]> Git Repo - J-linux.git/blob - drivers/net/ethernet/sfc/rx_common.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / net / ethernet / sfc / rx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
18
19 /* This is the percentage fill level below which new RX descriptors
20  * will be added to the RX descriptor ring.
21  */
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25                  "RX descriptor ring refill threshold (%)");
26
27 /* RX maximum head room required.
28  *
29  * This must be at least 1 to prevent overflow, plus one packet-worth
30  * to allow pipelined receives.
31  */
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
33
34 /* Check the RX page recycle ring for a page that can be reused. */
35 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
36 {
37         struct efx_nic *efx = rx_queue->efx;
38         struct efx_rx_page_state *state;
39         unsigned int index;
40         struct page *page;
41
42         if (unlikely(!rx_queue->page_ring))
43                 return NULL;
44         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
45         page = rx_queue->page_ring[index];
46         if (page == NULL)
47                 return NULL;
48
49         rx_queue->page_ring[index] = NULL;
50         /* page_remove cannot exceed page_add. */
51         if (rx_queue->page_remove != rx_queue->page_add)
52                 ++rx_queue->page_remove;
53
54         /* If page_count is 1 then we hold the only reference to this page. */
55         if (page_count(page) == 1) {
56                 ++rx_queue->page_recycle_count;
57                 return page;
58         } else {
59                 state = page_address(page);
60                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
61                                PAGE_SIZE << efx->rx_buffer_order,
62                                DMA_FROM_DEVICE);
63                 put_page(page);
64                 ++rx_queue->page_recycle_failed;
65         }
66
67         return NULL;
68 }
69
70 /* Attempt to recycle the page if there is an RX recycle ring; the page can
71  * only be added if this is the final RX buffer, to prevent pages being used in
72  * the descriptor ring and appearing in the recycle ring simultaneously.
73  */
74 static void efx_recycle_rx_page(struct efx_channel *channel,
75                                 struct efx_rx_buffer *rx_buf)
76 {
77         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
78         struct efx_nic *efx = rx_queue->efx;
79         struct page *page = rx_buf->page;
80         unsigned int index;
81
82         /* Only recycle the page after processing the final buffer. */
83         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
84                 return;
85
86         index = rx_queue->page_add & rx_queue->page_ptr_mask;
87         if (rx_queue->page_ring[index] == NULL) {
88                 unsigned int read_index = rx_queue->page_remove &
89                         rx_queue->page_ptr_mask;
90
91                 /* The next slot in the recycle ring is available, but
92                  * increment page_remove if the read pointer currently
93                  * points here.
94                  */
95                 if (read_index == index)
96                         ++rx_queue->page_remove;
97                 rx_queue->page_ring[index] = page;
98                 ++rx_queue->page_add;
99                 return;
100         }
101         ++rx_queue->page_recycle_full;
102         efx_unmap_rx_buffer(efx, rx_buf);
103         put_page(rx_buf->page);
104 }
105
106 /* Recycle the pages that are used by buffers that have just been received. */
107 void efx_recycle_rx_pages(struct efx_channel *channel,
108                           struct efx_rx_buffer *rx_buf,
109                           unsigned int n_frags)
110 {
111         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
112
113         if (unlikely(!rx_queue->page_ring))
114                 return;
115
116         do {
117                 efx_recycle_rx_page(channel, rx_buf);
118                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
119         } while (--n_frags);
120 }
121
122 void efx_discard_rx_packet(struct efx_channel *channel,
123                            struct efx_rx_buffer *rx_buf,
124                            unsigned int n_frags)
125 {
126         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
127
128         efx_recycle_rx_pages(channel, rx_buf, n_frags);
129
130         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
131 }
132
133 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
134 {
135         unsigned int bufs_in_recycle_ring, page_ring_size;
136         struct efx_nic *efx = rx_queue->efx;
137
138         bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
139         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
140                                             efx->rx_bufs_per_page);
141         rx_queue->page_ring = kcalloc(page_ring_size,
142                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
143         if (!rx_queue->page_ring)
144                 rx_queue->page_ptr_mask = 0;
145         else
146                 rx_queue->page_ptr_mask = page_ring_size - 1;
147 }
148
149 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
150 {
151         struct efx_nic *efx = rx_queue->efx;
152         int i;
153
154         if (unlikely(!rx_queue->page_ring))
155                 return;
156
157         /* Unmap and release the pages in the recycle ring. Remove the ring. */
158         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
159                 struct page *page = rx_queue->page_ring[i];
160                 struct efx_rx_page_state *state;
161
162                 if (page == NULL)
163                         continue;
