, etc)
4371  *
4372  * This call may be used in_irq and other contexts which can't sleep,
4373  * as well as from task contexts which can sleep.
4374  *
4375  * The completion callback is invoked in a context which can't sleep.
4376  * Before that invocation, the value of message->status is undefined.
4377  * When the callback is issued, message->status holds either zero (to
4378  * indicate complete success) or a negative error code.  After that
4379  * callback returns, the driver which issued the transfer request may
4380  * deallocate the associated memory; it's no longer in use by any SPI
4381  * core or controller driver code.
4382  *
4383  * Note that although all messages to a spi_device are handled in
4384  * FIFO order, messages may go to different devices in other orders.
4385  * Some device might be higher priority, or have various "hard" access
4386  * time requirements, for example.
4387  *
4388  * On detection of any fault during the transfer, processing of
4389  * the entire message is aborted, and the device is deselected.
4390  * Until returning from the associated message completion callback,
4391  * no other spi_message queued to that device will be processed.
4392  * (This rule applies equally to all the synchronous transfer calls,
4393  * which are wrappers around this core asynchronous primitive.)
4394  *
4395  * Return: zero on success, else a negative error code.
4396  */
4397 int spi_async(struct spi_device *spi, struct spi_message *message)
4398 {
4399         struct spi_controller *ctlr = spi->controller;
4400         int ret;
4401         unsigned long flags;
4402
4403         ret = spi_maybe_optimize_message(spi, message);
4404         if (ret)
4405                 return ret;
4406
4407         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4408
4409         if (ctlr->bus_lock_flag)
4410                 ret = -EBUSY;
4411         else
4412                 ret = __spi_async(spi, message);
4413
4414         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4415
4416         spi_maybe_unoptimize_message(message);
4417
4418         return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(spi_async);
4421
4422 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4423 {
4424         bool was_busy;
4425         int ret;
4426
4427         mutex_lock(&ctlr->io_mutex);
4428
4429         was_busy = ctlr->busy;
4430
4431         ctlr->cur_msg = msg;
4432         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4433         if (ret)
4434                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4435         ctlr->cur_msg = NULL;
4436         ctlr->fallback = false;
4437
4438         if (!was_busy) {
4439                 kfree(ctlr->dummy_rx);
4440                 ctlr->dummy_rx = NULL;
4441                 kfree(ctlr->dummy_tx);
4442                 ctlr->dummy_tx = NULL;
4443                 if (ctlr->unprepare_transfer_hardware &&
4444                     ctlr->unprepare_transfer_hardware(ctlr))
4445                         dev_err(&ctlr->dev,
4446                                 "failed to unprepare transfer hardware\n");
4447                 spi_idle_runtime_pm(ctlr);
4448         }
4449
4450         mutex_unlock(&ctlr->io_mutex);
4451 }
4452
4453 /*-------------------------------------------------------------------------*/
4454
4455 /*
4456  * Utility methods for SPI protocol drivers, layered on
4457  * top of the core.  Some other utility methods are defined as
4458  * inline functions.
4459  */
4460
4461 static void spi_complete(void *arg)
4462 {
4463         complete(arg);
4464 }
4465
4466 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4467 {
4468         DECLARE_COMPLETION_ONSTACK(done);
4469         unsigned long flags;
4470         int status;
4471         struct spi_controller *ctlr = spi->controller;
4472
4473         if (__spi_check_suspended(ctlr)) {
4474                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4475                 return -ESHUTDOWN;
4476         }
4477
4478         status = spi_maybe_optimize_message(spi, message);
4479         if (status)
4480                 return status;
4481
4482         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4483         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4484
4485         /*
4486          * Checking queue_empty here only guarantees async/sync message
4487          * ordering when coming from the same context. It does not need to
4488          * guard against reentrancy from a different context. The io_mutex
4489          * will catch those cases.
4490          */
4491         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4492                 message->actual_length = 0;
4493                 message->status = -EINPROGRESS;
4494
4495                 trace_spi_message_submit(message);
4496
4497                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4498                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4499
4500                 __spi_transfer_message_noqueue(ctlr, message);
4501
4502                 return message->status;
4503         }
4504
4505         /*
4506          * There are messages in the async queue that could have originated
4507          * from the same context, so we need to preserve ordering.
4508          * Therefor we send the message to the async queue and wait until they
4509          * are completed.
