1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(&stats->bytes_rx, xfer->len);
338 u64_stats_update_end(&stats->syncp);
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
360 return spi_match_id(sdrv->id_table, sdev->modalias);
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
368 match = device_get_match_data(&sdev->dev);
372 return (const void *)spi_get_device_id(sdev)->driver_data;
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
390 if (acpi_driver_match_device(dev, drv))
394 return !!spi_match_id(sdrv->id_table, spi->modalias);
396 return strcmp(spi->modalias, drv->name) == 0;
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
401 const struct spi_device *spi = to_spi_device(dev);
404 rc = acpi_device_uevent_modalias(dev, env);
408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
411 static int spi_probe(struct device *dev)
413 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
417 ret = of_clk_set_defaults(dev->of_node, false);
422 spi->irq = of_irq_get(dev->of_node, 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
429 ret = dev_pm_domain_attach(dev, true);
434 ret = sdrv->probe(spi);
436 dev_pm_domain_detach(dev, true);
442 static void spi_remove(struct device *dev)
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
447 sdrv->remove(to_spi_device(dev));
449 dev_pm_domain_detach(dev, true);
452 static void spi_shutdown(struct device *dev)
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
458 sdrv->shutdown(to_spi_device(dev));
462 const struct bus_type spi_bus_type = {
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
471 EXPORT_SYMBOL_GPL(spi_bus_type);
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
479 * Return: zero on success, else a negative error code.
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
504 of_name = of_id->compatible;
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
509 spi_id = spi_match_id(sdrv->id_table, of_name);
513 if (strcmp(sdrv->driver.name, of_name) == 0)
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
522 return driver_register(&sdrv->driver);
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 /*-------------------------------------------------------------------------*/
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
536 struct list_head list;
537 struct spi_board_info board_info;
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
548 static DEFINE_MUTEX(board_lock);
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
565 * Return: a pointer to the new device, or NULL.
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 struct spi_device *spi;
571 if (!spi_controller_get(ctlr))
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 spi_controller_put(ctlr);
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
583 spi_controller_put(ctlr);
587 spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
593 device_initialize(&spi->dev);
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 static void spi_dev_set_name(struct spi_device *spi)
600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 spi_get_chipselect(spi, 0));
612 * Zero(0) is a valid physical CS value and can be located at any
613 * logical CS in the spi->chip_select[]. If all the physical CS
614 * are initialized to 0 then It would be difficult to differentiate
615 * between a valid physical CS 0 & an unused logical CS whose physical
616 * CS can be 0. As a solution to this issue initialize all the CS to -1.
617 * Now all the unused logical CS will have -1 physical CS value & can be
618 * ignored while performing physical CS validity checks.
620 #define SPI_INVALID_CS ((s8)-1)
622 static inline bool is_valid_cs(s8 chip_select)
624 return chip_select != SPI_INVALID_CS;
627 static inline int spi_dev_check_cs(struct device *dev,
628 struct spi_device *spi, u8 idx,
629 struct spi_device *new_spi, u8 new_idx)
634 cs = spi_get_chipselect(spi, idx);
635 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636 cs_new = spi_get_chipselect(new_spi, idx_new);
637 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
638 dev_err(dev, "chipselect %u already in use\n", cs_new);
645 static int spi_dev_check(struct device *dev, void *data)
647 struct spi_device *spi = to_spi_device(dev);
648 struct spi_device *new_spi = data;
651 if (spi->controller == new_spi->controller) {
652 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
661 static void spi_cleanup(struct spi_device *spi)
663 if (spi->controller->cleanup)
664 spi->controller->cleanup(spi);
667 static int __spi_add_device(struct spi_device *spi)
669 struct spi_controller *ctlr = spi->controller;
670 struct device *dev = ctlr->dev.parent;
674 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675 /* Chipselects are numbered 0..max; validate. */
676 cs = spi_get_chipselect(spi, idx);
677 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
678 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679 ctlr->num_chipselect);
685 * Make sure that multiple logical CS doesn't map to the same physical CS.
686 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
688 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
694 /* Set the bus ID string */
695 spi_dev_set_name(spi);
698 * We need to make sure there's no other device with this
699 * chipselect **BEFORE** we call setup(), else we'll trash
702 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
706 /* Controller may unregister concurrently */
707 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708 !device_is_registered(&ctlr->dev)) {
712 if (ctlr->cs_gpiods) {
715 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716 cs = spi_get_chipselect(spi, idx);
718 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
723 * Drivers may modify this initial i/o setup, but will
724 * normally rely on the device being setup. Devices
725 * using SPI_CS_HIGH can't coexist well otherwise...
727 status = spi_setup(spi);
729 dev_err(dev, "can't setup %s, status %d\n",
730 dev_name(&spi->dev), status);
734 /* Device may be bound to an active driver when this returns */
735 status = device_add(&spi->dev);
737 dev_err(dev, "can't add %s, status %d\n",
738 dev_name(&spi->dev), status);
741 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748 * spi_add_device - Add spi_device allocated with spi_alloc_device
749 * @spi: spi_device to register
751 * Companion function to spi_alloc_device. Devices allocated with
752 * spi_alloc_device can be added onto the SPI bus with this function.
754 * Return: 0 on success; negative errno on failure
756 int spi_add_device(struct spi_device *spi)
758 struct spi_controller *ctlr = spi->controller;
761 /* Set the bus ID string */
762 spi_dev_set_name(spi);
764 mutex_lock(&ctlr->add_lock);
765 status = __spi_add_device(spi);
766 mutex_unlock(&ctlr->add_lock);
769 EXPORT_SYMBOL_GPL(spi_add_device);
771 static void spi_set_all_cs_unused(struct spi_device *spi)
775 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
780 * spi_new_device - instantiate one new SPI device
781 * @ctlr: Controller to which device is connected
782 * @chip: Describes the SPI device
785 * On typical mainboards, this is purely internal; and it's not needed
786 * after board init creates the hard-wired devices. Some development
787 * platforms may not be able to use spi_register_board_info though, and
788 * this is exported so that for example a USB or parport based adapter
789 * driver could add devices (which it would learn about out-of-band).
791 * Return: the new device, or NULL.
793 struct spi_device *spi_new_device(struct spi_controller *ctlr,
794 struct spi_board_info *chip)
796 struct spi_device *proxy;
800 * NOTE: caller did any chip->bus_num checks necessary.
802 * Also, unless we change the return value convention to use
803 * error-or-pointer (not NULL-or-pointer), troubleshootability
804 * suggests syslogged diagnostics are best here (ugh).
807 proxy = spi_alloc_device(ctlr);
811 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
813 /* Use provided chip-select for proxy device */
814 spi_set_all_cs_unused(proxy);
815 spi_set_chipselect(proxy, 0, chip->chip_select);
817 proxy->max_speed_hz = chip->max_speed_hz;
818 proxy->mode = chip->mode;
819 proxy->irq = chip->irq;
820 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821 proxy->dev.platform_data = (void *) chip->platform_data;
822 proxy->controller_data = chip->controller_data;
823 proxy->controller_state = NULL;
825 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828 * spi->chip_select[0] will give the physical CS.
829 * By default spi->chip_select[0] will hold the physical CS number so, set
830 * spi->cs_index_mask as 0x01.
832 proxy->cs_index_mask = 0x01;
835 status = device_add_software_node(&proxy->dev, chip->swnode);
837 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838 chip->modalias, status);
843 status = spi_add_device(proxy);
850 device_remove_software_node(&proxy->dev);
854 EXPORT_SYMBOL_GPL(spi_new_device);
857 * spi_unregister_device - unregister a single SPI device
858 * @spi: spi_device to unregister
860 * Start making the passed SPI device vanish. Normally this would be handled
861 * by spi_unregister_controller().
863 void spi_unregister_device(struct spi_device *spi)
868 if (spi->dev.of_node) {
869 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870 of_node_put(spi->dev.of_node);
872 if (ACPI_COMPANION(&spi->dev))
873 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874 device_remove_software_node(&spi->dev);
875 device_del(&spi->dev);
877 put_device(&spi->dev);
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882 struct spi_board_info *bi)
884 struct spi_device *dev;
886 if (ctlr->bus_num != bi->bus_num)
889 dev = spi_new_device(ctlr, bi);
891 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
896 * spi_register_board_info - register SPI devices for a given board
897 * @info: array of chip descriptors
898 * @n: how many descriptors are provided
901 * Board-specific early init code calls this (probably during arch_initcall)
902 * with segments of the SPI device table. Any device nodes are created later,
903 * after the relevant parent SPI controller (bus_num) is defined. We keep
904 * this table of devices forever, so that reloading a controller driver will
905 * not make Linux forget about these hard-wired devices.
907 * Other code can also call this, e.g. a particular add-on board might provide
908 * SPI devices through its expansion connector, so code initializing that board
909 * would naturally declare its SPI devices.
911 * The board info passed can safely be __initdata ... but be careful of
912 * any embedded pointers (platform_data, etc), they're copied as-is.
914 * Return: zero on success, else a negative error code.
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
918 struct boardinfo *bi;
924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
928 for (i = 0; i < n; i++, bi++, info++) {
929 struct spi_controller *ctlr;
931 memcpy(&bi->board_info, info, sizeof(*info));
933 mutex_lock(&board_lock);
934 list_add_tail(&bi->list, &board_list);
935 list_for_each_entry(ctlr, &spi_controller_list, list)
936 spi_match_controller_to_boardinfo(ctlr,
938 mutex_unlock(&board_lock);
944 /*-------------------------------------------------------------------------*/
946 /* Core methods for SPI resource management */
949 * spi_res_alloc - allocate a spi resource that is life-cycle managed
950 * during the processing of a spi_message while using
952 * @spi: the SPI device for which we allocate memory
953 * @release: the release code to execute for this resource
954 * @size: size to alloc and return
955 * @gfp: GFP allocation flags
957 * Return: the pointer to the allocated data
959 * This may get enhanced in the future to allocate from a memory pool
960 * of the @spi_device or @spi_controller to avoid repeated allocations.
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963 size_t size, gfp_t gfp)
965 struct spi_res *sres;
967 sres = kzalloc(sizeof(*sres) + size, gfp);
971 INIT_LIST_HEAD(&sres->entry);
972 sres->release = release;
978 * spi_res_free - free an SPI resource
979 * @res: pointer to the custom data of a resource
981 static void spi_res_free(void *res)
983 struct spi_res *sres = container_of(res, struct spi_res, data);
988 WARN_ON(!list_empty(&sres->entry));
993 * spi_res_add - add a spi_res to the spi_message
994 * @message: the SPI message
995 * @res: the spi_resource
997 static void spi_res_add(struct spi_message *message, void *res)
999 struct spi_res *sres = container_of(res, struct spi_res, data);
1001 WARN_ON(!list_empty(&sres->entry));
1002 list_add_tail(&sres->entry, &message->resources);
1006 * spi_res_release - release all SPI resources for this message
1007 * @ctlr: the @spi_controller
1008 * @message: the @spi_message
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1012 struct spi_res *res, *tmp;
1014 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1016 res->release(ctlr, message, res->data);
1018 list_del(&res->entry);
1024 /*-------------------------------------------------------------------------*/
1025 static inline bool spi_is_last_cs(struct spi_device *spi)
1030 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031 if (spi->cs_index_mask & BIT(idx)) {
1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1042 bool activate = enable;
1046 * Avoid calling into the driver (or doing delays) if the chip select
1047 * isn't actually changing from the last time this was called.