164
165                 state = page_address(page);
166                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
167                                PAGE_SIZE << efx->rx_buffer_order,
168                                DMA_FROM_DEVICE);
169                 put_page(page);
170         }
171         kfree(rx_queue->page_ring);
172         rx_queue->page_ring = NULL;
173 }
174
175 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
176                                struct efx_rx_buffer *rx_buf)
177 {
178         /* Release the page reference we hold for the buffer. */
179         if (rx_buf->page)
180                 put_page(rx_buf->page);
181
182         /* If this is the last buffer in a page, unmap and free it. */
183         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
184                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
185                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
186         }
187         rx_buf->page = NULL;
188 }
189
190 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
191 {
192         struct efx_nic *efx = rx_queue->efx;
193         unsigned int entries;
194         int rc;
195
196         /* Create the smallest power-of-two aligned ring */
197         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
198         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
199         rx_queue->ptr_mask = entries - 1;
200
201         netif_dbg(efx, probe, efx->net_dev,
202                   "creating RX queue %d size %#x mask %#x\n",
203                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
204                   rx_queue->ptr_mask);
205
206         /* Allocate RX buffers */
207         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
208                                    GFP_KERNEL);
209         if (!rx_queue->buffer)
210                 return -ENOMEM;
211
212         rc = efx_nic_probe_rx(rx_queue);
213         if (rc) {
214                 kfree(rx_queue->buffer);
215                 rx_queue->buffer = NULL;
216         }
217
218         return rc;
219 }
220
221 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
222 {
223         unsigned int max_fill, trigger, max_trigger;
224         struct efx_nic *efx = rx_queue->efx;
225         int rc = 0;
226
227         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
228                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
229
230         /* Initialise ptr fields */
231         rx_queue->added_count = 0;
232         rx_queue->notified_count = 0;
233         rx_queue->granted_count = 0;
234         rx_queue->removed_count = 0;
235         rx_queue->min_fill = -1U;
236         efx_init_rx_recycle_ring(rx_queue);
237
238         rx_queue->page_remove = 0;
239         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
240         rx_queue->page_recycle_count = 0;
241         rx_queue->page_recycle_failed = 0;
242         rx_queue->page_recycle_full = 0;
243
244         /* Initialise limit fields */
245         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
246         max_trigger =
247                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
248         if (rx_refill_threshold != 0) {
249                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
250                 if (trigger > max_trigger)
251                         trigger = max_trigger;
252         } else {
253                 trigger = max_trigger;
254         }
255
256         rx_queue->max_fill = max_fill;
257         rx_queue->fast_fill_trigger = trigger;
258         rx_queue->refill_enabled = true;
259
260         /* Initialise XDP queue information */
261         rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
262                               rx_queue->core_index, 0);
263
264         if (rc) {
265                 netif_err(efx, rx_err, efx->net_dev,
266                           "Failure to initialise XDP queue information rc=%d\n",
267                           rc);
268                 efx->xdp_rxq_info_failed = true;
269         } else {
270                 rx_queue->xdp_rxq_info_valid = true;
271         }
272
273         /* Set up RX descriptor ring */
274         efx_nic_init_rx(rx_queue);
275 }
276
277 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
278 {
279         struct efx_rx_buffer *rx_buf;
280         int i;
281
282         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
283                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
284
285         del_timer_sync(&rx_queue->slow_fill);
286         if (rx_queue->grant_credits)
287                 flush_work(&rx_queue->grant_work);
288
289         /* Release RX buffers from the current read ptr to the write ptr */
290         if (rx_queue->buffer) {
291                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
292                      i++) {
293                         unsigned int index = i & rx_queue->ptr_mask;
294
295                         rx_buf = efx_rx_buffer(rx_queue, index);
296                         efx_fini_rx_buffer(rx_queue, rx_buf);
297                 }
298         }
299
300         efx_fini_rx_recycle_ring(rx_queue);
301
302         if (rx_queue->xdp_rxq_info_valid)
303                 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
304
305         rx_queue->xdp_rxq_info_valid = false;
306 }
307
308 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
309 {
310         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
311                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
312
313         efx_nic_remove_rx(rx_queue);
314
315         kfree(rx_queue->buffer);
316         rx_queue->buffer = NULL;
317 }
318
319 /* Unmap a DMA-mapped page.  This function is only called for the final RX
320  * buffer in a page.