4510          */
4511         message->complete = spi_complete;
4512         message->context = &done;
4513
4514         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4515         status = __spi_async(spi, message);
4516         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4517
4518         if (status == 0) {
4519                 wait_for_completion(&done);
4520                 status = message->status;
4521         }
4522         message->context = NULL;
4523
4524         return status;
4525 }
4526
4527 /**
4528  * spi_sync - blocking/synchronous SPI data transfers
4529  * @spi: device with which data will be exchanged
4530  * @message: describes the data transfers
4531  * Context: can sleep
4532  *
4533  * This call may only be used from a context that may sleep.  The sleep
4534  * is non-interruptible, and has no timeout.  Low-overhead controller
4535  * drivers may DMA directly into and out of the message buffers.
4536  *
4537  * Note that the SPI device's chip select is active during the message,
4538  * and then is normally disabled between messages.  Drivers for some
4539  * frequently-used devices may want to minimize costs of selecting a chip,
4540  * by leaving it selected in anticipation that the next message will go
4541  * to the same chip.  (That may increase power usage.)
4542  *
4543  * Also, the caller is guaranteeing that the memory associated with the
4544  * message will not be freed before this call returns.
4545  *
4546  * Return: zero on success, else a negative error code.
4547  */
4548 int spi_sync(struct spi_device *spi, struct spi_message *message)
4549 {
4550         int ret;
4551
4552         mutex_lock(&spi->controller->bus_lock_mutex);
4553         ret = __spi_sync(spi, message);
4554         mutex_unlock(&spi->controller->bus_lock_mutex);
4555
4556         return ret;
4557 }
4558 EXPORT_SYMBOL_GPL(spi_sync);
4559
4560 /**
4561  * spi_sync_locked - version of spi_sync with exclusive bus usage
4562  * @spi: device with which data will be exchanged
4563  * @message: describes the data transfers
4564  * Context: can sleep
4565  *
4566  * This call may only be used from a context that may sleep.  The sleep
4567  * is non-interruptible, and has no timeout.  Low-overhead controller
4568  * drivers may DMA directly into and out of the message buffers.
4569  *
4570  * This call should be used by drivers that require exclusive access to the
4571  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4572  * be released by a spi_bus_unlock call when the exclusive access is over.
4573  *
4574  * Return: zero on success, else a negative error code.
4575  */
4576 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4577 {
4578         return __spi_sync(spi, message);
4579 }
4580 EXPORT_SYMBOL_GPL(spi_sync_locked);
4581
4582 /**
4583  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4584  * @ctlr: SPI bus master that should be locked for exclusive bus access
4585  * Context: can sleep
4586  *
4587  * This call may only be used from a context that may sleep.  The sleep
4588  * is non-interruptible, and has no timeout.
4589  *
4590  * This call should be used by drivers that require exclusive access to the
4591  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4592  * exclusive access is over. Data transfer must be done by spi_sync_locked
4593  * and spi_async_locked calls when the SPI bus lock is held.
4594  *
4595  * Return: always zero.
4596  */
4597 int spi_bus_lock(struct spi_controller *ctlr)
4598 {
4599         unsigned long flags;
4600
4601         mutex_lock(&ctlr->bus_lock_mutex);
4602
4603         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4604         ctlr->bus_lock_flag = 1;
4605         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4606
4607         /* Mutex remains locked until spi_bus_unlock() is called */
4608
4609         return 0;
4610 }
4611 EXPORT_SYMBOL_GPL(spi_bus_lock);
4612
4613 /**
4614  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4615  * @ctlr: SPI bus master that was locked for exclusive bus access
4616  * Context: can sleep
4617  *
4618  * This call may only be used from a context that may sleep.  The sleep
4619  * is non-interruptible, and has no timeout.
4620  *
4621  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4622  * call.
4623  *
4624  * Return: always zero.