1049 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050 spi_is_last_cs(spi)) ||
1051 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052 !spi_is_last_cs(spi))) &&
1053 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1056 trace_spi_set_cs(spi, activate);
1058 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1063 if (spi->mode & SPI_CS_HIGH)
1066 if (spi_is_csgpiod(spi)) {
1067 if (!spi->controller->set_cs_timing && !activate)
1068 spi_delay_exec(&spi->cs_hold, NULL);
1070 if (!(spi->mode & SPI_NO_CS)) {
1072 * Historically ACPI has no means of the GPIO polarity and
1073 * thus the SPISerialBus() resource defines it on the per-chip
1074 * basis. In order to avoid a chain of negations, the GPIO
1075 * polarity is considered being Active High. Even for the cases
1076 * when _DSD() is involved (in the updated versions of ACPI)
1077 * the GPIO CS polarity must be defined Active High to avoid
1078 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1081 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1082 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1083 if (has_acpi_companion(&spi->dev))
1084 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1087 /* Polarity handled by GPIO library */
1088 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1092 spi_delay_exec(&spi->cs_setup, NULL);
1094 spi_delay_exec(&spi->cs_inactive, NULL);
1098 /* Some SPI masters need both GPIO CS & slave_select */
1099 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1100 spi->controller->set_cs)
1101 spi->controller->set_cs(spi, !enable);
1103 if (!spi->controller->set_cs_timing) {
1105 spi_delay_exec(&spi->cs_setup, NULL);
1107 spi_delay_exec(&spi->cs_inactive, NULL);
1109 } else if (spi->controller->set_cs) {
1110 spi->controller->set_cs(spi, !enable);
1114 #ifdef CONFIG_HAS_DMA
1115 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1116 struct sg_table *sgt, void *buf, size_t len,
1117 enum dma_data_direction dir, unsigned long attrs)
1119 const bool vmalloced_buf = is_vmalloc_addr(buf);
1120 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1121 #ifdef CONFIG_HIGHMEM
1122 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1123 (unsigned long)buf < (PKMAP_BASE +
1124 (LAST_PKMAP * PAGE_SIZE)));
1126 const bool kmap_buf = false;
1130 struct page *vm_page;
1131 struct scatterlist *sg;
1136 if (vmalloced_buf || kmap_buf) {
1137 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1138 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1139 } else if (virt_addr_valid(buf)) {
1140 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1141 sgs = DIV_ROUND_UP(len, desc_len);
1146 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151 for (i = 0; i < sgs; i++) {
1153 if (vmalloced_buf || kmap_buf) {
1155 * Next scatterlist entry size is the minimum between
1156 * the desc_len and the remaining buffer length that
1159 min = min_t(size_t, desc_len,
1161 PAGE_SIZE - offset_in_page(buf)));
1163 vm_page = vmalloc_to_page(buf);
1165 vm_page = kmap_to_page(buf);
1170 sg_set_page(sg, vm_page,
1171 min, offset_in_page(buf));
1173 min = min_t(size_t, len, desc_len);
1175 sg_set_buf(sg, sg_buf, min);
1183 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1192 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1193 struct sg_table *sgt, void *buf, size_t len,
1194 enum dma_data_direction dir)
1196 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1199 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1200 struct device *dev, struct sg_table *sgt,
1201 enum dma_data_direction dir,
1202 unsigned long attrs)
1204 if (sgt->orig_nents) {
1205 dma_unmap_sgtable(dev, sgt, dir, attrs);
1207 sgt->orig_nents = 0;
1212 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1213 struct sg_table *sgt, enum dma_data_direction dir)
1215 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1218 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1220 struct device *tx_dev, *rx_dev;
1221 struct spi_transfer *xfer;
1228 tx_dev = ctlr->dma_tx->device->dev;
1229 else if (ctlr->dma_map_dev)
1230 tx_dev = ctlr->dma_map_dev;
1232 tx_dev = ctlr->dev.parent;
1235 rx_dev = ctlr->dma_rx->device->dev;
1236 else if (ctlr->dma_map_dev)
1237 rx_dev = ctlr->dma_map_dev;
1239 rx_dev = ctlr->dev.parent;
1241 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1242 /* The sync is done before each transfer. */
1243 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1245 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1248 if (xfer->tx_buf != NULL) {
1249 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1250 (void *)xfer->tx_buf,
1251 xfer->len, DMA_TO_DEVICE,
1257 if (xfer->rx_buf != NULL) {
1258 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1259 xfer->rx_buf, xfer->len,
1260 DMA_FROM_DEVICE, attrs);
1262 spi_unmap_buf_attrs(ctlr, tx_dev,
1263 &xfer->tx_sg, DMA_TO_DEVICE,
1271 ctlr->cur_rx_dma_dev = rx_dev;
1272 ctlr->cur_tx_dma_dev = tx_dev;
1273 ctlr->cur_msg_mapped = true;
1278 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1280 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1281 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1282 struct spi_transfer *xfer;
1284 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1287 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1288 /* The sync has already been done after each transfer. */
1289 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1291 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1294 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1295 DMA_FROM_DEVICE, attrs);
1296 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1297 DMA_TO_DEVICE, attrs);
1300 ctlr->cur_msg_mapped = false;
1305 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1306 struct spi_transfer *xfer)
1308 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1309 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1311 if (!ctlr->cur_msg_mapped)
1314 if (xfer->tx_sg.orig_nents)
1315 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1316 if (xfer->rx_sg.orig_nents)
1317 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1320 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1321 struct spi_transfer *xfer)
1323 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1324 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1326 if (!ctlr->cur_msg_mapped)
1329 if (xfer->rx_sg.orig_nents)
1330 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1331 if (xfer->tx_sg.orig_nents)
1332 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1334 #else /* !CONFIG_HAS_DMA */
1335 static inline int __spi_map_msg(struct spi_controller *ctlr,
1336 struct spi_message *msg)
1341 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1342 struct spi_message *msg)
1347 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1348 struct spi_transfer *xfer)
1352 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1353 struct spi_transfer *xfer)
1356 #endif /* !CONFIG_HAS_DMA */
1358 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1359 struct spi_message *msg)
1361 struct spi_transfer *xfer;
1363 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1365 * Restore the original value of tx_buf or rx_buf if they are
1368 if (xfer->tx_buf == ctlr->dummy_tx)
1369 xfer->tx_buf = NULL;
1370 if (xfer->rx_buf == ctlr->dummy_rx)
1371 xfer->rx_buf = NULL;
1374 return __spi_unmap_msg(ctlr, msg);
1377 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1379 struct spi_transfer *xfer;
1381 unsigned int max_tx, max_rx;
1383 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1384 && !(msg->spi->mode & SPI_3WIRE)) {
1388 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1389 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1391 max_tx = max(xfer->len, max_tx);
1392 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1394 max_rx = max(xfer->len, max_rx);
1398 tmp = krealloc(ctlr->dummy_tx, max_tx,
1399 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1402 ctlr->dummy_tx = tmp;
1406 tmp = krealloc(ctlr->dummy_rx, max_rx,
1407 GFP_KERNEL | GFP_DMA);
1410 ctlr->dummy_rx = tmp;
1413 if (max_tx || max_rx) {
1414 list_for_each_entry(xfer, &msg->transfers,
1419 xfer->tx_buf = ctlr->dummy_tx;
1421 xfer->rx_buf = ctlr->dummy_rx;
1426 return __spi_map_msg(ctlr, msg);
1429 static int spi_transfer_wait(struct spi_controller *ctlr,
1430 struct spi_message *msg,
1431 struct spi_transfer *xfer)
1433 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1434 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1435 u32 speed_hz = xfer->speed_hz;
1436 unsigned long long ms;
1438 if (spi_controller_is_slave(ctlr)) {
1439 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1440 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1448 * For each byte we wait for 8 cycles of the SPI clock.
1449 * Since speed is defined in Hz and we want milliseconds,
1450 * use respective multiplier, but before the division,
1451 * otherwise we may get 0 for short transfers.
1453 ms = 8LL * MSEC_PER_SEC * xfer->len;
1454 do_div(ms, speed_hz);
1457 * Increase it twice and add 200 ms tolerance, use
1458 * predefined maximum in case of overflow.
1464 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1465 msecs_to_jiffies(ms));
1468 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1469 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1470 dev_err(&msg->spi->dev,
1471 "SPI transfer timed out\n");
1475 if (xfer->error & SPI_TRANS_FAIL_IO)
1482 static void _spi_transfer_delay_ns(u32 ns)
1486 if (ns <= NSEC_PER_USEC) {
1489 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1494 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1498 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1500 u32 delay = _delay->value;
1501 u32 unit = _delay->unit;
1508 case SPI_DELAY_UNIT_USECS:
1509 delay *= NSEC_PER_USEC;
1511 case SPI_DELAY_UNIT_NSECS:
1512 /* Nothing to do here */
1514 case SPI_DELAY_UNIT_SCK:
1515 /* Clock cycles need to be obtained from spi_transfer */
1519 * If there is unknown effective speed, approximate it
1520 * by underestimating with half of the requested Hz.
1522 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1526 /* Convert delay to nanoseconds */
1527 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1535 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1537 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1546 delay = spi_delay_to_ns(_delay, xfer);
1550 _spi_transfer_delay_ns(delay);
1554 EXPORT_SYMBOL_GPL(spi_delay_exec);
1556 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1557 struct spi_transfer *xfer)
1559 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1560 u32 delay = xfer->cs_change_delay.value;
1561 u32 unit = xfer->cs_change_delay.unit;
1564 /* Return early on "fast" mode - for everything but USECS */
1566 if (unit == SPI_DELAY_UNIT_USECS)
1567 _spi_transfer_delay_ns(default_delay_ns);
1571 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1573 dev_err_once(&msg->spi->dev,
1574 "Use of unsupported delay unit %i, using default of %luus\n",
1575 unit, default_delay_ns / NSEC_PER_USEC);
1576 _spi_transfer_delay_ns(default_delay_ns);
1580 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1581 struct spi_transfer *xfer)
1583 _spi_transfer_cs_change_delay(msg, xfer);
1585 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1588 * spi_transfer_one_message - Default implementation of transfer_one_message()
1590 * This is a standard implementation of transfer_one_message() for
1591 * drivers which implement a transfer_one() operation. It provides
1592 * standard handling of delays and chip select management.
1594 static int spi_transfer_one_message(struct spi_controller *ctlr,
1595 struct spi_message *msg)
1597 struct spi_transfer *xfer;
1598 bool keep_cs = false;
1600 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1601 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1603 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1604 spi_set_cs(msg->spi, !xfer->cs_off, false);
1606 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1607 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1609 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1610 trace_spi_transfer_start(msg, xfer);
1612 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1613 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1615 if (!ctlr->ptp_sts_supported) {
1616 xfer->ptp_sts_word_pre = 0;
1617 ptp_read_system_prets(xfer->ptp_sts);
1620 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1621 reinit_completion(&ctlr->xfer_completion);
1624 spi_dma_sync_for_device(ctlr, xfer);
1625 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1627 spi_dma_sync_for_cpu(ctlr, xfer);
1629 if (ctlr->cur_msg_mapped &&
1630 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1631 __spi_unmap_msg(ctlr, msg);
1632 ctlr->fallback = true;
1633 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1637 SPI_STATISTICS_INCREMENT_FIELD(statm,
1639 SPI_STATISTICS_INCREMENT_FIELD(stats,
1641 dev_err(&msg->spi->dev,
1642 "SPI transfer failed: %d\n", ret);
1647 ret = spi_transfer_wait(ctlr, msg, xfer);
1652 spi_dma_sync_for_cpu(ctlr, xfer);
1655 dev_err(&msg->spi->dev,
1656 "Bufferless transfer has length %u\n",
1660 if (!ctlr->ptp_sts_supported) {
1661 ptp_read_system_postts(xfer->ptp_sts);
1662 xfer->ptp_sts_word_post = xfer->len;
1665 trace_spi_transfer_stop(msg, xfer);
1667 if (msg->status != -EINPROGRESS)
1670 spi_transfer_delay_exec(xfer);
1672 if (xfer->cs_change) {
1673 if (list_is_last(&xfer->transfer_list,
1678 spi_set_cs(msg->spi, false, false);
1679 _spi_transfer_cs_change_delay(msg, xfer);
1680 if (!list_next_entry(xfer, transfer_list)->cs_off)
1681 spi_set_cs(msg->spi, true, false);
1683 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1684 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1685 spi_set_cs(msg->spi, xfer->cs_off, false);
1688 msg->actual_length += xfer->len;
1692 if (ret != 0 || !keep_cs)
1693 spi_set_cs(msg->spi, false, false);
1695 if (msg->status == -EINPROGRESS)
1698 if (msg->status && ctlr->handle_err)
1699 ctlr->handle_err(ctlr, msg);
1701 spi_finalize_current_message(ctlr);
1707 * spi_finalize_current_transfer - report completion of a transfer
1708 * @ctlr: the controller reporting completion
1710 * Called by SPI drivers using the core transfer_one_message()
1711 * implementation to notify it that the current interrupt driven
1712 * transfer has finished and the next one may be scheduled.