321  */
322 void efx_unmap_rx_buffer(struct efx_nic *efx,
323                          struct efx_rx_buffer *rx_buf)
324 {
325         struct page *page = rx_buf->page;
326
327         if (page) {
328                 struct efx_rx_page_state *state = page_address(page);
329
330                 dma_unmap_page(&efx->pci_dev->dev,
331                                state->dma_addr,
332                                PAGE_SIZE << efx->rx_buffer_order,
333                                DMA_FROM_DEVICE);
334         }
335 }
336
337 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
338                          struct efx_rx_buffer *rx_buf,
339                          unsigned int num_bufs)
340 {
341         do {
342                 if (rx_buf->page) {
343                         put_page(rx_buf->page);
344                         rx_buf->page = NULL;
345                 }
346                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
347         } while (--num_bufs);
348 }
349
350 void efx_rx_slow_fill(struct timer_list *t)
351 {
352         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
353
354         /* Post an event to cause NAPI to run and refill the queue */
355         efx_nic_generate_fill_event(rx_queue);
356         ++rx_queue->slow_fill_count;
357 }
358
359 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
360 {
361         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
362 }
363
364 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
365  *
366  * @rx_queue:           Efx RX queue
367  *
368  * This allocates a batch of pages, maps them for DMA, and populates
369  * struct efx_rx_buffers for each one. Return a negative error code or
370  * 0 on success. If a single page can be used for multiple buffers,
371  * then the page will either be inserted fully, or not at all.
372  */
373 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
374 {
375         unsigned int page_offset, index, count;
376         struct efx_nic *efx = rx_queue->efx;
377         struct efx_rx_page_state *state;
378         struct efx_rx_buffer *rx_buf;
379         dma_addr_t dma_addr;
380         struct page *page;
381
382         count = 0;
383         do {
384                 page = efx_reuse_page(rx_queue);
385                 if (page == NULL) {
386                         page = alloc_pages(__GFP_COMP |
387                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
388                                            efx->rx_buffer_order);
389                         if (unlikely(page == NULL))
390                                 return -ENOMEM;
391                         dma_addr =
392                                 dma_map_page(&efx->pci_dev->dev, page, 0,
393                                              PAGE_SIZE << efx->rx_buffer_order,
394                                              DMA_FROM_DEVICE);
395                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
396                                                        dma_addr))) {
397                                 __free_pages(page, efx->rx_buffer_order);
398                                 return -EIO;
399                         }
400                         state = page_address(page);
401                         state->dma_addr = dma_addr;
402                 } else {
403                         state = page_address(page);
404                         dma_addr = state->dma_addr;
405                 }
406
407                 dma_addr += sizeof(struct efx_rx_page_state);
408                 page_offset = sizeof(struct efx_rx_page_state);
409
410                 do {
411                         index = rx_queue->added_count & rx_queue->ptr_mask;
412                         rx_buf = efx_rx_buffer(rx_queue, index);
413                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
414                                            EFX_XDP_HEADROOM;
415                         rx_buf->page = page;
416                         rx_buf->page_offset = page_offset + efx->rx_ip_align +
417                                               EFX_XDP_HEADROOM;
418                         rx_buf->len = efx->rx_dma_len;
419                         rx_buf->flags = 0;
420                         ++rx_queue->added_count;
421                         get_page(page);
422                         dma_addr += efx->rx_page_buf_step;
423                         page_offset += efx->rx_page_buf_step;
424                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
425
426                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
427         } while (++count < efx->rx_pages_per_batch);
428
429         return 0;
430 }
431
432 void efx_rx_config_page_split(struct efx_nic *efx)
433 {
434         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
435                                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
436                                       EFX_RX_BUF_ALIGNMENT);
437         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
438                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
439                 efx->rx_page_buf_step);
440         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
441                 efx->rx_bufs_per_page;
442         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
443                                                efx->rx_bufs_per_page);
444 }
445
446 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
447  * @rx_queue:           RX descriptor queue
448  *
449  * This will aim to fill the RX descriptor queue up to
450  * @rx_queue->@max_fill. If there is insufficient atomic
451  * memory to do so, a slow fill will be scheduled.