4625  */
4626 int spi_bus_unlock(struct spi_controller *ctlr)
4627 {
4628         ctlr->bus_lock_flag = 0;
4629
4630         mutex_unlock(&ctlr->bus_lock_mutex);
4631
4632         return 0;
4633 }
4634 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4635
4636 /* Portable code must never pass more than 32 bytes */
4637 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4638
4639 static u8       *buf;
4640
4641 /**
4642  * spi_write_then_read - SPI synchronous write followed by read
4643  * @spi: device with which data will be exchanged
4644  * @txbuf: data to be written (need not be DMA-safe)
4645  * @n_tx: size of txbuf, in bytes
4646  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4647  * @n_rx: size of rxbuf, in bytes
4648  * Context: can sleep
4649  *
4650  * This performs a half duplex MicroWire style transaction with the
4651  * device, sending txbuf and then reading rxbuf.  The return value
4652  * is zero for success, else a negative errno status code.
4653  * This call may only be used from a context that may sleep.
4654  *
4655  * Parameters to this routine are always copied using a small buffer.
4656  * Performance-sensitive or bulk transfer code should instead use
4657  * spi_{async,sync}() calls with DMA-safe buffers.
4658  *
4659  * Return: zero on success, else a negative error code.
4660  */
4661 int spi_write_then_read(struct spi_device *spi,
4662                 const void *txbuf, unsigned n_tx,
4663                 void *rxbuf, unsigned n_rx)
4664 {
4665         static DEFINE_MUTEX(lock);
4666
4667         int                     status;
4668         struct spi_message      message;
4669         struct spi_transfer     x[2];
4670         u8                      *local_buf;
4671
4672         /*
4673          * Use preallocated DMA-safe buffer if we can. We can't avoid
4674          * copying here, (as a pure convenience thing), but we can
4675          * keep heap costs out of the hot path unless someone else is
4676          * using the pre-allocated buffer or the transfer is too large.
4677          */
4678         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4679                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4680                                     GFP_KERNEL | GFP_DMA);
4681                 if (!local_buf)
4682                         return -ENOMEM;
4683         } else {
4684                 local_buf = buf;
4685         }
4686
4687         spi_message_init(&message);
4688         memset(x, 0, sizeof(x));
4689         if (n_tx) {
4690                 x[0].len = n_tx;
4691                 spi_message_add_tail(&x[0], &message);
4692         }
4693         if (n_rx) {
4694                 x[1].len = n_rx;
4695                 spi_message_add_tail(&x[1], &message);
4696         }
4697
4698         memcpy(local_buf, txbuf, n_tx);
4699         x[0].tx_buf = local_buf;
4700         x[1].rx_buf = local_buf + n_tx;
4701
4702         /* Do the I/O */
4703         status = spi_sync(spi, &message);
4704         if (status == 0)
4705                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4706
4707         if (x[0].tx_buf == buf)
4708                 mutex_unlock(&lock);
4709         else
4710                 kfree(local_buf);
4711
4712         return status;
4713 }
4714 EXPORT_SYMBOL_GPL(spi_write_then_read);
4715
4716 /*-------------------------------------------------------------------------*/
4717
4718 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4719 /* Must call put_device() when done with returned spi_device device */
4720 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4721 {
4722         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4723
4724         return dev ? to_spi_device(dev) : NULL;
4725 }
4726
4727 /* The spi controllers are not using spi_bus, so we find it with another way */
4728 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4729 {
4730         struct device *dev;
4731
4732         dev = class_find_device_by_of_node(&spi_master_class, node);
4733         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4734                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4735         if (!dev)
4736                 return NULL;
4737
4738         /* Reference got in class_find_device */
4739         return container_of(dev, struct spi_controller, dev);
4740 }
4741
4742 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4743                          void *arg)
4744 {
4745         struct of_reconfig_data *rd = arg;
4746         struct spi_controller *ctlr;
4747         struct spi_device *spi;
4748
4749         switch (of_reconfig_get_state_change(action, arg)) {
4750         case OF_RECONFIG_CHANGE_ADD:
4751                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4752                 if (ctlr == NULL)
4753                         return NOTIFY_OK;       /* Not for us */
4754
4755                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4756                         put_device(&ctlr->dev);
4757                         return NOTIFY_OK;
4758                 }
4759
4760                 /*
4761                  * Clear the flag before adding the device so that fw_devlink
4762                  * doesn't skip adding consumers to this device.