1714 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1716 complete(&ctlr->xfer_completion);
1718 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1720 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1722 if (ctlr->auto_runtime_pm) {
1723 pm_runtime_mark_last_busy(ctlr->dev.parent);
1724 pm_runtime_put_autosuspend(ctlr->dev.parent);
1728 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1729 struct spi_message *msg, bool was_busy)
1731 struct spi_transfer *xfer;
1734 if (!was_busy && ctlr->auto_runtime_pm) {
1735 ret = pm_runtime_get_sync(ctlr->dev.parent);
1737 pm_runtime_put_noidle(ctlr->dev.parent);
1738 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1742 spi_finalize_current_message(ctlr);
1749 trace_spi_controller_busy(ctlr);
1751 if (!was_busy && ctlr->prepare_transfer_hardware) {
1752 ret = ctlr->prepare_transfer_hardware(ctlr);
1755 "failed to prepare transfer hardware: %d\n",
1758 if (ctlr->auto_runtime_pm)
1759 pm_runtime_put(ctlr->dev.parent);
1762 spi_finalize_current_message(ctlr);
1768 trace_spi_message_start(msg);
1770 if (ctlr->prepare_message) {
1771 ret = ctlr->prepare_message(ctlr, msg);
1773 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1776 spi_finalize_current_message(ctlr);
1779 msg->prepared = true;
1782 ret = spi_map_msg(ctlr, msg);
1785 spi_finalize_current_message(ctlr);
1789 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1790 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1791 xfer->ptp_sts_word_pre = 0;
1792 ptp_read_system_prets(xfer->ptp_sts);
1797 * Drivers implementation of transfer_one_message() must arrange for
1798 * spi_finalize_current_message() to get called. Most drivers will do
1799 * this in the calling context, but some don't. For those cases, a
1800 * completion is used to guarantee that this function does not return
1801 * until spi_finalize_current_message() is done accessing
1803 * Use of the following two flags enable to opportunistically skip the
1804 * use of the completion since its use involves expensive spin locks.
1805 * In case of a race with the context that calls
1806 * spi_finalize_current_message() the completion will always be used,
1807 * due to strict ordering of these flags using barriers.
1809 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1810 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1811 reinit_completion(&ctlr->cur_msg_completion);
1812 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1814 ret = ctlr->transfer_one_message(ctlr, msg);
1817 "failed to transfer one message from queue\n");
1821 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1822 smp_mb(); /* See spi_finalize_current_message()... */
1823 if (READ_ONCE(ctlr->cur_msg_incomplete))
1824 wait_for_completion(&ctlr->cur_msg_completion);
1830 * __spi_pump_messages - function which processes SPI message queue
1831 * @ctlr: controller to process queue for
1832 * @in_kthread: true if we are in the context of the message pump thread
1834 * This function checks if there is any SPI message in the queue that
1835 * needs processing and if so call out to the driver to initialize hardware
1836 * and transfer each message.
1838 * Note that it is called both from the kthread itself and also from
1839 * inside spi_sync(); the queue extraction handling at the top of the
1840 * function should deal with this safely.
1842 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1844 struct spi_message *msg;
1845 bool was_busy = false;
1846 unsigned long flags;
1849 /* Take the I/O mutex */
1850 mutex_lock(&ctlr->io_mutex);
1853 spin_lock_irqsave(&ctlr->queue_lock, flags);
1855 /* Make sure we are not already running a message */
1859 /* Check if the queue is idle */
1860 if (list_empty(&ctlr->queue) || !ctlr->running) {
1864 /* Defer any non-atomic teardown to the thread */
1866 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1867 !ctlr->unprepare_transfer_hardware) {
1868 spi_idle_runtime_pm(ctlr);
1870 ctlr->queue_empty = true;
1871 trace_spi_controller_idle(ctlr);
1873 kthread_queue_work(ctlr->kworker,
1874 &ctlr->pump_messages);
1880 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1882 kfree(ctlr->dummy_rx);
1883 ctlr->dummy_rx = NULL;
1884 kfree(ctlr->dummy_tx);
1885 ctlr->dummy_tx = NULL;
1886 if (ctlr->unprepare_transfer_hardware &&
1887 ctlr->unprepare_transfer_hardware(ctlr))
1889 "failed to unprepare transfer hardware\n");
1890 spi_idle_runtime_pm(ctlr);
1891 trace_spi_controller_idle(ctlr);
1893 spin_lock_irqsave(&ctlr->queue_lock, flags);
1894 ctlr->queue_empty = true;
1898 /* Extract head of queue */
1899 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1900 ctlr->cur_msg = msg;
1902 list_del_init(&msg->queue);
1907 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1909 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1910 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1912 ctlr->cur_msg = NULL;
1913 ctlr->fallback = false;
1915 mutex_unlock(&ctlr->io_mutex);
1917 /* Prod the scheduler in case transfer_one() was busy waiting */
1923 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1924 mutex_unlock(&ctlr->io_mutex);
1928 * spi_pump_messages - kthread work function which processes spi message queue
1929 * @work: pointer to kthread work struct contained in the controller struct
1931 static void spi_pump_messages(struct kthread_work *work)
1933 struct spi_controller *ctlr =
1934 container_of(work, struct spi_controller, pump_messages);
1936 __spi_pump_messages(ctlr, true);
1940 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1941 * @ctlr: Pointer to the spi_controller structure of the driver
1942 * @xfer: Pointer to the transfer being timestamped
1943 * @progress: How many words (not bytes) have been transferred so far
1944 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1945 * transfer, for less jitter in time measurement. Only compatible
1946 * with PIO drivers. If true, must follow up with
1947 * spi_take_timestamp_post or otherwise system will crash.
1948 * WARNING: for fully predictable results, the CPU frequency must
1949 * also be under control (governor).
1951 * This is a helper for drivers to collect the beginning of the TX timestamp
1952 * for the requested byte from the SPI transfer. The frequency with which this
1953 * function must be called (once per word, once for the whole transfer, once
1954 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1955 * greater than or equal to the requested byte at the time of the call. The
1956 * timestamp is only taken once, at the first such call. It is assumed that
1957 * the driver advances its @tx buffer pointer monotonically.
1959 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1960 struct spi_transfer *xfer,
1961 size_t progress, bool irqs_off)
1966 if (xfer->timestamped)
1969 if (progress > xfer->ptp_sts_word_pre)
1972 /* Capture the resolution of the timestamp */
1973 xfer->ptp_sts_word_pre = progress;
1976 local_irq_save(ctlr->irq_flags);
1980 ptp_read_system_prets(xfer->ptp_sts);
1982 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1985 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1986 * @ctlr: Pointer to the spi_controller structure of the driver
1987 * @xfer: Pointer to the transfer being timestamped
1988 * @progress: How many words (not bytes) have been transferred so far
1989 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1991 * This is a helper for drivers to collect the end of the TX timestamp for
1992 * the requested byte from the SPI transfer. Can be called with an arbitrary
1993 * frequency: only the first call where @tx exceeds or is equal to the
1994 * requested word will be timestamped.
1996 void spi_take_timestamp_post(struct spi_controller *ctlr,
1997 struct spi_transfer *xfer,
1998 size_t progress, bool irqs_off)
2003 if (xfer->timestamped)
2006 if (progress < xfer->ptp_sts_word_post)
2009 ptp_read_system_postts(xfer->ptp_sts);
2012 local_irq_restore(ctlr->irq_flags);
2016 /* Capture the resolution of the timestamp */
2017 xfer->ptp_sts_word_post = progress;
2019 xfer->timestamped = 1;
2021 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2024 * spi_set_thread_rt - set the controller to pump at realtime priority
2025 * @ctlr: controller to boost priority of
2027 * This can be called because the controller requested realtime priority
2028 * (by setting the ->rt value before calling spi_register_controller()) or
2029 * because a device on the bus said that its transfers needed realtime
2032 * NOTE: at the moment if any device on a bus says it needs realtime then
2033 * the thread will be at realtime priority for all transfers on that
2034 * controller. If this eventually becomes a problem we may see if we can
2035 * find a way to boost the priority only temporarily during relevant
2038 static void spi_set_thread_rt(struct spi_controller *ctlr)
2040 dev_info(&ctlr->dev,
2041 "will run message pump with realtime priority\n");
2042 sched_set_fifo(ctlr->kworker->task);
2045 static int spi_init_queue(struct spi_controller *ctlr)
2047 ctlr->running = false;
2049 ctlr->queue_empty = true;
2051 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2052 if (IS_ERR(ctlr->kworker)) {
2053 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2054 return PTR_ERR(ctlr->kworker);
2057 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2060 * Controller config will indicate if this controller should run the
2061 * message pump with high (realtime) priority to reduce the transfer
2062 * latency on the bus by minimising the delay between a transfer
2063 * request and the scheduling of the message pump thread. Without this
2064 * setting the message pump thread will remain at default priority.
2067 spi_set_thread_rt(ctlr);
2073 * spi_get_next_queued_message() - called by driver to check for queued
2075 * @ctlr: the controller to check for queued messages
2077 * If there are more messages in the queue, the next message is returned from
2080 * Return: the next message in the queue, else NULL if the queue is empty.
2082 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2084 struct spi_message *next;
2085 unsigned long flags;
2087 /* Get a pointer to the next message, if any */
2088 spin_lock_irqsave(&ctlr->queue_lock, flags);
2089 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2091 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2095 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2098 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2099 * and spi_maybe_unoptimize_message()
2100 * @msg: the message to unoptimize
2102 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2103 * core should use spi_maybe_unoptimize_message() rather than calling this
2104 * function directly.
2106 * It is not valid to call this on a message that is not currently optimized.
2108 static void __spi_unoptimize_message(struct spi_message *msg)
2110 struct spi_controller *ctlr = msg->spi->controller;
2112 if (ctlr->unoptimize_message)
2113 ctlr->unoptimize_message(msg);
2115 spi_res_release(ctlr, msg);
2117 msg->optimized = false;
2118 msg->opt_state = NULL;
2122 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2123 * @msg: the message to unoptimize
2125 * This function is used to unoptimize a message if and only if it was
2126 * optimized by the core (via spi_maybe_optimize_message()).
2128 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2130 if (!msg->pre_optimized && msg->optimized)
2131 __spi_unoptimize_message(msg);
2135 * spi_finalize_current_message() - the current message is complete
2136 * @ctlr: the controller to return the message to
2138 * Called by the driver to notify the core that the message in the front of the
2139 * queue is complete and can be removed from the queue.