452  *
453  * The caller must provide serialisation (none is used here). In practise,
454  * this means this function must run from the NAPI handler, or be called
455  * when NAPI is disabled.
456  */
457 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
458 {
459         struct efx_nic *efx = rx_queue->efx;
460         unsigned int fill_level, batch_size;
461         int space, rc = 0;
462
463         if (!rx_queue->refill_enabled)
464                 return;
465
466         /* Calculate current fill level, and exit if we don't need to fill */
467         fill_level = (rx_queue->added_count - rx_queue->removed_count);
468         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
469         if (fill_level >= rx_queue->fast_fill_trigger)
470                 goto out;
471
472         /* Record minimum fill level */
473         if (unlikely(fill_level < rx_queue->min_fill)) {
474                 if (fill_level)
475                         rx_queue->min_fill = fill_level;
476         }
477
478         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
479         space = rx_queue->max_fill - fill_level;
480         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
481
482         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
483                    "RX queue %d fast-filling descriptor ring from"
484                    " level %d to level %d\n",
485                    efx_rx_queue_index(rx_queue), fill_level,
486                    rx_queue->max_fill);
487
488         do {
489                 rc = efx_init_rx_buffers(rx_queue, atomic);
490                 if (unlikely(rc)) {
491                         /* Ensure that we don't leave the rx queue empty */
492                         efx_schedule_slow_fill(rx_queue);
493                         goto out;
494                 }
495         } while ((space -= batch_size) >= batch_size);
496
497         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
498                    "RX queue %d fast-filled descriptor ring "
499                    "to level %d\n", efx_rx_queue_index(rx_queue),
500                    rx_queue->added_count - rx_queue->removed_count);
501
502  out:
503         if (rx_queue->notified_count != rx_queue->added_count)
504                 efx_nic_notify_rx_desc(rx_queue);
505 }
506
507 /* Pass a received packet up through GRO.  GRO can handle pages
508  * regardless of checksum state and skbs with a good checksum.
509  */
510 void
511 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
512                   unsigned int n_frags, u8 *eh, __wsum csum)
513 {
514         struct napi_struct *napi = &channel->napi_str;
515         struct efx_nic *efx = channel->efx;
516         struct sk_buff *skb;
517
518         skb = napi_get_frags(napi);
519         if (unlikely(!skb)) {
520                 struct efx_rx_queue *rx_queue;
521
522                 rx_queue = efx_channel_get_rx_queue(channel);
523                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
524                 return;
525         }
526
527         if (efx->net_dev->features & NETIF_F_RXHASH &&
528             efx_rx_buf_hash_valid(efx, eh))
529                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
530                              PKT_HASH_TYPE_L3);
531         if (csum) {
532                 skb->csum = csum;
533                 skb->ip_summed = CHECKSUM_COMPLETE;
534         } else {
535                 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
536                                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
537         }
538         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
539
540         for (;;) {
541                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
542                                    rx_buf->page, rx_buf->page_offset,
543                                    rx_buf->len);
544                 rx_buf->page = NULL;
545                 skb->len += rx_buf->len;
546                 if (skb_shinfo(skb)->nr_frags == n_frags)
547                         break;
548
549                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
550         }
551
552         skb->data_len = skb->len;
553         skb->truesize += n_frags * efx->rx_buffer_truesize;
554
555         skb_record_rx_queue(skb, channel->rx_queue.core_index);
556
557         napi_gro_frags(napi);
558 }
559
560 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
561  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
562  */
563 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
564 {
565         struct list_head *head = &efx->rss_context.list;
566         struct efx_rss_context *ctx, *new;
567         u32 id = 1; /* Don't use zero, that refers to the master RSS context */
568
569         WARN_ON(!mutex_is_locked(&efx->rss_lock));
570
571         /* Search for first gap in the numbering */
572         list_for_each_entry(ctx, head, list) {
573                 if (ctx->user_id != id)
574                         break;
575                 id++;
576                 /* Check for wrap.  If this happens, we have nearly 2^32
577                  * allocated RSS contexts, which seems unlikely.