4763                  */
4764                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4765                 spi = of_register_spi_device(ctlr, rd->dn);
4766                 put_device(&ctlr->dev);
4767
4768                 if (IS_ERR(spi)) {
4769                         pr_err("%s: failed to create for '%pOF'\n",
4770                                         __func__, rd->dn);
4771                         of_node_clear_flag(rd->dn, OF_POPULATED);
4772                         return notifier_from_errno(PTR_ERR(spi));
4773                 }
4774                 break;
4775
4776         case OF_RECONFIG_CHANGE_REMOVE:
4777                 /* Already depopulated? */
4778                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4779                         return NOTIFY_OK;
4780
4781                 /* Find our device by node */
4782                 spi = of_find_spi_device_by_node(rd->dn);
4783                 if (spi == NULL)
4784                         return NOTIFY_OK;       /* No? not meant for us */
4785
4786                 /* Unregister takes one ref away */
4787                 spi_unregister_device(spi);
4788
4789                 /* And put the reference of the find */
4790                 put_device(&spi->dev);
4791                 break;
4792         }
4793
4794         return NOTIFY_OK;
4795 }
4796
4797 static struct notifier_block spi_of_notifier = {
4798         .notifier_call = of_spi_notify,
4799 };
4800 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4801 extern struct notifier_block spi_of_notifier;
4802 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4803
4804 #if IS_ENABLED(CONFIG_ACPI)
4805 static int spi_acpi_controller_match(struct device *dev, const void *data)
4806 {
4807         return ACPI_COMPANION(dev->parent) == data;
4808 }
4809
4810 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4811 {
4812         struct device *dev;
4813
4814         dev = class_find_device(&spi_master_class, NULL, adev,
4815                                 spi_acpi_controller_match);
4816         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4817                 dev = class_find_device(&spi_slave_class, NULL, adev,
4818                                         spi_acpi_controller_match);
4819         if (!dev)
4820                 return NULL;
4821
4822         return container_of(dev, struct spi_controller, dev);
4823 }
4824 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4825
4826 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4827 {
4828         struct device *dev;
4829
4830         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4831         return to_spi_device(dev);
4832 }
4833
4834 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4835                            void *arg)
4836 {
4837         struct acpi_device *adev = arg;
4838         struct spi_controller *ctlr;
4839         struct spi_device *spi;
4840
4841         switch (value) {
4842         case ACPI_RECONFIG_DEVICE_ADD:
4843                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4844                 if (!ctlr)
4845                         break;
4846
4847                 acpi_register_spi_device(ctlr, adev);
4848                 put_device(&ctlr->dev);
4849                 break;
4850         case ACPI_RECONFIG_DEVICE_REMOVE:
4851                 if (!acpi_device_enumerated(adev))
4852                         break;
4853
4854                 spi = acpi_spi_find_device_by_adev(adev);
4855                 if (!spi)
4856                         break;
4857
4858                 spi_unregister_device(spi);
4859                 put_device(&spi->dev);
4860                 break;
4861         }
4862
4863         return NOTIFY_OK;
4864 }
4865
4866 static struct notifier_block spi_acpi_notifier = {
4867         .notifier_call = acpi_spi_notify,
4868 };
4869 #else
4870 extern struct notifier_block spi_acpi_notifier;
4871 #endif
4872
4873 static int __init spi_init(void)
4874 {
4875         int     status;
4876
4877         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4878         if (!buf) {
4879                 status = -ENOMEM;
4880                 goto err0;
4881         }
4882
4883         status = bus_register(&spi_bus_type);
4884         if (status < 0)
4885                 goto err1;
4886
4887         status = class_register(&spi_master_class);
4888         if (status < 0)
4889                 goto err2;
4890
4891         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4892                 status = class_register(&spi_slave_class);
4893                 if (status < 0)
4894                         goto err3;
4895         }
4896
4897         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4898                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4899         if (IS_ENABLED(CONFIG_ACPI))
4900                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4901
4902         return 0;
4903
4904 err3:
4905         class_unregister(&spi_master_class);
4906 err2:
4907         bus_unregister(&spi_bus_type);
4908 err1:
4909         kfree(buf);
4910         buf = NULL;
4911 err0:
4912         return status;
4913 }
4914
4915 /*
4916  * A board_info is normally registered in arch_initcall(),
4917  * but even essential drivers wait till later.
4918  *
4919  * REVISIT only boardinfo really needs static linking. The rest (device and
4920  * driver registration) _could_ be dynamically linked (modular) ... Costs
4921  * include needing to have boardinfo data structures be much more public.
4922  */
4923 postcore_initcall(spi_init);
This page took 0.309733 seconds and 4 git commands to generate.