2141 void spi_finalize_current_message(struct spi_controller *ctlr)
2143 struct spi_transfer *xfer;
2144 struct spi_message *mesg;
2147 mesg = ctlr->cur_msg;
2149 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2150 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2151 ptp_read_system_postts(xfer->ptp_sts);
2152 xfer->ptp_sts_word_post = xfer->len;
2156 if (unlikely(ctlr->ptp_sts_supported))
2157 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2158 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2160 spi_unmap_msg(ctlr, mesg);
2162 if (mesg->prepared && ctlr->unprepare_message) {
2163 ret = ctlr->unprepare_message(ctlr, mesg);
2165 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2170 mesg->prepared = false;
2172 spi_maybe_unoptimize_message(mesg);
2174 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2175 smp_mb(); /* See __spi_pump_transfer_message()... */
2176 if (READ_ONCE(ctlr->cur_msg_need_completion))
2177 complete(&ctlr->cur_msg_completion);
2179 trace_spi_message_done(mesg);
2183 mesg->complete(mesg->context);
2185 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2187 static int spi_start_queue(struct spi_controller *ctlr)
2189 unsigned long flags;
2191 spin_lock_irqsave(&ctlr->queue_lock, flags);
2193 if (ctlr->running || ctlr->busy) {
2194 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2198 ctlr->running = true;
2199 ctlr->cur_msg = NULL;
2200 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2202 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2207 static int spi_stop_queue(struct spi_controller *ctlr)
2209 unsigned long flags;
2210 unsigned limit = 500;
2213 spin_lock_irqsave(&ctlr->queue_lock, flags);
2216 * This is a bit lame, but is optimized for the common execution path.
2217 * A wait_queue on the ctlr->busy could be used, but then the common
2218 * execution path (pump_messages) would be required to call wake_up or
2219 * friends on every SPI message. Do this instead.
2221 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2222 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2223 usleep_range(10000, 11000);
2224 spin_lock_irqsave(&ctlr->queue_lock, flags);
2227 if (!list_empty(&ctlr->queue) || ctlr->busy)
2230 ctlr->running = false;
2232 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2237 static int spi_destroy_queue(struct spi_controller *ctlr)
2241 ret = spi_stop_queue(ctlr);
2244 * kthread_flush_worker will block until all work is done.
2245 * If the reason that stop_queue timed out is that the work will never
2246 * finish, then it does no good to call flush/stop thread, so
2250 dev_err(&ctlr->dev, "problem destroying queue\n");
2254 kthread_destroy_worker(ctlr->kworker);
2259 static int __spi_queued_transfer(struct spi_device *spi,
2260 struct spi_message *msg,
2263 struct spi_controller *ctlr = spi->controller;
2264 unsigned long flags;
2266 spin_lock_irqsave(&ctlr->queue_lock, flags);
2268 if (!ctlr->running) {
2269 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2272 msg->actual_length = 0;
2273 msg->status = -EINPROGRESS;
2275 list_add_tail(&msg->queue, &ctlr->queue);
2276 ctlr->queue_empty = false;
2277 if (!ctlr->busy && need_pump)
2278 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2285 * spi_queued_transfer - transfer function for queued transfers
2286 * @spi: SPI device which is requesting transfer
2287 * @msg: SPI message which is to handled is queued to driver queue
2289 * Return: zero on success, else a negative error code.
2291 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 return __spi_queued_transfer(spi, msg, true);
2296 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2300 ctlr->transfer = spi_queued_transfer;
2301 if (!ctlr->transfer_one_message)
2302 ctlr->transfer_one_message = spi_transfer_one_message;
2304 /* Initialize and start queue */
2305 ret = spi_init_queue(ctlr);
2307 dev_err(&ctlr->dev, "problem initializing queue\n");
2308 goto err_init_queue;
2310 ctlr->queued = true;
2311 ret = spi_start_queue(ctlr);
2313 dev_err(&ctlr->dev, "problem starting queue\n");
2314 goto err_start_queue;
2320 spi_destroy_queue(ctlr);
2326 * spi_flush_queue - Send all pending messages in the queue from the callers'
2328 * @ctlr: controller to process queue for
2330 * This should be used when one wants to ensure all pending messages have been
2331 * sent before doing something. Is used by the spi-mem code to make sure SPI
2332 * memory operations do not preempt regular SPI transfers that have been queued
2333 * before the spi-mem operation.
2335 void spi_flush_queue(struct spi_controller *ctlr)
2337 if (ctlr->transfer == spi_queued_transfer)
2338 __spi_pump_messages(ctlr, false);
2341 /*-------------------------------------------------------------------------*/
2343 #if defined(CONFIG_OF)
2344 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2345 struct spi_delay *delay, const char *prop)
2349 if (!of_property_read_u32(nc, prop, &value)) {
2350 if (value > U16_MAX) {
2351 delay->value = DIV_ROUND_UP(value, 1000);
2352 delay->unit = SPI_DELAY_UNIT_USECS;
2354 delay->value = value;
2355 delay->unit = SPI_DELAY_UNIT_NSECS;
2360 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2361 struct device_node *nc)
2363 u32 value, cs[SPI_CS_CNT_MAX];
2366 /* Mode (clock phase/polarity/etc.) */
2367 if (of_property_read_bool(nc, "spi-cpha"))
2368 spi->mode |= SPI_CPHA;
2369 if (of_property_read_bool(nc, "spi-cpol"))
2370 spi->mode |= SPI_CPOL;
2371 if (of_property_read_bool(nc, "spi-3wire"))
2372 spi->mode |= SPI_3WIRE;
2373 if (of_property_read_bool(nc, "spi-lsb-first"))
2374 spi->mode |= SPI_LSB_FIRST;
2375 if (of_property_read_bool(nc, "spi-cs-high"))
2376 spi->mode |= SPI_CS_HIGH;
2378 /* Device DUAL/QUAD mode */
2379 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2382 spi->mode |= SPI_NO_TX;
2387 spi->mode |= SPI_TX_DUAL;
2390 spi->mode |= SPI_TX_QUAD;
2393 spi->mode |= SPI_TX_OCTAL;
2396 dev_warn(&ctlr->dev,
2397 "spi-tx-bus-width %d not supported\n",
2403 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2406 spi->mode |= SPI_NO_RX;
2411 spi->mode |= SPI_RX_DUAL;
2414 spi->mode |= SPI_RX_QUAD;
2417 spi->mode |= SPI_RX_OCTAL;
2420 dev_warn(&ctlr->dev,
2421 "spi-rx-bus-width %d not supported\n",
2427 if (spi_controller_is_slave(ctlr)) {
2428 if (!of_node_name_eq(nc, "slave")) {
2429 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2436 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2437 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2441 spi_set_all_cs_unused(spi);
2443 /* Device address */
2444 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2447 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2451 if (rc > ctlr->num_chipselect) {
2452 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2456 if ((of_property_read_bool(nc, "parallel-memories")) &&
2457 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2458 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2461 for (idx = 0; idx < rc; idx++)
2462 spi_set_chipselect(spi, idx, cs[idx]);
2465 * By default spi->chip_select[0] will hold the physical CS number,
2466 * so set bit 0 in spi->cs_index_mask.
2468 spi->cs_index_mask = BIT(0);
2471 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2472 spi->max_speed_hz = value;
2474 /* Device CS delays */
2475 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2482 static struct spi_device *
2483 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 struct spi_device *spi;
2488 /* Alloc an spi_device */
2489 spi = spi_alloc_device(ctlr);
2491 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2496 /* Select device driver */
2497 rc = of_alias_from_compatible(nc, spi->modalias,
2498 sizeof(spi->modalias));
2500 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2504 rc = of_spi_parse_dt(ctlr, spi, nc);
2508 /* Store a pointer to the node in the device structure */
2511 device_set_node(&spi->dev, of_fwnode_handle(nc));
2513 /* Register the new device */
2514 rc = spi_add_device(spi);
2516 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2517 goto err_of_node_put;
2530 * of_register_spi_devices() - Register child devices onto the SPI bus
2531 * @ctlr: Pointer to spi_controller device
2533 * Registers an spi_device for each child node of controller node which
2534 * represents a valid SPI slave.
2536 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 struct spi_device *spi;
2539 struct device_node *nc;
2541 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2542 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544 spi = of_register_spi_device(ctlr, nc);
2546 dev_warn(&ctlr->dev,
2547 "Failed to create SPI device for %pOF\n", nc);
2548 of_node_clear_flag(nc, OF_POPULATED);
2553 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2557 * spi_new_ancillary_device() - Register ancillary SPI device
2558 * @spi: Pointer to the main SPI device registering the ancillary device
2559 * @chip_select: Chip Select of the ancillary device
2561 * Register an ancillary SPI device; for example some chips have a chip-select
2562 * for normal device usage and another one for setup/firmware upload.
2564 * This may only be called from main SPI device's probe routine.
2566 * Return: 0 on success; negative errno on failure
2568 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2571 struct spi_controller *ctlr = spi->controller;
2572 struct spi_device *ancillary;
2575 /* Alloc an spi_device */
2576 ancillary = spi_alloc_device(ctlr);
2582 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584 /* Use provided chip-select for ancillary device */
2585 spi_set_all_cs_unused(ancillary);
2586 spi_set_chipselect(ancillary, 0, chip_select);
2588 /* Take over SPI mode/speed from SPI main device */
2589 ancillary->max_speed_hz = spi->max_speed_hz;
2590 ancillary->mode = spi->mode;
2592 * By default spi->chip_select[0] will hold the physical CS number,
2593 * so set bit 0 in spi->cs_index_mask.
2595 ancillary->cs_index_mask = BIT(0);
2597 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599 /* Register the new device */
2600 rc = __spi_add_device(ancillary);
2602 dev_err(&spi->dev, "failed to register ancillary device\n");
2609 spi_dev_put(ancillary);
2612 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2615 struct acpi_spi_lookup {
2616 struct spi_controller *ctlr;
2626 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 struct acpi_resource_spi_serialbus *sb;
2631 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2634 sb = &ares->data.spi_serial_bus;
2635 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2638 *count = *count + 1;
2644 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2645 * @adev: ACPI device
2647 * Return: the number of SpiSerialBus resources in the ACPI-device's
2648 * resource-list; or a negative error code.
2650 int acpi_spi_count_resources(struct acpi_device *adev)
2656 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2660 acpi_dev_free_resource_list(&r);
2664 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2667 struct acpi_spi_lookup *lookup)
2669 const union acpi_object *obj;
2671 if (!x86_apple_machine)
2674 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2675 && obj->buffer.length >= 4)
2676 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2679 && obj->buffer.length == 8)
2680 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2683 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2684 lookup->mode |= SPI_LSB_FIRST;
2686 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2687 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2688 lookup->mode |= SPI_CPOL;
2690 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2691 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2692 lookup->mode |= SPI_CPHA;
2695 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 struct acpi_spi_lookup *lookup = data;
2698 struct spi_controller *ctlr = lookup->ctlr;
2700 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2701 struct acpi_resource_spi_serialbus *sb;
2702 acpi_handle parent_handle;
2705 sb = &ares->data.spi_serial_bus;
2706 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708 if (lookup->index != -1 && lookup->n++ != lookup->index)
2711 status = acpi_get_handle(NULL,
2712 sb->resource_source.string_ptr,
2715 if (ACPI_FAILURE(status))
2719 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2722 struct acpi_device *adev;
2724 adev = acpi_fetch_acpi_dev(parent_handle);
2728 ctlr = acpi_spi_find_controller_by_adev(adev);
2730 return -EPROBE_DEFER;
2732 lookup->ctlr = ctlr;
2736 * ACPI DeviceSelection numbering is handled by the
2737 * host controller driver in Windows and can vary
2738 * from driver to driver. In Linux we always expect
2739 * 0 .. max - 1 so we need to ask the driver to
2740 * translate between the two schemes.
2742 if (ctlr->fw_translate_cs) {
2743 int cs = ctlr->fw_translate_cs(ctlr,
2744 sb->device_selection);
2747 lookup->chip_select = cs;
2749 lookup->chip_select = sb->device_selection;
2752 lookup->max_speed_hz = sb->connection_speed;
2753 lookup->bits_per_word = sb->data_bit_length;
2755 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2756 lookup->mode |= SPI_CPHA;
2757 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2758 lookup->mode |= SPI_CPOL;
2759 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2760 lookup->mode |= SPI_CS_HIGH;
2762 } else if (lookup->irq < 0) {
2765 if (acpi_dev_resource_interrupt(ares, 0, &r))
2766 lookup->irq = r.start;
2769 /* Always tell the ACPI core to skip this resource */
2774 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2775 * @ctlr: controller to which the spi device belongs
2776 * @adev: ACPI Device for the spi device
2777 * @index: Index of the spi resource inside the ACPI Node
2779 * This should be used to allocate a new SPI device from and ACPI Device node.