578                  */
579                 if (WARN_ON_ONCE(!id))
580                         return NULL;
581         }
582
583         /* Create the new entry */
584         new = kmalloc(sizeof(*new), GFP_KERNEL);
585         if (!new)
586                 return NULL;
587         new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
588         new->rx_hash_udp_4tuple = false;
589
590         /* Insert the new entry into the gap */
591         new->user_id = id;
592         list_add_tail(&new->list, &ctx->list);
593         return new;
594 }
595
596 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
597 {
598         struct list_head *head = &efx->rss_context.list;
599         struct efx_rss_context *ctx;
600
601         WARN_ON(!mutex_is_locked(&efx->rss_lock));
602
603         list_for_each_entry(ctx, head, list)
604                 if (ctx->user_id == id)
605                         return ctx;
606         return NULL;
607 }
608
609 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
610 {
611         list_del(&ctx->list);
612         kfree(ctx);
613 }
614
615 void efx_set_default_rx_indir_table(struct efx_nic *efx,
616                                     struct efx_rss_context *ctx)
617 {
618         size_t i;
619
620         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
621                 ctx->rx_indir_table[i] =
622                         ethtool_rxfh_indir_default(i, efx->rss_spread);
623 }
624
625 /**
626  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
627  * @spec: Specification to test
628  *
629  * Return: %true if the specification is a non-drop RX filter that
630  * matches a local MAC address I/G bit value of 1 or matches a local
631  * IPv4 or IPv6 address value in the respective multicast address
632  * range.  Otherwise %false.
633  */
634 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
635 {
636         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
637             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
638                 return false;
639
640         if (spec->match_flags &
641             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
642             is_multicast_ether_addr(spec->loc_mac))
643                 return true;
644
645         if ((spec->match_flags &
646              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
647             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
648                 if (spec->ether_type == htons(ETH_P_IP) &&
649                     ipv4_is_multicast(spec->loc_host[0]))
650                         return true;
651                 if (spec->ether_type == htons(ETH_P_IPV6) &&
652                     ((const u8 *)spec->loc_host)[0] == 0xff)
653                         return true;
654         }
655
656         return false;
657 }
658
659 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
660                            const struct efx_filter_spec *right)
661 {
662         if ((left->match_flags ^ right->match_flags) |
663             ((left->flags ^ right->flags) &
664              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
665                 return false;
666
667         return memcmp(&left->vport_id, &right->vport_id,
668                       sizeof(struct efx_filter_spec) -
669                       offsetof(struct efx_filter_spec, vport_id)) == 0;
670 }
671
672 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
673 {
674         BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
675         return jhash2((const u32 *)&spec->vport_id,
676                       (sizeof(struct efx_filter_spec) -
677                        offsetof(struct efx_filter_spec, vport_id)) / 4,
678                       0);
679 }
680
681 #ifdef CONFIG_RFS_ACCEL
682 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
683                         bool *force)
684 {
685         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
686                 /* ARFS is currently updating this entry, leave it */
687                 return false;
688         }
689         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
690                 /* ARFS tried and failed to update this, so it's probably out
691                  * of date.  Remove the filter and the ARFS rule entry.
692                  */
693                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
694                 *force = true;
695                 return true;
696         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
697                 /* ARFS has moved on, so old filter is not needed.  Since we did
698                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
699                  * not be removed by efx_rps_hash_del() subsequently.