2780 * The caller is responsible for calling spi_add_device to register the SPI device.
2782 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2783 * using the resource.
2784 * If index is set to -1, index is not used.
2785 * Note: If index is -1, ctlr must be set.
2787 * Return: a pointer to the new device, or ERR_PTR on error.
2789 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2790 struct acpi_device *adev,
2793 acpi_handle parent_handle = NULL;
2794 struct list_head resource_list;
2795 struct acpi_spi_lookup lookup = {};
2796 struct spi_device *spi;
2799 if (!ctlr && index == -1)
2800 return ERR_PTR(-EINVAL);
2804 lookup.index = index;
2807 INIT_LIST_HEAD(&resource_list);
2808 ret = acpi_dev_get_resources(adev, &resource_list,
2809 acpi_spi_add_resource, &lookup);
2810 acpi_dev_free_resource_list(&resource_list);
2813 /* Found SPI in _CRS but it points to another controller */
2814 return ERR_PTR(ret);
2816 if (!lookup.max_speed_hz &&
2817 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2818 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2819 /* Apple does not use _CRS but nested devices for SPI slaves */
2820 acpi_spi_parse_apple_properties(adev, &lookup);
2823 if (!lookup.max_speed_hz)
2824 return ERR_PTR(-ENODEV);
2826 spi = spi_alloc_device(lookup.ctlr);
2828 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2829 dev_name(&adev->dev));
2830 return ERR_PTR(-ENOMEM);
2833 spi_set_all_cs_unused(spi);
2834 spi_set_chipselect(spi, 0, lookup.chip_select);
2836 ACPI_COMPANION_SET(&spi->dev, adev);
2837 spi->max_speed_hz = lookup.max_speed_hz;
2838 spi->mode |= lookup.mode;
2839 spi->irq = lookup.irq;
2840 spi->bits_per_word = lookup.bits_per_word;
2842 * By default spi->chip_select[0] will hold the physical CS number,
2843 * so set bit 0 in spi->cs_index_mask.
2845 spi->cs_index_mask = BIT(0);
2849 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2852 struct acpi_device *adev)
2854 struct spi_device *spi;
2856 if (acpi_bus_get_status(adev) || !adev->status.present ||
2857 acpi_device_enumerated(adev))
2860 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862 if (PTR_ERR(spi) == -ENOMEM)
2863 return AE_NO_MEMORY;
2868 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2869 sizeof(spi->modalias));
2872 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2874 acpi_device_set_enumerated(adev);
2876 adev->power.flags.ignore_parent = true;
2877 if (spi_add_device(spi)) {
2878 adev->power.flags.ignore_parent = false;
2879 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2880 dev_name(&adev->dev));
2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2888 void *data, void **return_value)
2890 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2891 struct spi_controller *ctlr = data;
2896 return acpi_register_spi_device(ctlr, adev);
2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2901 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906 handle = ACPI_HANDLE(ctlr->dev.parent);
2910 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2911 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2912 acpi_spi_add_device, NULL, ctlr, NULL);
2913 if (ACPI_FAILURE(status))
2914 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2918 #endif /* CONFIG_ACPI */
2920 static void spi_controller_release(struct device *dev)
2922 struct spi_controller *ctlr;
2924 ctlr = container_of(dev, struct spi_controller, dev);
2928 static struct class spi_master_class = {
2929 .name = "spi_master",
2930 .dev_release = spi_controller_release,
2931 .dev_groups = spi_master_groups,
2934 #ifdef CONFIG_SPI_SLAVE
2936 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2938 * @spi: device used for the current transfer
2940 int spi_slave_abort(struct spi_device *spi)
2942 struct spi_controller *ctlr = spi->controller;
2944 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2945 return ctlr->slave_abort(ctlr);
2949 EXPORT_SYMBOL_GPL(spi_slave_abort);
2951 int spi_target_abort(struct spi_device *spi)
2953 struct spi_controller *ctlr = spi->controller;
2955 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2956 return ctlr->target_abort(ctlr);
2960 EXPORT_SYMBOL_GPL(spi_target_abort);
2962 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2965 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967 struct device *child;
2969 child = device_find_any_child(&ctlr->dev);
2970 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2973 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2974 const char *buf, size_t count)
2976 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2978 struct spi_device *spi;
2979 struct device *child;
2983 rc = sscanf(buf, "%31s", name);
2984 if (rc != 1 || !name[0])
2987 child = device_find_any_child(&ctlr->dev);
2989 /* Remove registered slave */
2990 device_unregister(child);
2994 if (strcmp(name, "(null)")) {
2995 /* Register new slave */
2996 spi = spi_alloc_device(ctlr);
3000 strscpy(spi->modalias, name, sizeof(spi->modalias));
3002 rc = spi_add_device(spi);
3012 static DEVICE_ATTR_RW(slave);
3014 static struct attribute *spi_slave_attrs[] = {
3015 &dev_attr_slave.attr,
3019 static const struct attribute_group spi_slave_group = {
3020 .attrs = spi_slave_attrs,
3023 static const struct attribute_group *spi_slave_groups[] = {
3024 &spi_controller_statistics_group,
3029 static struct class spi_slave_class = {
3030 .name = "spi_slave",
3031 .dev_release = spi_controller_release,
3032 .dev_groups = spi_slave_groups,
3035 extern struct class spi_slave_class; /* dummy */
3039 * __spi_alloc_controller - allocate an SPI master or slave controller
3040 * @dev: the controller, possibly using the platform_bus
3041 * @size: how much zeroed driver-private data to allocate; the pointer to this
3042 * memory is in the driver_data field of the returned device, accessible
3043 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3044 * drivers granting DMA access to portions of their private data need to
3045 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3046 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3047 * slave (true) controller
3048 * Context: can sleep
3050 * This call is used only by SPI controller drivers, which are the
3051 * only ones directly touching chip registers. It's how they allocate
3052 * an spi_controller structure, prior to calling spi_register_controller().
3054 * This must be called from context that can sleep.
3056 * The caller is responsible for assigning the bus number and initializing the
3057 * controller's methods before calling spi_register_controller(); and (after
3058 * errors adding the device) calling spi_controller_put() to prevent a memory
3061 * Return: the SPI controller structure on success, else NULL.
3063 struct spi_controller *__spi_alloc_controller(struct device *dev,
3064 unsigned int size, bool slave)
3066 struct spi_controller *ctlr;
3067 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3072 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3076 device_initialize(&ctlr->dev);
3077 INIT_LIST_HEAD(&ctlr->queue);
3078 spin_lock_init(&ctlr->queue_lock);
3079 spin_lock_init(&ctlr->bus_lock_spinlock);
3080 mutex_init(&ctlr->bus_lock_mutex);
3081 mutex_init(&ctlr->io_mutex);
3082 mutex_init(&ctlr->add_lock);
3084 ctlr->num_chipselect = 1;
3085 ctlr->slave = slave;
3086 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3087 ctlr->dev.class = &spi_slave_class;
3089 ctlr->dev.class = &spi_master_class;
3090 ctlr->dev.parent = dev;
3091 pm_suspend_ignore_children(&ctlr->dev, true);
3092 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3096 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3098 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3100 spi_controller_put(*(struct spi_controller **)ctlr);
3104 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3105 * @dev: physical device of SPI controller
3106 * @size: how much zeroed driver-private data to allocate
3107 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3108 * Context: can sleep
3110 * Allocate an SPI controller and automatically release a reference on it
3111 * when @dev is unbound from its driver. Drivers are thus relieved from
3112 * having to call spi_controller_put().
3114 * The arguments to this function are identical to __spi_alloc_controller().
3116 * Return: the SPI controller structure on success, else NULL.
3118 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3122 struct spi_controller **ptr, *ctlr;
3124 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3129 ctlr = __spi_alloc_controller(dev, size, slave);
3131 ctlr->devm_allocated = true;
3133 devres_add(dev, ptr);
3140 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3143 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3144 * @ctlr: The SPI master to grab GPIO descriptors for
3146 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3149 struct gpio_desc **cs;
3150 struct device *dev = &ctlr->dev;
3151 unsigned long native_cs_mask = 0;
3152 unsigned int num_cs_gpios = 0;
3154 nb = gpiod_count(dev, "cs");
3156 /* No GPIOs at all is fine, else return the error */
3162 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3164 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3168 ctlr->cs_gpiods = cs;
3170 for (i = 0; i < nb; i++) {
3172 * Most chipselects are active low, the inverted
3173 * semantics are handled by special quirks in gpiolib,
3174 * so initializing them GPIOD_OUT_LOW here means
3175 * "unasserted", in most cases this will drive the physical
3178 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3181 return PTR_ERR(cs[i]);
3185 * If we find a CS GPIO, name it after the device and
3190 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3194 gpiod_set_consumer_name(cs[i], gpioname);
3199 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3200 dev_err(dev, "Invalid native chip select %d\n", i);
3203 native_cs_mask |= BIT(i);
3206 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3208 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3209 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3210 dev_err(dev, "No unused native chip select available\n");
3217 static int spi_controller_check_ops(struct spi_controller *ctlr)
3220 * The controller may implement only the high-level SPI-memory like
3221 * operations if it does not support regular SPI transfers, and this is
3223 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3224 * one of the ->transfer_xxx() method be implemented.
3226 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3227 if (!ctlr->transfer && !ctlr->transfer_one &&
3228 !ctlr->transfer_one_message) {
3236 /* Allocate dynamic bus number using Linux idr */
3237 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3241 mutex_lock(&board_lock);
3242 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3243 mutex_unlock(&board_lock);
3244 if (WARN(id < 0, "couldn't get idr"))
3245 return id == -ENOSPC ? -EBUSY : id;
3251 * spi_register_controller - register SPI master or slave controller
3252 * @ctlr: initialized master, originally from spi_alloc_master() or
3254 * Context: can sleep
3256 * SPI controllers connect to their drivers using some non-SPI bus,
3257 * such as the platform bus. The final stage of probe() in that code
3258 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3260 * SPI controllers use board specific (often SOC specific) bus numbers,
3261 * and board-specific addressing for SPI devices combines those numbers
3262 * with chip select numbers. Since SPI does not directly support dynamic
3263 * device identification, boards need configuration tables telling which
3264 * chip is at which address.
3266 * This must be called from context that can sleep. It returns zero on
3267 * success, else a negative error code (dropping the controller's refcount).
3268 * After a successful return, the caller is responsible for calling
3269 * spi_unregister_controller().
3271 * Return: zero on success, else a negative error code.
3273 int spi_register_controller(struct spi_controller *ctlr)
3275 struct device *dev = ctlr->dev.parent;
3276 struct boardinfo *bi;
3285 * Make sure all necessary hooks are implemented before registering
3286 * the SPI controller.
3288 status = spi_controller_check_ops(ctlr);
3292 if (ctlr->bus_num < 0)
3293 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3294 if (ctlr->bus_num >= 0) {
3295 /* Devices with a fixed bus num must check-in with the num */
3296 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3300 if (ctlr->bus_num < 0) {
3301 first_dynamic = of_alias_get_highest_id("spi");
3302 if (first_dynamic < 0)
3307 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3311 ctlr->bus_lock_flag = 0;
3312 init_completion(&ctlr->xfer_completion);
3313 init_completion(&ctlr->cur_msg_completion);
3314 if (!ctlr->max_dma_len)
3315 ctlr->max_dma_len = INT_MAX;
3318 * Register the device, then userspace will see it.
3319 * Registration fails if the bus ID is in use.
3321 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3323 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3324 status = spi_get_gpio_descs(ctlr);
3328 * A controller using GPIO descriptors always
3329 * supports SPI_CS_HIGH if need be.
3331 ctlr->mode_bits |= SPI_CS_HIGH;
3335 * Even if it's just one always-selected device, there must
3336 * be at least one chipselect.