700                  */
701                 *force = true;
702                 return true;
703         }
704         /* Remove it iff ARFS wants to. */
705         return true;
706 }
707
708 static
709 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
710                                        const struct efx_filter_spec *spec)
711 {
712         u32 hash = efx_filter_spec_hash(spec);
713
714         lockdep_assert_held(&efx->rps_hash_lock);
715         if (!efx->rps_hash_table)
716                 return NULL;
717         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
718 }
719
720 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
721                                         const struct efx_filter_spec *spec)
722 {
723         struct efx_arfs_rule *rule;
724         struct hlist_head *head;
725         struct hlist_node *node;
726
727         head = efx_rps_hash_bucket(efx, spec);
728         if (!head)
729                 return NULL;
730         hlist_for_each(node, head) {
731                 rule = container_of(node, struct efx_arfs_rule, node);
732                 if (efx_filter_spec_equal(spec, &rule->spec))
733                         return rule;
734         }
735         return NULL;
736 }
737
738 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
739                                        const struct efx_filter_spec *spec,
740                                        bool *new)
741 {
742         struct efx_arfs_rule *rule;
743         struct hlist_head *head;
744         struct hlist_node *node;
745
746         head = efx_rps_hash_bucket(efx, spec);
747         if (!head)
748                 return NULL;
749         hlist_for_each(node, head) {
750                 rule = container_of(node, struct efx_arfs_rule, node);
751                 if (efx_filter_spec_equal(spec, &rule->spec)) {
752                         *new = false;
753                         return rule;
754                 }
755         }
756         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
757         *new = true;
758         if (rule) {
759                 memcpy(&rule->spec, spec, sizeof(rule->spec));
760                 hlist_add_head(&rule->node, head);
761         }
762         return rule;
763 }
764
765 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
766 {
767         struct efx_arfs_rule *rule;
768         struct hlist_head *head;
769         struct hlist_node *node;
770
771         head = efx_rps_hash_bucket(efx, spec);
772         if (WARN_ON(!head))
773                 return;
774         hlist_for_each(node, head) {
775                 rule = container_of(node, struct efx_arfs_rule, node);
776                 if (efx_filter_spec_equal(spec, &rule->spec)) {
777                         /* Someone already reused the entry.  We know that if
778                          * this check doesn't fire (i.e. filter_id == REMOVING)
779                          * then the REMOVING mark was put there by our caller,
780                          * because caller is holding a lock on filter table and
781                          * only holders of that lock set REMOVING.
782                          */
783                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
784                                 return;
785                         hlist_del(node);
786                         kfree(rule);
787                         return;
788                 }
789         }
790         /* We didn't find it. */
791         WARN_ON(1);
792 }
793 #endif
794
795 int efx_probe_filters(struct efx_nic *efx)
796 {
797         int rc;
798
799         mutex_lock(&efx->mac_lock);
800         rc = efx->type->filter_table_probe(efx);
801         if (rc)
802                 goto out_unlock;
803
804 #ifdef CONFIG_RFS_ACCEL
805         if (efx->type->offload_features & NETIF_F_NTUPLE) {
806                 struct efx_channel *channel;
807                 int i, success = 1;
808
809                 efx_for_each_channel(channel, efx) {
810                         channel->rps_flow_id =
811                                 kcalloc(efx->type->max_rx_ip_filters,
812                                         sizeof(*channel->rps_flow_id),
813                                         GFP_KERNEL);
814                         if (!channel->rps_flow_id)
815                                 success = 0;
816                         else
817                                 for (i = 0;
818                                      i < efx->type->max_rx_ip_filters;
819                                      ++i)
820                                         channel->rps_flow_id[i] =
821                                                 RPS_FLOW_ID_INVALID;
822                         channel->rfs_expire_index = 0;
823                         channel->rfs_filter_count = 0;
824                 }
825
826                 if (!success) {
827                         efx_for_each_channel(channel, efx) {
828                                 kfree(channel->rps_flow_id);
829                                 channel->rps_flow_id = NULL;
830                         }
831                         efx->type->filter_table_remove(efx);
832                         rc = -ENOMEM;
833                         goto out_unlock;
834                 }
835         }
836 #endif
837 out_unlock:
838         mutex_unlock(&efx->mac_lock);
839         return rc;
840 }
841
842 void efx_remove_filters(struct efx_nic *efx)
843 {
844 #ifdef CONFIG_RFS_ACCEL
845         struct efx_channel *channel;
846
847         efx_for_each_channel(channel, efx) {
848                 cancel_delayed_work_sync(&channel->filter_work);
849                 kfree(channel->rps_flow_id);
850                 channel->rps_flow_id = NULL;
851         }
852 #endif
853         efx->type->filter_table_remove(efx);
854 }
855
856 #ifdef CONFIG_RFS_ACCEL
857
858 static void efx_filter_rfs_work(struct work_struct *data)
859 {
860         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
861                                                               work);
862         struct efx_nic *efx = efx_netdev_priv(req->net_dev);
863         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
864         int slot_idx = req - efx->rps_slot;
865         struct efx_arfs_rule *rule;
866         u16 arfs_id = 0;
867         int rc;
868
869         rc = efx->type->filter_insert(efx, &req->spec, true);
870         if (rc >= 0)
871                 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
872                 rc %= efx->type->max_rx_ip_filters;
873         if (efx->rps_hash_table) {
874                 spin_lock_bh(&efx->rps_hash_lock);
875                 rule = efx_rps_hash_find(efx, &req->spec);
876                 /* The rule might have already gone, if someone else's request
877                  * for the same spec was already worked and then expired before
878                  * we got around to our work.  In that case we have nothing
879                  * tying us to an arfs_id, meaning that as soon as the filter
880                  * is considered for expiry it will be removed.