3338 if (!ctlr->num_chipselect) {
3343 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3344 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3345 ctlr->last_cs[idx] = SPI_INVALID_CS;
3347 status = device_add(&ctlr->dev);
3350 dev_dbg(dev, "registered %s %s\n",
3351 spi_controller_is_slave(ctlr) ? "slave" : "master",
3352 dev_name(&ctlr->dev));
3355 * If we're using a queued driver, start the queue. Note that we don't
3356 * need the queueing logic if the driver is only supporting high-level
3357 * memory operations.
3359 if (ctlr->transfer) {
3360 dev_info(dev, "controller is unqueued, this is deprecated\n");
3361 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3362 status = spi_controller_initialize_queue(ctlr);
3364 device_del(&ctlr->dev);
3368 /* Add statistics */
3369 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3370 if (!ctlr->pcpu_statistics) {
3371 dev_err(dev, "Error allocating per-cpu statistics\n");
3376 mutex_lock(&board_lock);
3377 list_add_tail(&ctlr->list, &spi_controller_list);
3378 list_for_each_entry(bi, &board_list, list)
3379 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3380 mutex_unlock(&board_lock);
3382 /* Register devices from the device tree and ACPI */
3383 of_register_spi_devices(ctlr);
3384 acpi_register_spi_devices(ctlr);
3388 spi_destroy_queue(ctlr);
3390 mutex_lock(&board_lock);
3391 idr_remove(&spi_master_idr, ctlr->bus_num);
3392 mutex_unlock(&board_lock);
3395 EXPORT_SYMBOL_GPL(spi_register_controller);
3397 static void devm_spi_unregister(struct device *dev, void *res)
3399 spi_unregister_controller(*(struct spi_controller **)res);
3403 * devm_spi_register_controller - register managed SPI master or slave
3405 * @dev: device managing SPI controller
3406 * @ctlr: initialized controller, originally from spi_alloc_master() or
3408 * Context: can sleep
3410 * Register a SPI device as with spi_register_controller() which will
3411 * automatically be unregistered and freed.
3413 * Return: zero on success, else a negative error code.
3415 int devm_spi_register_controller(struct device *dev,
3416 struct spi_controller *ctlr)
3418 struct spi_controller **ptr;
3421 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3425 ret = spi_register_controller(ctlr);
3428 devres_add(dev, ptr);
3435 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3437 static int __unregister(struct device *dev, void *null)
3439 spi_unregister_device(to_spi_device(dev));
3444 * spi_unregister_controller - unregister SPI master or slave controller
3445 * @ctlr: the controller being unregistered
3446 * Context: can sleep
3448 * This call is used only by SPI controller drivers, which are the
3449 * only ones directly touching chip registers.
3451 * This must be called from context that can sleep.
3453 * Note that this function also drops a reference to the controller.
3455 void spi_unregister_controller(struct spi_controller *ctlr)
3457 struct spi_controller *found;
3458 int id = ctlr->bus_num;
3460 /* Prevent addition of new devices, unregister existing ones */
3461 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3462 mutex_lock(&ctlr->add_lock);
3464 device_for_each_child(&ctlr->dev, NULL, __unregister);
3466 /* First make sure that this controller was ever added */
3467 mutex_lock(&board_lock);
3468 found = idr_find(&spi_master_idr, id);
3469 mutex_unlock(&board_lock);
3471 if (spi_destroy_queue(ctlr))
3472 dev_err(&ctlr->dev, "queue remove failed\n");
3474 mutex_lock(&board_lock);
3475 list_del(&ctlr->list);
3476 mutex_unlock(&board_lock);
3478 device_del(&ctlr->dev);
3481 mutex_lock(&board_lock);
3483 idr_remove(&spi_master_idr, id);
3484 mutex_unlock(&board_lock);
3486 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3487 mutex_unlock(&ctlr->add_lock);
3490 * Release the last reference on the controller if its driver
3491 * has not yet been converted to devm_spi_alloc_master/slave().
3493 if (!ctlr->devm_allocated)
3494 put_device(&ctlr->dev);
3496 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3498 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3500 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3503 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3505 mutex_lock(&ctlr->bus_lock_mutex);
3506 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3507 mutex_unlock(&ctlr->bus_lock_mutex);
3510 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3512 mutex_lock(&ctlr->bus_lock_mutex);
3513 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3514 mutex_unlock(&ctlr->bus_lock_mutex);
3517 int spi_controller_suspend(struct spi_controller *ctlr)
3521 /* Basically no-ops for non-queued controllers */
3523 ret = spi_stop_queue(ctlr);
3525 dev_err(&ctlr->dev, "queue stop failed\n");
3528 __spi_mark_suspended(ctlr);
3531 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3533 int spi_controller_resume(struct spi_controller *ctlr)
3537 __spi_mark_resumed(ctlr);
3540 ret = spi_start_queue(ctlr);
3542 dev_err(&ctlr->dev, "queue restart failed\n");
3546 EXPORT_SYMBOL_GPL(spi_controller_resume);
3548 /*-------------------------------------------------------------------------*/
3550 /* Core methods for spi_message alterations */
3552 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3553 struct spi_message *msg,
3556 struct spi_replaced_transfers *rxfer = res;
3559 /* Call extra callback if requested */
3561 rxfer->release(ctlr, msg, res);
3563 /* Insert replaced transfers back into the message */
3564 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3566 /* Remove the formerly inserted entries */
3567 for (i = 0; i < rxfer->inserted; i++)
3568 list_del(&rxfer->inserted_transfers[i].transfer_list);
3572 * spi_replace_transfers - replace transfers with several transfers
3573 * and register change with spi_message.resources
3574 * @msg: the spi_message we work upon
3575 * @xfer_first: the first spi_transfer we want to replace
3576 * @remove: number of transfers to remove
3577 * @insert: the number of transfers we want to insert instead
3578 * @release: extra release code necessary in some circumstances
3579 * @extradatasize: extra data to allocate (with alignment guarantees
3580 * of struct @spi_transfer)
3583 * Returns: pointer to @spi_replaced_transfers,
3584 * PTR_ERR(...) in case of errors.
3586 static struct spi_replaced_transfers *spi_replace_transfers(
3587 struct spi_message *msg,
3588 struct spi_transfer *xfer_first,
3591 spi_replaced_release_t release,
3592 size_t extradatasize,
3595 struct spi_replaced_transfers *rxfer;
3596 struct spi_transfer *xfer;
3599 /* Allocate the structure using spi_res */
3600 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3601 struct_size(rxfer, inserted_transfers, insert)
3605 return ERR_PTR(-ENOMEM);
3607 /* The release code to invoke before running the generic release */
3608 rxfer->release = release;
3610 /* Assign extradata */
3613 &rxfer->inserted_transfers[insert];
3615 /* Init the replaced_transfers list */
3616 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3619 * Assign the list_entry after which we should reinsert
3620 * the @replaced_transfers - it may be spi_message.messages!
3622 rxfer->replaced_after = xfer_first->transfer_list.prev;
3624 /* Remove the requested number of transfers */
3625 for (i = 0; i < remove; i++) {
3627 * If the entry after replaced_after it is msg->transfers
3628 * then we have been requested to remove more transfers
3629 * than are in the list.
3631 if (rxfer->replaced_after->next == &msg->transfers) {
3632 dev_err(&msg->spi->dev,
3633 "requested to remove more spi_transfers than are available\n");
3634 /* Insert replaced transfers back into the message */
3635 list_splice(&rxfer->replaced_transfers,
3636 rxfer->replaced_after);
3638 /* Free the spi_replace_transfer structure... */
3639 spi_res_free(rxfer);
3641 /* ...and return with an error */
3642 return ERR_PTR(-EINVAL);
3646 * Remove the entry after replaced_after from list of
3647 * transfers and add it to list of replaced_transfers.
3649 list_move_tail(rxfer->replaced_after->next,
3650 &rxfer->replaced_transfers);
3654 * Create copy of the given xfer with identical settings
3655 * based on the first transfer to get removed.
3657 for (i = 0; i < insert; i++) {
3658 /* We need to run in reverse order */
3659 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3661 /* Copy all spi_transfer data */
3662 memcpy(xfer, xfer_first, sizeof(*xfer));
3665 list_add(&xfer->transfer_list, rxfer->replaced_after);
3667 /* Clear cs_change and delay for all but the last */
3669 xfer->cs_change = false;
3670 xfer->delay.value = 0;
3674 /* Set up inserted... */
3675 rxfer->inserted = insert;
3677 /* ...and register it with spi_res/spi_message */
3678 spi_res_add(msg, rxfer);
3683 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3684 struct spi_message *msg,
3685 struct spi_transfer **xferp,
3688 struct spi_transfer *xfer = *xferp, *xfers;
3689 struct spi_replaced_transfers *srt;
3693 /* Calculate how many we have to replace */
3694 count = DIV_ROUND_UP(xfer->len, maxsize);
3696 /* Create replacement */
3697 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3699 return PTR_ERR(srt);
3700 xfers = srt->inserted_transfers;
3703 * Now handle each of those newly inserted spi_transfers.
3704 * Note that the replacements spi_transfers all are preset
3705 * to the same values as *xferp, so tx_buf, rx_buf and len
3706 * are all identical (as well as most others)
3707 * so we just have to fix up len and the pointers.
3709 * This also includes support for the depreciated
3710 * spi_message.is_dma_mapped interface.
3714 * The first transfer just needs the length modified, so we
3715 * run it outside the loop.
3717 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3719 /* All the others need rx_buf/tx_buf also set */
3720 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3721 /* Update rx_buf, tx_buf and DMA */
3722 if (xfers[i].rx_buf)
3723 xfers[i].rx_buf += offset;
3724 if (xfers[i].rx_dma)
3725 xfers[i].rx_dma += offset;
3726 if (xfers[i].tx_buf)
3727 xfers[i].tx_buf += offset;
3728 if (xfers[i].tx_dma)
3729 xfers[i].tx_dma += offset;
3732 xfers[i].len = min(maxsize, xfers[i].len - offset);
3736 * We set up xferp to the last entry we have inserted,
3737 * so that we skip those already split transfers.
3739 *xferp = &xfers[count - 1];
3741 /* Increment statistics counters */
3742 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3743 transfers_split_maxsize);
3744 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3745 transfers_split_maxsize);
3751 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3752 * when an individual transfer exceeds a
3754 * @ctlr: the @spi_controller for this transfer
3755 * @msg: the @spi_message to transform
3756 * @maxsize: the maximum when to apply this
3758 * This function allocates resources that are automatically freed during the
3759 * spi message unoptimize phase so this function should only be called from
3760 * optimize_message callbacks.
3762 * Return: status of transformation
3764 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3765 struct spi_message *msg,
3768 struct spi_transfer *xfer;
3772 * Iterate over the transfer_list,
3773 * but note that xfer is advanced to the last transfer inserted
3774 * to avoid checking sizes again unnecessarily (also xfer does
3775 * potentially belong to a different list by the time the
3776 * replacement has happened).
3778 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3779 if (xfer->len > maxsize) {
3780 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3789 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3793 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3794 * when an individual transfer exceeds a
3795 * certain number of SPI words
3796 * @ctlr: the @spi_controller for this transfer
3797 * @msg: the @spi_message to transform
3798 * @maxwords: the number of words to limit each transfer to
3800 * This function allocates resources that are automatically freed during the
3801 * spi message unoptimize phase so this function should only be called from
3802 * optimize_message callbacks.
3804 * Return: status of transformation
3806 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3807 struct spi_message *msg,
3810 struct spi_transfer *xfer;
3813 * Iterate over the transfer_list,
3814 * but note that xfer is advanced to the last transfer inserted
3815 * to avoid checking sizes again unnecessarily (also xfer does
3816 * potentially belong to a different list by the time the
3817 * replacement has happened).
3819 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3823 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3824 if (xfer->len > maxsize) {
3825 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3834 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3836 /*-------------------------------------------------------------------------*/
3839 * Core methods for SPI controller protocol drivers. Some of the
3840 * other core methods are currently defined as inline functions.
3843 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3846 if (ctlr->bits_per_word_mask) {
3847 /* Only 32 bits fit in the mask */
3848 if (bits_per_word > 32)
3850 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3858 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3859 * @spi: the device that requires specific CS timing configuration
3861 * Return: zero on success, else a negative error code.
3863 static int spi_set_cs_timing(struct spi_device *spi)
3865 struct device *parent = spi->controller->dev.parent;
3868 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3869 if (spi->controller->auto_runtime_pm) {
3870 status = pm_runtime_get_sync(parent);
3872 pm_runtime_put_noidle(parent);
3873 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3878 status = spi->controller->set_cs_timing(spi);
3879 pm_runtime_mark_last_busy(parent);
3880 pm_runtime_put_autosuspend(parent);
3882 status = spi->controller->set_cs_timing(spi);
3889 * spi_setup - setup SPI mode and clock rate
3890 * @spi: the device whose settings are being modified
3891 * Context: can sleep, and no requests are queued to the device
3893 * SPI protocol drivers may need to update the transfer mode if the
3894 * device doesn't work with its default. They may likewise need
3895 * to update clock rates or word sizes from initial values. This function
3896 * changes those settings, and must be called from a context that can sleep.
3897 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3898 * effect the next time the device is selected and data is transferred to
3899 * or from it. When this function returns, the SPI device is deselected.
3901 * Note that this call will fail if the protocol driver specifies an option
3902 * that the underlying controller or its driver does not support. For
3903 * example, not all hardware supports wire transfers using nine bit words,
3904 * LSB-first wire encoding, or active-high chipselects.
3906 * Return: zero on success, else a negative error code.
3908 int spi_setup(struct spi_device *spi)
3910 unsigned bad_bits, ugly_bits;
3914 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3915 * are set at the same time.
3917 if ((hweight_long(spi->mode &
3918 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3919 (hweight_long(spi->mode &
3920 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3922 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3925 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3926 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3927 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3931 * Help drivers fail *cleanly* when they need options
3932 * that aren't supported with their current controller.
3933 * SPI_CS_WORD has a fallback software implementation,
3934 * so it is ignored here.
3936 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3937 SPI_NO_TX | SPI_NO_RX);
3938 ugly_bits = bad_bits &
3939 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3940 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3943 "setup: ignoring unsupported mode bits %x\n",
3945 spi->mode &= ~ugly_bits;
3946 bad_bits &= ~ugly_bits;
3949 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3954 if (!spi->bits_per_word) {
3955 spi->bits_per_word = 8;
3958 * Some controllers may not support the default 8 bits-per-word
3959 * so only perform the check when this is explicitly provided.
3961 status = __spi_validate_bits_per_word(spi->controller,
3962 spi->bits_per_word);
3967 if (spi->controller->max_speed_hz &&
3968 (!spi->max_speed_hz ||
3969 spi->max_speed_hz > spi->controller->max_speed_hz))
3970 spi->max_speed_hz = spi->controller->max_speed_hz;
3972 mutex_lock(&spi->controller->io_mutex);
3974 if (spi->controller->setup) {
3975 status = spi->controller->setup(spi);
3977 mutex_unlock(&spi->controller->io_mutex);
3978 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3984 status = spi_set_cs_timing(spi);
3986 mutex_unlock(&spi->controller->io_mutex);
3990 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3991 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3993 mutex_unlock(&spi->controller->io_mutex);
3994 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4000 * We do not want to return positive value from pm_runtime_get,
4001 * there are many instances of devices calling spi_setup() and
4002 * checking for a non-zero return value instead of a negative
4007 spi_set_cs(spi, false, true);
4008 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4009 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4011 spi_set_cs(spi, false, true);
4014 mutex_unlock(&spi->controller->io_mutex);
4016 if (spi->rt && !spi->controller->rt) {
4017 spi->controller->rt = true;
4018 spi_set_thread_rt(spi->controller);
4021 trace_spi_setup(spi, status);
4023 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4024 spi->mode & SPI_MODE_X_MASK,
4025 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4026 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4027 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4028 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4029 spi->bits_per_word, spi->max_speed_hz,
4034 EXPORT_SYMBOL_GPL(spi_setup);
4036 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4037 struct spi_device *spi)
4041 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4045 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4049 if (delay1 < delay2)
4050 memcpy(&xfer->word_delay, &spi->word_delay,
4051 sizeof(xfer->word_delay));
4056 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4058 struct spi_controller *ctlr = spi->controller;
4059 struct spi_transfer *xfer;
4062 if (list_empty(&message->transfers))
4068 * Half-duplex links include original MicroWire, and ones with
4069 * only one data pin like SPI_3WIRE (switches direction) or where
4070 * either MOSI or MISO is missing. They can also be caused by
4071 * software limitations.
4073 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4074 (spi->mode & SPI_3WIRE)) {
4075 unsigned flags = ctlr->flags;
4077 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4078 if (xfer->rx_buf && xfer->tx_buf)
4080 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4082 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4088 * Set transfer bits_per_word and max speed as spi device default if
4089 * it is not set for this transfer.
4090 * Set transfer tx_nbits and rx_nbits as single transfer default
4091 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4092 * Ensure transfer word_delay is at least as long as that required by
4095 message->frame_length = 0;
4096 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4097 xfer->effective_speed_hz = 0;
4098 message->frame_length += xfer->len;
4099 if (!xfer->bits_per_word)
4100 xfer->bits_per_word = spi->bits_per_word;
4102 if (!xfer->speed_hz)
4103 xfer->speed_hz = spi->max_speed_hz;
4105 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4106 xfer->speed_hz = ctlr->max_speed_hz;
4108 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4112 * SPI transfer length should be multiple of SPI word size
4113 * where SPI word size should be power-of-two multiple.
4115 if (xfer->bits_per_word <= 8)
4117 else if (xfer->bits_per_word <= 16)
4122 /* No partial transfers accepted */
4123 if (xfer->len % w_size)
4126 if (xfer->speed_hz && ctlr->min_speed_hz &&
4127 xfer->speed_hz < ctlr->min_speed_hz)
4130 if (xfer->tx_buf && !xfer->tx_nbits)
4131 xfer->tx_nbits = SPI_NBITS_SINGLE;
4132 if (xfer->rx_buf && !xfer->rx_nbits)
4133 xfer->rx_nbits = SPI_NBITS_SINGLE;
4135 * Check transfer tx/rx_nbits:
4136 * 1. check the value matches one of single, dual and quad
4137 * 2. check tx/rx_nbits match the mode in spi_device
4140 if (spi->mode & SPI_NO_TX)
4142 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4143 xfer->tx_nbits != SPI_NBITS_DUAL &&
4144 xfer->tx_nbits != SPI_NBITS_QUAD)
4146 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4147 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4149 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4150 !(spi->mode & SPI_TX_QUAD))
4153 /* Check transfer rx_nbits */
4155 if (spi->mode & SPI_NO_RX)
4157 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4158 xfer->rx_nbits != SPI_NBITS_DUAL &&
4159 xfer->rx_nbits != SPI_NBITS_QUAD)
4161 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4162 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4164 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4165 !(spi->mode & SPI_RX_QUAD))
4169 if (_spi_xfer_word_delay_update(xfer, spi))
4173 message->status = -EINPROGRESS;
4179 * spi_split_transfers - generic handling of transfer splitting
4180 * @msg: the message to split
4182 * Under certain conditions, a SPI controller may not support arbitrary
4183 * transfer sizes or other features required by a peripheral. This function
4184 * will split the transfers in the message into smaller transfers that are
4185 * supported by the controller.
4187 * Controllers with special requirements not covered here can also split
4188 * transfers in the optimize_message() callback.
4190 * Context: can sleep
4191 * Return: zero on success, else a negative error code
4193 static int spi_split_transfers(struct spi_message *msg)
4195 struct spi_controller *ctlr = msg->spi->controller;
4196 struct spi_transfer *xfer;
4200 * If an SPI controller does not support toggling the CS line on each
4201 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4202 * for the CS line, we can emulate the CS-per-word hardware function by
4203 * splitting transfers into one-word transfers and ensuring that
4204 * cs_change is set for each transfer.
4206 if ((msg->spi->mode & SPI_CS_WORD) &&
4207 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4208 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4212 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4213 /* Don't change cs_change on the last entry in the list */
4214 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4217 xfer->cs_change = 1;
4220 ret = spi_split_transfers_maxsize(ctlr, msg,
4221 spi_max_transfer_size(msg->spi));
4230 * __spi_optimize_message - shared implementation for spi_optimize_message()
4231 * and spi_maybe_optimize_message()
4232 * @spi: the device that will be used for the message
4233 * @msg: the message to optimize
4235 * Peripheral drivers will call spi_optimize_message() and the spi core will
4236 * call spi_maybe_optimize_message() instead of calling this directly.
4238 * It is not valid to call this on a message that has already been optimized.
4240 * Return: zero on success, else a negative error code
4242 static int __spi_optimize_message(struct spi_device *spi,
4243 struct spi_message *msg)
4245 struct spi_controller *ctlr = spi->controller;
4248 ret = __spi_validate(spi, msg);
4252 ret = spi_split_transfers(msg);
4256 if (ctlr->optimize_message) {
4257 ret = ctlr->optimize_message(msg);
4259 spi_res_release(ctlr, msg);
4264 msg->optimized = true;
4270 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4271 * @spi: the device that will be used for the message
4272 * @msg: the message to optimize
4273 * Return: zero on success, else a negative error code
4275 static int spi_maybe_optimize_message(struct spi_device *spi,
4276 struct spi_message *msg)
4278 if (msg->pre_optimized)
4281 return __spi_optimize_message(spi, msg);
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4304 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4308 ret = __spi_optimize_message(spi, msg);
4313 * This flag indicates that the peripheral driver called spi_optimize_message()
4314 * and therefore we shouldn't unoptimize message automatically when finalizing
4315 * the message but rather wait until spi_unoptimize_message() is called
4316 * by the peripheral driver.
4318 msg->pre_optimized = true;
4322 EXPORT_SYMBOL_GPL(spi_optimize_message);
4325 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4326 * @msg: the message to unoptimize
4328 * Calls to this function must be balanced with calls to spi_optimize_message().
4330 * Context: can sleep
4332 void spi_unoptimize_message(struct spi_message *msg)
4334 __spi_unoptimize_message(msg);
4335 msg->pre_optimized = false;
4337 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4339 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4341 struct spi_controller *ctlr = spi->controller;
4342 struct spi_transfer *xfer;
4345 * Some controllers do not support doing regular SPI transfers. Return
4346 * ENOTSUPP when this is the case.
4348 if (!ctlr->transfer)
4351 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4352 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4354 trace_spi_message_submit(message);
4356 if (!ctlr->ptp_sts_supported) {
4357 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4358 xfer->ptp_sts_word_pre = 0;
4359 ptp_read_system_prets(xfer->ptp_sts);
4363 return ctlr->transfer(spi, message);
4367 * spi_async - asynchronous SPI transfer
4368 * @spi: device with which data will be exchanged
4369 * @message: describes the data transfers, including completion callback
4370 * Context: any (IRQs may be blocked, etc)
4372 * This call may be used in_irq and other contexts which can't sleep,
4373 * as well as from task contexts which can sleep.
4375 * The completion callback is invoked in a context which can't sleep.
4376 * Before that invocation, the value of message->status is undefined.
4377 * When the callback is issued, message->status holds either zero (to
4378 * indicate complete success) or a negative error code. After that
4379 * callback returns, the driver which issued the transfer request may
4380 * deallocate the associated memory; it's no longer in use by any SPI
4381 * core or controller driver code.
4383 * Note that although all messages to a spi_device are handled in
4384 * FIFO order, messages may go to different devices in other orders.
4385 * Some device might be higher priority, or have various "hard" access
4386 * time requirements, for example.
4388 * On detection of any fault during the transfer, processing of
4389 * the entire message is aborted, and the device is deselected.