881                  */
882                 if (rule) {
883                         if (rc < 0)
884                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
885                         else
886                                 rule->filter_id = rc;
887                         arfs_id = rule->arfs_id;
888                 }
889                 spin_unlock_bh(&efx->rps_hash_lock);
890         }
891         if (rc >= 0) {
892                 /* Remember this so we can check whether to expire the filter
893                  * later.
894                  */
895                 mutex_lock(&efx->rps_mutex);
896                 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
897                         channel->rfs_filter_count++;
898                 channel->rps_flow_id[rc] = req->flow_id;
899                 mutex_unlock(&efx->rps_mutex);
900
901                 if (req->spec.ether_type == htons(ETH_P_IP))
902                         netif_info(efx, rx_status, efx->net_dev,
903                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
904                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
905                                    req->spec.rem_host, ntohs(req->spec.rem_port),
906                                    req->spec.loc_host, ntohs(req->spec.loc_port),
907                                    req->rxq_index, req->flow_id, rc, arfs_id);
908                 else
909                         netif_info(efx, rx_status, efx->net_dev,
910                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
911                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
912                                    req->spec.rem_host, ntohs(req->spec.rem_port),
913                                    req->spec.loc_host, ntohs(req->spec.loc_port),
914                                    req->rxq_index, req->flow_id, rc, arfs_id);
915                 channel->n_rfs_succeeded++;
916         } else {
917                 if (req->spec.ether_type == htons(ETH_P_IP))
918                         netif_dbg(efx, rx_status, efx->net_dev,
919                                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
920                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
921                                   req->spec.rem_host, ntohs(req->spec.rem_port),
922                                   req->spec.loc_host, ntohs(req->spec.loc_port),
923                                   req->rxq_index, req->flow_id, rc, arfs_id);
924                 else
925                         netif_dbg(efx, rx_status, efx->net_dev,
926                                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
927                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
928                                   req->spec.rem_host, ntohs(req->spec.rem_port),
929                                   req->spec.loc_host, ntohs(req->spec.loc_port),
930                                   req->rxq_index, req->flow_id, rc, arfs_id);
931                 channel->n_rfs_failed++;
932                 /* We're overloading the NIC's filter tables, so let's do a
933                  * chunk of extra expiry work.