4390 * Until returning from the associated message completion callback,
4391 * no other spi_message queued to that device will be processed.
4392 * (This rule applies equally to all the synchronous transfer calls,
4393 * which are wrappers around this core asynchronous primitive.)
4395 * Return: zero on success, else a negative error code.
4397 int spi_async(struct spi_device *spi, struct spi_message *message)
4399 struct spi_controller *ctlr = spi->controller;
4401 unsigned long flags;
4403 ret = spi_maybe_optimize_message(spi, message);
4407 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4409 if (ctlr->bus_lock_flag)
4412 ret = __spi_async(spi, message);
4414 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4416 spi_maybe_unoptimize_message(message);
4420 EXPORT_SYMBOL_GPL(spi_async);
4422 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4427 mutex_lock(&ctlr->io_mutex);
4429 was_busy = ctlr->busy;
4431 ctlr->cur_msg = msg;
4432 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4434 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4435 ctlr->cur_msg = NULL;
4436 ctlr->fallback = false;
4439 kfree(ctlr->dummy_rx);
4440 ctlr->dummy_rx = NULL;
4441 kfree(ctlr->dummy_tx);
4442 ctlr->dummy_tx = NULL;
4443 if (ctlr->unprepare_transfer_hardware &&
4444 ctlr->unprepare_transfer_hardware(ctlr))
4446 "failed to unprepare transfer hardware\n");
4447 spi_idle_runtime_pm(ctlr);
4450 mutex_unlock(&ctlr->io_mutex);
4453 /*-------------------------------------------------------------------------*/
4456 * Utility methods for SPI protocol drivers, layered on
4457 * top of the core. Some other utility methods are defined as
4461 static void spi_complete(void *arg)
4466 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4468 DECLARE_COMPLETION_ONSTACK(done);
4469 unsigned long flags;
4471 struct spi_controller *ctlr = spi->controller;
4473 if (__spi_check_suspended(ctlr)) {
4474 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4478 status = spi_maybe_optimize_message(spi, message);
4482 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4483 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4486 * Checking queue_empty here only guarantees async/sync message
4487 * ordering when coming from the same context. It does not need to
4488 * guard against reentrancy from a different context. The io_mutex
4489 * will catch those cases.
4491 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4492 message->actual_length = 0;
4493 message->status = -EINPROGRESS;
4495 trace_spi_message_submit(message);
4497 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4498 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4500 __spi_transfer_message_noqueue(ctlr, message);
4502 return message->status;
4506 * There are messages in the async queue that could have originated
4507 * from the same context, so we need to preserve ordering.
4508 * Therefor we send the message to the async queue and wait until they
4511 message->complete = spi_complete;
4512 message->context = &done;
4514 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4515 status = __spi_async(spi, message);
4516 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4519 wait_for_completion(&done);
4520 status = message->status;
4522 message->context = NULL;
4528 * spi_sync - blocking/synchronous SPI data transfers
4529 * @spi: device with which data will be exchanged
4530 * @message: describes the data transfers
4531 * Context: can sleep
4533 * This call may only be used from a context that may sleep. The sleep
4534 * is non-interruptible, and has no timeout. Low-overhead controller
4535 * drivers may DMA directly into and out of the message buffers.
4537 * Note that the SPI device's chip select is active during the message,
4538 * and then is normally disabled between messages. Drivers for some
4539 * frequently-used devices may want to minimize costs of selecting a chip,
4540 * by leaving it selected in anticipation that the next message will go
4541 * to the same chip. (That may increase power usage.)
4543 * Also, the caller is guaranteeing that the memory associated with the
4544 * message will not be freed before this call returns.
4546 * Return: zero on success, else a negative error code.
4548 int spi_sync(struct spi_device *spi, struct spi_message *message)
4552 mutex_lock(&spi->controller->bus_lock_mutex);
4553 ret = __spi_sync(spi, message);
4554 mutex_unlock(&spi->controller->bus_lock_mutex);
4558 EXPORT_SYMBOL_GPL(spi_sync);
4561 * spi_sync_locked - version of spi_sync with exclusive bus usage
4562 * @spi: device with which data will be exchanged
4563 * @message: describes the data transfers
4564 * Context: can sleep
4566 * This call may only be used from a context that may sleep. The sleep
4567 * is non-interruptible, and has no timeout. Low-overhead controller
4568 * drivers may DMA directly into and out of the message buffers.
4570 * This call should be used by drivers that require exclusive access to the
4571 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4572 * be released by a spi_bus_unlock call when the exclusive access is over.
4574 * Return: zero on success, else a negative error code.
4576 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4578 return __spi_sync(spi, message);
4580 EXPORT_SYMBOL_GPL(spi_sync_locked);
4583 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4584 * @ctlr: SPI bus master that should be locked for exclusive bus access
4585 * Context: can sleep
4587 * This call may only be used from a context that may sleep. The sleep
4588 * is non-interruptible, and has no timeout.
4590 * This call should be used by drivers that require exclusive access to the
4591 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4592 * exclusive access is over. Data transfer must be done by spi_sync_locked
4593 * and spi_async_locked calls when the SPI bus lock is held.
4595 * Return: always zero.
4597 int spi_bus_lock(struct spi_controller *ctlr)
4599 unsigned long flags;
4601 mutex_lock(&ctlr->bus_lock_mutex);
4603 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4604 ctlr->bus_lock_flag = 1;
4605 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4607 /* Mutex remains locked until spi_bus_unlock() is called */
4611 EXPORT_SYMBOL_GPL(spi_bus_lock);
4614 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4615 * @ctlr: SPI bus master that was locked for exclusive bus access
4616 * Context: can sleep
4618 * This call may only be used from a context that may sleep. The sleep
4619 * is non-interruptible, and has no timeout.
4621 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4624 * Return: always zero.
4626 int spi_bus_unlock(struct spi_controller *ctlr)
4628 ctlr->bus_lock_flag = 0;
4630 mutex_unlock(&ctlr->bus_lock_mutex);
4634 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4636 /* Portable code must never pass more than 32 bytes */
4637 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4642 * spi_write_then_read - SPI synchronous write followed by read
4643 * @spi: device with which data will be exchanged
4644 * @txbuf: data to be written (need not be DMA-safe)
4645 * @n_tx: size of txbuf, in bytes
4646 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4647 * @n_rx: size of rxbuf, in bytes
4648 * Context: can sleep
4650 * This performs a half duplex MicroWire style transaction with the
4651 * device, sending txbuf and then reading rxbuf. The return value
4652 * is zero for success, else a negative errno status code.
4653 * This call may only be used from a context that may sleep.
4655 * Parameters to this routine are always copied using a small buffer.
4656 * Performance-sensitive or bulk transfer code should instead use
4657 * spi_{async,sync}() calls with DMA-safe buffers.
4659 * Return: zero on success, else a negative error code.
4661 int spi_write_then_read(struct spi_device *spi,
4662 const void *txbuf, unsigned n_tx,
4663 void *rxbuf, unsigned n_rx)
4665 static DEFINE_MUTEX(lock);
4668 struct spi_message message;
4669 struct spi_transfer x[2];
4673 * Use preallocated DMA-safe buffer if we can. We can't avoid
4674 * copying here, (as a pure convenience thing), but we can
4675 * keep heap costs out of the hot path unless someone else is
4676 * using the pre-allocated buffer or the transfer is too large.
4678 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4679 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4680 GFP_KERNEL | GFP_DMA);
4687 spi_message_init(&message);
4688 memset(x, 0, sizeof(x));
4691 spi_message_add_tail(&x[0], &message);
4695 spi_message_add_tail(&x[1], &message);
4698 memcpy(local_buf, txbuf, n_tx);
4699 x[0].tx_buf = local_buf;
4700 x[1].rx_buf = local_buf + n_tx;
4703 status = spi_sync(spi, &message);
4705 memcpy(rxbuf, x[1].rx_buf, n_rx);
4707 if (x[0].tx_buf == buf)
4708 mutex_unlock(&lock);
4714 EXPORT_SYMBOL_GPL(spi_write_then_read);
4716 /*-------------------------------------------------------------------------*/
4718 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4719 /* Must call put_device() when done with returned spi_device device */
4720 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4722 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4724 return dev ? to_spi_device(dev) : NULL;
4727 /* The spi controllers are not using spi_bus, so we find it with another way */
4728 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4732 dev = class_find_device_by_of_node(&spi_master_class, node);
4733 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4734 dev = class_find_device_by_of_node(&spi_slave_class, node);
4738 /* Reference got in class_find_device */
4739 return container_of(dev, struct spi_controller, dev);
4742 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4745 struct of_reconfig_data *rd = arg;
4746 struct spi_controller *ctlr;
4747 struct spi_device *spi;
4749 switch (of_reconfig_get_state_change(action, arg)) {
4750 case OF_RECONFIG_CHANGE_ADD:
4751 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4753 return NOTIFY_OK; /* Not for us */
4755 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4756 put_device(&ctlr->dev);
4761 * Clear the flag before adding the device so that fw_devlink
4762 * doesn't skip adding consumers to this device.
4764 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4765 spi = of_register_spi_device(ctlr, rd->dn);
4766 put_device(&ctlr->dev);
4769 pr_err("%s: failed to create for '%pOF'\n",
4771 of_node_clear_flag(rd->dn, OF_POPULATED);
4772 return notifier_from_errno(PTR_ERR(spi));
4776 case OF_RECONFIG_CHANGE_REMOVE:
4777 /* Already depopulated? */
4778 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4781 /* Find our device by node */
4782 spi = of_find_spi_device_by_node(rd->dn);
4784 return NOTIFY_OK; /* No? not meant for us */
4786 /* Unregister takes one ref away */
4787 spi_unregister_device(spi);
4789 /* And put the reference of the find */
4790 put_device(&spi->dev);
4797 static struct notifier_block spi_of_notifier = {
4798 .notifier_call = of_spi_notify,
4800 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4801 extern struct notifier_block spi_of_notifier;
4802 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4804 #if IS_ENABLED(CONFIG_ACPI)
4805 static int spi_acpi_controller_match(struct device *dev, const void *data)
4807 return ACPI_COMPANION(dev->parent) == data;
4810 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4814 dev = class_find_device(&spi_master_class, NULL, adev,
4815 spi_acpi_controller_match);
4816 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4817 dev = class_find_device(&spi_slave_class, NULL, adev,
4818 spi_acpi_controller_match);
4822 return container_of(dev, struct spi_controller, dev);
4824 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4826 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4830 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4831 return to_spi_device(dev);
4834 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4837 struct acpi_device *adev = arg;
4838 struct spi_controller *ctlr;
4839 struct spi_device *spi;
4842 case ACPI_RECONFIG_DEVICE_ADD:
4843 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4847 acpi_register_spi_device(ctlr, adev);
4848 put_device(&ctlr->dev);
4850 case ACPI_RECONFIG_DEVICE_REMOVE:
4851 if (!acpi_device_enumerated(adev))
4854 spi = acpi_spi_find_device_by_adev(adev);
4858 spi_unregister_device(spi);
4859 put_device(&spi->dev);
4866 static struct notifier_block spi_acpi_notifier = {
4867 .notifier_call = acpi_spi_notify,
4870 extern struct notifier_block spi_acpi_notifier;
4873 static int __init spi_init(void)
4877 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4883 status = bus_register(&spi_bus_type);
4887 status = class_register(&spi_master_class);
4891 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4892 status = class_register(&spi_slave_class);
4897 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4898 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4899 if (IS_ENABLED(CONFIG_ACPI))
4900 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4905 class_unregister(&spi_master_class);
4907 bus_unregister(&spi_bus_type);
4916 * A board_info is normally registered in arch_initcall(),
4917 * but even essential drivers wait till later.
4919 * REVISIT only boardinfo really needs static linking. The rest (device and
4920 * driver registration) _could_ be dynamically linked (modular) ... Costs
4921 * include needing to have boardinfo data structures be much more public.
4923 postcore_initcall(spi_init);