934                  */
935                 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
936                                                      100u));
937         }
938
939         /* Release references */
940         clear_bit(slot_idx, &efx->rps_slot_map);
941         dev_put(req->net_dev);
942 }
943
944 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
945                    u16 rxq_index, u32 flow_id)
946 {
947         struct efx_nic *efx = efx_netdev_priv(net_dev);
948         struct efx_async_filter_insertion *req;
949         struct efx_arfs_rule *rule;
950         struct flow_keys fk;
951         int slot_idx;
952         bool new;
953         int rc;
954
955         /* find a free slot */
956         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
957                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
958                         break;
959         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
960                 return -EBUSY;
961
962         if (flow_id == RPS_FLOW_ID_INVALID) {
963                 rc = -EINVAL;
964                 goto out_clear;
965         }
966
967         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
968                 rc = -EPROTONOSUPPORT;
969                 goto out_clear;
970         }
971
972         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
973                 rc = -EPROTONOSUPPORT;
974                 goto out_clear;
975         }
976         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
977                 rc = -EPROTONOSUPPORT;
978                 goto out_clear;
979         }
980
981         req = efx->rps_slot + slot_idx;
982         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
983                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
984                            rxq_index);
985         req->spec.match_flags =
986                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
987                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
988                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
989         req->spec.ether_type = fk.basic.n_proto;
990         req->spec.ip_proto = fk.basic.ip_proto;
991
992         if (fk.basic.n_proto == htons(ETH_P_IP)) {
993                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
994                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
995         } else {
996                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
997                        sizeof(struct in6_addr));
998                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
999                        sizeof(struct in6_addr));
1000         }
1001
1002         req->spec.rem_port = fk.ports.src;
1003         req->spec.loc_port = fk.ports.dst;
1004
1005         if (efx->rps_hash_table) {
1006                 /* Add it to ARFS hash table */
1007                 spin_lock(&efx->rps_hash_lock);
1008                 rule = efx_rps_hash_add(efx, &req->spec, &new);
1009                 if (!rule) {
1010                         rc = -ENOMEM;
1011                         goto out_unlock;
1012                 }
1013                 if (new)
1014                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1015                 rc = rule->arfs_id;
1016                 /* Skip if existing or pending filter already does the right thing */
1017                 if (!new && rule->rxq_index == rxq_index &&
1018                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1019                         goto out_unlock;
1020                 rule->rxq_index = rxq_index;
1021                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1022                 spin_unlock(&efx->rps_hash_lock);
1023         } else {
1024                 /* Without an ARFS hash table, we just use arfs_id 0 for all
1025                  * filters.  This means if multiple flows hash to the same
1026                  * flow_id, all but the most recently touched will be eligible
1027                  * for expiry.
1028                  */
1029                 rc = 0;
1030         }
1031
1032         /* Queue the request */
1033         dev_hold(req->net_dev = net_dev);
1034         INIT_WORK(&req->work, efx_filter_rfs_work);
1035         req->rxq_index = rxq_index;
1036         req->flow_id = flow_id;
1037         schedule_work(&req->work);
1038         return rc;
1039 out_unlock:
1040         spin_unlock(&efx->rps_hash_lock);
1041 out_clear:
1042         clear_bit(slot_idx, &efx->rps_slot_map);
1043         return rc;
1044 }
1045
1046 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1047 {
1048         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1049         struct efx_nic *efx = channel->efx;
1050         unsigned int index, size, start;
1051         u32 flow_id;
1052
1053         if (!mutex_trylock(&efx->rps_mutex))
1054                 return false;
1055         expire_one = efx->type->filter_rfs_expire_one;
1056         index = channel->rfs_expire_index;
1057         start = index;
1058         size = efx->type->max_rx_ip_filters;
1059         while (quota) {
1060                 flow_id = channel->rps_flow_id[index];
1061
1062                 if (flow_id != RPS_FLOW_ID_INVALID) {
1063                         quota--;
1064                         if (expire_one(efx, flow_id, index)) {
1065                                 netif_info(efx, rx_status, efx->net_dev,
1066                                            "expired filter %d [channel %u flow %u]\n",
1067                                            index, channel->channel, flow_id);
1068                                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1069                                 channel->rfs_filter_count--;
1070                         }
1071                 }
1072                 if (++index == size)
1073                         index = 0;
1074                 /* If we were called with a quota that exceeds the total number
1075                  * of filters in the table (which shouldn't happen, but could
1076                  * if two callers race), ensure that we don't loop forever -
1077                  * stop when we've examined every row of the table.
1078                  */
1079                 if (index == start)
1080                         break;
1081         }
1082
1083         channel->rfs_expire_index = index;
1084         mutex_unlock(&efx->rps_mutex);
1085         return true;
1086 }
1087
1088 #endif /* CONFIG_RFS_ACCEL */
This page took 0.093255 seconds and 4 git commands to generate.